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ABSTRACT

The lack of high-quality reference data is a major limitation in drug safety and
drug discovery science. Unreliable standards prohibit the use of supervised
learning methods and make evaluation of algorithms difficult. While some data is
available for positive examples (e.g. which drugs are associated with a side
effect), there are no systematic resources of negative controls. To solve this
issue, we introduced SIDERctrl, a computational method that ranks drugs based
on the likelihood of not causing a side effect. We applied SIDERctr] to predict
negative controls from unreported drugs of 890 side effects in SIDER. Our
predictions decreased the false negative rate by one-third according to a
validation study using AEOLUS data. Three sets of predicted negative controls by
different thresholds of precision were provided, and can be accessed at
http://tatonettilab.org/resources/negative-drugs.html. This new reference
standard will be important in chemical biology, drug development, and
pharmacoepidemiology.

KEY POINTS

e The lack of systematic resources providing negative control drugs limits
the performance of existing research in drug safety.

e We developed a novel method that integrated chemical and biological
properties a drug and the target proteins to calculate the likelihood of the
drug being negative control.

e We applied our method to 890 side effects, and showed that our method
significantly decreased the false negative rate of predictions.

1. INTRODUCTION

Side effects (SEs) of drugs, defined as any untoward medical occurrence during
the administration of pharmaceutical products, are a worldwide public health
concern. According to US department of Health and Human Services, SEs account
for approximately one third of all hospital adverse events and affect about two
million hospital stays annually, prolonging each stay by 1.7 to 4.6 days [1].
Serious SEs cause about 100,000 deaths per year, which has become the fourth
leading cause of death in the US [2]. Thus, comprehensive evaluation of SEs is
needed for every drug to reduce healthcare costs and improve outcomes.

A traditional way to detect SEs is conducting clinical trials of pharmaceutical
products. However, the inherent limitations of clinical trials, such as limited
duration and population of study often lead to new SEs being discovered in the
post-marketing surveillance [3, 4]. The US Food and Drug Administration (FDA)
monitors post-marketing usage of drugs through the Adverse Event Reporting
System (FAERS), which receives reports from healthcare providers, patients, and
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pharmaceutical companies. Banda et al developed a new resource named
AEOLUS, which provided a curated and standardized version of reports from
FAERS by removing duplicate records and applying standardized vocabularies to
drugs and SEs [5]. Similarly, Kuhn et al created SIDER that contained data on
1,430 drugs, 5,880 SEs and 140,064 pairs of relationships between them by
mining the product labels of FDA-approved drugs [6]. Such resources can serve
as examples to study the mechanism of SEs, as well as to predict the occurrence
of SEs. Previous studies have used the resources to build a variety of supervised
learning models that incorporated features such as structural properties of drugs
[7], genomic-scale metabolic models [8], and drug-induced gene expression [9],
to predict SEs of drugs. When building the reference set of each SE, all these
approaches simply regarded drugs that were reported with the SE in FAERS or
SIDER as positive standards and all the other unreported drugs as negative
standards. However, such method of classification is limited by the data
incompleteness and inconsistency among these resources as a significant
number of SEs have not been labeled or reported [10]. This will inevitably bring
in false negatives in the reference drug set, thus decrease the precision of the
model. As a result, previous models showed only moderate performance with
median AUROC between 0.6 and 0.65 [7-9]. To solve this issue, we presented
SIDERctr], a computational method that ranks unreported drugs by the
likelihood of not causing a side effect. We hypothesized that unreported drugs
that share similar properties with positive drugs are more likely to cause the
same SE while unreported drugs that do not are more likely to be negative
controls. Based on the hypothesis, we built a supervised learning model that
incorporates multiple pharmacological features such as ATC code, indications,
compound structure, etc. We applied SIDERctrl to the SIDER data consisting 890
SEs and predicted three sets of negative control drugs with a minimum precision
of 0.15, 0.26, and 0.37. We validated our predictions using the defined
relationships between drugs and SEs from an independent resource AEOLUS,
and showed that the predicted negative controls exhibit a low false negative rate
close to 6%. Our results provide a high-quality reference set of 890 SEs, which
can support future methodological research in drug safety.

2. METHODS

2.1 Construct the training set for SIDERctrl model

Given a list of drugs that were reported with a SE (such drugs are referred to as
“true positive drugs” below), the task of SIDERctrl is to learn a classifier which
can differentiate the unreported drugs that are more likely to cause the same SE
(referred to as “others” below) from the unreported drugs that are less likely to
cause the SE (referred to as “negative controls” below). The training set of
SIDERctr] model was derived from combining four reference sets manually
curated by a previous study [11], which contained 1,824 relationships between
456 drugs and four SEs. The description of reference sets was detailed in
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Supplementary Methods. Drugs without target annotation from DrugBank [12]
or SE annotation from SIDER [6] were removed.

2.2 Calculate pairwise similarity of seven pharmacological features in
SIDERctrl model

A similarity score between 0 and 1 was assigned to each drug pair regarding the
following features: 1) ATC code: a discrete value from [0, 0.2, 0.4, 0.6, 0.8, 1]
based on accumulative similarity in 5 levels of ATC code (first digit, first three
digits, first four digits, first five digits, all seven digits); 2) Indication: Jaccard
similarity based on annotation from MEDI [13]; 3) Structure: Tanimoto similarity
based on SMILES representation; 4) Target: Jaccard similarity based on
annotations from DrugBank [12]; 5) Target PPI: proportion of target pairs that
share protein-protein interactions based on annotations from BioGRID [14]; 6)
Target phenotype: proportion of target pairs that share genetic variant-disease
links based on annotations from OMIM [15]; 7) Target sequence: average
pairwise sequence similarity between target proteins calculated by R package
protr [16].

2.3 Build the SIDERctrl model and evaluate the performance

Using the seven features above, each unreported drug was scored by the
maximum feature similarity to all true positive drugs (Fig. 1A). The SIDERctrl
model contains 100 random forest classifiers [17] built using the training data.
The number of trees was set as 500 in each classifier. The results were averaged
across 100 classifiers to account for the stochastic nature of random forest.
Bootstrap sampling was used to estimate the 95% confidence interval of each
measurement. The out-of-bag probability was used to evaluate the performance
of the classifier, which was measured by the area under receiver operating
characteristic curve (AUROC). The predictive power of each feature was
measured by the increase in mean squared error (MSE) when the feature was
removed from the model.

2.4 Estimate the performance of new predictions by sampling subsets from
the training set

We investigated the association between the number of true positive drugs and
model performance by sampling subsets of true positive drugs from the training
set to recalculate the similarity scores of unreported drugs. A new SIDERctrl
model was built based on the scores, and evaluated by the same method
described above. To account for the stochastic nature of randomization, the
analysis was repeated 20 times for every possible size of the subset. The average
result of each size was used to estimate the performance of new predictions
made for SEs with the same number of true positive drugs. Using this method, we
were able to make estimations for SEs annotated with fewer true positive drugs
than the training set. For SEs with more true positive drugs, we gave a minimum
estimation as the performance derived from the whole training set.
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2.5 Validate the predicted negative controls using data from AEOLUS
AEOLUS dataset was downloaded from Dryad [5], and detailed in Supplementary
Methods. Drugs and SEs were matched between SIDER and AEOLUS using the
concept name from the “concept” table. Relationship between drugs and SEs
were extracted using the proportion reporting ratio (PRR) statistics from the
“standard_drug_outcome_statistics” table. A drug was defined as true positive of
a SE if the lower confidence interval of PRR score is greater than 1.

3 RESULTS

3.1 SIDERctrl achieved a 42% improvement over random classifier

As described above, SIDERctrl was trained on a dataset that contains 1,824
relationships between four SEs and 456 drugs, including 78 positive, 100
negative, and 1646 other relationships. Overall, SIDERctrl achieved an AUROC of
0.711 (95% CI: 0.710-0.713; Fig. 1B), increasing the performance of random
classifier by 42%. The precision of SIDERctrl reached 0.2, 0.4, 0.6 when
unreported drugs with predicted score greater than 0.18, 0.32, 0.38 were defined
as negative controls, respectively (Fig. 1C,D). SIDERctrl incorporated seven
pharmacological features in the random forest model, where each unreported
drug was scored by the maximum feature similarity to true positive drugs. We
compared the predictive power of distinct features. Target sequence similarity
and target similarity were found to have the highest power among seven
features (Fig. 1E).

3.2 The performance of SIDERCctrl is positively correlated with the number
of true positive drugs

We found that the average precision of SIDERctrl increases linearly while the
variation decreases as the number of true positive drugs used to generate the
feature scores of unreported drugs increases from 1 to 78 (Fig. 1F-H). Similar
results were observed in the other measurements of performance such as
AUROC (Supplementary Fig. 1A) and recall (Supplementary Fig. 1B-D). The
precision of SIDERctrl remains consistently greater than 0.1 (P < 0.05) when
more than 10, 11, 18 true positive drugs were used to generate the similarity
scores of unreported drugs under the threshold of 0.2, 0.4, 0.6, respectively.
Therefore, we set the minimum number of true positive drugs required for the
SIDERctrl model as 10, 11, and 18 under three thresholds, in order to guarantee
a minimum precision of 0.1 in the predicted negative controls.

3.3 Predicted negative controls exhibit lower false negative rate compared
to other unreported drugs

We then applied SIDERctr] to predict negative controls for 890 SEs in SIDER
annotated with more than 10 true positive drugs (Supplementary Methods).
Using the thresholds defined above, we obtained three sets of predicted negative
controls (Table 1; Supplementary Table 1). The precision of our predictions was
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estimated to be at least 0.15, 0.26, and 0.37 in three sets. The number of
predicted drugs dropped significantly as higher thresholds were applied. On
average, 29.4+0.8, 4.21+0.2, 2.0+0.1 drugs were predicted per SE under three
thresholds. No SE was predicted with more than 10 drugs under the highest
threshold of 0.38.

We validated our predictions by comparing the false negative rate between
predicted negative controls and other unreported drugs, which was defined as
the proportion of true positives reported in an independent resource. More than
97% of the 890 SEs can be validated using this approach. The false negative rates
of predicted negative controls are 6.1+0.4%, 5.6£1.0%, and 7.2+2.1% under
three thresholds (Fig. 2A), significantly lower than those of other unreported
drugs: 9.020.3% (P = 2.3e-33), 8.9+0.3% (P = 4.9e-10), and 9.3+0.4% (P = 2.7e-2).
We also grouped the 890 SEs into 19 categories based on human body system
(Supplementary Methods), and observed similar results across distinct systems
(Fig. 2B-F & Supplementary Fig. 2A-N). In 12 of the 19 systems, at least one of
three predicted sets exhibits lower false negative rate than other unreported
drugs.

3.4 Predicted negative controls of similar SEs show higher variability than
true positive drugs

We investigated whether similar SEs were predicted with similar negative
controls by comparing the Jaccard similarity of predictions within the same
system of SEs and across different systems. We only found a significant
difference between the two groups when using 0.18 as the threshold to define
negative controls (P = 0.045; Fig. 3A), while no significant different was detected
between the two groups under higher thresholds (Fig. 3B,C). As comparison, the
same analysis was performed on the true positive drugs that were used to
generate the feature scores. We found that the within-system similarity is
consistently higher than the across-system similarity under all three thresholds
(Fig. 3A-C), proving that similar SEs were annotated with similar sets of true
positive drugs in SIDER. Altogether, the results show that similar sets of true
positive drugs may result in substantial difference among the predicted negative
controls.

4. DISCUSSION

One important issue in drug safety research is the lack of high-qualify reference
set. Despite the wide use of reporting systems such as FAERS, many SEs of drugs
remain unreported. Such incompleteness causes a high false negative rate among
all unreported drugs. In this paper, we introduced a supervised learning model
that addressed this issue by ranking all unreported drugs based on their
similarity to the reported positive drugs. Drugs with lower similarity were
predicted as negative controls. We set three different thresholds of predicted
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score to define negative controls, in order to provide users with more choices.
Higher thresholds result in fewer, but more accurate predictions. We also found
that when more true positive drugs were reported and used to generate the
similarity scores of unreported drugs, better performance of SIDERctrl was
obtained. This is because more information can be learned by our model
regarding the chemical and biological properties of drugs associated with the SE.

The highlight of this study is that we provided three sets of predicted negative
controls for all 890 SEs in SIDER that were annotated with more than 10 true
positive drugs. We validated our predictions using data from an independent
resource AEOLUS, where we showed that the false negative rate of predicted
negative controls is about two-thirds of other unreported drugs. In addition, we
found that while similar SEs may share similar true positive drugs, they are less
likely to share predicted negative controls. The high variability in the predicted
negative controls matches a finding described earlier in the paper that minor
change in the true positives of training set leads to variation in performance of
SIDERctr] (Fig. 1F-H & Supplementary Fig. 1 A-D). Among the three sets, the ones
generated by thresholds of 0.32 and 0.38 show higher precision, but contain very
few predictions for most SEs. In those cases, the few predicted drugs are not
enough for research purposes such as building supervised learning models to
predict the occurrence of SEs. However, we think the high-quality sets may be
useful in the study of experimental toxicology. In such scenario, SIDERctrl serves
as a preliminary screen of negative controls to be used in the experiment.
Researchers can apply the predicted drugs to cell line assays or organ-on-a-chip
systems, and compare the results with those derived from true positive drugs to
study the cellular mechanism of side effects and identify related off-target
proteins. The set generated by threshold of 0.18, on the other hand, contains
much more predictions per SE, thus can be used as reference set for predicting
the occurrence of SEs or drug-induced toxicity in human body systems and
tissues. We expect the new resource to improve the data quality in drug safety
research and facilitate the generation of new hypotheses studying the
mechanism of SEs.
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FIGURE LEGENDS

Fig. 1: Performance of SIDERctrl model

(A): A brief workflow of SIDERctrl. Each unreported drug (drugs that are not
annotated with the side effect) was scored by the max similarity to all true
positive drugs in seven features. Then a random forest classifier was built to
differentiate negative control drugs from other unreported drugs.

(B): Receiver operating characteristic (ROC) curve (blue) of SIDERctrl. Average
performance of 100 run was plotted to account for the stochastic nature of
random forest. The area under ROC curve (AUROC) value and 95% confidence
interval were annotated at the bottom right of the plot. A random classifier will
have ROC curve as diagonal (red) and AUROC value of 0.5.

(C): Precision-recall curve (blue) of SIDERctrl. Precision = TP/(TP+FP), Recall =
TP/(TP+FN). Average performance of 100 run was plotted. Precision decreases
from ~0.7 to ~0.2 when recall increases from 0 to 0.1, then decreases in a lower
rate to 0.05 as recall increases to 1. Three thresholds of precision (0.2, 0.4, and
0.6) and the corresponding recall value were annotated in red on the curve.

(D): Precision-predicted score curve (blue) of SIDERctrl. Dashed lines (red) show
the three thresholds of score (0.18, 0.32, and 0.38) we defined, in order to reach
minimum precision of 0.2, 0.4, and 0.6 on the training set, respectively.

(E): Barplot showing the predictive power of seven features in SIDERctrl, which
was measured by the increase in mean squared error (MSE) when the feature
was removed from the model. The normalized value was shown in the
magnitude of 1.0E-3. Error bar shows 95% confidence interval of the average. All
seven features were ranked from highest to lowest. Description of each feature
was shown in the figure legend on the right.

(F-H): Line charts (blue) showing the relationship between number of true
positive (TP) drugs and the resulting precision of SIDERctrl. Each point shows
the average precision (y-axis) of models built by a particular number of TP drugs
(x-axis). Error bars (grey) show the 95% confidence interval of the average.
Precision was calculated under three thresholds: 0.18 (F), 0.32 (G), and 0.38 (H).
Dashed lines (red) show the minimum number of TP drugs required (10, 11, and
18) to reach a minimum precision of 0.1.
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Fig. 2: Validation of SIDERctrl predictions using AEOLUS data

TP: true positive drugs; O: other drugs; PN: predicted negative controls.

(A): Barplot showing the false negative rate (y-axis) in TP (pink), O (green), and
PN (orange). The false negative rate was defined as the proportion of drugs with
proportional reporting ratio (PRR) score greater than 1 from AEOLUS. Results
under three thresholds (0.18, 0.32, and 0.38) were shown in the plot. Each bar
shows the average value of all validated side effects (SEs) while the error bar
shows 95% confidence interval of the average. The number of validated SEs was
shown in the plot. A red star (*) was shown under the number when the false
negative rate of PN is significantly lower than that of O (P < 0.05).

(B-F): All the validated SEs shown in (A) were grouped into 19 categories based
on human body systems. (B-F) show the five systems with highest number of SEs.
The name of each system was shown as the title. Results of the rest 14 systems
can be found in Supplementary Fig. 2.

Fig. 3: Comparison of similarity in SIDERctrl predictions among distinct
side effects

PN: predicted negative controls; TP: true positive drugs.

(A-C): Barplot showing the similarity of TP and PN among SEs within the same
categorical system (pink) and across different systems (green). Similarity was
measured by the Jaccard similarity (#intersect/#union) between two sets of
drugs (y-axis). Each bar shows the average pairwise similarity of all possible
pairs while the error bar shows 95% confidence interval of the average. A red
star (*) was shown above the bars when the within-system similarity is
significantly higher than the across-system similarity (P < 0.05). Results under
three thresholds were shown: 0.18 (A), 0.32 (B), and 0.38 (C). Results by each
categorical system can be found in Supplementary Fig. 3.

TABLE
Threshold of score 0.18 0.32 0.38
Minimum #TP required 10 11 18
#Predicted SEs 890 772 458
#SEs with >=10 PN 845 36 0
#True positive drugs 62.7(57.8-67.8) | 51.8(48-55.3) | 62.6(57.9-67.1)
#Predicted negative controls | 29.4(28.6-30.2) | 4.2(4.0-4.4) 2.0(1.9-2.1)
Estimated precision (%) >=15 >=26 >= 37

Table 1: summary of our predictions for 890 SEs in SIDER
SEs: side effects; TP: true positive drugs; PN: predicted negative controls.
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