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Abstract

Genome-wide association studies on alcohol dependence, by themselves, have yet to account for
the estimated heritability of the disorder and provide incomplete mechanistic understanding of
this complex trait. Integrating brain ethanol-responsive gene expression networks from model
organisms with human genetic data on alcohol dependence could aid in identifying dependence-
associated genes and functional networks in which they are involved. This study used a
modification of the Edge-Weighted Dense Module Searching for genome-wide association
studies (EW-dmGWAS) approach to co-analyze whole-genome gene expression data from
ethanol-exposed mouse brain tissue, human protein-protein interaction databases and alcohol
dependence-related genome-wide association studies. Results revealed novel ethanol-regulated
and alcohol dependence-associated gene networks in prefrontal cortex, nucleus accumbens, and
ventral tegmental area. Three of these networks were overrepresented with genome-wide
association signals from an independent dataset. These networks were significantly
overrepresented for gene ontology categories involving several mechanisms, including actin
filament-based activity, transcript regulation, Wnt and Syndecan-mediated signaling, and
ubiquitination. Together, these studies provide novel insight for brain mechanisms contributing

to alcohol dependence.
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Introduction

Alcohol Use Disorder [1], which spans the spectrum from abusive drinking to full alcohol
dependence (AD), has a lifetime prevalence of 29.1% among adults in the United States [2].
Alcohol misuse ranks third in preventable causes of death in the U.S. [3] and fifth in risk factors
for premature death and disability, globally [4]. Although pharmacological therapy for AUD
exists [5], the effectiveness is limited and the relapse rate is high. Improvement in AUD
treatment requires research on the underlying genetic and biological mechanisms of the
progression from initial exposure to misuse, and finally to dependence.

Twin studies estimate that AUD is roughly 50% heritable [6, 7]. Multiple rodent model
studies have used selective breeding to enrich for ethanol behavioral phenotypes or have
identified ethanol-related behavioral quantitative trait loci [8-10], further confirming the large
genetic contribution to alcohol behaviors. Recent studies have also documented genetic factors
influencing the effectiveness of existing pharmacological treatments for AD, further
substantiating genetic contributions to the mechanisms and treatment of AUD [11]. Genome-
wide association studies (GWAS) in humans have identified several genetic variants associated
with alcohol use and dependence [12-15]. However, they have yet to account for a large portion
of the heritability estimated by twin studies. Lack of power, due to a large number of variants
with small effects, is believed to the source of this “missing heritability” [16]. Although recent
large-scale studies have shown promise in identifying novel genetic contributions to alcohol
consumption, these studies do not contain the deep phenotypic information necessary for
identifying variants associated with dependence. Further, such GWAS results still generally lack
information about how detected single gene variants are mechanistically related to the disease

phenotype.
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Genome-wide gene expression studies are capable of improving the power of GWAS by
providing information about the gene networks in which GWAS variants function [17-20].
Although gene expression in brain tissue has been studied in AD humans [17, 18], these studies
are often difficult to conduct and interpret, due to lack of control over experimental variables and
small sample sizes. However, extensive studies in rodent models have successfully identified
ethanol-associated gene expression differences and gene networks in brain tissue [21-24].
Multiple ethanol-behavioral rodent models exist to measure different aspects of the
developmental trajectory from initial exposure to compulsive consumption [25]. Acute
administration to naive mice models the response of initial alcohol exposure in humans, which is
an important predictor of risk for AD [26, 27]. Wolen et al. used microarray analysis across a
mouse genetic panel to identify expression correlation-based networks of acute ethanol-
regulated genes, along with significantly associated expression quantitative trait loci in the
prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) [24].
Furthermore, specific networks also correlated with other ethanol behavioral data derived from
the same mouse genetic panel (BXD recombinant inbred lines) [10]. These results suggested that
studying acute ethanol-exposed rodent brain gene expression could provide insight into relevant
mechanistic frameworks and pathways underlying ethanol behaviors.

Several studies have integrated GWAS and gene expression or gene network data to cross-
validate behavioral genetic finding [17]. For instance, the Psychiatric Genomics Consortium [28]
tested for enrichment of nominally significant genes from human GWAS in previously identified
functional pathways, and found shared functional enrichment of signals for schizophrenia, major
depression disorder, and bipolar disorder in several categories. These pathways included histone

methylation, neural signaling, and immune pathways [28]. Mamdani et al. reversed this type of
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85  analysis by testing for significant enrichment of previously identified GWAS signals in gene

86  networks from their study. They found that expression quantitative trait loci for AD-associated

87  gene expression networks in human prefrontal cortex tissue had significant enrichment with AD

88  diagnosis and symptom count GWAS signals from the Collaborative Study on the Genetics of

89  Alcoholism dataset [17]. Additional approaches have taken human GWAS significant (or

90  suggestive) results for AD and provided additional confirmation by showing that expression

91 levels for such genes showed correlations with ethanol behaviors in rodent models [29]. Such

92  methods are informative with respect to analyzing the function of genes that have already

93  reached some association significance threshold. However, they do not provide information

94  about genes not reaching such statistical thresholds, but possibly still having important

95  contributions to the genetic risk and mechanisms of AUD

96 Dense module searching for GWAS (dmGWAS) is an algorithm for directly integrating

97  GWAS data and other biological network information so as to identify gene networks

98  contributing to a genetic disorder, even if few of the individual network genes exceed genome-

99  wide statistical association thresholds [30]. The initial description of this approach utilized
100  Protein-Protein Interaction (PPI) network data to identify networks associated with a GWAS
101  phenotype. Modules derived from protein-protein interactions were scored from node-weights
102  based on gene-level GWAS p-values. This approach was used to identify AD-associated PPI
103  networks that replicated across ethnicities and showed significant aggregate AD-association in
104  independent GWAS datasets [31], thus demonstrating the potential utility of the method. A more
105  recent iteration of the IMGWAS algorithm, termed Edge-Weighted dense module searching for
106 GWAS (EW-dmGWAS), allows integration of gene expression data to provide a direct co-

107  analysis of gene expression, PPI, and GWAS data [32].
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Utilization of the EW-dmGWAS algorithm would allow for identification of gene networks
coordinately weighted for GWAS significance for AD in humans and ethanol-responsiveness in
model organism brain gene expression data. We hypothesized that such an approach could
provide novel information about gene networks contributing to the risk for AUD, while also
adding mechanistic information about the role of such networks in ethanol behaviors. We show
here the first use of such an approach for the integration of human PPI connectivity with mouse
brain expression responses to acute ethanol and human GWAS results on AD. Our design
incorporated the genome-wide microarray expression dataset derived from the acute ethanol-
exposed mouse brain tissue used in Wolen et al. [10, 24], human protein-protein interaction data
from the Protein Interaction Network database, and AD GWAS summary statistics from the Irish
Affected Sib-Pair Study of Alcohol Dependence [29]. Importantly, we validated the identified
ethanol-regulated and AD-associated networks by co-analysis with an additional, independent
AD GWAS study on the Avon Longitudinal Study of Parents and Children dataset. Our results
could provide important methodological and biological function insight for further studies on the

mechanisms and treatment of AUD.

Materials and methods

Samples

Mouse gene expression data

All mouse brain microarray data (Affymetrix GeneChip Mouse Genome 430 2.0) are from
Wolen et al., 2012 [24] and can be downloaded from the GeneNetwork resource

(www.genenetwork.org), via accession numbers GN135-137, GN154-156 and GN228-230,
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respectively for PFC, NAc and VTA data. Additionally, PFC microarray data is available from
the Gene Expression Omnibus (GEO) via accession number GSE28515. Treatment and control
groups each contained one mouse from each strain and were given IP injections of saline or 1.8
g/kg of ethanol, respectively. Euthanasia and brain tissue collection took place 4 hours later.
Data used for edge weighting in EW-dmGWAS analysis included Robust Multi-array Average
(RMA) values, background-corrected and normalized measures of probe-wise expression, from
the PFC, VTA, and NAc of male mice in 27-35 BXD recombinant inbred strains and two
progenitor strains (DBA/2J and C57BL/6J). For filtering of the same microarray datasets prior to
EW-dmGWAS analysis (see below), we used probe-level expression differences between control
and treatment groups determined in Wolen study using the S-score algorithm [33] (Table S1).
Fisher’s Combined Test determined S-score significance values for ethanol regulation of each
probeset across the entire BXD panel, and empirical p-values were calculated by 1,000 random
permuations. Finally, g-values were calculated from empirical p-values to correct for multiple
testing.

Ethanol-responsive genes are predicted to be involved in pathways of neural adaptations
that lead to dependence [24]. We predicted they would also be involved in mechanistic pathways
from which GWAS signals are being detected. We therefore performed a low-stringency filter
for ethanol-responsiveness prior to EW-dmGWAS so as to ensure edge weighting focused on
ethanol responsivity. To identify genes with suggestive ethanol responsiveness, we used a S-
score probeset-level threshold of grpr<0.1 for differential expression, in any one of the three
brain regions. Genes associated with these probesets were carried forward in our analysis.
Multiple probesets from single genes were reduced to single gene-wise expression levels within

a particular brain region by selecting the maximum brain region-specific RMA value for each
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153  gene. After removing genes that were absent from the human datasets, 6,050 genes remained
154  with expression values across all three brain regions (Fig 1).
155
156  Fig 1. Data Pipeline for Determining Ethanol-Regulation and Merging Datasets. Pipeline
157  used to prepare the data for the present analysis. The first cell contains the starting number of
158  genes in the BXD mouse PFC, NAc, and VTA gene expression dataset.
159

160 Human GWAS data

161 The Irish Affected Sib-Pair Study of Alcohol Dependence (IASPSAD) AD GWAS

162  dataset was used for the EW-dmGWAS analysis. It contains information from 1,748 unscreened
163  controls (43.2% male) and 706 probands and affected siblings (65.7% male) from a native Irish
164  population, after quality control [29]. Samples were genotyped on Affymetrix v6.0 SNP arrays.
165  Diagnostic criteria for AD were based on the DSM-IV, and probands were ascertained from in-
166  and out-patient alcoholism treatment facilities. Association of each Single Nucleotide

167  Polymorphisms (SNP) with AD diagnosis status was tested by the Modified Quasi-Likelihood
168  Score method [34], which accounts for participant relatedness. SNPs were imputed using

169 IMPUTE2 [35] to hg19/1000 Genomes, and gene-wise p-values were calculated using

170  Knowledge-Based mining system for Genome-wide Genetic studies (KGG2.5) [36].

171 The Avon Longitudinal Study of Parents and Children (ALSPAC) GWAS gene-wise p-
172 values were used to examine the ability of EW-dmGWAS to validate the EW-dmGWAS

173 networks. This GWAS tested SNP association with a factor score calculated from 10 Alcohol
174  Use Disorder Identification Test items for 4,304 (42.9% male) participants from Avon, UK.

175  Samples were genotyped by the Illumina HumanHap550 quad genome-wide SNP platform [37].
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176 Although the analyzed phenotype was not identical to that in the IASPSAD GWAS, this
177  dataset was similar to [ASPSAD in that: 100% of the sample was European; the male to female
178  ratio was roughly 1:1; SNPs were imputed to hg19/1000 Genomes; and gene-wise p-values were
179  calculated by KGG2.5.

180

181 Protein network data

182 The Protein-Protein Interaction (PPI) network was obtained from the Protein Interaction
183  Network Analysis (PINA 2.0) Platform (http://omics.bjcancer.org/pina/interactome.pina4ms.do).
184  This platform includes PPI data from several different databases, including: Intact, MINT,

185  BioGRID, DIP, HPRD, and MIPS/Mpact. The Homo sapiens dataset was used for this analysis
186  [38, 39]. Uniprot IDs were used to match protein symbols to their corresponding gene symbols
187  [40].

188

189  Statistical methods

190 EW-dmGWAS

191 The edge-weighted dense module searching for GWAS (dmGWAS 3.0) R package was
192 used to identify treatment-dependent modules (small, constituent networks) nested within a

193  background PPI network (https://bioinfo.uth.edu/dmGWAS/). We used the PPI framework for
194  the background network, IASPSAD GWAS gene-wise p-values for the node-weights, and RMA
195  values from in acute ethanol- and saline-exposed mouse PFC, VTA, and NAc for edge-weights.
196 By the EW-dmGWAS algorithm, higher node-weights represent lower (i.e. more significant)
197  GWAS p-values, whereas higher edge-weights represent a greater response difference of two

198  genes between ethanol and control groups. This is calculated by taking the difference of


https://doi.org/10.1101/380584
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/380584; this version posted July 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

10
199  correlations in RMA expression values of the two genes in control vs. ethanol treated BXD lines.
200  The module score algorithm incorporated edge- and node-weights, which were each weighted to
201  prevent bias towards representation of nodes or edges in module score calculations. Higher
202 module scores represent higher edge- and node-weights. Genes were kept in a module if they
203  increased the standardized module score (Sn) by 0.5%. Sn corresponding to a permutation-based,
204  empirical grpr<0.05 were considered significant. A significant S, (i.e. more significant grpr
205  values) indicates that a module’s constituent genes are more highly associated with AD in
206  humans, and their interactions with each other are more strongly perturbed by acute ethanol
207  exposure in mice than randomly constructed modules of the same size.
208 Due to the redundancy of genes between modules, we modified the EW-dmGWAS output
209 by iteratively merging significant modules that overlapped >80% until no modules had >80%
210  overlap, for each brain region. Percent overlap represented the number of genes contained in
211  both modules (for every possible pair) divided by the number of genes in the smaller module.
212 We call the final resulting modules “mega-modules”. Standardized mega-module scores (MM-
213 S,) were calculated using the algorithms employed by EW-dmGWAS. MM-S,, corresponding to
214  grpr<0.05 were considered significant (Fig S1). Finally, connectivity (k) and Eigen-centrality
215  (EC) were calculated using the igraph R package for each gene in each module to identify hub
216  genes. Nodes with EC>0.2 and in the top quartile for connectivity for a module were considered
217  to be hub genes.

218  Overlap with ALSPAC

219 Genes with an ALSPAC GWAS gene-wise p<0.001 were considered nominally
220  significant, and will be referred to as “ALSPAC-nominal genes” from here on out. We used

221  linear regression to test MM-S,’s prediction of mean ALSPAC GWAS gene-wise p-value of
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222 each mega-module. Given our hypothesis that EW-dmGWAS would identify alcohol-associated
223  gene networks and prioritize them by association, we predicted that higher MM-S,’s would
224  predict lower (i.e. more significant) mean GWAS p-values. Empirical p-values<0.017, reflecting
225  Bonferroni correction for 3 independent tests (one per brain region): 0=0.05/3, were considered
226  torepresent significant association.
227 Overrepresentation of ALSPAC-nominal genes within each mega-module was analyzed for
228  those modules containing >1 such gene. For each of these mega-modules, 10,000 modules
229  containing the same number of genes were permuted to determine significance. Empirical p-
230  values < 0.05/n (where n = total number of mega-modules tested) were considered significant.
231

232 Functional enrichment analysis

233 To determine if mega-modules with significant overrepresentation of ALSPAC-nominal
234  genes represented an aggregation of functionally related genes, ToppGene

235  (https://toppgene.cchmc.org/) was used to analyze functional enrichment. Categories of

236  Dbiological function, molecular function, cellular component, mouse phenotype, human

237  phenotype, pathways, and drug interaction were tested for over-representation. Significant over-
238  representation results were defined as p<0.01 (uncorrected), n>3 genes overlap and n<1000
239  genes per functional group. Given the number of categories and gene sets tested, our discussion
240  below was narrowed to the most relevant categories, defined as Bonferroni-corrected p<0.1.

241

242 Results

243 Of the initial 45,037 probesets for the mouse gene expression arrays, 16,131 were

244  associated with human-mouse homologues and had grpzr<0.1 for ethanol responsiveness (S-
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245  score) in at least one of the three brain regions (Fig 1). These probesets corresponded to a total of
246 7,730 genes and were trimmed to a single probeset per gene by filtering for the most abundant
247  probeset as described in Methods. After removing genes that were absent from either the PPI
248  network or the IASPSAD dataset, the final background PPI network for EW-dmGWAS analysis
249  contained 6,050 genes (nodes) and 30,497 interactions (edges). The nodes contained 25 of the 78
250 TASPSAD-nominal genes and 24 of the 100 ALSPAC-nominal genes. There was no overlap
251  between the [ASPSAD and ALSPAC nominal gene sets.

252

253  Prefrontal Cortex

254 For analysis using PFC expression data for edge-weights, results revealed 3,545

255  significant modules (grpr<0.05) containing a total of 4,300 genes, with 14 ALSPAC-nominal
256  genes and 18 IASPSAD-nominal genes. These modules were merged to form 314 mega-

257  modules, all with significant MM-S,. Twelve mega-modules contained at least one ALSPAC-
258 nominal gene, and 160 contained at least one IASPSAD-nominal gene. However, MM-S,, did not
259  significantly predict mean ALSPAC GWAS gene-wise p-value (5=-0.003, p=0.327, Fig 2).
260

261  Fig 2. Mega Module Score v. Module Average ALSPAC GWAS p-Value. Correlation

262  between each Mega Module’s score and average ALSPAC gene-wise GWAS p-value, for the
263  Prefrontal Cortex (PFC) (B=-0.003, p=0.327), Nucleus Accumbens (Nac) (=0.003, p=0.390),
264  and Ventral Tegmental Area (VTA) (p=-0.02, p=0.003). Blue lines represent the line of best fit,
265  estimated by linear regression, surrounded by their 95% confidence intervals (shaded gray).

266
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267 Two mega-modules, Aliceblue and Cadetblue, contained multiple ALSPAC-nominal genes
268 (Table 1). Because overrepresentation was tested for 2 mega-modules, p<0.025 (0=0.05/2) was
269  considered significant. Cadetblue, was significantly overrepresented with ALSPAC-nominal
270  genes (Table 1). Each of Cadetblue’s ALSPAC- and IASPSAD-nominal genes was connected to
271  one of its most highly connected hub genes, ESR! (estrogen receptor 1; connectivity (k)=31,
272  Eigen-centrality (EC)=1) and ARRB? (beta-arrestin-2; k=13, EC=0.25) (Fig 3). Although the
273  ALSPAC-nominal gene overrepresentation was not significant for Aliceblue, it approached
274  significance (Table 1). Further, Aliceblue had the second-highest MM-S,, in the PFC and
275  contained 3 ALSPAC-nominal genes and 3 IASPSAD-nominal genes (Table 1). For these
276  reasons, Aliceblue was carried through to functional enrichment analysis. Aliceblue’s two hub
277  genes were ELAVLI ((embryonic lethal, abnormal vision)-like 1; k=165, EC=1) and CUL3
278  (cullin 3; k=75, EC=0.21), which were connected to two of the three ALSPAC-nominal genes.
279  Of these, CPM’s (carboxypeptidase M’s) only edge was with ELAVLI, and EIF542’s
280  (eukaryotic translation initiation factor SA2’s) only edge was with CUL3 (Fig 3).

281
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282  Table 1. ALSPAC Nominal Gene Overrepresentation.

Brain Region Mega-modules k, MM-S, MM-S, g, Overrep.p  Gene IASPSAD GWAS p ALSPAC GWAS p

PFC aliceblue 392 11.19 <1E-16* 0.063 CPM 0.493 6.48E-05*
CACNB2 0.978 4.97E-04*

EIF5A2 0.163 8.06E-04*

RSL1D1 3.48E-04* 0.217

SMARCA2 4.91E-04* 0.877

KIAA1217 8.84E-04* 0.904

cadetblue 125| 6.30 1.08E-06* 0.013* BCAS2 0.029 4.65E-04*

PIK3C2A 0.432 9.52E-04*

RSL1D1 3.48E-04* 0.217

AKT2 3.90E-05* 0.980

NAc cadetblue2 195( 8.04 8.06E-16* 0.042 CPM 0.493 6.48E-05*
MGST3 0.358 4.62E-04*

gray26 12 | 6.39 9.95E-11* <0.001* PCDH7 0.007 2.10E-04*

BCAS2 0.029 4.65E-04*

VTA coral 399 4.78 1.00E-06* 0.068 CPM 0.493 6.48E-05*
DENND2C 0.018 4.33E-04*

BIRC7 0.930 4.37E-04*

MGST3 0.358 4.62E-04*

PIK3CA 7.06E-05* 0.007

TNN 3.00E-04* 0.018

ANO6 6.32E-04* 0.780

SMARCA2 4.91E-04* 0.877

SIMC1 2.04E-04* 0.977

limegreen 220| 5.22 1.19E-07* 0.054 DENND2C 0.018 4.33E-04*

EIF5A2 0.163 8.06E-04*

RSL1D1 3.48E-04* 0.217

CCND2 1.94E-04%* 0.603

AKT2 3.90E-05%* 0.980

bisque 89| 6.22 7.57E-10* 0.006* ACLY 0.701 2.21E-04*

PRKG1 0.647 8.26E-04*

283 AKT2 3.90E-05%* 0.980

284  The following characteristics are displayed for each mega-module that contained >1 ALSPAC-
285 nominal gene: affiliated brain region; total number of constituent genes (kg); constituent

286  ALSPAC- and IASPSAD-nominal genes; empirical p-values for ALSPAC-nominal

287  overrepresentation (Overrep. p); MM-Sy,and the associated False Discovery Rate (MM-S,

288 gFDR).

289 * p<0.05 for MM S, and p<0.05/n for ALSPAC overrepresentation, where n=number of tests
290  per brain region

291
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292  Fig 3. Prefrontal Cortex Mega Modules Aliceblue and Cadetblue. Prefrontal Cortex Mega
293  Modules Cadetblue (a) and Aliceblue (b). Solid black arrows point to ALSPAC GWAS nominal
294  genes, and dotted black arrows represent [ASPSAD nominal genes. Edge-width represents
295  strength of correlation of expression changes between treatment and control mice, and node color
296  represents IASPSAD GWAS p-values.
297
298  Both Cadetblue and Aliceblue showed significant enrichment in several functional categories
299  (Table S3). In sum, top functional enrichment categories for Aliceblue were related to actin-
300 based movement, cardiac muscle signaling and action, increased triglyceride levels in mice, cell-
301  cell and cell-extracellular matrix adhesion, and syndecan-2-mediated signaling. In contrast,
302  Cadetblue’s top enrichment categories involved transcription-regulatory processes, specifically:
303  RNA splicing, chromatin remodeling, protein alkylation and methylation, DNA replication
304 regulation, several immune-related pathways, NF-xff and Wnt signaling pathways, and reductase

305 activity (Tables 2a-b; Table S3).
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306 Table 2. Top Gene Ontology Enrichment Results for PFC Mega Modules Cadetblue and
307  Aliceblue.

308 a)

Category

SMYD1, ESR1, KAT6A, ASH1L, PAGR1, CBX4, KDM6B, ASH2L,
GO: Biological Process chromatin organization 1.50E-09( 4.12E-06 23 776 MYSM1, PHF21A, BPTF, UBN1, CBX6, SUPT16H, SMARCD3,
H3F3B, PAX5, PAX7, BRD1, CABIN1, MGEAS, NR1H4, CBX8
SMYD1, KAT6A, ASH1L, PAGR1, KDM6B, ASH2L, MYSM1,

histone modification 1.97E-06| 5.40E-03 14 453
PHF21A, PAXS5, PAX7, BRD1, MGEAS, NR1H4, CBX8
. P SMYD1, KAT6A, ASH1L, PAGR1, KDM6B, ASH2L, MYSM1,
covalent chromatin modification | 2.87E-06 | 7.89E-03 14 468 PHF21A, PAXS, PAX7, BRDL, MGEAS, NR1H4, CBXS
chromatin remodeling 1.47E-05| 4.04E-02 8 165 ?”\AAXY;)L ESR1, ASH2L, MYSM1, BPTF, SMARCD3, H3F3B,
RNA splicing 1.60E-05| 4.40E-02 12 203 SRSF6, NUDT21, BCAS2, RBM39, RALY, RBM5, PRPF19,
AKT2, CPSF2, SNRPD3, WDR77, AQR
protein alkylation 2.44E-05| 6.71E-02 8 177 iﬁg;ﬁi’ ASHIL, ASH2L, PAXS, PAX7, SNRPD3, WDR77,
protein methylation 2.44E-05( 6.71E-02 8 177 ;’\QIYE:' ASHIL, ASH2L, PAXS, PAX7, SNRPD3, WDR77,
MMS22L, SRSF6, NUDT21, KAT6A, PAGR1, CBX4, ELMSAN1,
GO: Cellular Component nucleoplasm part 2.23E-05| 7.49E-03 16 738 ASH2L, RBM39, PHF21A, UBN1, TONSL, PRPF19, SPOP,

CPSF2, BRD1

MMS22L, PSEN2, BCAS2, ESR1, KAT6A, ASH1L, ZNF207,
chromosome 1.21E-04| 4.07E-02 17 943 ASH2L, ESCO2, CBX6, TONSL, SUPT16H, PRPF19, SMARCD3,
H3F3B, NR1H4, CBX8

1.24E-04| 4.17E-02 2 3 RRM2B, RRM2

ribonucleoside-diphosphate
reductase complex
DNA replication factor A
complex
nuclear replication fork 1.40E-04| 4.71E-02
catalytic step 2 spliceosome  |2.96E-04 | 9.94E-02
oxidoreductase activity, acting
on CH or CH2 groups
oxidoreductase activity, acting
on CH or CH2 groups, disulfide |1.31E-04| 6.38E-02 2 3 RRM2B, RRM2
as acceptor
ribonucleoside-diphosphate
reductase activity, thioredoxin |1.31E-04| 6.38E-02 2 3 RRM2B, RRM2
disulfide as acceptor
ribonucleoside-diphosphate
reductase activity

1.39E-04| 4.67E-02 16 BCAS2, TONSL, PRPF19

41 MMS22L, BCAS2, TONSL, PRPF19
90 BCAS2, RALY, PRPF19, SNRPD3, AQR

10 CYP2C8, RRM2B, RRM2

w |nls| w

GO: Molecular Function 3.32E-05| 1.62E-02

1.31E-04( 6.38E-02 2 3 RRM2B, RRM2

ESR1, KAT6A, ASH1L, RELB, CBX4, KDM6B, ASH2L, PHF21A,
TLE4, SMARCD3, H3F3B, CABIN1

TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1, ASH1L,
BIRC3, RELB, MYSM1, CD4, PIK3C2A, RABGEF1, CABIN1
TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTAL,
5.52E-06| 1.39E-02 18 566 MAP3K14, ASH1L, BIRC3, RELB, TNFRSF11A, MYSM1, CD4,
PIK3C2A, CD38, RABGEF1, PAX5, CABIN1

TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTAL,
abnormal immunoglobulin level | 7.68E-06 | 1.93E-02 17 522 MAP3K14, ASH1L, BIRC3, RELB, TNFRSF11A, MYSM1, CD4,
PIK3C2A, RABGEF1, PAXS, CABIN1

TRAF3IP2, GADD45B, SEMA4B, ESR1, SPTA1, ASH1L, BIRC3,
MYSM1, CD4, PIK3C2A, CABIN1

TRAF3IP2, GADD45B, PSEN2, MYO1E, ESR1, SPTA1, RRM2B,
ASH1L, RELB, PIK3C2A

SELL, TRAF3IP2, TRAF1, PSEN2, ESR1, SPTA1, RRM2B,

chromatin binding 1.69E-04| 8.24E-02 12 516

Mouse Phenotype increased immunoglobulin level | 1.16E-06 | 2.92E-03 14 307

abnormal humoral immune
response

increased 1gG level 9.35E-06 | 2.35E-02 11 225

cortical renal glomerulopathies [1.18E-05| 2.96E-02 10 188

abnormal lymph node

1.85E-05| 4.66E-02 14 390
morphology MAP3K14, BIRC3, RELB, TNFRSF11A, CD4, PIK3C2A, PIP
glomerulonephritis 1.956-05| 4.91E-02 3 121 TRAF3IP2, GADD45B, PSEN2, ESR1, SPTA1, ASH1L, RELB,
PIK3C2A
MYO1G, TRAF3IP2, GADD45B, SEMAA4B, PSEN2, ESR1,
abnormal B cell physiology 3.21E-05| 8.07E-02 18 644 SPTA1, MAP3K14, ASH1L, BIRC3, RELB, TNFRSF11A, MYSM1,
CD4, PIK3C2A, RABGEF1, PAX5, CABIN1
Pathway Signaling by Wnt 2.78E-06| 2.47E-03 13 340 LGR4, ASH2L, FZD4, ARRB2, ZNRF3, TLE4, VPS35, H3F3B,

AKT2, GNAO1, FZD2, MOV10, RAC3
NF-kappa B signaling pathway [1.07E-04| 9.44E-02 6 95 GADD45B, TRAF1, MAP3K14, BIRC3, RELB, TNFRSF11A
3 09 Apoptosis 1.13E-04 [ 9.97E-02 7 138 GADD45B, TRAF1, SEPT4, SPTA1, MAP3K14, BIRC3, AKT2
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310 b)

g-value Hit Countin Hit Countin
Bonferroni Query List ~ Genome

Category p-value

Hit in Query List

regulation of actin filament-based

GO: Biological Process ot 4.76E-08| 2.07E-04 9 37 |FXYD1, ATP1A2, DBNL, GJAS, JUP, KCNJ2, DSC2, DSG2, DSP
cardiac muscle cell-cardiac muscle | ; o3 g1 3 57g 04 5 7 CXADR, JUP, DSC2, DSG2, DSP
cell adhesion
regulation of cardiac muscle cell |, c)e 71 7 19g g4 8 31 FXYD1, ATP1A2, GJAS, JUP, KCNJ2, DSC2, DSG2, DSP

contraction

CDC42EP4, ACTN1, MYOZ1, MKLN1, FXYD1, RHOF, SDC4,
CUL3, PRR5, CRYAA, ARHGDIA, ATP2C1, CCDC88A, STAU2,
actin filament-based process 3.57E-07( 1.55E-03 36 688 DYNLL1, DIXDC1, ATP1A2, CXADR, DBN1, PTGER4, GJAS,
JUP, CDK5R1, NF1, KCNJ2, CACNB2, DSC2, DSG2, DSP,
ARHGEFS5, CASP4, LCP1, CSRP3, LIMK1, LDB3, LRP1

cell commfmlcatlon |n.volved in 4.346-07| 1.89E-03 9 47 PRKACA, ATP1A2, CXADR, GJAS, JUP, CACNB2, DSC2, DSG2,
cardiac conduction DSP
desmosome organization 8.59E-07| 3.73E-03 5 10 SNAI2, JUP, DSG2, DSP, PKP3
cardiac muscle cell action potential [ 1.07E-06 | 4.65E-03 9 52 g‘;l:lAZ, CXADR, GIAS, JUP, KCNJ2, CACNB2, DSC2, DSG2,
cardiac muscle cell contraction |1.07E-06| 4.65E-03 9 52 E);:,Dl’ ATP1A2, GIAS, JUP, KCNJ2, CACNB2, DSC2, DSG2,
bundle of His cell to Purkinje |, sop o6 | 6 72¢.03 5 11 |GJAS, JUP, DSC2, DSG2, DSP
myocyte communication
regulation of cardiac muscle cell |, 3¢ o6 | g g0g.03 6 20 |CXADR, GIAS, JUP, DSC2, DSG2, DSP

action potential
bundle of His cell-Purkinje
myocyte adhesion involved in cell |2.63E-06( 1.14E-02 4 6 JUP, DSC2, DSG2, DSP
communication
regulation of heart rate by cardiac
conduction

2.65E-06 | 1.15E-02 7 31 GJAS, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP

FXYD1, PRKACA, ATP1A2, ATP1A4, CXADR, GJAS, JUP, KCNJ2,

cardiac conduction 3.37E-06( 1.46E-02 13 131 CACNB2, CACNBA4, DSC2, DSG2, DSP

cardiac muscle cell action

e R . 7.69E-06 | 3.34E-02 7 36 GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP
potential involved in contraction

CDC42EP4, FXYD1, SDC4, ARHGDIA, CCDC88A, STAU2,

regulation of actin filament-based | | oo e | 4 cge gy 21 343 |DIXDCL, ATP1A2, DBN1, PTGER4, GJAS, JUP, CDKSR1, KCNJ2,

process DSC2, DSG2, DSP, ARHGEFS, CSRP3, LIMK1, LRPL
lipoprotein localization 1.34E-05| 5.83E-02 5 16 APOB, APOC2, MSR1, CUBN, LRP1
lipoprotein transport 1.34E-05| 5.83E-02 5 16 APOB, APOC2, MSR1, CUBN, LRP1
regulation of car(‘:hac muscle 1.36E-05| 5.91E-02 9 70 FXYD1, PRKACA, ATP1A2, GJAS, JUP, KCNJ2, DSC2, DSG2,
contraction DSP
GO: Cellular Component| intercalated disc 2.90E-06| 1.53E-03 9 59 ACTN1, ATP1A2, CXADR, GJAS, JUP, KCNJ2, DSC2, DSG2, DSP
cell-cell contact zone 1.56E-05| 8.21E-03 9 72 ACTN1, ATP1A2, CXADR, GJAS, JUP, KCNJ2, DSC2, DSG2, DSP
desmosome 1.61E-04| 8.49E-02 5 26 JUP, DSC2, DSG2, DSP, PKP3
GO: Molecular Function |  Protein bindinginvolvedin g o 1 - ggr 0 5 10 |CXADR, JUP, DSC2, DSG2, DSP
heterotypic cell-cell adhesion
protein binding involved in cell 1, 1ce o6l 1 o503 6 18 |CXADR, ITGA2, JUP, DSC2, DSG2, DSP
adhesion
protein binding involved in cell-cell| ) o, c ¢ | 5 39¢ 03 5 12 |CXADR, JUP, DSC2, DSG2, DSP
adhesion
cell adhesive protein binding
involved in bundle of His cell- 2.64E-06| 2.41E-03 4 6 JUP, DSC2, DSG2, DSP
Purkinje myocyte communication
Human Phenotype Dilated cardiomyopathy 4.35E-05( 3.89E-02 9 87 ACAD9, CRYAB, UBR1, JUP, DSG2, DSP, LAMA4, CSRP3, LDB3
Right ventricular cardiomyopathy | 8.82E-05( 7.90E-02 4 13 JUP, DSC2, DSG2, DSP
Mouse Phenotype increased circulating triglyceride 1.276-05| 4.776-02 16 179 ALPI, COL1A1, VLDLR, AGPAT2, WRN, APOB, APOC2, TXNIP,

level RSBN1, CSF2, PRKACA, BGLAP, MED13, LEPR, LIPC, LRP1
Non-integrin membrane-ECM

Pathway ; r 3.41E-05| 4.72E-02 7 46 |ACTNL, SDC2, SDC4, ITGA2, LAMA3, LAMA4, LAMB3
interactions
311 Sy”deca"'z':z';te‘j signaling |, 14605 6.146-02 6 33 [SDC2, CSF2, PRKACA, ITGA2, NF1, LAMA3

312  Functional enrichment results from ToppFun for Prefrontal Cortex Mega Modules Cadetblue (a)
313  and Aliceblue (b), where Bonferroni-corrected p<0.1.

314
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315 Nucleus Accumbens

316 Using NAc acute ethanol expression data for edge-weights yielded 3,460 significant

317  modules containing a total of 4,213 genes, 15 of which were ALSPAC-nominal and 16 of which
318  were IASPSAD-nominal. After merging by content similarity, there were 171 significant mega-
319  modules. Nineteen MM contained at least one ALSPAC-nominal gene, and 73 MM contained at
320 least one IASPSAD-nominal gene. However, MM S, did not significantly predict MM mean
321 ALSPAC GWAS gene-wise p-value ($=0.003, p=0.390). Two MMs, Cadetblue2 and Gray26,
322  each contained two ALSPAC-nominal genes (Table 1). Because there were 2 tests for

323  overrepresentation, p<0.025 (a=0.05/2) was considered significant. Gray26, was significantly
324  overrepresented with ALSPAC-nominal genes, and Cadetblue2 showed a trend towards

325  overrepresentation with significance before correcting for multiple testing (Table 1).

326 Gray26’s most central hub gene was HNRNPU (heterogeneous nuclear ribonucleoprotein
327  U; connectivity=6, Eigen-centrality=1), followed by RBM39 (RNA binding motif protein 39;
328 k=3, EC=0.46) and CSNK1A41 (k=3, EC=0.37). The two ALSPAC-nominal genes BCAS2 (breast
329  carcinoma amplified sequence 2) and PCDH7 (protocadherin 7), shared their only edges with
330 RBM39 and HNRPNPU, respectively (Fig 4a). As seen in the PFC’s Aliceblue, EAVLI was a
331  hub gene of Cadetblue2. ELAVLI (k=136, EC=1) was connected to both of the ALSPAC-

332  nominal genes, and served as the only connection for CPM and one of two connections for

333  MGST3 (microsomal glutathione S-transferase 3) (Fig 4b). Strikingly, PFC Aliceblue and NAc
334  Cadetblue 2 showed a highly significant overlap in their gene content, with 72 overlapping genes
335  (Table S2; p=2.2 x 10°1°).

336
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337  Fig 4. Nucleus Accumbens Mega Modules Gray26 and Cadetblue2. Nucleus Accumbens
338 Mega Modules Gray26 (a) and Cadetblue2 (b). Solid black arrows point to ALSPAC GWAS
339  nominal genes. These modules did not contain IASPSAD nominal genes. Edge-width represents
340  strength of correlation of expression changes between treatment and control mice, and node color
341  represents IASPSAD GWAS p-values.
342
343 Both Cadetblue2 and Gray26 were significantly enriched with several functional
344  categories (Table S3). Like PFC Cadetblue, NAc Cadetblue2 was functionally enriched for gene
345  groups related to nuclear function with transcription regulation pathways, particularly those
346  involving RNA polymerase activity. Gray26 was most significantly enriched with genes related
347  to functions involving: telomere maintenance, organelle organization, ribonucleoprotein

348  complexes, and syndecan-mediated signaling (Tables 3a-b; Table S3).
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Table 3. Top Gene Ontology Enrichment Results for Nucleus Accumbens Mega Modules

Cadetblue2 and Gray26.

a)

Category

negative regulation of transcription

g-value

Bonferroni

Hit Count in Hit Countin

Query List ~ Genome

Hit in Query List

TGIF2, ZBTB20, SREBF2, E2F7, FOXL2, NFIB, NFIC, NFIX,

GO: Biological Process 9.38E-06( 2.93E-02 23 810 MITF, MNT, TBX2, MLX, YBX3, TFAP2C, MXD4, E2F8,
from RNA polymerase Il promoter
ZBTB14, MLXIPL, UHRF1, TNF, ELK4, PAX3, LEF1
i ZBTB20, SREBF2, GATA4, E2F7, CSRNP1, FOXL2, NFIB,
RNA polymerase Il transcription NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB
: Molecular F i f: ivity, - ifi 1.80E- 1.20E- 27 7 ! ’ ’ . 4 ¢ ! ’
GO: Molecular Function| factor actl\gL\/ASthei:;;nce specific 80E-09 0E-06 678 TEAD2, MLX, YBX3, FOXJ3, TFAP2C, E2F8, MLXIPL,
g KLF13, ELF2, ELK4, PAX3, LEF1
transcriptional repressor activity,
RNA polyme.rase 1] transcrlptloh' 3.046-06| 2.03E-03 11 182 ZBTB20, SREBF2, E2F7, MITF, MNT, TBX2, MLX, YBX3,
regulatory region sequence-specific TFAP2C, E2F8, MLXIPL
binding
translc”pt"’” fﬁ°t°" act""ty'tRNA ZBTB20, SREBF2, FOXL2, NFIB, NFIC, MITF, NFYA,
polymerase [l core promoter g 11 gg | 4.08E-03 15 365  |HAND2, TBX2, TFEB, TFAP2C, E2F8, MLXIPL, KLF13,
proximal region sequence-specific
o LEF1
binding
RNA polymerase Il regulatory SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF,
region sequence-specific DNA 8.95E-06( 5.98E-03 20 632 NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C,
binding E2F8, MLXIPL, KLF13, LEF1
. . SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF,
transcription regulatory region DNA
bindin 9.52E-06| 6.36E-03 24 862 NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C,
g E2F8, ZBTB14, MLXIPL, KLF13, UHRF1, TNF, ELK4, LEF1
SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF,
regulatory region DNA binding 1.01E-05( 6.74E-03 24 865 NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C,
E2F8, ZBTB14, MLXIPL, KLF13, UHRF1, TNF, ELK4, LEF1
RNA polymerase Il resulator SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF,
P y . g v 1.03E-05| 6.87E-03 20 638 NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C,
region DNA binding
E2F8, MLXIPL, KLF13, LEF1
regulatory region nucleic acid SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF,
g v biﬁdin 1.07E-05| 7.14E-03 24 868 NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C,
€ E2F8, ZBTB14, MLXIPL, KLF13, UHRF1, TNF, ELK4, LEF1
transcription regulatory region SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF,
prion reguiatory re8lon 11 32e.05| 8.82€-03 21 705 |NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C,
sequence-specific DNA binding
E2F8, MLXIPL, KLF13, UHRF1, LEF1
. SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF,
sequence-specific double-stranded
DNA bindin 2.50E-05| 1.67E-02 21 736 NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C,
g E2F8, MLXIPL, KLF13, UHRF1, LEF1
core promoter proximal region SREBF2, GATA4, FOXL2, NFIB, NFIC, MITF, NFYA, TBX2,
7.08E-05( 4.73E-02 14 399
sequence-specific DNA binding TFEB, E2F8, MLXIPL, KLF13, UHRF1, LEF1
core promoter proximal region DNA SREBF2, GATA4, FOXL2, NFIB, NFIC, MITF, NFYA, TBX2,
7.47E-05| 4.99E-02 14 401
binding TFEB, E2F8, MLXIPL, KLF13, UHRF1, LEF1
transcriptional activator activity,
RNA polyme_rase I transcnptlopA 9.156-05| 6.11E-02 13 358 GATA4, CSRNP1, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA,
regulatory region sequence-specific HAND2, TFEB, TFAP2C, KLF13, LEF1
binding
SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF,
double-stranded DNA binding 1.25E-04( 8.37E-02 21 824 NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C,
E2F8, MLXIPL, KLF13, UHRF1, LEF1
Human Phenotype Synophrys 3.61E-05| 2.06E-02 5 48 ZBTB20, NFIX, MITF, KLF13, PAX3
Mouse Phenotype absent coat pigmentation 2.38E-05| 6.28E-02 4 15 MITF, TFEB, TFEC, PAX3
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353 b)

g-value Hit Countin Hit Countin
Bonferroni Query List ~ Genome

Category p-value

Hit in Query List

negative regulation of telomere maintenance via

GO: Biological Process 2.46E-05| 2.92E-02 2 12 HNRNPU, PML
telomerase
negative regulation of organelle organization 4.65E-05| 5.52E-02 4 340 PRKCD, FGFR2, HNRNPU, PML
negative regulation of telomere ‘mamtenance via 5.066-05| 6.00E-02 2 17 HNRNPU, PML
telomere lengthening
GO: Cellular Component ribonucleoprotein complex 8.99E-04 | 8.99E-02 4 751 CSNK1A1, RPS18, BCAS2, HNRNPU
intracellular ribonucleoprotein complex 8.99E-04 | 8.99E-02 4 751 CSNK1A1, RPS18, BCAS2, HNRNPU
Pathway Syndecan-4-mediated signaling events 2.67E-04| 7.44E-02 2 31 PRKCD, ITGAS
354 Syndecan-2-mediated signaling events 3.03E-04 | 8.44E-02 2 33 PRKCD, ITGAS

355  Functional enrichment results from ToppFun for Nucleus Accumbens Mega Modules Cadetblue2
356 (a) and Gray26 (b), where Bonferroni-corrected p<0.1.

357

358 Ventral Tegmental Area

359 Use of VTA control/ethanol gene expression responses for edge weighting initially

360  resulted in 3,519 significant modules containing a total of 4,188 genes in EW-dmGWAS

361  analysis. Merging by content similarity, resulted in 276 MMs, each with a significant MM S,.
362  Seventeen ALSPAC-nominal genes and 19 TASPSAD-nominal genes were spread across 25 and
363 156 mega-modules, respectively. Furthermore, MM-S, significantly predicted mean ALSPAC
364 GWAS gene-wise p-value (5=-0.02, p=0.003).

365 Mega-modules with the highest representation of ALSPAC-nominal genes included Coral,
366  Limegreen, and Bisque (Table 1). Because there were 3 tests for overrepresentation, p<0.017
367  (a=0.05/3) was considered significant. Although overrepresentation of ALSPAC-nominal genes
368  was not significant in Coral and Limegreen, it was significant in Bisque, which has the highest
369 MM-S, of the three (Table 1; Fig 5). Bisque contained four highly interconnected genes: USP21
370  (ubiquitin specific peptidase 21; k=10, EC=1), USP15 (ubiquitin specific peptidase 15; k=10,
371  EC=0.65), TRIM?25 (tripartite motif-containing 25; k=10, EC=0.49), and HECW?2 (HECT, C2

372  and WW domain containing E3 ubiquitin protein ligase 2; k=12, EC=0.48). HECW2 and
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TRIM?25 shared edges with this MM’s IASPSAD-nominal genes PRKGI (protein kinase, cGMP-
dependent, type I) and ACLY (ATP citrate lyase), respectively. However, none of the hub genes
shared an edge with Bisque’s ALSPAC nominal gene, AKT2 (AKT serine/threonine kinase 2).
Finally, Bisque had significant enrichment in several functional categories (Table S3). It was
most significantly enriched with genes associated with ubiquitination, ligase and helicase

activity, and eukaryotic translation elongation (Table 4; Table S3).

Table 4. Top Gene Ontology Enrichment Results for Ventral Tegmental Area Mega

Module Bisque.

g-value Hit Countin Hit Countin

Category Hit in Query List

Bonferroni Query List ~ Genome

ZNF106, NEK2, EEF1D, RPL36, PNKP, SELENBP1,
GO: Cellular Component nucleolus 6.41E-07 | 1.24E-04 17 894 ZNF655, RPS9, WRN, GATA3, ZFHX3, RORC, DGCRS,
TTC3, ARNTL2, NEK11, RPL18
eukaryotic translation elongation 1.276-04| 2.47E-02 2 4 EEF1D, EEF1A2
factor 1 complex
. ubiquitin-protein transferase RC3H2, TRAF4, UBE2K, TRIM2, TRIM25, TRIMS,
GO: Molecular Funct 4.98€-07 | 1.33E-04 12 414
olecular Function activity HECW2, TRIMS8, UBE2S, RNF114, TTC3, TRIM37
ubiquitin-like prf)tAeln transferase 9.706-07| 2.59E-04 12 a1 RC3H2, TRAF4, UBE2K, TRIM2, TRIM25, TRIMS9,
activity HECW?2, TRIMS8, UBE2S, RNF114, TTC3, TRIM37
acid-amino acid ligase activity 3.42E-06| 9.12E-04 9 259 RC3H2, TRIM2, TRIM25, TRIMS, HECW2, TRIMS,
RNF114, TTC3, TRIM37
ligase activity, forming carbon- RC3H2, TRIM2, TRIM25, TRIM9, HECW?2, TRIMS,
.78E- 2.61E- 2
nitrogen bonds 9.78E-06 61E-03 o % RNF114, TTC3, TRIM37
" L - RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114,
tubulin-glycine ligase activity 1.87E-05| 5.00E-03 8 244 TTC3, TRIM37
. " . - RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114,
protein-glycine ligase activity 1.87E-05| 5.00E-03 8 244 TTC3, TRIM37
proteln»gIYC|-nfe I!gase activity, 1.87E-05| 5.00E-03 3 244 RC3H2, TRIM2, TRIMS, HECW2, TRIM8, RNF114,
initiating TTC3, TRIM37
coenzyme 5420-0 ga'm_ma-glutamyl 1.87E-05| 5.00E-03 3 244 RC3H2, TRIM2, TRIMS, HECW2, TRIM8, RNF114,
ligase activity TTC3, TRIM37
ribosomal S6-glutamic acid ligase RC3H2, TRIM2, TRIM9, HECW2, TRIMS, RNF114,
1.87E-05 | 5.00E-03 8 244
activity TTC3, TRIM37
coenzyme F420-2 alpha-glutamyl RC3H2, TRIM2, TRIM9, HECW2, TRIMS, RNF114,
1.87E-05( 5.00E-03 8 244
ligase activity TTC3, TRIM37
UDP-N-acetylmuramoylalanyl-D-
RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114,
glutamyl-2,6-diaminopimelate-D- |1.87E-05| 5.00E-03 8 244 .
o L TTC3, TRIM37
alanyl-D-alanine ligase activity
protein-glycine ligase activity, RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114,
1.87E-05( 5.00E-03 8 244
elongating TTC3, TRIM37
tubulln-glutar.'n‘lc acid ligase 2.05E-05 | 5.46E-03 3 247 RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114,
activity TTC3, TRIM37
proteln-glutarn}c acid ligase 217605 | 5.79E-03 3 249 RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114,
activity TTC3, TRIM37
) . LIG3, RC3H2, TRIM2, TRIM25, TRIM9, HECW?2, TRIMS,
| it 2.38E- .35E- 1 41 ! ! ! ! ! ’ ’
igase activity 38E-05( 6.35E-03 0 5 RNF114, TTC3, TRIM37
DNA helicase activity 2.43E-04| 6.49E-02 4 65 ERCC2, GTF2H4, RAD54B, WRN
Pathway Eukaryotic Translation Elongation |1.67E-04| 8.37E-02 5 98 EEF1D, RPL36, RPS9, EEF1A2, RPL18
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383  Functional enrichment results from ToppFun for Ventral Tegmental Area Mega Module
384  Bisque, where Bonferroni-corrected p<0.1.
385
386  Fig 5. Ventral Tegmental Area Mega Module Bisque. Ventral Tegmental Area Mega Modules
387  Bisque. Solid black arrows point to ALSPAC GWAS nominal genes, and dotted black arrows
388  represent IASPSAD nominal genes. Edge-width represents strength of correlation of expression
389  changes between treatment and control mice, and node color represents IASPSAD GWAS p-
390 values.

391

392  Discussion

393 To our knowledge, this is the first study to directly co-analyze human GWAS with mouse
394  brain ethanol-responsive gene expression data to identify ethanol-related gene networks relevant
395  to AD. Unlike previous studies that have employed cross-species validation methods for specific
396  genes or gene sets, this study analyzed human and mouse data in tandem to identify gene

397  networks across the entire genome, using the EW-dmGWAS algorithm. This approach

398  successfully identified significantly ethanol-regulated and AD-associated gene networks, or

399  modules. We further improved the existing EW-dmGWAS algorithm by merging highly

400 redundant modules to create more parsimonious mega-modules, thus decreasing complexity
401  without sacrificing significance. Additionally, we validated these results by testing for

402  overrepresentation with, and mega-module score prediction by, signals from an independent
403  GWAS dataset. Overall, our findings suggest that such direct integration of model organism

404  expression data with human protein interaction and GWAS data can productively leverage these
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data sources. Furthermore, we present evidence for novel, cross-validated gene networks

warranting further study for mechanisms underlying AUD.

Identification of network-level associations across GWAS datasets

One major concern with existing GWAS studies on AD had been the relative lack of
replication across studies. Although some very large GWAS studies on alcohol consumption
have shown replicable results [13-15], those do not account for all previously identified
associations. We reasoned that our integrative gene network-querying approach might identify
networks that shared signals from different GWASs on AD, even if the signals were not from the
same genes across GWASs. Concordant with this hypothesis, VT A mega-module scores
significantly predicted average gene-wise p-values from an independent GWAS dataset,
ALSPAC (Fig 2). This suggests that ethanol-regulated gene expression networks in this brain
region may be particularly sensitive to genetic variance and thus are highly relevant to
mechanisms contributing to risk for AD. This is possibly attributable to the involvement of VTA
dopaminergic reward pathways in the development of AD [41].

Although scores did not prioritize mega-modules with respect to ALSPAC results in PFC
and NAc, individual mega-modules were overrepresented with ALSPAC signals (Table 1). The
ALSPAC-overrepresented VTA and PFC mega-modules also contained nominally significant
genes from the GWAS dataset used for the network analysis, [ASPSAD. These results suggest
that the integration of acute ethanol-related expression data from mice and human PPI can

identify functional networks that associate signals from different GWAS datasets.

Composition and structure of mega-modules

Functional composition of mega-modules varied between brain regions for the most part.

For example, although Aliceblue (PFC) and Cadetblue2 (NAc) shared the hub gene ELAVLI,
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428  ALSPAC-nominal gene CPM, and had a significant overlap in their gene content, their
429  functional enrichment results were very different (Tables 2b and 3a). These results suggest that
430  brain regional ethanol-responsive gene expression results likely had an important impact on
431  composition of networks, thus leveraging protein-protein interaction network information and
432  GWAS results.
433 Despite such differences, the mega-modules presented in Table 1 shared certain structural
434  similarities. Most of the IAPSAD- and ALSPAC-nominal genes in these modules shared edges
435  with hub genes (Fig 3-5). These hub genes included: CUL3 and ELAVLI from PFC Aliceblue;
436  ESRI from PFC Cadetblue; ELAVLIrom NAc Cadetblue2; TRIM25 and HECW?2 from VTA
437  Bisque. Further, GWAS nominally significant genes (IASPAD or ALSPAC) generally were not
438  hub genes in the derived networks (see Fig 3-5; Table S2). This may be consistent with the
439  general tenet that genetic variation in complex traits does not produce major alterations in
440  cellular function, but rather modulation of cellular mechanisms for maintaining homeostasis.
441  Hub genes may be more functionally more closely related to a given trait, but likely have such
447  widespread influence so as to be evolutionarily resistant to genetic variation in complex traits.
443  This is also consistent with the hypothesis that omnigenic influences are an important feature of
444  complex traits such as AUD [42].
445 One hub gene was found to influence network structure in both PFC and NAc. ELAVLI is a
446  broadly expressed gene that acts as a RNA-binding protein in AU-rich domains, generally
447  localized within 3’-UTRs of mRNA. As such, ELAVLI has been shown to alter mRNA stability
448 by altering binding of miRNA or other factors influencing mRNA degradation [43] and has been
449  implicated in activity-dependent regulation of gene expression in the brain with drug abuse [44].

450  The large interaction space for ELAVLI in PFC Alice Blue and NAc Cadetblue 2 and the
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451  multiple nominal GWAS hits within these genes suggest that ELA VLI could have an important

452  modulatory function on the network of genes susceptible to genetic variation in AUD.

453 Functional aspects of mega-modules

454 This theory regarding network structure is further supported by our functional enrichment
455  analysis, which revealed several small groups of functionally related genes within each mega-
456  module. All of the mega-modules discussed above (Table 1) contained at least one GWAS-
457  nominal gene in the top enrichment groups, except Cadetblue2, which still had GWAS-nominal
458  genes in its significant enrichment groups (Table S3).

459 Another unifying feature across these mega-modules, except Aliceblue, was significant
460 functional enrichment for pathways that regulate gene expression. Specifically, these pathways
461  were related to chromatin organization, RNA splicing, and translation- and transcription-related
462  processes (Table S3). This is not surprising, as alterations in gene expression have long been
463  proposed as a mechanism underlying long-term neuroplasticity resulting in ethanol-dependent
464  behavioral changes, and eventually dependence [45].

465 In contrast, the largest functional enrichment groups unique to Aliceblue were related to
466  actin-based filaments and cardiac function (Table 2). Actin not only provides cytoskeletal

467  structure to neurons, but also functions in dendritic remodeling in neuronal plasticity, which
468 likely contributes to AD development [46, 47]. Aliceblue was also significantly enriched for the
469  syndecan-2 signaling pathway, and contained the SDC2 gene itself, which functions in dendritic
470  structural changes together with F-actin [48]. Additionally, the most significant enrichment

471  group unique to Cadetblue was the Wnt signaling pathway, which also regulates actin function
472  [49, 50]. Of note, a prior study has shown that ARRB?2 (a Cadetblue hub gene and member of

473  Whnt signaling pathway) knockout rats display significantly decreased levels of voluntary ethanol
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474  consumption and psychomotor stimulation in response to ethanol [51]. These findings highlight
475  the potential importance of postsynaptic actin-related signaling and dendritic plasticity in PFC
476  gene networks responding to acute ethanol and contributing to genetic risk for AD.
477 Finally, although the NAc Cadetblue2 mega-module was highly enriched for functions
478  related to transcriptional regulation, it also contained the gene F'GF21 within its interaction space
479  (Table S2 and Fig 4b). FGF21 is a member of the fibroblast growth factor gene family and is a
480  macronutrient responsive gene largely expressed in liver. Importantly FGF21 has been shown to
481  be released from the liver by ethanol consumption and negatively regulates ethanol consumption
482 by interaction with brain FGF-receptor/beta-Klotho complexes. Beta-Klotho, a product of the
483  KLB gene, is an obligate partner of the FGF receptor and has recently been shown to have a
484  highly significant association with alcohol consumption in recent very large GWAS studies [ 14,
485  15]. Although the role of FGF21 and KLB in AD are not currently known, the association of
486  FGF21 with the Cadetblue2 mega-module, containing nominally responsive genes from AD
487  GWAS studies, is a possible additional validation of the utility of our studies integrating protein-
488  protein interaction information (tissue non-specific), AD GWAS (tissue non-specific) and brain

489  ethanol-responsive gene expression.

490 Potential weaknesses and future studies

491 The studies presented here provide evidence for the utility of integrating genomic

492  expression data with protein-protein interaction networks and GWAS data in order to gain a

493  better understanding of the genetic architecture of complex traits, such as AD. Our analysis also
494  generated several testable hypotheses regarding gene networks and signaling mechanisms related
495  to ethanol action and genetic burden for AD. However, these studies utilized acute ethanol-

496  related expression data in attempting to identify mechanisms of AD, a chronic ethanol exposure
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497  disease. Use of a chronic exposure model could provide for a more robust integration of the
498  expression data and GWAS signals. However, we feel the current study is valid, since acute
499  responses to ethanol have been repeatedly shown to be a heritable risk factor for AD [52-54].
500 Another potential shortcoming for this work regards the limited size of the GWAS studies
501 utilized and differences in phenotypic assessment. The IASPSAD study was based on AD
502  diagnosis, whereas ALSPAC was based on a symptom factor score. Had we used larger GWAS
503  studies based on the same assessment criteria, it is possible that greater overlap of GWAS signals
504  within mega-modules would have been observed. Recent large GWAS studies on ethanol have,
505 to date, generally concerned measures of ethanol consumption, rather than a diagnosis of alcohol
506  dependence per se [14, 15]. For this reason, we focused this initial effort on GWAS studies
507  concerned with alcohol dependence. However, using the IASPAD and ALSPAC studies allowed
508 us to identify gene networks that are robust across both the severe end of the phenotypic
509  spectrum (i.e. diagnosable AD), and for symptoms at the sub-diagnostic level.
510 Overall, this analysis successfully identified novel ethanol-responsive, AD-associated,
511 functionally enriched gene expression networks in the brain that likely play a role in the
512  developmental pathway from first ethanol exposure to AD, especially in the VTA. This is the
513 first analysis to identify such networks by directly co-analyzing gene expression data, protein-
514  protein interaction data, and GWAS summary statistics. The identified modules provided insight
515 into common pathways between differing signals from independent, largely underpowered, yet
516  deeply phenotyped GWAS datasets. This supports the conjecture that the integration of different
517 GWAS results at a gene network level, rather than simply looking for replication of individual
518  gene signals, could make use of previously underpowered datasets and identify common genetic

519 mechanisms relevant to AD. Future expansion of such approaches to include larger GWAS
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520 datasets and chronic ethanol expression studies, together with validation of key targets by gene
521 targeting in animals models, may provide both novel insight for the neurobiology of AD and the
522  development of improved therapeutic approaches.
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756 Supporting information

757  S1 Fig. Analytical Pipeline of Steps Following EW-dmGWAS. Empirical p-values were
758  calculated from standardized module scores based on a Z-distribution. The original EW-
759  dmGWAS module score, permutation, and score standardization algorithms were used to
760 calculate the respective Mega Modules parameters. Modules were considered to have
761  >80% overlap if >80% of the genes in the smaller module was contained in the larger
762  module. False Discovery Rates were calculated based on the Benjamini-Hochberg

763  algorithm, using the “stats” package in R. Intramodular connectivity was defined as the
764  number of edges (i.e. connections) attached to that node (i.e. gene). Eigen-Centrality was
765  calculated using the “igraph” package in R.

766  S1 Table. Brain Region-Specific S-score Values. One table per brain region, containing
767  each of the following values: RMA values and S-scores from the maximally expressed

768  probeset per gene, for each BXD strain; the associated probeset IDs, human gene symbols,
769  and mouse gene symbols; and the Fisher’s combined False Discovery Rate (g-value) for
770  each probeset.

771 S2 Table. Mega Module Characteristics. One table per brain region, containing each of
772  the following characteristics, for all significant Mega Modules: name; constituent genes;
773  ALPSAC and IASPSAD p-values for each gene; Mega Module score (Sn), p-value (Sn_p), and
774  False Discovery Rate (Sn_qFDR); and intramodular eigencentrality and connectivity.

775  Significance values < 10-1¢ are rounded to 0.

776  S3 Table. Mega Module Gene Ontology Enrichment. One table for each ALSPAC-

777  overrepresented Mega Module, containing ToppFun output for gene ontology enrichment

778  groups with p<0.01 and minimum group size of 3 genes and maximum size of 1,000 genes,
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779  for the following categories: Biological Process, Cellular Component, Molecular Function,

780 Human Phenotype, Mouse Phenotype, and Pathways.
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