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Abstract 

Despite their wide-spread use, only limited information is available on the comparative test-retest 

reliability of task-based functional and resting state magnetic resonance imaging measures of 

blood oxygen level dependence (tb-fMRI and rs-fMRI) and cerebral blood flow (CBF) using arterial 

spin labeling. This information is critical to designing properly powered longitudinal studies. Here 

we comprehensively quantified and compared the test-retest reliability and reproducibility 

performance of 8 commonly applied fMRI tasks, 6 rs-fMRI metrics and CBF in 30 healthy 

volunteers. We find large variability in test-retest reliability performance across the different tb-fMRI 

paradigms and rs-fMRI metrics, ranging from poor to excellent. A larger extent of activation in tb-

fMRI is linked to higher between-subject reliability of the respective task suggesting that 

differences in the amount of activation may be used as a first reliability estimate of novel tb-fMRI 

paradigms. For rs-fMRI, a good reliability of local activity estimates is paralleled by poor 

performance of global connectivity metrics. Evaluated CBF measures provide in general a good to 

excellent test-reliability matching or surpassing the best performing tb-fMRI and rs-fMRI metrics. 

This comprehensive effort allows for direct comparisons of test-retest reliability between the 

evaluated MRI domains and measures to aid the design of future tb-fMRI, rs-fMRI and CBF 

studies. 
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Introduction 

Functional magnetic resonance imaging (fMRI) based sequences such as task-based, resting-state 

blood oxygenation level-dependent MRI (BOLD; tb-fMRI and rs-fMRI) and arterial spin labelling 

(ASL) of regional cerebral blood flow (CBF) are now commonly applied for studying human brain 

function [1–7]. Beside their widespread application in systems neuroscience, they are also 

recognized as valuable indices for investigating aberrant neural mechanisms behind a variety of 

psychiatric and neurological diseases and for evaluation of experimental interventions [8–11]. In 

particular, their application as diagnostic, stratification, pharmacodynamic and efficacy biomarkers 

has been suggested in that context [8,12–14]. 

Various derived measures ranging from local activity estimates to local and global connectivity 

metrics have been suggested for all of the above MRI measures [4,15,16]. Given the 

complementary nature of tb-fMRI, rs-fMRI and CBF measures their combined acquisition may 

provide better insights into understanding of underlying pathophysiological processes and potential 

treatment effects. In addition to this sensitivity to relevant disease or treatment-induced alterations, 

an important criterion for selection and integration of MRI measures into clinical studies is also their 

reliability in a longitudinal setting.  

Test-retest reliabilities of the aforementioned MRI measures have been extensively evaluated, with 

strongly varying reliability estimates ranging from poor to excellent [17–25]. Despite this extensive 

research, longitudinal consistency of tb-fMRI, rs-fMRI and CBF measures was typically established 

in separate studies, using different hardware, pre-processing and analysis methodology. 

Furthermore, studies performing comparisons of different metrics extracted from those fMRI data 

mainly focused on within domain evaluation, i.e. by comparing different rs-fMRI metrics. Therefore, 

little is known about the relative reliabilities of these measures. The methodological discrepancies 

consequently limit comparability of reliability estimates for different MRI domains across studies 

[20,24].  

Here, we addressed these limitations by conducting a comprehensive dedicated methodological 

study comparing 8 established fMRI tasks covering various neuropsychological domains, 6 

established rs-fMRI metrics and quantitative CBF evaluated in the same subjects using the same 

hardware, preprocessing and analysis methodology. 

Materials and Methods 

Study population and Criteria for Inclusion 

[Table 1] 
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Thirty one healthy male and female subjects (Age: 25 ± 5 years [mean ± standard deviation]; 7 

males/24 females) participated in the study after providing written informed consent. .  

Health status was determined by screening assessments and principal investigator judgment and 

was defined by the absence of any active or chronic disease or positive signs on a complete 

physical examination including vital signs, 12-lead electrocardiogram, hematology, blood 

chemistry, serology and urinalysis. Only subjects with a body mass index (BMI) between 18 to 30 

kg/m2 with a body weight between 50-100 kg were included in the study. All subjects were fluent in 

the language of the investigator and were able to comply with study requirements as judged by the 

principal investigator. 

The study was carried out according to local regulations and the International Council for 

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. 

All experimental procedures conformed to the Declaration of Helsinki and the study protocol was 

approved by the local ethics committee (Foundation Beoordeling Ethiek Biomedisch Onderzoek, 

Assen, Netherlands; fMRI - RHE323EC-153231 - NL54292.056.15). The study has been registered 

on Clinicaltrials.gov under the identifier NCT02560142 and was sponsored by F. Hoffmann-La 

Roche Ltd. 

Study Design 

All study visits were performed at a single center (Neuroimaging Center, University Medical Center 

Groningen, Netherlands). A screening period of 28 days (15±3 days before the baseline Visit 1) 

preceded the study assessment period. Subsequently, two study visits (Visit 1; Visit 2) were 

performed fourteen days apart. The imaging protocol consisted of a series of structural and 

functional MRI sequences/tasks, as outlined in Table S1. 

The battery of structural MRI (see Table S1, MRI measures 1-3) was performed for visualization 

and data processing purposes, and to rule out incidental neuroradiological findings. During 

screening, the subjects were trained in the completion of all tb-fMRI tasks using training versions of 

the tasks. Only subjects with adequate performance were included in the study. A resting scanning 

session at screening (Table S1, MRI measures 4-5) was added to in order to minimize the 

magnitude of the putative habituation effect between Visit 1 and Visit 2. The order of the structural 

and rs-fMRI measures (Table S1, MRI measures 1-5) was fixed for each subject and visit. The 

order of the  tb-fMRI in Visit 1 and Visit 2 (Table S1, MRI measures 6-10) was randomized across 

subjects using the Williams (Latin Squares) design [26] to account for potential carry-over effects. 

Right before the start of the particular imaging session or task, the participant received an 

operator-guided on-screen reminder to reassure understanding of the particular task and all 

associated procedures. 
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MRI Data acquisition 

All scans were performed by experienced MRI technicians on a 3 T clinical scanner (Intera, Philips 

Healthcare, Best, Netherlands) using a 32-channel head coil. T1-weighted images were obtained 

using a 3D fast field echo (FFE) sequence (repetition time, TR = 10.4 ms; echo time, TE = 5.7 ms; 

flip angle, FA = 8°; 160 slices; in-plane resolution = 1 × 1 mm2; slice thickness 1 mm). For CBF 

computation 60 pairs of labeled and control images with 17 axial slices, 7 mm slice thickness and 

no gap covering the whole brain were collected using a pseudo-continuous arterial spin labeling 

(pCASL) sequence (TR = 4000 ms; TE = 14 ms, FA = 90°; labeling duration = 1650 ms; post-

labeling delay = 1600 ms; labeling gap = 2cm; in-plane resolution = 3 × 3 mm2). A 2D single-shot 

echo-planar imaging (EPI) readout with fat suppression was used. Additionally, a separate proton 

density image (M0) was collected to obtain voxel-wise intensity of fully relaxed blood spins. For rs-

fMRI, 244 volumes of BOLD effect sensitive images covering the whole brain were acquired using 

a gradient-echo EPI sequence (TR = 2000 ms, TE = 30 ms; FA = 90°; 39 axial slices with 1 mm 

gap, nominal in-plane resolution 3 × 3 mm2; slice thickness at 3 mm). The same EPI sequence and 

the same imaging parameters except the number of volumes were used to acquire BOLD signal 

during performance of the respective tb-fMRI tasks. 

MRI preprocessing and analyses 

All preprocessing and statistical analyses were performed using Matlab (R2013b, The MathWorks 

Inc., Natick, MA, USA) and SPM12 (Wellcome Trust Centre for Neuroimaging, UCL, London, UK). 

Quantitative CBF maps were computed according to recommendation of the ISMRM Perfusion 

Study Group and the European Consortium for ASL in Dementia [27]. Preprocessing of CBF and 

BOLD data comprised motion correction, distortion correction (for BOLD), spatial registration to a 

structural scan with a subsequent normalization into the Montreal Neurological Institute (MNI) 

space, masking of non-grey matter voxels and smoothing with a Gaussian kernel of 6 mm full-

width at half maximum.  

rs-fMRI measures 

Motion was regressed out of the rs-fMRI data using the Friston 24-parameter model approach 

alongside with mean white matter and CSF signal [28,29]. The following rs-fMRI measures were 

calculated: degree centrality (DC), fractional and absolute amplitude of low frequency fluctuations 

(fALFF and ALFF, respectively), regional homogeneity (ReHo), eigenvector centrality (EC) and 

Hurst exponent. ALFF, fALFF, ReHo (coherence), and DC were computed using the Rest toolkit 

[15], EC as implemented by Wink et al. [30], and Hurst exponent as implemented by Maxim et al. 

[31]. In brief, DC is a count-based measure that assigns to each voxel the sum of all correlation 

coefficients between the time series of that voxel and all other voxels in the brain exceeding a 

prespecified threshold (r>0.25). A recommended correlation threshold of 0.25 was used for DC 
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computation to eliminate counting voxels that have low temporal correlation attributable to signal 

noise [32]. DC maps were additionally z-transformed to reduce the effects of global connectivity 

changes. Temporally unfiltered time series were used for estimation of Hurst exponent. ALFF and 

fALFF reflect the absolute and normalized amplitude of local temporal low frequency fluctuations. 

ReHo represents the coherence of a voxels time series with its immediate neighborhood. EC 

represents the importance of a voxel in a network based on its synchronization strength to other 

more or less important regions. Hurst exponent provides a measurement of persistence of specific 

signals in the time series. All measures were computed as suggested in the respective cited 

publications using default parameters, including removal of a linear trend and restriction to the low 

frequency range (for fALFF divided by the amplitude of frequencies outside the range) used by the 

REST toolkit (0.01–0.08 Hz) [15].  

tb-fMRI measures 

Details of the employed experimental paradigms are summarized in the Supplementary Material. In 

brief, the following established fMRI paradigms were evaluated: reward expectation – monetary 

incentive delay task (MID), working memory – N-back task, theory of mind – ToM, emotional face 

matching – FM, response inhibition – Go/No-go, memory encoding, recall and recognition.  To 

determine task-dependent activation, (first-level) t-contrasts of ‘active vs control’ condition were 

computed for each fMRI task per subject and session (Face matching: Faces > Shapes, MID: Win 

> Control , N-back: 2 back > 0 back, Go/No-go: No-go > Go, Encoding, Recall and Recognition: 

Professions > Ears, ToM: Affective > Visuo-spatial). Effects of motion were controlled for in all 

tasks by including 6 motion parameters (translation and rotation) in all models. Group-level main 

effects of task ((de)activation maps) were evaluated using the obtained individual contrast maps for 

all fMRI tasks including estimates for all subjects and visits in a voxel-wise manner using a family-

wise error (FWE) corrected threshold of p<0.05. Additionally, separate group (de)activation tests 

were computed for the two visits. 

Reliability analyses 

To evaluate the reliability of respective tb-fMRI, rs-fMRI and CBF measures, we computed two 

types of intra-class correlation (ICC) [33] and consistency metrics as described below. For ICCs 

the following criteria as developed by Cicchetti and Sparrow [34] were applied for interpretation: 

poor (below 0.4), fair (0.4–-0.59), good (0.6–-0.74), and excellent (≥0.75). Two types of ICCs were 

used for all analyses: ICC(2,1) for directly derived measures (i.e. % correct or voxel-wise 

activation) and ICC(2,k) for average measures from the respective visits (i.e. reaction times or 

average activation from regions-of-interest) [33]. Specifically, for ICC(2,1), a two-way random 

effects model (column and row effects random) was used to calculate the degree of consistency 

among measurements. This model is also known as norm-referenced reliability and as Winer’s 

adjustment for anchor points. For ICC(2,k), a two-way random effects model (column and row 
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effects random) was used to calculate the degree of absolute agreement for measurements that 

are averages based on k independent measurements on randomly selected objects [35]. 

Importantly, for both types of ICCs a maximum possible positive value of 1 indicates perfect 

reliability. In contrast, the applied ICCs are not limited in terms of their lower bound with negative 

coefficients below -1 being possible in case of anti-correlation. 

Behavioral reliability analyses 

First, we evaluated the stability and reliability of behavioral measures acquired during the fMRI 

tasks. For this we computed paired t-tests evaluating changes in mean performance across visits 

for the respective measures. Further, we assessed the test-retest reliability of behavioral measures 

acquired during the specific fMRI tasks using the ICCs described above. 

Voxel-wise reliability analyses 

To estimate the reliability of the various tb-fMRI, rs-fMRI and CBF measures we computed several 

types of reliability and consistency estimates to estimate voxel- and region-wise reliability and 

consistency of the respective measures. To characterize the consistency of activation patterns 

observed with fMRI at session 1 and 2, we computed Jaccard indices of overlap of the whole-brain 

activity between visit 1 and visit 2 (area of overlap divided by the overall activated area), by 

systematically varying the cut-off activation threshold (t-value) for both visits and counting 

concordant/discordant pairs of (de)activated voxels. Further, to characterize the voxel-wise test-

retest reliability of the respective measures we computed voxel-wise intra class correlation 

coefficients (ICC(2,1)) for all tb-fMRI contrast maps, rs-fMRI and CBF measures. As 3 visits were 

available for rs-fMRI and CBF, voxel-wise ICCs were computed between screening and visit 1 and 

between visit 1 and visit 2 (consistent with fMRI tasks). Median ICCs of all significantly 

(de)activated voxels were then extracted from the obtained voxel-wise ICC maps. Further, median 

voxel-wise ICCs were extracted for rs-fMRI and CBF from pre-specified, commonly used resting 

state networks (http://findlab.stanford.edu/functional_ROIs.html). For tb-fMRI, median voxel-wise 

ICCs were computed separately within regions showing significant task-related activation or 

deactivation (pooled over both visits). Additionally, to evaluate the consistency of the average 

voxel-wise group activation maps obtained at visits 1 and 2, we computed test retest reliability 

(ICC(2,k)) between the spatial activation profiles obtained at both visits (t-contrasts). Lastly, we 

aimed to evaluate if the amount of observed task-induced activation or deactivation was linked to 

the respective test-retest reliability. For this we computed a Pearson correlation between both visits 

across all tasks.  
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Region-wise reliability analyses 

We further aimed to evaluate if averaging over specific brain regions affected the reliability 

estimates. Region-wise ICCs were computed for all measures by extracting mean values from 

regions provided by the automated anatomical labeling (AAL) atlas (116 regions). Within-

region/between-subject and between-region/within-subject ICCs (ICC(2,k)) were computed for 

each region and each imaging measure to evaluate the between-subject and within-subject 

reliabilities, respectively. The first type of ICCs (within-region/between-subject) thereby reflects the 

reliability of the signal within a specific a region across subjects (i.e. where the order of subjects 

remains the same). The second type (between-region/within subject) provides an estimate of the 

robustness of the observed spatial activation pattern within each subject (i.e. does region A show a 

consistently higher activation as compared to region B?). For rs-fMRI and CBF, all ICCs were 

computed for screening to visit 1 and for visit 1 to visit 2. The ICCs related to tb-fMRI were 

calculated for visit 1 to visit 2. Reliability of the mean (de)activation within significant regions was 

also evaluated for tb-fMRI data. Additionally, as specific regions are of particular interest for some 

of the included tasks (ventral striatum for MID, dorsolateral prefrontal cortex for N-back, left and 

right amygdala for FM and medial prefrontal cortex for ToM) test-retest reliability (ICC(2,k)) was 

computed for mean activation values extracted from these regions (defined using corresponding 

anatomical clusters showing significant activation at both visits). 

Results 

Obtained data 

All subjects complied with the study protocol and finished the required assessments. One subject 

(ID 1207) was excluded from the study due to a newly diagnosed attention deficit hyperactivity 

disorder. All participants were able to perform the fMRI tasks. Based on quality check, the CBF 

scans for one subject, rs-fMRI data for 2 subjects and N-back data for 1 subject were discarded 

due to insufficient coverage due to misplaced bounding box and/or excessive motion. Overall, this 

resulted in evaluable data for 28 to 30 subjects depending on the respective fMRI domain. 

Results of behavioral reliability analyses 

Mean reaction times significantly decreased at visit 2 for the MID, FM, Encoding and the 0-back 

condition of the N-back task (Table S2). The number of hits and the collected reward significantly 

increased in the MID task. No differences were observed for other behavioral indices for any of the 

tasks except a slight increase in the miss rate for the 2-back condition of the N-back task. Reaction 

times in the control conditions of all tasks except Go/No-go and recognition showed in general 

highest test-retest reliability as compared to all other measures. 
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Results of voxel-wise reliability analyses 

[Fig 1] 

[Table 1] 

In the pooled analysis of both visits, robust task-evoked (de)activation was observed in tb-fMRI that 

is consistent with previous reports on these tasks for all paradigms except the Go/No-go (Fig 1). 

For the Go/No-go task, significant activation was only observed in the contrast Go>No-go in 

primary motor and insular regions but not in the opposite contrast. Activation patterns obtained for 

all tasks are shown separately for visits 1 and 2 in Figs S7–S13 at an uncorrected alpha level 

threshold of p<0.001 (except the Go/No-Go task, for which no significant activation was found 

when visits 1 and 2 were analyzed independently). 

[Fig 2] 

[Table 2] 

Jaccard indices of overlap between tb-fMRI activation patterns obtained at visit 1 and 2 revealed a 

generally high activation consistency for all tasks except Go/No-go (Table 1, Fig 2a). Highest 

consistency was achieved at a t-value threshold of 0 in all tasks except FM. Taken together, these 

results suggest overall consistency of activation vs. de-activation of fMRI patterns, even at very low 

significance thresholds. In the FM task, the highest consistency was achieved at a high positive t-

value. Higher ICCs were observed in activated compared to deactivated regions, ranging between 

poor and good depending on the paradigm (Table 2, Fig 3). Evaluation of spatial reliability of 

average group activation maps obtained at visits 1 and 2 revealed a generally good (Go/No-go) to 

excellent (all other tasks) reliability of these tb-fMRI measures (Table 2). Finally, we found a 

significant positive correlation between the number of significantly activated or de-activated regions 

in the fMRI tasks and the observed test-retest reliability in the respective regions (r = 0.65; p = 

0.008; Fig 2b). 

Voxel-wise and whole-brain ICC analyses of rs-fMRI data revealed a poor to excellent reliability for 

the different rs-fMRI measures depending on the pre-specified network (Table 3, Table S4, Fig 4). 

In general, lower ICCs and poor reliability estimates were obtained for whole-brain hubness or 

signal complexity measures (DC, EC and Hurst) compared to local activity and synchronization 

measures (ALFF, fALFF and ReHo). The reliabilities between rs-fMRI ICCs between screening and 

visit 1 and between visits 1 and 2 were comparable. ICCs for CBF ranged between fair and 

excellent with substantial ICC increases observed between visits 1 and 2 compared to between 

screening and visit 1 (Fig 4, Table 3, Table S4).  

[Fig 3] 
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[Fig 4] 

Results of region-wise reliability analyses 

[Table 3] 

In tb-fMRI measures, the direction and magnitude of changes in ICCs from voxel- to region-wise 

analyses strongly depended on the specific paradigm and the regions chosen (Table 1, 2). Task 

specific ROI analyses revealed excellent test-retest reliability for MID and ToM and poor reliabilities 

for all other tasks (Table S3). 

In general, region-wise AAL-based analyses improved the reliability of rs-fMRI and CBF measures 

to a fair to excellent level (Table 3). Similar to voxel-wise analyses, a substantial increase in 

reliability from screening to visit 1 as compared to visit 1 to 2 was observed only for CBF. .  

For all tb-fMRI, rs-fMRI and CBF measures, generally higher ICCs were observed for within-

subject between-region compared to between-subject within-region ICCs, ranging from poor for 

Go/No-go, fair for ToM and good to excellent for all other measures (Table 3).  

Discussion 

We evaluated different test-retest reliability characteristics for multiple MRI measures including tb-

fMRI, rs-fMRI and CBF. We find a large heterogeneity of reliability estimates within and between 

the different domains, depending on the respective fMRI domain, analysis approach, reliability 

metric and study design. 

Consistent with previous studies, voxel-wise test-retest reliability within (de)activated regions 

ranged between poor and good depending on the fMRI paradigm [20,23]. Also, similarly to previous 

studies, we obtained an excellent test-retest reliability of voxel-wise group activation maps for all 

fMRI tasks [23]. No consistent improvement in test-retest reliability was observed after averaging 

signals from the (de)activated regions: some tasks showed substantial improvements but also 

considerable worsening in respective reliability metrics. Interestingly, we found that the amount of 

significant activation (i.e., number of activated voxels) was positively related to the task and region-

specific reliability estimates. This observation suggests that differences in amount of activation may 

be used as a first reliability estimate of novel tb-fMRI paradigms. Furthermore, we found strong 

differences between fMRI tasks with respect to consistency of between-session activation patterns 

and the respective dependence on the applied statistical thresholds. Interestingly, for most tasks, 

highest consistency of between-session activation maps was achieved at a zero threshold, 

suggesting that whole brain (de)activation patterns are reliable despite most regions not reaching 

the significance threshold. In contrast, for the face matching task, highest consistency was 

observed at a relatively large t-value, indicating a highly reliable activation pattern for this task. For 
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most other fMRI tasks, the consistency of activation patterns significantly dropped at such high 

thresholds, indicating a rather low regional overlap of peak activations across different visits. 

Relative to tb-fMRI, higher between-subject test-retest reliability was observed in rs-fMRI local 

activity measures (ALFF, fALFF and ReHo), which ranged from good to excellent. In contrast, 

global connectivity (DC and EC) and signal complexity measures (Hurst) showed poor to fair test-

retest reliabilities. The large heterogeneity of reliability estimates across different rs-fMRI metrics is 

consistent with previous reports [17,36]. However, the present findings suggest that especially 

voxel-wise connectivity metrics provide poor between-subject reliability in a healthy volunteer 

setting. In contrast, the within-subject between-region reliability of all rs-fMRI measures was in the 

excellent range and consistently higher than the between-subject reliability, indicating a high 

topographic stability of all rs-fMRI measures. The within-subject ICC may be considered an 

indicator of the amount of information carried by the respective measure. In contrast, as the 

between-subject ICC reflects regional signal-to-noise levels in the respective measure, lower 

values observed here suggest that these measures may be insufficient for correlational analyses 

(e.g. with behavioral scales). Overall poor performance of the evaluated connectivity-based rs-fMRI 

metrics questions their usability for cross-sectional correlation analyses in healthy volunteers. 

Several recent studies established the test-retest reliability of CBF and connectivity measures and 

the potential influence of  acquisition and preprocessing parameters, but also effects of different 

approaches for calculating a particular outcome measure [16,18,24,25,37–40]. Consistent with 

these reports, we observed excellent test-retest reliability for quantitative CBF, which outperformed 

most rs-fMRI and all tb-fMRI metrics [18,24]. As for rs-fMRI, ROI test-retest estimates were 

superior to voxel-based estimates. Additionally, we found a substantial improvement of test-retest 

characteristics between data from visits 1 and 2 as compared to screening and visit 1, but only for 

CBF and none of the rs-fMRI measures. A potential explanation for this pattern might be the 

stronger susceptibility of CBF to peripheral or central arousal effects [41,42]. Emotional arousal 

may be heightened in a first compared to ensuing MRI sessions, potentially introducing additional 

noise into the baseline CBF measures and thereby lowering its test-retest reliability with 

subsequent sessions. In contrast, the low frequency band-pass filtering and other de-noising 

techniques applied to rs-fMRI measures should reduce the contribution of such physiological 

confounds and might therefore explain the lack of changes in rs-fMRI reliability. 

Several limitations apply to the interpretation of specific outcomes. As the major purpose of the 

present study was to compare the relative test-retest reliabilities of specific tb-fMRI, rs-fMRI and 

CBF, we used the recommended and most comparable pre-processing pipelines for these data. 

Additional pre-processing steps may therefore have further improved the reliability of some of the 

evaluated metrics (i.e. slice timing or different motion correction for some of the fMRI tasks). Same 

issue also applies to the choice of parameter settings such as the correlational threshold applied 
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for DC in our study. The choice of different thresholds has been shown to affect functional 

connectivity results and may therefore also result in different test-reliability estimates [43]. 

Similarly, we applied a conservative approach to correct for potential motion effects and white 

matter and cerebrospinal signals as recommended for rs-fMRI data [29], compared to the standard 

fMRI motion correction using 6 parameters. Such differences may have introduced further biases 

between the respective fMRI domains. However, considering that the observed ICCs for both fMRI 

and rsMRI ranged from poor to excellent, the effect of these differential processing steps may be 

negligible. Lastly, further differences between tb-fMRI, rs-fMRI and CBF measures may have been 

introduced through different acquisition parameters (i.e. lower resolution for CBF which have 

lowered its test-retest reliability estimates) and the study design with only rs-fMRI and CBF 

measures acquired at the screening visit.  

To our knowledge, this study provides the most comprehensive evaluation of test-retest metrics for 

commonly used tb-fMRI and rs-fMRI measures. We find most of the rs-fMRI measures to have 

superior reliability compared to tb-fMRI. The relative reliabilities of fMRI measures strongly 

depended on the task, with more widespread activation associated with higher test-retest reliability. 

Lastly, we find the reliability of CBF to substantially benefit from an additional screening MRI 

evaluation, which may reduce potential emotional arousal effects and respective cardiovascular 

changes confounding the baseline CBF scan. Importantly, previous studies have demonstrated the 

dependency of achieved power to detect specific effects in both within- and between-subject 

designs on the test-retest reliability of respective metrics [44]. Our study provides an overview of 

different test-retest reliability metrics for the most commonly applied functional task-based and 

resting-state MRI domains and specific outcome measures. It therefore enables a more informed 

decision on end-point selection, study design, and sample size required to detect specific effect 

sizes with the respective technologies. 
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Table 1 Consistency of tb-fMRI contrasts 

  Number of de / activated voxels* at Consistency 

fMRI task Visit 1 Visit 2 Both 
Jaccard index /  

t-value threshold 

MID 15 / 893 222 / 1791 510 / 13551 0.900 / 0.01 

N-back 4579 / 1839 2037 / 2306 10917 / 5573 0.871 / -0.10 

ToM 61 / 919 24 / 248 475 / 3856 0.719 / 0.01 

FM 20 / 3983 0 / 4427 122 / 6331 0.81 / 5.61 

Encoding 3727 / 821 866 / 1697 5852 / 3848 0.695 / -0.09 

Recall 1188 / 1519 335 / 1998 3364 / 4465 0.643 / -0.06 

Recognition 157 / 1990 88 / 1962 1220 / 6229 0.769 / 0.01 

Go/no-go 0 / 24 0 / 208 0 / 568 0.429 / 0.01 

* FWE-corrected significance at voxel-level (p<.05), FM: face matching, MID: monetary incentive 

delay, ToM: theory of mind. 
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Table 2 Reliability of tb-fMRI contrasts 

  Voxel-wise reliability² within 
Reliability¹ of group 

t-maps Reliability¹ of mean   

fMRI task 

Deactivated 
regions**  

median [P5–P95] 

Activated 
regions**  

median [P5–P95] ICC [95% CI] 
Deactivation** 
ICC [95% CI] 

Activation** 
ICC [95% CI] 

MID 0.21 [-0.11–0.5] 0.59 [0.25–0.78] 0.93 [0.93–0.94] -0.07 [-1.24–0.49] 0.88 [0.75–0.94] 

N-back 0.38 [0.01–0.66] 0.44 [0.13–0.68] 0.97 [0.97–0.97] 0.42 [-0.23–0.73] -0.21 [-1.58–0.43] 

ToM 0.26 [-0.21–0.53] 0.33 [-0.03–0.60] 0.9 [0.9–0.9] 0.51 [-0.02–0.77] 0.52 [-0.01–0.77] 

FM 0.26 [-0.12–0.61] 0.65 [0.13–0.87] 0.95 [0.95–0.95] 0.37 [-0.33–0.70] 0.53 [0.01–0.78] 

Encoding 0.49 [0.05–0.76] 0.42 [-0.01–0.77] 0.94 [0.94–0.95] 0.35 [-0.36–0.69] 0.09 [-0.92–0.56] 

Recall 0.37 [-0.10–0.67] 0.36 [-0.08–0.70] 0.94 [0.93–0.94] 0.42 [-0.22–0.72] 0.22 [-0.63–0.63] 

Recognition 0.48 [0.07–0.75] 0.55 [0.17–0.79] 0.95 [0.95–0.95] 0.66 [0.28–0.84] 0.66 [0.29–0.84] 

Go/no-go – 0.04 [-0.21–0.30] 0.71 [0.70–0.71] – -0.71 [-2.6–0.18] 

** FWE-corrected significance at voxel-level (p<.05) in the pooled analyses of visit 1 and visit 2 

data, ¹ ICC(2,k), ² ICC(2,1), CI: confidence interval, FM: face matching, ICC: intraclass correlation 

coefficient, MID: monetary incentive delay, P: percentile, ToM: theory of mind. 
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Table 3 Comparative reliability of tb-fMRI, rs-fMRI and CBF measures 

Domain Measure 

Between subject reliability¹ across 
AAL regions 

Within subject reliability¹ across 
AAL regions Whole-brain voxel-wise reliability² 

Screening to 
visit 1  median 

[P5–P95] 
Visit 1 to visit 2 
median [P5–P95] 

Screening to 
visit 1  median 

[P5–P95] 
Visit 1 to visit 2 
median [P5–P95] 

Screening to 
visit 1 

Median [P5–P95]  
Visit 1 to visit 2 
Median [P5–P95]  

tb-fMRI MID – 0.70 [-0.00–0.88] – 0.79 [-0.32–0.93] – 0.43 [-0.06–0.74] 

  N-back – 0.38 [-0.09–0.68] – 0.81 [0.61–0.94] – 0.37 [-0.03–0.68] 

  ToM – 0.42 [-0.09–0.69] – 0.58 [-0.10–0.83] – 0.25 [-0.14–0.57] 

  FM – 0.38 [-0.15–0.71] – 0.80 [0.63–0.93] – 0.24 [-0.15–0.73] 

  Encoding – 0.30 [-0.19–0.58] – 0.73 [0.47–0.94] – 0.29 [-0.14–0.68] 

  Recall – 0.23 [-0.84–0.77] – 0.72 [0.25–0.89] – 0.22 [-0.39–0.65] 

  
Recogniti

on 
– 0.48 [0.03–0.72] – 0.72 [0.48–0.86] – 0.35 [-0.06–0.7] 

  Go/no-go – -0.16 [-0.74–0.36] – 0.24 [-1.11–0.66] – 0 [-0.32–0.34] 

rs-fMRI ALFF 0.72 [0.32–0.87] 0.72 [0.27–0.86] 0.95 [0.88–0.07] 0.96 [0.73–0.98] 0.62 [0.19–0.85] 0.55 [0.12–0.82] 

  fALFF 0.57 [0.01–083] 0.57 [0.17–0.75] 0.98 [0.95–0.99] 0.98 [0.95–0.99] 0.39 [-0.02–0.67] 0.37 [0–0.65] 

  ReHo 0.58 [0.24–0.81] 0.58 [0.21–0.78] 0.96 [0.87–0.98] 0.96 [0.86–0.98] 0.5 [0.11–0.75] 0.46 [0.06–0.74] 

  DC 0.43 [0.00–0.67] 0.44 [-0.04–0.71] 0.91 [0.59–0.96] 0.89 [0.62–0.95] 0.26 [-0.08–0.56] 0.27 [-0.07–0.55] 

  EC 0.50 [-0.02–0.76] 0.36 [-0.15–0.67] 0.76 [0.22–0.95] 0.65 [0.19–0.92] 0.27 [-0.06–0.56] 0.24 [-0.08–0.52] 

  Hurst 0.59 [0.17–0.80] 0.45 [0.18–0.64] 0.92 [0.72–0.96] 0.92 [0.77–0.96] 0.33 [-0.04–0.61] 0.3 [-0.05–0.58] 

ASL CBF 0.63 [0.35–0.79] 0.83 [0.42–0.91] 0.95 [0.87–0.98] 0.96 [0.91–0.98] 0.52[0.13–0.80] 0.68 [0.20–0.89] 

¹ ICC(2,k), ² ICC(2,1), AAL: anatomical automatic labeling, ALFF: amplitude of low frequency 

fluctuations, ASL: arterial spin labeling, CBF: cerebral blood flow, DC: degree centrality, EC: 

eigenvector centrality, fALFF: fractional ALFF, FM: face matching, MID: monetary incentive delay, 

P: percentile, rs-fMRI: resting-state fMRI, ToM: theory of mind. 
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Fig 1 Group-level maps of main effects of all tb-fMRI responses. FWE: family-wise error corrected, 

MID: monetary incentive delay, tb-fMRI: task-based fMRI, ToM: theory of mind. 

Fig 2 Consistency of (de)activation patterns (Jaccard index of overlap) (a) and association 

between number of significant voxels and observed reliability estimates observed for each fMRI 

task (b). FM: face matching, ICC: intraclass correlation coefficient, MID: monetary incentive delay, 

ToM: theory of mind. 

Fig 3 Voxel-wise reliability of tb-fMRI responses. ICC: intraclass correlation coefficient, tb-fMRI: 

task-based fMRI. 

Fig 4 Voxel-wise reliability of rs-fMRI and CBF measures. ALFF: amplitude of low frequency 

fluctuations, fALFF: fractional ALFF, CBF: cerebral blood flow, DC: degree centrality, EC: 

eigenvector centrality, ICC: intraclass correlation coefficient, ReHo: regional homogeneity, rs-fMRI: 

resting-state fMRI. 
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