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ABSTRACT 

The lack of high-quality reference data is a major limitation in drug safety and 

drug discovery science. Unreliable standards prohibit the use of supervised 

learning methods and make evaluation of algorithms difficult. While some data is 

available for positive examples (e.g. which drugs are associated with a side 

effect), there are no systematic resources of negative controls. To solve this 

issue, we introduced SIDERctrl, a computational method that ranks drugs based 

on the likelihood of not causing a side effect. We applied SIDERctrl to predict 

negative controls from unreported drugs of 890 side effects in SIDER. Our 

predictions decreased the false negative rate by one-third according to a 

validation study using AEOLUS data. Three sets of predicted negative controls by 

different thresholds of precision were provided, and can be accessed at 

http://tatonettilab.org/resources/negative-drugs.html. This new reference 

standard will be important in chemical biology, drug development, and 

pharmacoepidemiology.  

 

KEY POINTS 

• The lack of systematic resources providing negative control drugs limits 

the performance of existing research in drug safety. 

• We developed a novel method that integrated chemical and biological 

properties a drug and the target proteins to calculate the likelihood of the 

drug being negative control.  

•  We applied our method to 890 side effects, and showed that our method 

significantly decreased the false negative rate of predictions.  

 

1. INTRODUCTION 

Side effects (SEs) of drugs, defined as any untoward medical occurrence during 

the administration of pharmaceutical products, are a worldwide public health 

concern. According to US department of Health and Human Services, SEs account 

for approximately one third of all hospital adverse events and affect about two 

million hospital stays annually, prolonging each stay by 1.7 to 4.6 days [1]. 

Serious SEs cause about 100,000 deaths per year, which has become the fourth 

leading cause of death in the US [2]. Thus, comprehensive evaluation of SEs is 

needed for every drug to reduce healthcare costs and improve outcomes.  

 

A traditional way to detect SEs is conducting clinical trials of pharmaceutical 

products. However, the inherent limitations of clinical trials, such as limited 

duration and population of study often lead to new SEs being discovered in the 

post-marketing surveillance [3, 4]. The US Food and Drug Administration (FDA) 

monitors post-marketing usage of drugs through the Adverse Event Reporting 

System (FAERS), which receives reports from healthcare providers, patients, and 
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pharmaceutical companies. Banda et al developed a new resource named 

AEOLUS, which provided a curated and standardized version of reports from 

FAERS by removing duplicate records and applying standardized vocabularies to 

drugs and SEs [5]. Similarly, Kuhn et al created SIDER that contained data on 

1,430 drugs, 5,880 SEs and 140,064 pairs of relationships between them by 

mining the product labels of FDA-approved drugs [6]. Such resources can serve 

as examples to study the mechanism of SEs, as well as to predict the occurrence 

of SEs. Previous studies have used the resources to build a variety of supervised 

learning models that incorporated features such as structural properties of drugs 

[7], genomic-scale metabolic models [8], and drug-induced gene expression [9], 

to predict SEs of drugs. When building the reference set of each SE, all these 

approaches simply regarded drugs that were reported with the SE in FAERS or 

SIDER as positive standards and all the other unreported drugs as negative 

standards. However, such method of classification is limited by the data 

incompleteness and inconsistency among these resources as a significant 

number of SEs have not been labeled or reported [10]. This will inevitably bring 

in false negatives in the reference drug set, thus decrease the precision of the 

model. As a result, previous models showed only moderate performance with 

median AUROC between 0.6 and 0.65 [7-9]. To solve this issue, we presented 

SIDERctrl, a computational method that ranks unreported drugs by the 

likelihood of not causing a side effect. We hypothesized that unreported drugs 

that share similar properties with positive drugs are more likely to cause the 

same SE while unreported drugs that do not are more likely to be negative 

controls. Based on the hypothesis, we built a supervised learning model that 

incorporates multiple pharmacological features such as ATC code, indications, 

compound structure, etc. We applied SIDERctrl to the SIDER data consisting 890 

SEs and predicted three sets of negative control drugs with a minimum precision 

of 0.15, 0.26, and 0.37. We validated our predictions using the defined 

relationships between drugs and SEs from an independent resource AEOLUS, 

and showed that the predicted negative controls exhibit a low false negative rate 

close to 6%.  Our results provide a high-quality reference set of 890 SEs, which 

can support future methodological research in drug safety.  

 

2. METHODS 

2.1 Construct the training set for SIDERctrl model 

Given a list of drugs that were reported with a SE (such drugs are referred to as 

“true positive drugs” below), the task of SIDERctrl is to learn a classifier which 

can differentiate the unreported drugs that are more likely to cause the same SE 

(referred to as “others” below) from the unreported drugs that are less likely to 

cause the SE (referred to as “negative controls” below). The training set of 

SIDERctrl model was derived from combining four reference sets manually 

curated by a previous study [11], which contained 1,824 relationships between 

456 drugs and four SEs. The description of reference sets was detailed in 
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Supplementary Methods. Drugs without target annotation from DrugBank [12] 

or SE annotation from SIDER [6] were removed.  

 

2.2 Calculate pairwise similarity of seven pharmacological features in 

SIDERctrl model 

A similarity score between 0 and 1 was assigned to each drug pair regarding the 

following features: 1) ATC code: a discrete value from [0, 0.2, 0.4, 0.6, 0.8, 1] 

based on accumulative similarity in 5 levels of ATC code (first digit, first three 

digits, first four digits, first five digits, all seven digits); 2) Indication: Jaccard 

similarity based on annotation from MEDI [13]; 3) Structure: Tanimoto similarity 

based on SMILES representation; 4) Target: Jaccard similarity based on 

annotations from DrugBank [12]; 5) Target PPI: proportion of target pairs that 

share protein-protein interactions based on annotations from BioGRID [14]; 6) 

Target phenotype: proportion of target pairs that share genetic variant-disease 

links based on annotations from OMIM [15]; 7) Target sequence: average 

pairwise sequence similarity between target proteins calculated by R package 

protr [16].  

 

2.3 Build the SIDERctrl model and evaluate the performance 

Using the seven features above, each unreported drug was scored by the 

maximum feature similarity to all true positive drugs (Fig. 1A). The SIDERctrl 

model contains 100 random forest classifiers [17] built using the training data. 

The number of trees was set as 500 in each classifier. The results were averaged 

across 100 classifiers to account for the stochastic nature of random forest. 

Bootstrap sampling was used to estimate the 95% confidence interval of each 

measurement. The out-of-bag probability was used to evaluate the performance 

of the classifier, which was measured by the area under receiver operating 

characteristic curve (AUROC). The predictive power of each feature was 

measured by the increase in mean squared error (MSE) when the feature was 

removed from the model.  

 

2.4 Estimate the performance of new predictions by sampling subsets from 

the training set 

We investigated the association between the number of true positive drugs and 

model performance by sampling subsets of true positive drugs from the training 

set to recalculate the similarity scores of unreported drugs. A new SIDERctrl 

model was built based on the scores, and evaluated by the same method 

described above. To account for the stochastic nature of randomization, the 

analysis was repeated 20 times for every possible size of the subset. The average 

result of each size was used to estimate the performance of new predictions 

made for SEs with the same number of true positive drugs. Using this method, we 

were able to make estimations for SEs annotated with fewer true positive drugs 

than the training set. For SEs with more true positive drugs, we gave a minimum 

estimation as the performance derived from the whole training set. 
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2.5 Validate the predicted negative controls using data from AEOLUS 

AEOLUS dataset was downloaded from Dryad [5], and detailed in Supplementary 

Methods. Drugs and SEs were matched between SIDER and AEOLUS using the 

concept name from the “concept” table. Relationship between drugs and SEs 

were extracted using the proportion reporting ratio (PRR) statistics from the 

“standard_drug_outcome_statistics” table. A drug was defined as true positive of 

a SE if the lower confidence interval of PRR score is greater than 1.  

 

3 RESULTS 

3.1 SIDERctrl achieved a 42% improvement over random classifier 

As described above, SIDERctrl was trained on a dataset that contains 1,824 

relationships between four SEs and 456 drugs, including 78 positive, 100 

negative, and 1646 other relationships. Overall, SIDERctrl achieved an AUROC of 

0.711 (95% CI: 0.710-0.713; Fig. 1B), increasing the performance of random 

classifier by 42%. The precision of SIDERctrl reached 0.2, 0.4, 0.6 when 

unreported drugs with predicted score greater than 0.18, 0.32, 0.38 were defined 

as negative controls, respectively (Fig. 1C,D). SIDERctrl incorporated seven 

pharmacological features in the random forest model, where each unreported 

drug was scored by the maximum feature similarity to true positive drugs. We 

compared the predictive power of distinct features. Target sequence similarity 

and target similarity were found to have the highest power among seven 

features (Fig. 1E). 

 

3.2 The performance of SIDERctrl is positively correlated with the number 

of true positive drugs 

We found that the average precision of SIDERctrl increases linearly while the 

variation decreases as the number of true positive drugs used to generate the 

feature scores of unreported drugs increases from 1 to 78 (Fig. 1F-H). Similar 

results were observed in the other measurements of performance such as 

AUROC (Supplementary Fig. 1A) and recall (Supplementary Fig. 1B-D). The 

precision of SIDERctrl remains consistently greater than 0.1 (P < 0.05) when 

more than 10, 11, 18 true positive drugs were used to generate the similarity 

scores of unreported drugs under the threshold of 0.2, 0.4, 0.6, respectively. 

Therefore, we set the minimum number of true positive drugs required for the 

SIDERctrl model as 10, 11, and 18 under three thresholds, in order to guarantee 

a minimum precision of 0.1 in the predicted negative controls.   

 

3.3 Predicted negative controls exhibit lower false negative rate compared 

to other unreported drugs  

We then applied SIDERctrl to predict negative controls for 890 SEs in SIDER 

annotated with more than 10 true positive drugs (Supplementary Methods). 

Using the thresholds defined above, we obtained three sets of predicted negative 

controls (Table 1; Supplementary Table 1). The precision of our predictions was 
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estimated to be at least 0.15, 0.26, and 0.37 in three sets. The number of 

predicted drugs dropped significantly as higher thresholds were applied. On 

average, 29.4±0.8, 4.2±0.2, 2.0±0.1 drugs were predicted per SE under three 

thresholds. No SE was predicted with more than 10 drugs under the highest 

threshold of 0.38.  

 

We validated our predictions by comparing the false negative rate between 

predicted negative controls and other unreported drugs, which was defined as 

the proportion of true positives reported in an independent resource. More than 

97% of the 890 SEs can be validated using this approach. The false negative rates 

of predicted negative controls are 6.1±0.4%, 5.6±1.0%, and 7.2±2.1% under 

three thresholds (Fig. 2A), significantly lower than those of other unreported 

drugs: 9.0±0.3% (P = 2.3e-33), 8.9±0.3% (P = 4.9e-10), and 9.3±0.4% (P = 2.7e-2). 

We also grouped the 890 SEs into 19 categories based on human body system 

(Supplementary Methods), and observed similar results across distinct systems 

(Fig. 2B-F & Supplementary Fig. 2A-N).  In 12 of the 19 systems, at least one of 

three predicted sets exhibits lower false negative rate than other unreported 

drugs.   

 

3.4 Predicted negative controls of similar SEs show higher variability than 

true positive drugs  

We investigated whether similar SEs were predicted with similar negative 

controls by comparing the Jaccard similarity of predictions within the same 

system of SEs and across different systems. We only found a significant 

difference between the two groups when using 0.18 as the threshold to define 

negative controls (P = 0.045; Fig. 3A), while no significant different was detected 

between the two groups under higher thresholds (Fig. 3B,C). As comparison, the 

same analysis was performed on the true positive drugs that were used to 

generate the feature scores. We found that the within-system similarity is 

consistently higher than the across-system similarity under all three thresholds 

(Fig. 3A-C), proving that similar SEs were annotated with similar sets of true 

positive drugs in SIDER. Altogether, the results show that similar sets of true 

positive drugs may result in substantial difference among the predicted negative 

controls.   

 

4. DISCUSSION 

One important issue in drug safety research is the lack of high-qualify reference 

set. Despite the wide use of reporting systems such as FAERS, many SEs of drugs 

remain unreported. Such incompleteness causes a high false negative rate among 

all unreported drugs. In this paper, we introduced a supervised learning model 

that addressed this issue by ranking all unreported drugs based on their 

similarity to the reported positive drugs. Drugs with lower similarity were 

predicted as negative controls. We set three different thresholds of predicted 
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score to define negative controls, in order to provide users with more choices. 

Higher thresholds result in fewer, but more accurate predictions. We also found 

that when more true positive drugs were reported and used to generate the 

similarity scores of unreported drugs, better performance of SIDERctrl was 

obtained. This is because more information can be learned by our model 

regarding the chemical and biological properties of drugs associated with the SE.  

 

The highlight of this study is that we provided three sets of predicted negative 

controls for all 890 SEs in SIDER that were annotated with more than 10 true 

positive drugs. We validated our predictions using data from an independent 

resource AEOLUS, where we showed that the false negative rate of predicted 

negative controls is about two-thirds of other unreported drugs. In addition, we 

found that while similar SEs may share similar true positive drugs, they are less 

likely to share predicted negative controls. The high variability in the predicted 

negative controls matches a finding described earlier in the paper that minor 

change in the true positives of training set leads to variation in performance of 

SIDERctrl (Fig. 1F-H & Supplementary Fig. 1 A-D). Among the three sets, the ones 

generated by thresholds of 0.32 and 0.38 show higher precision, but contain very 

few predictions for most SEs. In those cases, the few predicted drugs are not 

enough for research purposes such as building supervised learning models to 

predict the occurrence of SEs. However, we think the high-quality sets may be 

useful in the study of experimental toxicology. In such scenario, SIDERctrl serves 

as a preliminary screen of negative controls to be used in the experiment. 

Researchers can apply the predicted drugs to cell line assays or organ-on-a-chip 

systems, and compare the results with those derived from true positive drugs to 

study the cellular mechanism of side effects and identify related off-target 

proteins. The set generated by threshold of 0.18, on the other hand, contains 

much more predictions per SE, thus can be used as reference set for predicting 

the occurrence of SEs or drug-induced toxicity in human body systems and 

tissues. We expect the new resource to improve the data quality in drug safety 

research and facilitate the generation of new hypotheses studying the 

mechanism of SEs. 
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FIGURE LEGENDS 

Fig. 1: Performance of SIDERctrl model 

(A): A brief workflow of SIDERctrl. Each unreported drug (drugs that are not 

annotated with the side effect) was scored by the max similarity to all true 

positive drugs in seven features. Then a random forest classifier was built to 

differentiate negative control drugs from other unreported drugs.  

(B): Receiver operating characteristic (ROC) curve (blue) of SIDERctrl. Average 

performance of 100 run was plotted to account for the stochastic nature of 

random forest. The area under ROC curve (AUROC) value and 95% confidence 

interval were annotated at the bottom right of the plot. A random classifier will 

have ROC curve as diagonal (red) and AUROC value of 0.5.  

(C): Precision-recall curve (blue) of SIDERctrl. Precision = TP/(TP+FP), Recall = 

TP/(TP+FN). Average performance of 100 run was plotted. Precision decreases 

from ~0.7 to ~0.2 when recall increases from 0 to 0.1, then decreases in a lower 

rate to 0.05 as recall increases to 1. Three thresholds of precision (0.2, 0.4, and 

0.6) and the corresponding recall value were annotated in red on the curve.  

(D): Precision-predicted score curve (blue) of SIDERctrl. Dashed lines (red) show 

the three thresholds of score (0.18, 0.32, and 0.38) we defined, in order to reach 

minimum precision of 0.2, 0.4, and 0.6 on the training set, respectively.  

(E): Barplot showing the predictive power of seven features in SIDERctrl, which 

was measured by the increase in mean squared error (MSE) when the feature 

was removed from the model. The normalized value was shown in the 

magnitude of 1.0E-3. Error bar shows 95% confidence interval of the average. All 

seven features were ranked from highest to lowest. Description of each feature 

was shown in the figure legend on the right.  

(F-H): Line charts (blue) showing the relationship between number of true 

positive (TP) drugs and the resulting precision of SIDERctrl. Each point shows 

the average precision (y-axis) of models built by a particular number of TP drugs 

(x-axis). Error bars (grey) show the 95% confidence interval of the average. 

Precision was calculated under three thresholds: 0.18 (F), 0.32 (G), and 0.38 (H). 

Dashed lines (red) show the minimum number of TP drugs required (10, 11, and 

18) to reach a minimum precision of 0.1.   
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Fig. 2: Validation of SIDERctrl predictions using AEOLUS data 

TP: true positive drugs; O: other drugs; PN: predicted negative controls. 

(A): Barplot showing the false negative rate (y-axis) in TP (pink), O (green), and 

PN (orange). The false negative rate was defined as the proportion of drugs with 

proportional reporting ratio (PRR) score greater than 1 from AEOLUS. Results 

under three thresholds (0.18, 0.32, and 0.38) were shown in the plot. Each bar 

shows the average value of all validated side effects (SEs) while the error bar 

shows 95% confidence interval of the average. The number of validated SEs was 

shown in the plot. A red star (*) was shown under the number when the false 

negative rate of PN is significantly lower than that of O (P < 0.05). 

(B-F): All the validated SEs shown in (A) were grouped into 19 categories based 

on human body systems. (B-F) show the five systems with highest number of SEs. 

The name of each system was shown as the title. Results of the rest 14 systems 

can be found in Supplementary Fig. 2. 

 

Fig. 3: Comparison of similarity in SIDERctrl predictions among distinct 

side effects  

PN: predicted negative controls; TP: true positive drugs. 

(A-C): Barplot showing the similarity of TP and PN among SEs within the same 

categorical system (pink) and across different systems (green). Similarity was 

measured by the Jaccard similarity (#intersect/#union) between two sets of 

drugs (y-axis). Each bar shows the average pairwise similarity of all possible 

pairs while the error bar shows 95% confidence interval of the average. A red 

star (*) was shown above the bars when the within-system similarity is 

significantly higher than the across-system similarity (P < 0.05). Results under 

three thresholds were shown: 0.18 (A), 0.32 (B), and 0.38 (C). Results by each 

categorical system can be found in Supplementary Fig. 3.  

 

TABLE 

Threshold of score 0.18 0.32 0.38 

Minimum #TP required 10 11 18 

#Predicted SEs 890 772 458 

#SEs with >=10 PN  845 36 0 

#True positive drugs  62.7(57.8-67.8) 51.8(48-55.3) 62.6(57.9-67.1) 

#Predicted negative controls  29.4(28.6-30.2) 4.2(4.0-4.4) 2.0(1.9-2.1) 

Estimated precision (%) >= 15 >= 26 >= 37 

Table 1: summary of our predictions for 890 SEs in SIDER  

SEs: side effects; TP: true positive drugs; PN: predicted negative controls.  
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