

1

1 **Cross-species alcohol dependence-associated gene networks: Co-analysis of**
2 **mouse brain gene expression and human genome-wide association data**

3

4 **Short Title:** Cross-species analysis reveals alcohol dependence-associated gene networks

5

6 Kristin M. Mignogna^{2,3,4}, Silviu A. Bacanu^{2,3}, Brien P. Riley^{2,3}, Aaron R. Wolen⁵, Michael F.
7 Miles^{1,3*}

8

9 ¹ Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond,
10 Virginia, United States of America

11 ² Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University,
12 Richmond, Virginia, United States of America

13 ³ VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia,
14 United States of America

15 ⁴ VCU Center for Clinical & Translational Research, Virginia Commonwealth University,
16 Richmond, Virginia, United States of America

17 ⁵ Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond,
18 Virginia, United States of America

19

20 * Corresponding author

21 E-mail: michael.miles@vcuhealth.org

22 Abstract

23 Genome-wide association studies on alcohol dependence, by themselves, have yet to account for
24 the estimated heritability of the disorder and provide incomplete mechanistic understanding of
25 this complex trait. Integrating brain ethanol-responsive gene expression networks from model
26 organisms with human genetic data on alcohol dependence could aid in identifying dependence-
27 associated genes and functional networks in which they are involved. This study used a
28 modification of the Edge-Weighted Dense Module Searching for genome-wide association
29 studies (EW-dmGWAS) approach to co-analyze whole-genome gene expression data from
30 ethanol-exposed mouse brain tissue, human protein-protein interaction databases and alcohol
31 dependence-related genome-wide association studies. Results revealed novel ethanol-regulated
32 and alcohol dependence-associated gene networks in prefrontal cortex, nucleus accumbens, and
33 ventral tegmental area. Three of these networks were overrepresented with genome-wide
34 association signals from an independent dataset. These networks were significantly
35 overrepresented for gene ontology categories involving several mechanisms, including actin
36 filament-based activity, transcript regulation, Wnt and Syndecan-mediated signaling, and
37 ubiquitination. Together, these studies provide novel insight for brain mechanisms contributing
38 to alcohol dependence.

39 **Introduction**

40 Alcohol Use Disorder [1], which spans the spectrum from abusive drinking to full alcohol
41 dependence (AD), has a lifetime prevalence of 29.1% among adults in the United States [2].
42 Alcohol misuse ranks third in preventable causes of death in the U.S. [3] and fifth in risk factors
43 for premature death and disability, globally [4]. Although pharmacological therapy for AUD
44 exists [5], the effectiveness is limited and the relapse rate is high. Improvement in AUD
45 treatment requires research on the underlying genetic and biological mechanisms of the
46 progression from initial exposure to misuse, and finally to dependence.

47 Twin studies estimate that AUD is roughly 50% heritable [6, 7]. Multiple rodent model
48 studies have used selective breeding to enrich for ethanol behavioral phenotypes or have
49 identified ethanol-related behavioral quantitative trait loci [8-10], further confirming the large
50 genetic contribution to alcohol behaviors. Recent studies have also documented genetic factors
51 influencing the effectiveness of existing pharmacological treatments for AD, further
52 substantiating genetic contributions to the mechanisms and treatment of AUD [11]. Genome-
53 wide association studies (GWAS) in humans have identified several genetic variants associated
54 with alcohol use and dependence [12-15]. However, they have yet to account for a large portion
55 of the heritability estimated by twin studies. Lack of power, due to a large number of variants
56 with small effects, is believed to be the source of this “missing heritability” [16]. Although recent
57 large-scale studies have shown promise in identifying novel genetic contributions to alcohol
58 consumption, these studies do not contain the deep phenotypic information necessary for
59 identifying variants associated with dependence. Further, such GWAS results still generally lack
60 information about how detected single gene variants are mechanistically related to the disease
61 phenotype.

62 Genome-wide gene expression studies are capable of improving the power of GWAS by
63 providing information about the gene networks in which GWAS variants function [17-20].
64 Although gene expression in brain tissue has been studied in AD humans [17, 18], these studies
65 are often difficult to conduct and interpret, due to lack of control over experimental variables and
66 small sample sizes. However, extensive studies in rodent models have successfully identified
67 ethanol-associated gene expression differences and gene networks in brain tissue [21-24].
68 Multiple ethanol-behavioral rodent models exist to measure different aspects of the
69 developmental trajectory from initial exposure to compulsive consumption [25]. Acute
70 administration to naïve mice models the response of initial alcohol exposure in humans, which is
71 an important predictor of risk for AD [26, 27]. Wolen et al. used microarray analysis across a
72 mouse genetic panel to identify expression correlation-based networks of acute ethanol-
73 regulated genes, along with significantly associated expression quantitative trait loci in the
74 prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) [24].
75 Furthermore, specific networks also correlated with other ethanol behavioral data derived from
76 the same mouse genetic panel (BXD recombinant inbred lines) [10]. These results suggested that
77 studying acute ethanol-exposed rodent brain gene expression could provide insight into relevant
78 mechanistic frameworks and pathways underlying ethanol behaviors.

79 Several studies have integrated GWAS and gene expression or gene network data to cross-
80 validate behavioral genetic finding [17]. For instance, the Psychiatric Genomics Consortium [28]
81 tested for enrichment of nominally significant genes from human GWAS in previously identified
82 functional pathways, and found shared functional enrichment of signals for schizophrenia, major
83 depression disorder, and bipolar disorder in several categories. These pathways included histone
84 methylation, neural signaling, and immune pathways [28]. Mamdani et al. reversed this type of

85 analysis by testing for significant enrichment of previously identified GWAS signals in gene
86 networks from their study. They found that expression quantitative trait loci for AD-associated
87 gene expression networks in human prefrontal cortex tissue had significant enrichment with AD
88 diagnosis and symptom count GWAS signals from the Collaborative Study on the Genetics of
89 Alcoholism dataset [17]. Additional approaches have taken human GWAS significant (or
90 suggestive) results for AD and provided additional confirmation by showing that expression
91 levels for such genes showed correlations with ethanol behaviors in rodent models [29]. Such
92 methods are informative with respect to analyzing the function of genes that have already
93 reached some association significance threshold. However, they do not provide information
94 about genes not reaching such statistical thresholds, but possibly still having important
95 contributions to the genetic risk and mechanisms of AUD

96 Dense module searching for GWAS (dmGWAS) is an algorithm for directly integrating
97 GWAS data and other biological network information so as to identify gene networks
98 contributing to a genetic disorder, even if few of the individual network genes exceed genome-
99 wide statistical association thresholds [30]. The initial description of this approach utilized
100 Protein-Protein Interaction (PPI) network data to identify networks associated with a GWAS
101 phenotype. Modules derived from protein-protein interactions were scored from node-weights
102 based on gene-level GWAS *p*-values. This approach was used to identify AD-associated PPI
103 networks that replicated across ethnicities and showed significant aggregate AD-association in
104 independent GWAS datasets [31], thus demonstrating the potential utility of the method. A more
105 recent iteration of the dmGWAS algorithm, termed Edge-Weighted dense module searching for
106 GWAS (EW-dmGWAS), allows integration of gene expression data to provide a direct co-
107 analysis of gene expression, PPI, and GWAS data [32].

108 Utilization of the EW-dmGWAS algorithm would allow for identification of gene networks
109 coordinately weighted for GWAS significance for AD in humans and ethanol-responsiveness in
110 model organism brain gene expression data. We hypothesized that such an approach could
111 provide novel information about gene networks contributing to the risk for AUD, while also
112 adding mechanistic information about the role of such networks in ethanol behaviors. We show
113 here the first use of such an approach for the integration of human PPI connectivity with mouse
114 brain expression responses to acute ethanol and human GWAS results on AD. Our design
115 incorporated the genome-wide microarray expression dataset derived from the acute ethanol-
116 exposed mouse brain tissue used in Wolen et al. [10, 24], human protein-protein interaction data
117 from the Protein Interaction Network database, and AD GWAS summary statistics from the Irish
118 Affected Sib-Pair Study of Alcohol Dependence [29]. Importantly, we validated the identified
119 ethanol-regulated and AD-associated networks by co-analysis with an additional, independent
120 AD GWAS study on the Avon Longitudinal Study of Parents and Children dataset. Our results
121 could provide important methodological and biological function insight for further studies on the
122 mechanisms and treatment of AUD.

123

124 **Materials and methods**

125 **Samples**

126 **Mouse gene expression data**

127 All mouse brain microarray data (Affymetrix GeneChip Mouse Genome 430 2.0) are from
128 Wolen et al., 2012 [24] and can be downloaded from the GeneNetwork resource
129 (www.genenetwork.org), via accession numbers GN135-137, GN154-156 and GN228-230,

130 respectively for PFC, NAc and VTA data. Additionally, PFC microarray data is available from
131 the Gene Expression Omnibus (GEO) via accession number GSE28515. Treatment and control
132 groups each contained one mouse from each strain and were given IP injections of saline or 1.8
133 g/kg of ethanol, respectively. Euthanasia and brain tissue collection took place 4 hours later.
134 Data used for edge weighting in EW-dmGWAS analysis included Robust Multi-array Average
135 (RMA) values, background-corrected and normalized measures of probe-wise expression, from
136 the PFC, VTA, and NAc of male mice in 27-35 BXD recombinant inbred strains and two
137 progenitor strains (DBA/2J and C57BL/6J). For filtering of the same microarray datasets prior to
138 EW-dmGWAS analysis (see below), we used probe-level expression differences between control
139 and treatment groups determined in Wolen study using the S-score algorithm [33] (Table S1).
140 Fisher's Combined Test determined S-score significance values for ethanol regulation of each
141 probeset across the entire BXD panel, and empirical p-values were calculated by 1,000 random
142 permutations. Finally, q-values were calculated from empirical p-values to correct for multiple
143 testing.

144 Ethanol-responsive genes are predicted to be involved in pathways of neural adaptations
145 that lead to dependence [24]. We predicted they would also be involved in mechanistic pathways
146 from which GWAS signals are being detected. We therefore performed a low-stringency filter
147 for ethanol-responsiveness prior to EW-dmGWAS so as to ensure edge weighting focused on
148 ethanol responsivity. To identify genes with suggestive ethanol responsiveness, we used a S-
149 score probeset-level threshold of $q_{FDR} < 0.1$ for differential expression, in any one of the three
150 brain regions. Genes associated with these probesets were carried forward in our analysis.
151 Multiple probesets from single genes were reduced to single gene-wise expression levels within
152 a particular brain region by selecting the maximum brain region-specific RMA value for each

153 gene. After removing genes that were absent from the human datasets, 6,050 genes remained
154 with expression values across all three brain regions (Fig 1).

155

156 **Fig 1. Data Pipeline for Determining Ethanol-Regulation and Merging Datasets.** Pipeline
157 used to prepare the data for the present analysis. The first cell contains the starting number of
158 genes in the BXD mouse PFC, NAc, and VTA gene expression dataset.

159

160 **Human GWAS data**

161 The Irish Affected Sib-Pair Study of Alcohol Dependence (IASPSAD) AD GWAS
162 dataset was used for the EW-dmGWAS analysis. It contains information from 1,748 unscreened
163 controls (43.2% male) and 706 probands and affected siblings (65.7% male) from a native Irish
164 population, after quality control [29]. Samples were genotyped on Affymetrix v6.0 SNP arrays.
165 Diagnostic criteria for AD were based on the DSM-IV, and probands were ascertained from in-
166 and out-patient alcoholism treatment facilities. Association of each Single Nucleotide
167 Polymorphisms (SNP) with AD diagnosis status was tested by the Modified Quasi-Likelihood
168 Score method [34], which accounts for participant relatedness. SNPs were imputed using
169 IMPUTE2 [35] to hg19/1000 Genomes, and gene-wise p-values were calculated using
170 Knowledge-Based mining system for Genome-wide Genetic studies (KGG2.5) [36].

171 The Avon Longitudinal Study of Parents and Children (ALSPAC) GWAS gene-wise p-
172 values were used to examine the ability of EW-dmGWAS to validate the EW-dmGWAS
173 networks. This GWAS tested SNP association with a factor score calculated from 10 Alcohol
174 Use Disorder Identification Test items for 4,304 (42.9% male) participants from Avon, UK.
175 Samples were genotyped by the Illumina HumanHap550 quad genome-wide SNP platform [37].

9

176 Although the analyzed phenotype was not identical to that in the IASPSAD GWAS, this
177 dataset was similar to IASPSAD in that: 100% of the sample was European; the male to female
178 ratio was roughly 1:1; SNPs were imputed to hg19/1000 Genomes; and gene-wise p-values were
179 calculated by KGG2.5.

180

181 **Protein network data**

182 The Protein-Protein Interaction (PPI) network was obtained from the Protein Interaction
183 Network Analysis (PINA 2.0) Platform (<http://omics.bjancer.org/pina/interactome.pina4ms.do>).
184 This platform includes PPI data from several different databases, including: Intact, MINT,
185 BioGRID, DIP, HPRD, and MIPS/Mpact. The *Homo sapiens* dataset was used for this analysis
186 [38, 39]. Uniprot IDs were used to match protein symbols to their corresponding gene symbols
187 [40].

188

189 **Statistical methods**

190 **EW-dmGWAS**

191 The edge-weighted dense module searching for GWAS (dmGWAS_3.0) R package was
192 used to identify treatment-dependent modules (small, constituent networks) nested within a
193 background PPI network (<https://bioinfo.uth.edu/dmGWAS/>). We used the PPI framework for
194 the background network, IASPSAD GWAS gene-wise p-values for the node-weights, and RMA
195 values from in acute ethanol- and saline-exposed mouse PFC, VTA, and NAc for edge-weights.
196 By the EW-dmGWAS algorithm, higher node-weights represent lower (i.e. more significant)
197 GWAS p-values, whereas higher edge-weights represent a greater response difference of two
198 genes between ethanol and control groups. This is calculated by taking the difference of

10

199 correlations in RMA expression values of the two genes in control vs. ethanol treated BXD lines.
200 The module score algorithm incorporated edge- and node-weights, which were each weighted to
201 prevent bias towards representation of nodes or edges in module score calculations. Higher
202 module scores represent higher edge- and node-weights. Genes were kept in a module if they
203 increased the standardized module score (S_n) by 0.5%. S_n corresponding to a permutation-based,
204 empirical $q_{FDR} < 0.05$ were considered significant. A significant S_n (i.e. more significant q_{FDR}
205 values) indicates that a module's constituent genes are more highly associated with AD in
206 humans, and their interactions with each other are more strongly perturbed by acute ethanol
207 exposure in mice than randomly constructed modules of the same size.

208 Due to the redundancy of genes between modules, we modified the EW-dmGWAS output
209 by iteratively merging significant modules that overlapped >80% until no modules had >80%
210 overlap, for each brain region. Percent overlap represented the number of genes contained in
211 both modules (for every possible pair) divided by the number of genes in the smaller module.
212 We call the final resulting modules "mega-modules". Standardized mega-module scores (MM-
213 S_n) were calculated using the algorithms employed by EW-dmGWAS. MM- S_n corresponding to
214 $q_{FDR} < 0.05$ were considered significant (Fig S1). Finally, connectivity (k) and Eigen-centrality
215 (EC) were calculated using the igraph R package for each gene in each module to identify hub
216 genes. Nodes with EC > 0.2 and in the top quartile for connectivity for a module were considered
217 to be hub genes.

218 **Overlap with ALSPAC**

219 Genes with an ALSPAC GWAS gene-wise $p < 0.001$ were considered nominally
220 significant, and will be referred to as "ALSPAC-nominal genes" from here on out. We used
221 linear regression to test MM- S_n 's prediction of mean ALSPAC GWAS gene-wise p-value of

11

222 each mega-module. Given our hypothesis that EW-dmGWAS would identify alcohol-associated
223 gene networks and prioritize them by association, we predicted that higher MM-S_n's would
224 predict lower (i.e. more significant) mean GWAS p-values. Empirical p-values<0.017, reflecting
225 Bonferroni correction for 3 independent tests (one per brain region): $\alpha=0.05/3$, were considered
226 to represent significant association.

227 Overrepresentation of ALSPAC-nominal genes within each mega-module was analyzed for
228 those modules containing >1 such gene. For each of these mega-modules, 10,000 modules
229 containing the same number of genes were permuted to determine significance. Empirical p-
230 values < 0.05/n (where n = total number of mega-modules tested) were considered significant.

231

232 **Functional enrichment analysis**

233 To determine if mega-modules with significant overrepresentation of ALSPAC-nominal
234 genes represented an aggregation of functionally related genes, ToppGene
235 (<https://toppgene.cchmc.org/>) was used to analyze functional enrichment. Categories of
236 biological function, molecular function, cellular component, mouse phenotype, human
237 phenotype, pathways, and drug interaction were tested for over-representation. Significant over-
238 representation results were defined as p<0.01 (uncorrected), n \geq 3 genes overlap and n \leq 1000
239 genes per functional group. Given the number of categories and gene sets tested, our discussion
240 below was narrowed to the most relevant categories, defined as Bonferroni-corrected $p<0.1$.

241

242 **Results**

243 Of the initial 45,037 probesets for the mouse gene expression arrays, 16,131 were
244 associated with human-mouse homologues and had $q_{FDR}<0.1$ for ethanol responsiveness (S-

12

245 score) in at least one of the three brain regions (Fig 1). These probesets corresponded to a total of
246 7,730 genes and were trimmed to a single probeset per gene by filtering for the most abundant
247 probeset as described in Methods. After removing genes that were absent from either the PPI
248 network or the IASPSAD dataset, the final background PPI network for EW-dmGWAS analysis
249 contained 6,050 genes (nodes) and 30,497 interactions (edges). The nodes contained 25 of the 78
250 IASPSAD-nominal genes and 24 of the 100 ALSPAC-nominal genes. There was no overlap
251 between the IASPSAD and ALSPAC nominal gene sets.

252

253 **Prefrontal Cortex**

254 For analysis using PFC expression data for edge-weights, results revealed 3,545
255 significant modules ($q_{FDR} < 0.05$) containing a total of 4,300 genes, with 14 ALSPAC-nominal
256 genes and 18 IASPSAD-nominal genes. These modules were merged to form 314 mega-
257 modules, all with significant MM-S_n. Twelve mega-modules contained at least one ALSPAC-
258 nominal gene, and 160 contained at least one IASPSAD-nominal gene. However, MM-S_n did not
259 significantly predict mean ALSPAC GWAS gene-wise p-value ($\beta = -0.003$, $p = 0.327$, Fig 2).

260

261 **Fig 2. Mega Module Score v. Module Average ALSPAC GWAS p-Value.** Correlation
262 between each Mega Module's score and average ALSPAC gene-wise GWAS p-value, for the
263 Prefrontal Cortex (PFC) ($\beta = -0.003$, $p = 0.327$), Nucleus Accumbens (Nac) ($\beta = 0.003$, $p = 0.390$),
264 and Ventral Tegmental Area (VTA) ($\beta = -0.02$, $p = 0.003$). Blue lines represent the line of best fit,
265 estimated by linear regression, surrounded by their 95% confidence intervals (shaded gray).

266

13

267 Two mega-modules, Aliceblue and Cadetblue, contained multiple ALSPAC-nominal genes
268 (Table 1). Because overrepresentation was tested for 2 mega-modules, $p < 0.025$ ($\alpha = 0.05/2$) was
269 considered significant. Cadetblue, was significantly overrepresented with ALSPAC-nominal
270 genes (Table 1). Each of Cadetblue's ALSPAC- and IASPSAD-nominal genes was connected to
271 one of its most highly connected hub genes, *ESRI* (estrogen receptor 1; connectivity (k)=31,
272 Eigen-centrality (EC)=1) and *ARRB2* (beta-arrestin-2; k =13, EC=0.25) (Fig 3). Although the
273 ALSPAC-nominal gene overrepresentation was not significant for Aliceblue, it approached
274 significance (Table 1). Further, Aliceblue had the second-highest MM-S_n in the PFC and
275 contained 3 ALSPAC-nominal genes and 3 IASPSAD-nominal genes (Table 1). For these
276 reasons, Aliceblue was carried through to functional enrichment analysis. Aliceblue's two hub
277 genes were *ELAVL1* ((embryonic lethal, abnormal vision)-like 1; k =165, EC=1) and *CUL3*
278 (cullin 3; k =75, EC=0.21), which were connected to two of the three ALSPAC-nominal genes.
279 Of these, *CPM*'s (carboxypeptidase M's) only edge was with *ELAVL1*, and *EIF5A2*'s
280 (eukaryotic translation initiation factor 5A2's) only edge was with *CUL3* (Fig 3).
281

282 **Table 1. ALSPAC Nominal Gene Overrepresentation.**

Brain Region	Mega-modules	k_g	MM-S _n	MM-S _n q_{FDR}	Overrep. p	Gene	IASPSAD GWAS p	ALSPAC GWAS p
PFC	aliceblue	392	11.19	<1E-16*	0.063	CPM	0.493	6.48E-05*
						CACNB2	0.978	4.97E-04*
						EIF5A2	0.163	8.06E-04*
						RSL1D1	3.48E-04*	0.217
						SMARCA2	4.91E-04*	0.877
						KIAA1217	8.84E-04*	0.904
	cadetblue	125	6.30	1.08E-06*	0.013*	BCAS2	0.029	4.65E-04*
						PIK3C2A	0.432	9.52E-04*
						RSL1D1	3.48E-04*	0.217
						AKT2	3.90E-05*	0.980
NAC	cadetblue2	195	8.04	8.06E-16*	0.042	CPM	0.493	6.48E-05*
						MGST3	0.358	4.62E-04*
	gray26	12	6.39	9.95E-11*	<0.001*	PCDH7	0.007	2.10E-04*
						BCAS2	0.029	4.65E-04*
VTA	coral	399	4.78	1.00E-06*	0.068	CPM	0.493	6.48E-05*
						DENND2C	0.018	4.33E-04*
						BIRC7	0.930	4.37E-04*
						MGST3	0.358	4.62E-04*
						PIK3CA	7.06E-05*	0.007
						TNN	3.00E-04*	0.018
						ANO6	6.32E-04*	0.780
						SMARCA2	4.91E-04*	0.877
	limegreen	220	5.22	1.19E-07*	0.054	SIMC1	2.04E-04*	0.977
						DENND2C	0.018	4.33E-04*
						EIF5A2	0.163	8.06E-04*
						RSL1D1	3.48E-04*	0.217
						CCND2	1.94E-04*	0.603
	bisque	89	6.22	7.57E-10*	0.006*	AKT2	3.90E-05*	0.980
						ACLY	0.701	2.21E-04*
						PRKG1	0.647	8.26E-04*

283 284 The following characteristics are displayed for each mega-module that contained >1 ALSPAC-
 285 nominal gene: affiliated brain region; total number of constituent genes (k_g); constituent
 286 ALSPAC- and IASPSAD-nominal genes; empirical p-values for ALSPAC-nominal
 287 overrepresentation (Overrep. p); MM-S_n, and the associated False Discovery Rate (MM-S_n
 288 qFDR).

289 * p<0.05 for MM S_n and p<0.05/n for ALSPAC overrepresentation, where n=number of tests
 290 per brain region

15

292 **Fig 3. Prefrontal Cortex Mega Modules Aliceblue and Cadetblue.** Prefrontal Cortex Mega
293 Modules Cadetblue (a) and Aliceblue (b). Solid black arrows point to ALSPAC GWAS nominal
294 genes, and dotted black arrows represent IASPSAD nominal genes. Edge-width represents
295 strength of correlation of expression changes between treatment and control mice, and node color
296 represents IASPSAD GWAS p-values.

297

298 Both Cadetblue and Aliceblue showed significant enrichment in several functional categories
299 (Table S3). In sum, top functional enrichment categories for Aliceblue were related to actin-
300 based movement, cardiac muscle signaling and action, increased triglyceride levels in mice, cell-
301 cell and cell-extracellular matrix adhesion, and syndecan-2-mediated signaling. In contrast,
302 Cadetblue's top enrichment categories involved transcription-regulatory processes, specifically:
303 RNA splicing, chromatin remodeling, protein alkylation and methylation, DNA replication
304 regulation, several immune-related pathways, *NF-κβ* and Wnt signaling pathways, and reductase
305 activity (Tables 2a-b; Table S3).

306 **Table 2. Top Gene Ontology Enrichment Results for PFC Mega Modules Cadetblue and**

307 **Aliceblue.**

308 **a)**

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
GO: Biological Process	chromatin organization	1.50E-09	4.12E-06	23	776	SMYD1, ESR1, KAT6A, ASH1L, PAGR1, CBX4, KDM6B, ASH2L, MYSM1, PHF21A, BPTF, UBN1, CBX6, SUPT16H, SMARCD3, H3F3B, PAX5, PAX7, BRD1, CABIN1, MGEA5, NR1H4, CBX8
	histone modification	1.97E-06	5.40E-03	14	453	SMYD1, KAT6A, ASH1L, PAGR1, KDM6B, ASH2L, MYSM1, PHF21A, PAX5, PAX7, BRD1, MGEA5, NR1H4, CBX8
	covalent chromatin modification	2.87E-06	7.89E-03	14	468	SMYD1, KAT6A, ASH1L, PAGR1, KDM6B, ASH2L, MYSM1, PHF21A, PAX5, PAX7, BRD1, MGEA5, NR1H4, CBX8
	chromatin remodeling	1.47E-05	4.04E-02	8	165	SMYD1, ESR1, ASH2L, MYSM1, BPTF, SMARCD3, H3F3B, PAX7
	RNA splicing	1.60E-05	4.40E-02	12	403	SRSF6, NUDT21, BCAS2, RBM39, RALY, RBM5, PRPF19, AKT2, CPSF2, SNRPD3, WDR77, AQR
	protein alkylation	2.44E-05	6.71E-02	8	177	SMYD1, ASH1L, ASH2L, PAX5, PAX7, SNRPD3, WDR77, NR1H4
	protein methylation	2.44E-05	6.71E-02	8	177	SMYD1, ASH1L, ASH2L, PAX5, PAX7, SNRPD3, WDR77, NR1H4
GO: Cellular Component	nucleoplasm part	2.23E-05	7.49E-03	16	738	MMS2L, SRSF6, NUDT21, KAT6A, PAGR1, CBX4, ELMAN1, ASH2L, RBM39, PHF21A, UBN1, TONSL, PRPF19, SPOP, CPSF2, BRD1
	chromosome	1.21E-04	4.07E-02	17	943	MMS2L, PSEN2, BCAS2, ESR1, KAT6A, ASH1L, ZNF207, ASH2L, ESCO2, CBX6, TONSL, SUPT16H, PRPF19, SMARCD3, H3F3B, NR1H4, CBX8
	ribonucleoside-diphosphate reductase complex	1.24E-04	4.17E-02	2	3	RRM2B, RRM2
	DNA replication factor A complex	1.39E-04	4.67E-02	3	16	BCAS2, TONSL, PRPF19
	nuclear replication fork	1.40E-04	4.71E-02	4	41	MMS2L, BCAS2, TONSL, PRPF19
	catalytic step 2 spliceosome	2.96E-04	9.94E-02	5	90	BCAS2, RALY, PRPF19, SNRPD3, AQR
GO: Molecular Function	oxidoreductase activity, acting on CH or CH2 groups	3.32E-05	1.62E-02	3	10	CYP2C8, RRM2B, RRM2
	oxidoreductase activity, acting on CH or CH2 groups, disulfide as acceptor	1.31E-04	6.38E-02	2	3	RRM2B, RRM2
	ribonucleoside-diphosphate reductase activity, thioredoxin disulfide as acceptor	1.31E-04	6.38E-02	2	3	RRM2B, RRM2
	ribonucleoside-diphosphate reductase activity	1.31E-04	6.38E-02	2	3	RRM2B, RRM2
	chromatin binding	1.69E-04	8.24E-02	12	516	ESR1, KAT6A, ASH1L, RELB, CBX4, KDM6B, ASH2L, PHF21A, TLE4, SMARCD3, H3F3B, CABIN1
Mouse Phenotype	increased immunoglobulin level	1.16E-06	2.92E-03	14	307	TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1, ASH1L, BIRC3, RELB, MYSM1, CD4, PIK3C2A, RABGEF1, CABIN1
	abnormal humoral immune response	5.52E-06	1.39E-02	18	566	TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1, MAP3K14, ASH1L, BIRC3, RELB, TNFRSF11A, MYSM1, CD4, PIK3C2A, CD38, RABGEF1, PAX5, CABIN1
	abnormal immunoglobulin level	7.68E-06	1.93E-02	17	522	TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1, MAP3K14, ASH1L, BIRC3, RELB, TNFRSF11A, MYSM1, CD4, PIK3C2A, RABGEF1, PAX5, CABIN1
	increased IgG level	9.35E-06	2.35E-02	11	225	TRAF3IP2, GADD45B, SEMA4B, ESR1, SPTA1, ASH1L, BIRC3, MYSM1, CD4, PIK3C2A, CABIN1
	cortical renal glomerulopathies	1.18E-05	2.96E-02	10	188	TRAF3IP2, GADD45B, PSEN2, MYO1E, ESR1, SPTA1, RRM2B, ASH1L, RELB, PIK3C2A
	abnormal lymph node morphology	1.85E-05	4.66E-02	14	390	SELL, TRAF3IP2, TRAF1, PSEN2, ESR1, SPTA1, RRM2B, MAP3K14, BIRC3, RELB, TNFRSF11A, CD4, PIK3C2A, PIP
	glomerulonephritis	1.95E-05	4.91E-02	8	121	TRAF3IP2, GADD45B, PSEN2, ESR1, SPTA1, ASH1L, RELB, PIK3C2A
	abnormal B cell physiology	3.21E-05	8.07E-02	18	644	MYO1G, TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1, MAP3K14, ASH1L, BIRC3, RELB, TNFRSF11A, MYSM1, CD4, PIK3C2A, RABGEF1, PAX5, CABIN1
Pathway	Signaling by Wnt	2.78E-06	2.47E-03	13	340	LGR4, ASH2L, FZD4, ARRB2, ZNRF3, TLE4, VPS35, H3F3B, AKT2, GNAO1, FZD2, MOV10, RAC3
	NF-kappa B signaling pathway	1.07E-04	9.44E-02	6	95	GADD45B, TRAF1, MAP3K14, BIRC3, RELB, TNFRSF11A
	Apoptosis	1.13E-04	9.97E-02	7	138	GADD45B, TRAF1, SEPT4, SPTA1, MAP3K14, BIRC3, AKT2

17

310 b)

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
GO: Biological Process	regulation of actin filament-based movement	4.76E-08	2.07E-04	9	37	FXYD1, ATP1A2, DBN1, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
	cardiac muscle cell-cardiac muscle cell adhesion	7.53E-08	3.27E-04	5	7	CXADR, JUP, DSC2, DSG2, DSP
	regulation of cardiac muscle cell contraction	1.64E-07	7.11E-04	8	31	FXYD1, ATP1A2, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
	actin filament-based process	3.57E-07	1.55E-03	36	688	CDC42EP4, ACTN1, MYOZ1, MKLN1, FXYD1, RHOF, SDC4, CUL3, PRRS, CRYAA, ARHGDIA, ATP2C1, CCDC88A, STAU2, DYNLL1, DIXDC1, ATP1A2, CXADR, DBN1, PTGER4, GJA5, JUP, CDK5R1, NF1, KCNJ2, CACNB2, DSC2, DSG2, DSP, ARHGEF5, CASP4, LCP1, CSR3, LIMK1, LDB3, LRP1
	cell communication involved in cardiac conduction	4.34E-07	1.89E-03	9	47	PRKACA, ATP1A2, CXADR, GJA5, JUP, CACNB2, DSC2, DSG2, DSP
	desmosome organization	8.59E-07	3.73E-03	5	10	SNAI2, JUP, DSG2, DSP, PKP3
	cardiac muscle cell action potential	1.07E-06	4.65E-03	9	52	ATP1A2, CXADR, GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP
	cardiac muscle cell contraction	1.07E-06	4.65E-03	9	52	FXYD1, ATP1A2, GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP
	bundle of His cell to Purkinje myocyte communication	1.55E-06	6.72E-03	5	11	GJA5, JUP, DSC2, DSG2, DSP
	regulation of cardiac muscle cell action potential	2.30E-06	9.99E-03	6	20	CXADR, GJA5, JUP, DSC2, DSG2, DSP
	bundle of His cell-Purkinje myocyte adhesion involved in cell communication	2.63E-06	1.14E-02	4	6	JUP, DSC2, DSG2, DSP
	regulation of heart rate by cardiac conduction	2.65E-06	1.15E-02	7	31	GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP
	cardiac conduction	3.37E-06	1.46E-02	13	131	FXYD1, PRKACA, ATP1A2, ATP1A4, CXADR, GJA5, JUP, KCNJ2, CACNB2, CACNB4, DSC2, DSG2, DSP
	cardiac muscle cell action potential involved in contraction	7.69E-06	3.34E-02	7	36	GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP
	regulation of actin filament-based process	1.05E-05	4.58E-02	21	343	CDC42EP4, FXYD1, SDC4, ARHGDIA, CCDC88A, STAU2, DIXDC1, ATP1A2, DBN1, PTGER4, GJA5, JUP, CDK5R1, KCNJ2, DSC2, DSG2, DSP, ARHGEF5, CSR3, LIMK1, LRP1
	lipoprotein localization	1.34E-05	5.83E-02	5	16	APOB, APOC2, MSR1, CUBN, LRP1
	lipoprotein transport	1.34E-05	5.83E-02	5	16	APOB, APOC2, MSR1, CUBN, LRP1
	regulation of cardiac muscle contraction	1.36E-05	5.91E-02	9	70	FXYD1, PRKACA, ATP1A2, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
GO: Cellular Component	intercalated disc	2.90E-06	1.53E-03	9	59	ACTN1, ATP1A2, CXADR, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
	cell-cell contact zone	1.56E-05	8.21E-03	9	72	ACTN1, ATP1A2, CXADR, GJA5, JUP, KCNJ2, DSC2, DSG2, DSP
	desmosome	1.61E-04	8.49E-02	5	26	JUP, DSC2, DSG2, DSP, PKP3
GO: Molecular Function	protein binding involved in heterotypic cell-cell adhesion	8.62E-07	7.88E-04	5	10	CXADR, JUP, DSC2, DSG2, DSP
	protein binding involved in cell adhesion	1.15E-06	1.05E-03	6	18	CXADR, ITGA2, JUP, DSC2, DSG2, DSP
	protein binding involved in cell-cell adhesion	2.62E-06	2.39E-03	5	12	CXADR, JUP, DSC2, DSG2, DSP
	cell adhesive protein binding involved in bundle of His cell-Purkinje myocyte communication	2.64E-06	2.41E-03	4	6	JUP, DSC2, DSG2, DSP
Human Phenotype	Dilated cardiomyopathy	4.35E-05	3.89E-02	9	87	ACAD9, CRYAB, UBR1, JUP, DSG2, DSP, LAMA4, CSR3, LDB3
	Right ventricular cardiomyopathy	8.82E-05	7.90E-02	4	13	JUP, DSC2, DSG2, DSP
Mouse Phenotype	increased circulating triglyceride level	1.27E-05	4.77E-02	16	179	ALPI, COL1A1, VLDLR, AGPAT2, WRN, APOB, APOC2, TXNIP, RSBN1, CSF2, PRKACA, BGLAP, MED13, LEPR, LIPC, LRP1
	Pathway	Non-integrin membrane-ECM interactions	3.41E-05	4.72E-02	7	46
311	Syndecan-2-mediated signaling events	4.44E-05	6.14E-02	6	33	SDC2, CSF2, PRKACA, ITGA2, NF1, LAMA3

312 Functional enrichment results from ToppFun for Prefrontal Cortex Mega Modules Cadetblue (a)
 313 and Aliceblue (b), where Bonferroni-corrected p<0.1.

314

18

315 **Nucleus Accumbens**

316 Using NAc acute ethanol expression data for edge-weights yielded 3,460 significant
317 modules containing a total of 4,213 genes, 15 of which were ALSPAC-nominal and 16 of which
318 were IASPSAD-nominal. After merging by content similarity, there were 171 significant mega-
319 modules. Nineteen MM contained at least one ALSPAC-nominal gene, and 73 MM contained at
320 least one IASPSAD-nominal gene. However, MM S_n did not significantly predict MM mean
321 ALSPAC GWAS gene-wise p-value ($\beta=0.003$, $p=0.390$). Two MMs, Cadetblue2 and Gray26,
322 each contained two ALSPAC-nominal genes (Table 1). Because there were 2 tests for
323 overrepresentation, $p<0.025$ ($\alpha=0.05/2$) was considered significant. Gray26, was significantly
324 overrepresented with ALSPAC-nominal genes, and Cadetblue2 showed a trend towards
325 overrepresentation with significance before correcting for multiple testing (Table 1).

326 Gray26's most central hub gene was *HNRNPU* (heterogeneous nuclear ribonucleoprotein
327 U; connectivity=6, Eigen-centrality=1), followed by *RBM39* (RNA binding motif protein 39;
328 k=3, EC=0.46) and *CSNK1A1* (k=3, EC=0.37). The two ALSPAC-nominal genes *BCAS2* (breast
329 carcinoma amplified sequence 2) and *PCDH7* (protocadherin 7), shared their only edges with
330 *RBM39* and *HNRNPU*, respectively (Fig 4a). As seen in the PFC's Aliceblue, *EAVL1* was a
331 hub gene of Cadetblue2. *EAVL1* (k=136, EC=1) was connected to both of the ALSPAC-
332 nominal genes, and served as the only connection for *CPM* and one of two connections for
333 *MGST3* (microsomal glutathione S-transferase 3) (Fig 4b). Strikingly, PFC Aliceblue and NAc
334 Cadetblue 2 showed a highly significant overlap in their gene content, with 72 overlapping genes
335 (Table S2; $p=2.2 \times 10^{-16}$).

336

19

337 **Fig 4. Nucleus Accumbens Mega Modules Gray26 and Cadetblue2.** Nucleus Accumbens
338 Mega Modules Gray26 (a) and Cadetblue2 (b). Solid black arrows point to ALSPAC GWAS
339 nominal genes. These modules did not contain IASPSAD nominal genes. Edge-width represents
340 strength of correlation of expression changes between treatment and control mice, and node color
341 represents IASPSAD GWAS p-values.

342

343 Both Cadetblue2 and Gray26 were significantly enriched with several functional
344 categories (Table S3). Like PFC Cadetblue, NAc Cadetblue2 was functionally enriched for gene
345 groups related to nuclear function with transcription regulation pathways, particularly those
346 involving RNA polymerase activity. Gray26 was most significantly enriched with genes related
347 to functions involving: telomere maintenance, organelle organization, ribonucleoprotein
348 complexes, and syndecan-mediated signaling (Tables 3a-b; Table S3).

349 **Table 3. Top Gene Ontology Enrichment Results for Nucleus Accumbens Mega Modules**

350 **Cadetblue2 and Gray26.**

351 **a)**

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
GO: Biological Process	negative regulation of transcription from RNA polymerase II promoter	9.38E-06	2.93E-02	23	810	TGIF2, ZBTB20, SREBF2, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, MNT, TBX2, MLX, YBX3, TFAP2C, MXD4, E2F8, ZBTB14, MLXIPL, UHRF1, TNF, ELK4, PAX3, LEF1
GO: Molecular Function	RNA polymerase II transcription factor activity, sequence-specific DNA binding	1.80E-09	1.20E-06	27	678	ZBTB20, SREBF2, GATA4, E2F7, CSRNP1, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, TEAD2, MLX, YBX3, FOXJ3, TFAP2C, E2F8, MLXIPL, KLF13, ELF2, ELK4, PAX3, LEF1
	transcriptional repressor activity, RNA polymerase II transcription regulatory region sequence-specific binding	3.04E-06	2.03E-03	11	182	ZBTB20, SREBF2, E2F7, MITF, MNT, TBX2, MLX, YBX3, TFAP2C, E2F8, MLXIPL
	transcription factor activity, RNA polymerase II core promoter proximal region sequence-specific binding	6.11E-06	4.08E-03	15	365	ZBTB20, SREBF2, FOXL2, NFIB, NFIC, MITF, NFYA, HAND2, TBX2, TFEB, TFAP2C, E2F8, MLXIPL, KLF13, LEF1
	RNA polymerase II regulatory region sequence-specific DNA binding	8.95E-06	5.98E-03	20	632	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, LEF1
	transcription regulatory region DNA binding	9.52E-06	6.36E-03	24	862	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, ZBTB14, MLXIPL, KLF13, UHRF1, TNF, ELK4, LEF1
	regulatory region DNA binding	1.01E-05	6.74E-03	24	865	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, ZBTB14, MLXIPL, KLF13, UHRF1, TNF, ELK4, LEF1
	RNA polymerase II regulatory region DNA binding	1.03E-05	6.87E-03	20	638	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, LEF1
	regulatory region nucleic acid binding	1.07E-05	7.14E-03	24	868	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, ZBTB14, MLXIPL, KLF13, UHRF1, TNF, ELK4, LEF1
	transcription regulatory region sequence-specific DNA binding	1.32E-05	8.82E-03	21	705	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, UHRF1, LEF1
	sequence-specific double-stranded DNA binding	2.50E-05	1.67E-02	21	736	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, UHRF1, LEF1
	core promoter proximal region sequence-specific DNA binding	7.08E-05	4.73E-02	14	399	SREBF2, GATA4, FOXL2, NFIB, NFIC, MITF, NFYA, TBX2, TFEB, E2F8, MLXIPL, KLF13, UHRF1, LEF1
	core promoter proximal region DNA binding	7.47E-05	4.99E-02	14	401	SREBF2, GATA4, FOXL2, NFIB, NFIC, MITF, NFYA, TBX2, TFEB, E2F8, MLXIPL, KLF13, UHRF1, LEF1
	transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-specific binding	9.15E-05	6.11E-02	13	358	GATA4, CSRNP1, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, HAND2, TFEB, TFAP2C, KLF13, LEF1
	double-stranded DNA binding	1.25E-04	8.37E-02	21	824	SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX, YBX3, TFAP2C, E2F8, MLXIPL, KLF13, UHRF1, LEF1
Human Phenotype	Synophrys	3.61E-05	2.06E-02	5	48	ZBTB20, NFIX, MITF, KLF13, PAX3
Mouse Phenotype	absent coat pigmentation	2.38E-05	6.28E-02	4	15	MITF, TFEB, TFEF, PAX3

352

21

353 **b)**

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
GO: Biological Process	negative regulation of telomere maintenance via telomerase	2.46E-05	2.92E-02	2	12	HNRNPU, PML
	negative regulation of organelle organization	4.65E-05	5.52E-02	4	340	PRKCD, FGFR2, HNRNPU, PML
	negative regulation of telomere maintenance via telomere lengthening	5.06E-05	6.00E-02	2	17	HNRNPU, PML
GO: Cellular Component	ribonucleoprotein complex	8.99E-04	8.99E-02	4	751	CSNK1A1, RPS18, BCAS2, HNRNPU
	intracellular ribonucleoprotein complex	8.99E-04	8.99E-02	4	751	CSNK1A1, RPS18, BCAS2, HNRNPU
Pathway	Syndecan-4-mediated signaling events	2.67E-04	7.44E-02	2	31	PRKCD, ITGAS
	Syndecan-2-mediated signaling events	3.03E-04	8.44E-02	2	33	PRKCD, ITGAS

354 355 Functional enrichment results from ToppFun for Nucleus Accumbens Mega Modules Cadetblue2

356 (a) and Gray26 (b), where Bonferroni-corrected $p < 0.1$.

357

358 **Ventral Tegmental Area**

359 Use of VTA control/ethanol gene expression responses for edge weighting initially
360 resulted in 3,519 significant modules containing a total of 4,188 genes in EW-dmGWAS
361 analysis. Merging by content similarity, resulted in 276 MMs, each with a significant MM S_n .
362 Seventeen ALSPAC-nominal genes and 19 IASPSAD-nominal genes were spread across 25 and
363 156 mega-modules, respectively. Furthermore, MM- S_n significantly predicted mean ALSPAC
364 GWAS gene-wise p -value ($\beta = -0.02$, $p = 0.003$).

365 Mega-modules with the highest representation of ALSPAC-nominal genes included Coral,
366 Limegreen, and Bisque (Table 1). Because there were 3 tests for overrepresentation, $p < 0.017$
367 ($\alpha = 0.05/3$) was considered significant. Although overrepresentation of ALSPAC-nominal genes
368 was not significant in Coral and Limegreen, it was significant in Bisque, which has the highest
369 MM- S_n of the three (Table 1; Fig 5). Bisque contained four highly interconnected genes: *USP21*
370 (ubiquitin specific peptidase 21; $k = 10$, EC = 1), *USP15* (ubiquitin specific peptidase 15; $k = 10$,
371 EC = 0.65), *TRIM25* (tripartite motif-containing 25; $k = 10$, EC = 0.49), and *HECW2* (HECT, C2
372 and WW domain containing E3 ubiquitin protein ligase 2; $k = 12$, EC = 0.48). *HECW2* and

373 *TRIM25* shared edges with this MM's IASPSAD-nominal genes *PRKG1* (protein kinase, cGMP-
374 dependent, type I) and *ACLY* (ATP citrate lyase), respectively. However, none of the hub genes
375 shared an edge with Bisque's ALSPAC nominal gene, *AKT2* (AKT serine/threonine kinase 2).
376 Finally, Bisque had significant enrichment in several functional categories (Table S3). It was
377 most significantly enriched with genes associated with ubiquitination, ligase and helicase
378 activity, and eukaryotic translation elongation (Table 4; Table S3).

379

380 **Table 4. Top Gene Ontology Enrichment Results for Ventral Tegmental Area Mega**
381 **Module Bisque.**

Category	Name	p-value	q-value Bonferroni	Hit Count in Query List	Hit Count in Genome	Hit in Query List
GO: Cellular Component	nucleolus	6.41E-07	1.24E-04	17	894	ZNF106, NEK2, EEF1D, RPL36, PNKP, SELENBP1, ZNF655, RPS9, WRN, GATA3, ZFHX3, RORC, DGCR8, TTC3, ARNTL2, NEK11, RPL18
	eukaryotic translation elongation factor 1 complex	1.27E-04	2.47E-02	2	4	EEF1D, EEF1A2
GO: Molecular Function	ubiquitin-protein transferase activity	4.98E-07	1.33E-04	12	414	RC3H2, TRAF4, UBE2K, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, UBE2S, RNF114, TTC3, TRIM37
	ubiquitin-like protein transferase activity	9.70E-07	2.59E-04	12	441	RC3H2, TRAF4, UBE2K, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, UBE2S, RNF114, TTC3, TRIM37
	acid-amino acid ligase activity	3.42E-06	9.12E-04	9	259	RC3H2, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	ligase activity, forming carbon-nitrogen bonds	9.78E-06	2.61E-03	9	295	RC3H2, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	tubulin-glycine ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	protein-glycine ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	protein-glycine ligase activity, initiating	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	coenzyme F420-0 gamma-glutamyl ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	ribosomal S6-glutamic acid ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	coenzyme F420-2 alpha-glutamyl ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	UDP-N-acetylglucosamoylalanyl-D-glutamyl-2,6-diaminopimelate-D-alanyl-D-alanine ligase activity	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	protein-glycine ligase activity, elongating	1.87E-05	5.00E-03	8	244	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	tubulin-glutamic acid ligase activity	2.05E-05	5.46E-03	8	247	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	protein-glutamic acid ligase activity	2.17E-05	5.79E-03	8	249	RC3H2, TRIM2, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	ligase activity	2.38E-05	6.35E-03	10	415	LIG3, RC3H2, TRIM2, TRIM25, TRIM9, HECW2, TRIM8, RNF114, TTC3, TRIM37
	DNA helicase activity	2.43E-04	6.49E-02	4	65	ERCC2, GTF2H4, RAD54B, WRN
Pathway	Eukaryotic Translation Elongation	1.67E-04	8.37E-02	5	98	EEF1D, RPL36, RPS9, EEF1A2, RPL18

382

23

383 Functional enrichment results from ToppFun for Ventral Tegmental Area Mega Module

384 Bisque, where Bonferroni-corrected $p < 0.1$.

385

386 **Fig 5. Ventral Tegmental Area Mega Module Bisque.** Ventral Tegmental Area Mega Modules

387 Bisque. Solid black arrows point to ALSPAC GWAS nominal genes, and dotted black arrows

388 represent IASPSAD nominal genes. Edge-width represents strength of correlation of expression

389 changes between treatment and control mice, and node color represents IASPSAD GWAS p -

390 values.

391

392 Discussion

393 To our knowledge, this is the first study to directly co-analyze human GWAS with mouse

394 brain ethanol-responsive gene expression data to identify ethanol-related gene networks relevant

395 to AD. Unlike previous studies that have employed cross-species validation methods for specific

396 genes or gene sets, this study analyzed human and mouse data in tandem to identify gene

397 networks across the entire genome, using the EW-dmGWAS algorithm. This approach

398 successfully identified significantly ethanol-regulated and AD-associated gene networks, or

399 modules. We further improved the existing EW-dmGWAS algorithm by merging highly

400 redundant modules to create more parsimonious mega-modules, thus decreasing complexity

401 without sacrificing significance. Additionally, we validated these results by testing for

402 overrepresentation with, and mega-module score prediction by, signals from an independent

403 GWAS dataset. Overall, our findings suggest that such direct integration of model organism

404 expression data with human protein interaction and GWAS data can productively leverage these

24

405 data sources. Furthermore, we present evidence for novel, cross-validated gene networks
406 warranting further study for mechanisms underlying AUD.

407 **Identification of network-level associations across GWAS datasets**

408 One major concern with existing GWAS studies on AD had been the relative lack of
409 replication across studies. Although some very large GWAS studies on alcohol consumption
410 have shown replicable results [13-15], those do not account for all previously identified
411 associations. We reasoned that our integrative gene network-querying approach might identify
412 networks that shared signals from different GWASs on AD, even if the signals were not from the
413 same genes across GWASs. Concordant with this hypothesis, VTA mega-module scores
414 significantly predicted average gene-wise p-values from an independent GWAS dataset,
415 ALSPAC (Fig 2). This suggests that ethanol-regulated gene expression networks in this brain
416 region may be particularly sensitive to genetic variance and thus are highly relevant to
417 mechanisms contributing to risk for AD. This is possibly attributable to the involvement of VTA
418 dopaminergic reward pathways in the development of AD [41].

419 Although scores did not prioritize mega-modules with respect to ALSPAC results in PFC
420 and NAc, individual mega-modules were overrepresented with ALSPAC signals (Table 1). The
421 ALSPAC-overrepresented VTA and PFC mega-modules also contained nominally significant
422 genes from the GWAS dataset used for the network analysis, IASPSAD. These results suggest
423 that the integration of acute ethanol-related expression data from mice and human PPI can
424 identify functional networks that associate signals from different GWAS datasets.

425 **Composition and structure of mega-modules**

426 Functional composition of mega-modules varied between brain regions for the most part.
427 For example, although Aliceblue (PFC) and Cadetblue2 (NAc) shared the hub gene *ELAVL1*,

25

428 ALSPAC-nominal gene *CPM*, and had a significant overlap in their gene content, their
429 functional enrichment results were very different (Tables 2b and 3a). These results suggest that
430 brain regional ethanol-responsive gene expression results likely had an important impact on
431 composition of networks, thus leveraging protein-protein interaction network information and
432 GWAS results.

433 Despite such differences, the mega-modules presented in Table 1 shared certain structural
434 similarities. Most of the IAPSAD- and ALSPAC-nominal genes in these modules shared edges
435 with hub genes (Fig 3-5). These hub genes included: *CUL3* and *ELAVL1* from PFC Aliceblue;
436 *ESR1* from PFC Cadetblue; *ELAVL1* from NAc Cadetblue2; *TRIM25* and *HECW2* from VTA
437 Bisque. Further, GWAS nominally significant genes (IASPAD or ALSPAC) generally were not
438 hub genes in the derived networks (see Fig 3-5; Table S2). This may be consistent with the
439 general tenet that genetic variation in complex traits does not produce major alterations in
440 cellular function, but rather modulation of cellular mechanisms for maintaining homeostasis.
441 Hub genes may be more functionally more closely related to a given trait, but likely have such
442 widespread influence so as to be evolutionarily resistant to genetic variation in complex traits.
443 This is also consistent with the hypothesis that omnigenic influences are an important feature of
444 complex traits such as AUD [42].

445 One hub gene was found to influence network structure in both PFC and NAc. *ELAVL1* is a
446 broadly expressed gene that acts as a RNA-binding protein in AU-rich domains, generally
447 localized within 3'-UTRs of mRNA. As such, *ELAVL1* has been shown to alter mRNA stability
448 by altering binding of miRNA or other factors influencing mRNA degradation [43] and has been
449 implicated in activity-dependent regulation of gene expression in the brain with drug abuse [44].
450 The large interaction space for *ELAVL1* in PFC Alice Blue and NAc Cadetblue 2 and the

451 multiple nominal GWAS hits within these genes suggest that *ELAVL1* could have an important
452 modulatory function on the network of genes susceptible to genetic variation in AUD.

453 **Functional aspects of mega-modules**

454 This theory regarding network structure is further supported by our functional enrichment
455 analysis, which revealed several small groups of functionally related genes within each mega-
456 module. All of the mega-modules discussed above (Table 1) contained at least one GWAS-
457 nominal gene in the top enrichment groups, except Cadetblue2, which still had GWAS-nominal
458 genes in its significant enrichment groups (Table S3).

459 Another unifying feature across these mega-modules, except Aliceblue, was significant
460 functional enrichment for pathways that regulate gene expression. Specifically, these pathways
461 were related to chromatin organization, RNA splicing, and translation- and transcription-related
462 processes (Table S3). This is not surprising, as alterations in gene expression have long been
463 proposed as a mechanism underlying long-term neuroplasticity resulting in ethanol-dependent
464 behavioral changes, and eventually dependence [45].

465 In contrast, the largest functional enrichment groups unique to Aliceblue were related to
466 actin-based filaments and cardiac function (Table 2). Actin not only provides cytoskeletal
467 structure to neurons, but also functions in dendritic remodeling in neuronal plasticity, which
468 likely contributes to AD development [46, 47]. Aliceblue was also significantly enriched for the
469 syndecan-2 signaling pathway, and contained the *SDC2* gene itself, which functions in dendritic
470 structural changes together with F-actin [48]. Additionally, the most significant enrichment
471 group unique to Cadetblue was the Wnt signaling pathway, which also regulates actin function
472 [49, 50]. Of note, a prior study has shown that *ARRB2* (a Cadetblue hub gene and member of
473 Wnt signaling pathway) knockout rats display significantly decreased levels of voluntary ethanol

27

474 consumption and psychomotor stimulation in response to ethanol [51]. These findings highlight
475 the potential importance of postsynaptic actin-related signaling and dendritic plasticity in PFC
476 gene networks responding to acute ethanol and contributing to genetic risk for AD.

477 Finally, although the NAc Cadetblue2 mega-module was highly enriched for functions
478 related to transcriptional regulation, it also contained the gene *FGF21* within its interaction space
479 (Table S2 and Fig 4b). *FGF21* is a member of the fibroblast growth factor gene family and is a
480 macronutrient responsive gene largely expressed in liver. Importantly *FGF21* has been shown to
481 be released from the liver by ethanol consumption and negatively regulates ethanol consumption
482 by interaction with brain FGF-receptor/beta-Klotho complexes. Beta-Klotho, a product of the
483 *KLB* gene, is an obligate partner of the FGF receptor and has recently been shown to have a
484 highly significant association with alcohol consumption in recent very large GWAS studies [14,
485 15]. Although the role of *FGF21* and *KLB* in AD are not currently known, the association of
486 *FGF21* with the Cadetblue2 mega-module, containing nominally responsive genes from AD
487 GWAS studies, is a possible additional validation of the utility of our studies integrating protein-
488 protein interaction information (tissue non-specific), AD GWAS (tissue non-specific) and brain
489 ethanol-responsive gene expression.

490 **Potential weaknesses and future studies**

491 The studies presented here provide evidence for the utility of integrating genomic
492 expression data with protein-protein interaction networks and GWAS data in order to gain a
493 better understanding of the genetic architecture of complex traits, such as AD. Our analysis also
494 generated several testable hypotheses regarding gene networks and signaling mechanisms related
495 to ethanol action and genetic burden for AD. However, these studies utilized acute ethanol-
496 related expression data in attempting to identify mechanisms of AD, a chronic ethanol exposure

497 disease. Use of a chronic exposure model could provide for a more robust integration of the
498 expression data and GWAS signals. However, we feel the current study is valid, since acute
499 responses to ethanol have been repeatedly shown to be a heritable risk factor for AD [52-54].

500 Another potential shortcoming for this work regards the limited size of the GWAS studies
501 utilized and differences in phenotypic assessment. The IASPAD study was based on AD
502 diagnosis, whereas ALSPAC was based on a symptom factor score. Had we used larger GWAS
503 studies based on the same assessment criteria, it is possible that greater overlap of GWAS signals
504 within mega-modules would have been observed. Recent large GWAS studies on ethanol have,
505 to date, generally concerned measures of ethanol consumption, rather than a diagnosis of alcohol
506 dependence per se [14, 15]. For this reason, we focused this initial effort on GWAS studies
507 concerned with alcohol dependence. However, using the IASPAD and ALSPAC studies allowed
508 us to identify gene networks that are robust across both the severe end of the phenotypic
509 spectrum (i.e. diagnosable AD), and for symptoms at the sub-diagnostic level.

510 Overall, this analysis successfully identified novel ethanol-responsive, AD-associated,
511 functionally enriched gene expression networks in the brain that likely play a role in the
512 developmental pathway from first ethanol exposure to AD, especially in the VTA. This is the
513 first analysis to identify such networks by directly co-analyzing gene expression data, protein-
514 protein interaction data, and GWAS summary statistics. The identified modules provided insight
515 into common pathways between differing signals from independent, largely underpowered, yet
516 deeply phenotyped GWAS datasets. This supports the conjecture that the integration of different
517 GWAS results at a gene network level, rather than simply looking for replication of individual
518 gene signals, could make use of previously underpowered datasets and identify common genetic
519 mechanisms relevant to AD. Future expansion of such approaches to include larger GWAS

29

520 datasets and chronic ethanol expression studies, together with validation of key targets by gene
521 targeting in animals models, may provide both novel insight for the neurobiology of AD and the
522 development of improved therapeutic approaches.

523

524 **Acknowledgements**

525 The authors wish to thank members of the Miles laboratory and the Virginia Institute for
526 Psychiatric and Behavioral Genetics for their helpful comments and suggestions during the
527 course of these studies. Additionally, we thank Dr. Zhongming Zhou at the University of Texas
528 Health Sciences Center for suggestions regarding the utilization of EW-dmGWAS. None of the
529 authors had any conflicts of financial interest in the performance of these studies.

530 References

531

532 1. Takahashi T, Lapham G, Chavez LJ, Lee AK, Williams EC, Richards JE, et al.

533 Comparison of DSM-IV and DSM-5 criteria for alcohol use disorders in VA primary care

534 patients with frequent heavy drinking enrolled in a trial. *Addiction science & clinical*

535 practice. 2017;12(1):17. Epub 2017/07/19. doi: 10.1186/s13722-017-0082-0. PubMed

536 PMID: 28716049; PubMed Central PMCID: PMCPMC5514480.

537 2. Grant BF, Goldstein RB, Saha TD, Chou SP, Jung J, Zhang H, et al. Epidemiology of

538 DSM-5 Alcohol Use Disorder: Results From the National Epidemiologic Survey on Alcohol

539 and Related Conditions III. *JAMA psychiatry*. 2015;72(8):757-66. Epub 2015/06/04. doi:

540 10.1001/jamapsychiatry.2015.0584. PubMed PMID: 26039070; PubMed Central PMCID:

541 PMCPMC5240584.

542 3. Stahre M, Roeber J, Kanny D, Brewer RD, Zhang X. Contribution of excessive alcohol

543 consumption to deaths and years of potential life lost in the United States. *Preventing*

544 chronic disease

545 2014;11:E109. Epub 2014/06/27. doi: 10.5888/pcd11.130293. PubMed

PMID: 24967831; PubMed Central PMCID: PMCPMC4075492.

546 4. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A

547 comparative risk assessment of burden of disease and injury attributable to 67 risk factors

548 and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global

549 Burden of Disease Study 2010. *The Lancet*. 2012;380(9859):2224-60. doi: 10.1016/s0140-

550 6736(12)61766-8.

551 5. Victor I. Reus, Laura J. Fochtman, Oscar Bukstein, A. Evan Eyler, Donald M. Hilty,

552 Marcela Horvitz-Lennon, et al. The American Psychiatric Association Practice Guideline for

553 the Pharmacological Treatment of Patients With Alcohol Use Disorder. *American Journal of*

554 *Psychiatry*. 2018;175(1):86-90. doi: 10.1176/appi.ajp.2017.1750101. PubMed PMID:

555 29301420.

556 6. Prescott CA, Kendler KS. Genetic and environmental contributions to alcohol abuse

557 and dependence in a population-based sample of male twins. *The American journal of*

558 *psychiatry*. 1999;156(1):34-40. Epub 1999/01/19. doi: 10.1176/ajp.156.1.34. PubMed

559 PMID: 9892295.

560 7. Verhulst B, Neale MC, Kendler KS. The heritability of alcohol use disorders: a meta-

561 analysis of twin and adoption studies. *Psychological medicine*. 2015;45(5):1061-72. Epub

562 2014/08/30. doi: 10.1017/S0033291714002165. PubMed PMID: 25171596; PubMed

563 Central PMCID: PMCPMC4345133.

564 8. Buck KJ, Metten P, Belknap JK, Crabbe JC. Quantitative trait loci involved in genetic

565 predisposition to acute alcohol withdrawal in mice. *The Journal of neuroscience : the*

566 *official journal of the Society for Neuroscience*. 1997;17(10):3946-55. Epub 1997/05/15.

567 PubMed PMID: 9133412.

568 9. Saba LM, Bennett B, Hoffman PL, Barcomb K, Ishii T, Kechris K, et al. A systems

569 genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic

570 transmission. *Neuropharmacology*. 2011;60(7-8):1269-80. Epub 2010/12/28. doi:

571 10.1016/j.neuropharm.2010.12.019. PubMed PMID: 21185315; PubMed Central PMCID:

572 PMCPMC3079014.

573 10. Putman AH, Wolen AR, Harenza JL, Yordanova RK, Webb BT, Chesler EJ, et al.

574 Identification of quantitative trait loci and candidate genes for an anxiolytic-like response

575 to ethanol in BXD recombinant inbred strains. *Genes, brain, and behavior*. 2016;15(4):367-
576 81. Epub 2016/03/08. doi: 10.1111/gbb.12289. PubMed PMID: 26948279; PubMed
577 Central PMCID: PMCPMC4852167.

578 11. Sun Y, Zhang Y, Wang F, Sun Y, Shi J, Lu L. From genetic studies to precision
579 medicine in alcohol dependence. *Behavioural pharmacology*. 2016;27(2-3 Spec Issue):87-
580 99. Epub 2015/11/19. doi: 10.1097/FBP.0000000000000202. PubMed PMID: 26580132.

581 12. Gelernter J, Kranzler HR, Sherva R, Almasy L, Koesterer R, Smith AH, et al. Genome-
582 wide association study of alcohol dependence: significant findings in African- and
583 European-Americans including novel risk loci. *Molecular psychiatry*. 2014;19(1):41-9.
584 Epub 2013/10/30. doi: 10.1038/mp.2013.145. PubMed PMID: 24166409; PubMed Central
585 PMCID: PMCPMC4165335.

586 13. Hart AB, Kranzler HR. Alcohol Dependence Genetics: Lessons Learned From
587 Genome-Wide Association Studies (GWAS) and Post-GWAS Analyses. *Alcoholism, clinical
588 and experimental research*. 2015;39(8):1312-27. Epub 2015/06/26. doi:
589 10.1111/acer.12792. PubMed PMID: 26110981; PubMed Central PMCID:
590 PMCPMC4515198.

591 14. Schumann G, Liu C, O'Reilly P, Gao H, Song P, Xu B, et al. KLB is associated with
592 alcohol drinking, and its gene product beta-Klotho is necessary for FGF21 regulation of
593 alcohol preference. *Proceedings of the National Academy of Sciences of the United States of
594 America*. 2016;113(50):14372-7. Epub 2016/12/03. doi: 10.1073/pnas.1611243113.
595 PubMed PMID: 27911795; PubMed Central PMCID: PMCPMC5167198.

596 15. Clarke TK, Adams MJ, Davies G, Howard DM, Hall LS, Padmanabhan S, et al. Genome-
597 wide association study of alcohol consumption and genetic overlap with other health-
598 related traits in UK Biobank (N=112 117). *Molecular psychiatry*. 2017;22(10):1376-84.
599 Epub 2017/09/25. doi: 10.1038/mp.2017.153. PubMed PMID: 28937693; PubMed Central
600 PMCID: PMCPMC5622124.

601 16. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding
602 the missing heritability of complex diseases. *Nature*. 2009;461(7265):747-53. Epub
603 2009/10/09. doi: 10.1038/nature08494. PubMed PMID: 19812666; PubMed Central
604 PMCID: PMCPMC2831613.

605 17. Mamdani M, Williamson V, McMichael GO, Blevins T, Aliev F, Adkins A, et al.
606 Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the
607 Nucleus Accumbens of Subjects with Alcohol Dependence. *PloS one*. 2015;10(9):e0137671.
608 Epub 2015/09/19. doi: 10.1371/journal.pone.0137671. PubMed PMID: 26381263;
609 PubMed Central PMCID: PMCPMC4575063.

610 18. Farris SP, Arasappan D, Hunnicke-Smith S, Harris RA, Mayfield RD. Transcriptome
611 organization for chronic alcohol abuse in human brain. *Molecular psychiatry*.
612 2015;20(11):1438-47. Epub 2014/12/03. doi: 10.1038/mp.2014.159. PubMed PMID:
613 25450227; PubMed Central PMCID: PMCPMC4452464.

614 19. Zhong H, Yang X, Kaplan LM, Molony C, Schadt EE. Integrating pathway analysis and
615 genetics of gene expression for genome-wide association studies. *American Journal of
616 Human Genetics*. 2010;86(4):581-91. doi: 10.1016/j.ajhg.2010.02.020. PubMed PMID:
617 20346437; PubMed Central PMCID: PMCPMC2850442.

618 20. Wang L, Jia P, Wolfinger RD, Chen X, Zhao Z. Gene set analysis of genome-wide
619 association studies: methodological issues and perspectives. *Genomics*. 2011;98(1):1-8.

620 Epub 2011/05/14. doi: 10.1016/j.ygeno.2011.04.006. PubMed PMID: 21565265; PubMed
621 Central PMCID: PMCPMC3852939.

622 21. Farris SP, Miles MF. Fyn-dependent gene networks in acute ethanol sensitivity. *PLoS
623 one*. 2013;8(11):e82435. Epub 2013/12/07. doi: 10.1371/journal.pone.0082435. PubMed
624 PMID: 24312422; PubMed Central PMCID: PMCPMC3843713.

625 22. Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Sikela JM, et al. Ethanol-
626 responsive brain region expression networks: implications for behavioral responses to
627 acute ethanol in DBA/2J versus C57BL/6J mice. *The Journal of neuroscience : the official
628 journal of the Society for Neuroscience*. 2005;25(9):2255-66. Epub 2005/03/05. doi:
629 10.1523/JNEUROSCI.4372-04.2005. PubMed PMID: 15745951.

630 23. Smith ML, Lopez MF, Archer KJ, Wolen AR, Becker HC, Miles MF. Time-Course
631 Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol
632 and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.
633 *PLoS one*. 2016;11(1):e0146257. Epub 2016/01/06. doi: 10.1371/journal.pone.0146257.
634 PubMed PMID: 26730594; PubMed Central PMCID: PMCPMC4701666.

635 24. Wolen AR, Phillips CA, Langston MA, Putman AH, Vorster PJ, Bruce NA, et al. Genetic
636 dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and
637 mechanistic implications. *PLoS one*. 2012;7(4):e33575. doi:
638 10.1371/journal.pone.0033575. PubMed PMID: 22511924; PubMed Central PMCID:
639 PMCPMC3325236.

640 25. Crabbe JC. Use of animal models of alcohol-related behavior. *Handbook of clinical
641 neurology*. 2014;125:71-86. Epub 2014/10/14. doi: 10.1016/B978-0-444-62619-6.00005-
642 7. PubMed PMID: 25307569.

643 26. Trim RS, Schuckit MA, Smith TL. The relationships of the level of response to alcohol
644 and additional characteristics to alcohol use disorders across adulthood: a discrete-time
645 survival analysis. *Alcoholism, clinical and experimental research*. 2009;33(9):1562-70.
646 Epub 2009/06/03. doi: 10.1111/j.1530-0277.2009.00984.x. PubMed PMID: 19485971;
647 PubMed Central PMCID: PMCPMC2947374.

648 27. de Wit H, Phillips TJ. Do initial responses to drugs predict future use or abuse?
649 *Neuroscience and biobehavioral reviews*. 2012;36(6):1565-76. Epub 2012/05/01. doi:
650 10.1016/j.neubiorev.2012.04.005. PubMed PMID: 22542906; PubMed Central PMCID:
651 PMCPMC3372699.

652 28. Network, Pathway Analysis Subgroup of Psychiatric Genomics C. Psychiatric
653 genome-wide association study analyses implicate neuronal, immune and histone
654 pathways. *Nature neuroscience*. 2015;18(2):199-209. Epub 2015/01/20. doi:
655 10.1038/nn.3922. PubMed PMID: 25599223; PubMed Central PMCID: PMCPMC4378867.

656 29. Adkins AE, Hack LM, Bigdely TB, Williamson VS, McMichael GO, Mamdani M, et al.
657 Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering
658 Ethanol-Response Behaviors in Model Organisms. *Alcoholism, clinical and experimental
659 research*. 2017;41(5):911-28. Epub 2017/02/23. doi: 10.1111/acer.13362. PubMed PMID:
660 28226201; PubMed Central PMCID: PMCPMC5404949.

661 30. Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for
662 genome-wide association studies in protein-protein interaction networks. *Bioinformatics
663 (Oxford, England)*. 2011;27(1):95-102. Epub 2010/11/04. doi:
664 10.1093/bioinformatics/btq615. PubMed PMID: 21045073; PubMed Central PMCID:
665 PMCPMC3008643.

666 31. Han S, Yang BZ, Kranzler HR, Liu X, Zhao H, Farrer LA, et al. Integrating GWASs and
667 human protein interaction networks identifies a gene subnetwork underlying alcohol
668 dependence. *American Journal of Human Genetics*. 2013;93(6):1027-34. Epub
669 2013/11/26. doi: 10.1016/j.ajhg.2013.10.021. PubMed PMID: 24268660; PubMed Central
670 PMCID: PMCPMC3853414.

671 32. Wang Q, Yu H, Zhao Z, Jia P. EW_dmGWAS: edge-weighted dense module search for
672 genome-wide association studies and gene expression profiles. *Bioinformatics (Oxford, England)*.
673 2015;31(15):2591-4. Epub 2015/03/26. doi: 10.1093/bioinformatics/btv150.
674 PubMed PMID: 25805723; PubMed Central PMCID: PMCPMC4514922.

675 33. Zhang L, Wang L, Ravindranathan A, Miles MF. A new algorithm for analysis of
676 oligonucleotide arrays: application to expression profiling in mouse brain regions. *Journal of molecular biology*.
677 2002;317(2):225-35. Epub 2002/03/21. doi: 10.1006/jmbi.2001.5350. PubMed PMID: 11902839.

678 34. Thornton T, McPeek MS. Case-control association testing with related individuals: a
679 more powerful quasi-likelihood score test. *American Journal of Human Genetics*.
680 2007;81(2):321-37. Epub 2007/08/02. doi: 10.1086/519497. PubMed PMID: 17668381;
681 PubMed Central PMCID: PMCPMC1950805.

682 35. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate
683 genotype imputation in genome-wide association studies through pre-phasing. *Nature genetics*.
684 2012;44(8):955-9. Epub 2012/07/24. doi: 10.1038/ng.2354. PubMed PMID:
685 22820512; PubMed Central PMCID: PMCPMC3696580.

686 36. Li MX, Sham PC, Cherny SS, Song YQ. A knowledge-based weighting framework to
687 boost the power of genome-wide association studies. *PLoS one*. 2010;5(12):e14480. Epub
688 2011/01/11. doi: 10.1371/journal.pone.0014480. PubMed PMID: 21217833; PubMed
689 Central PMCID: PMCPMC3013112.

690 37. Edwards AC, Aliev F, Wolen AR, Salvatore JE, Gardner CO, McMahon G, et al. Genomic
691 influences on alcohol problems in a population-based sample of young adults. *Addiction (Abingdon, England)*.
692 2015;110(3):461-70. Epub 2014/12/03. doi: 10.1111/add.12822.
693 PubMed PMID: 25439982; PubMed Central PMCID: PMCPMC4329073.

694 38. Wu J, Vallenius T, Ovaska K, Westermark J, Makela TP, Hautaniemi S. Integrated
695 network analysis platform for protein-protein interactions. *Nat Methods*. 2009;6(1):75-7.
696 doi: 10.1038/nmeth.1282. PubMed PMID: 19079255.

697 39. Cowley MJ, Pinesi M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, et al. PINA
698 v2.0: mining interactome modules. *Nucleic acids research*. 2012;40(Database issue):D862-
699 5. Epub 2011/11/10. doi: 10.1093/nar/gkr967. PubMed PMID: 22067443; PubMed Central
700 PMCID: PMCPMC3244997.

701 40. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot.
702 Methods in molecular biology (Clifton, NJ). 2007;406:89-112. Epub 2008/02/22. PubMed
703 PMID: 18287689.

704 41. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. *Lancet Psychiatry*.
705 2016;3(8):760-73. doi: 10.1016/S2215-0366(16)00104-8. PubMed PMID:
706 27475769.

707 42. Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic
708 to Omnipresent. *Cell*. 2017;169(7):1177-86. Epub 2017/06/18. doi:
709 10.1016/j.cell.2017.05.038. PubMed PMID: 28622505; PubMed Central PMCID:
710 PMCPMC536862.

712 43. Lu JY, Schneider RJ. Tissue distribution of AU-rich mRNA-binding proteins involved
713 in regulation of mRNA decay. *J Biol Chem.* 2004;279(13):12974-9. Epub 2004/01/09. doi:
714 10.1074/jbc.M310433200. PubMed PMID: 14711832.

715 44. Tiruchinapalli DM, Caron MG, Keene JD. Activity-dependent expression of ELAV/Hu
716 RBPs and neuronal mRNAs in seizure and cocaine brain. *J Neurochem.* 2008;107(6):1529-
717 43. Epub 2008/11/19. doi: 10.1111/j.1471-4159.2008.05718.x. PubMed PMID: 19014379.

718 45. Wilke N, Sganga M, Barhite S, Miles MF. Effects of alcohol on gene expression in
719 neural cells. *Exs.* 1994;71:49-59. Epub 1994/01/01. PubMed PMID: 8032172.

720 46. Seo D, Sinha R. Neuroplasticity and Predictors of Alcohol Recovery. *Alcohol research*
721 : current reviews. 2015;37(1):143-52. Epub 2015/08/11. PubMed PMID: 26259094;
722 PubMed Central PMCID: PMCPMC4476600.

723 47. Kyzar EJ, Pandey SC. Molecular mechanisms of synaptic remodeling in alcoholism.
724 *Neuroscience letters.* 2015;601:11-9. Epub 2015/01/28. doi:
725 10.1016/j.neulet.2015.01.051. PubMed PMID: 25623036; PubMed Central PMCID:
726 PMCPMC4506731.

727 48. Hu HT, Hsueh YP. Calcium influx and postsynaptic proteins coordinate the dendritic
728 filopodium-spine transition. *Developmental neurobiology.* 2014;74(10):1011-29. Epub
729 2014/04/23. doi: 10.1002/dneu.22181. PubMed PMID: 24753440.

730 49. Stamatakou E, Hoyos-Flight M, Salinas PC. Wnt Signalling Promotes Actin Dynamics
731 during Axon Remodelling through the Actin-Binding Protein Eps8. *PloS one.*
732 2015;10(8):e0134976. Epub 2015/08/08. doi: 10.1371/journal.pone.0134976. PubMed
733 PMID: 26252776; PubMed Central PMCID: PMCPMC4529215.

734 50. Chen CH, He CW, Liao CP, Pan CL. A Wnt-planar polarity pathway instructs neurite
735 branching by restricting F-actin assembly through endosomal signaling. *PLoS genetics.*
736 2017;13(4):e1006720. Epub 2017/04/07. doi: 10.1371/journal.pgen.1006720. PubMed
737 PMID: 28384160; PubMed Central PMCID: PMCPMC5398721.

738 51. Bjork K, Rimondini R, Hansson AC, Terasmaa A, Hytytia P, Heilig M, et al. Modulation
739 of voluntary ethanol consumption by beta-arrestin 2. *FASEB journal : official publication of*
740 *the Federation of American Societies for Experimental Biology.* 2008;22(7):2552-60. Epub
741 2008/03/28. doi: 10.1096/fj.07-102442. PubMed PMID: 18367649.

742 52. Heath AC, Madden PA, Bucholz KK, Dinwiddie SH, Slutske WS, Bierut LJ, et al.
743 Genetic differences in alcohol sensitivity and the inheritance of alcoholism risk.
744 *Psychological medicine.* 1999;29(5):1069-81. Epub 1999/11/27. PubMed PMID:
745 10576299.

746 53. Morean ME, Corbin WR. Subjective response to alcohol: a critical review of the
747 literature. *Alcoholism, clinical and experimental research.* 2010;34(3):385-95. Epub
748 2009/12/24. doi: 10.1111/j.1530-0277.2009.01103.x. PubMed PMID: 20028359.

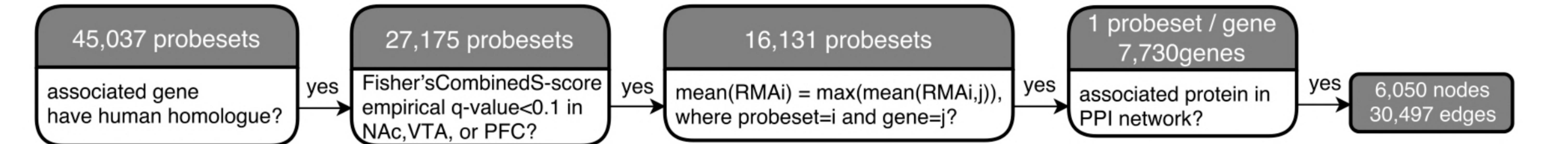
749 54. Ray LA, Mackillop J, Monti PM. Subjective responses to alcohol consumption as
750 endophenotypes: advancing behavioral genetics in etiological and treatment models of
751 alcoholism. *Substance use & misuse.* 2010;45(11):1742-65. Epub 2010/07/02. doi:
752 10.3109/10826084.2010.482427. PubMed PMID: 20590398; PubMed Central PMCID:
753 PMCPMC4703313.

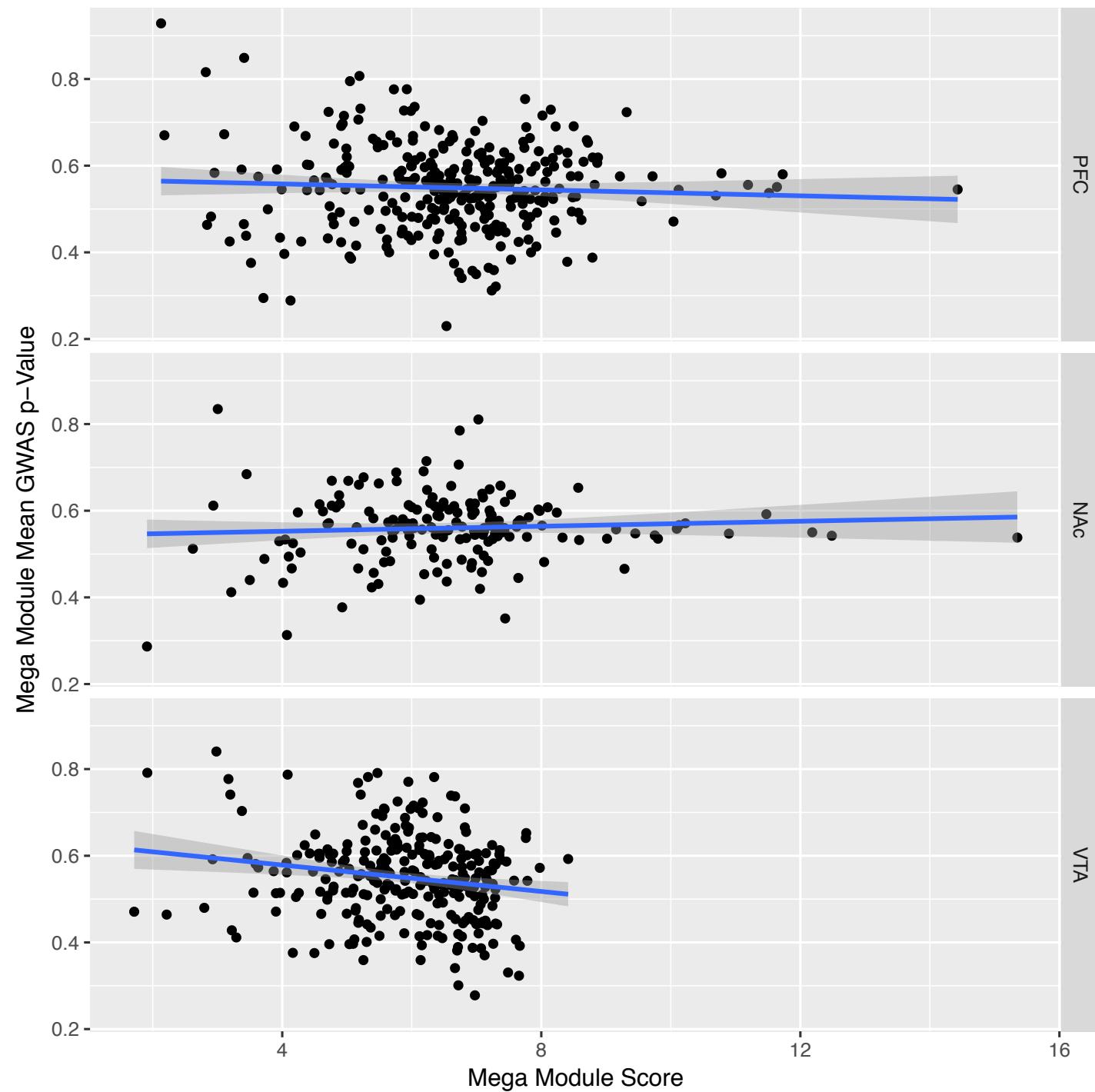
754

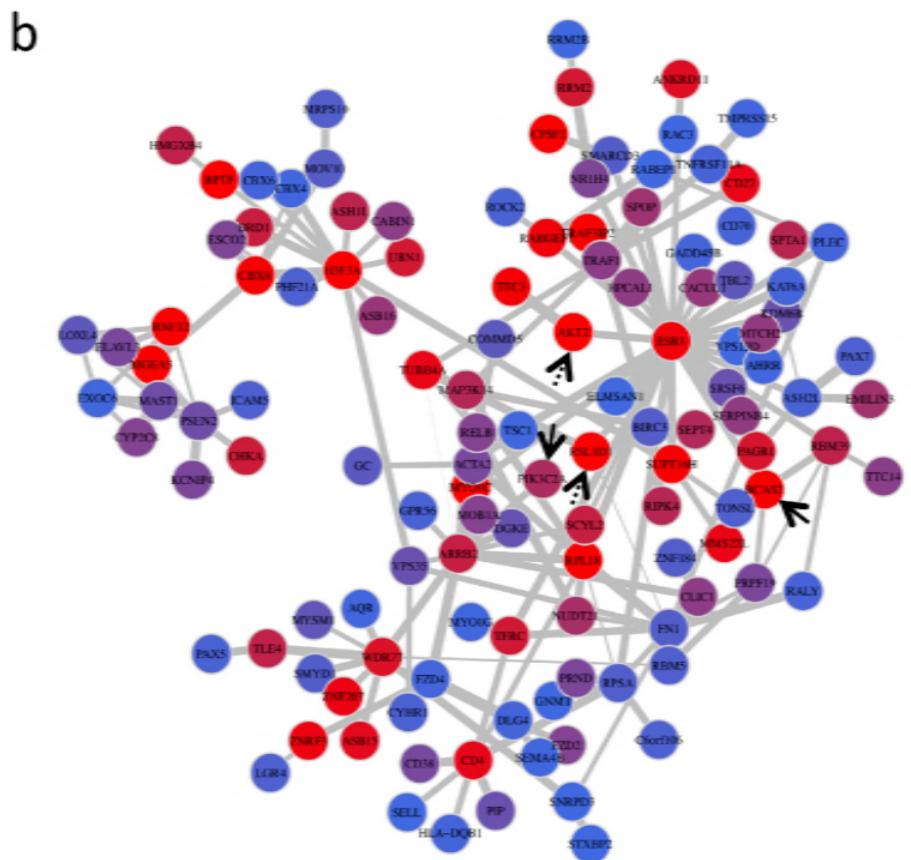
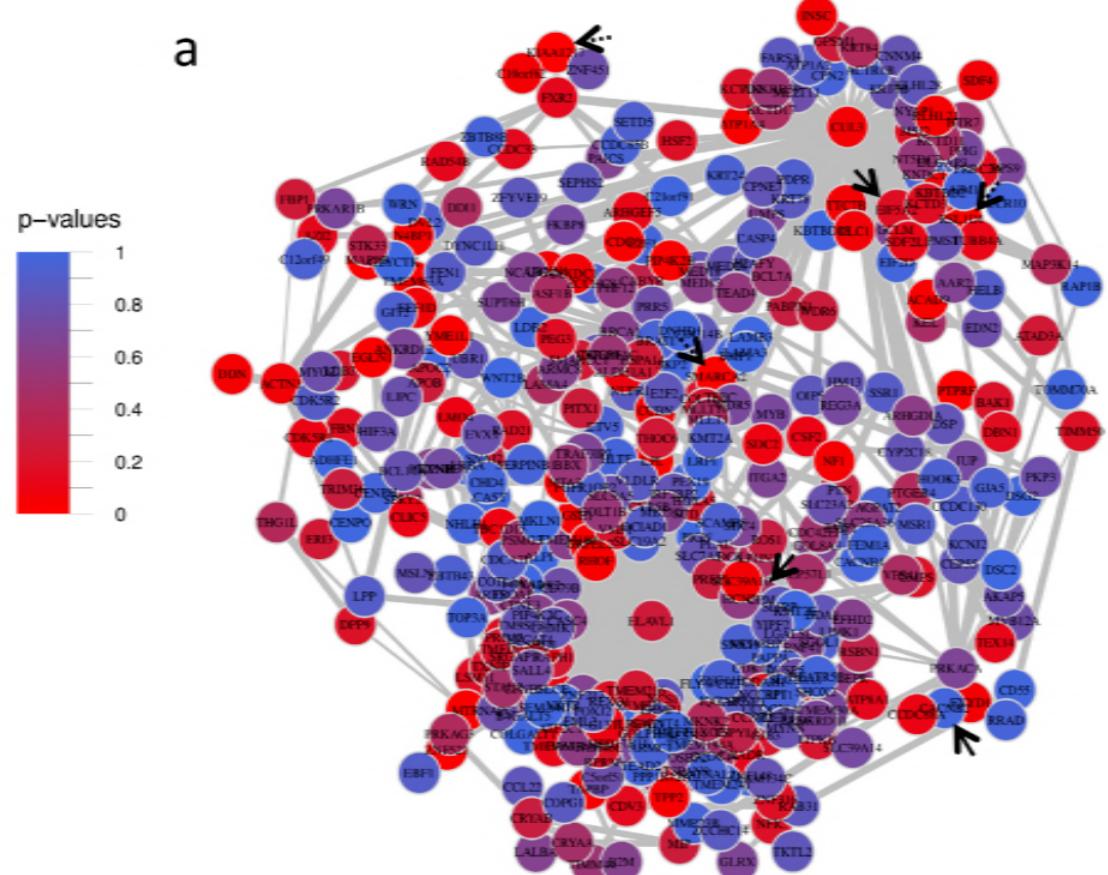
756 **Supporting information**

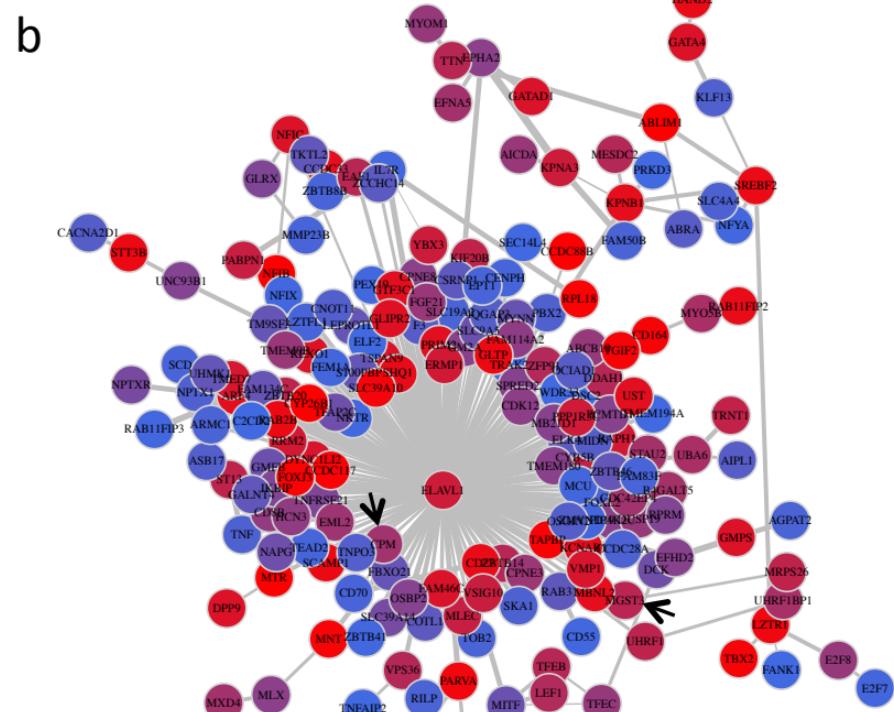
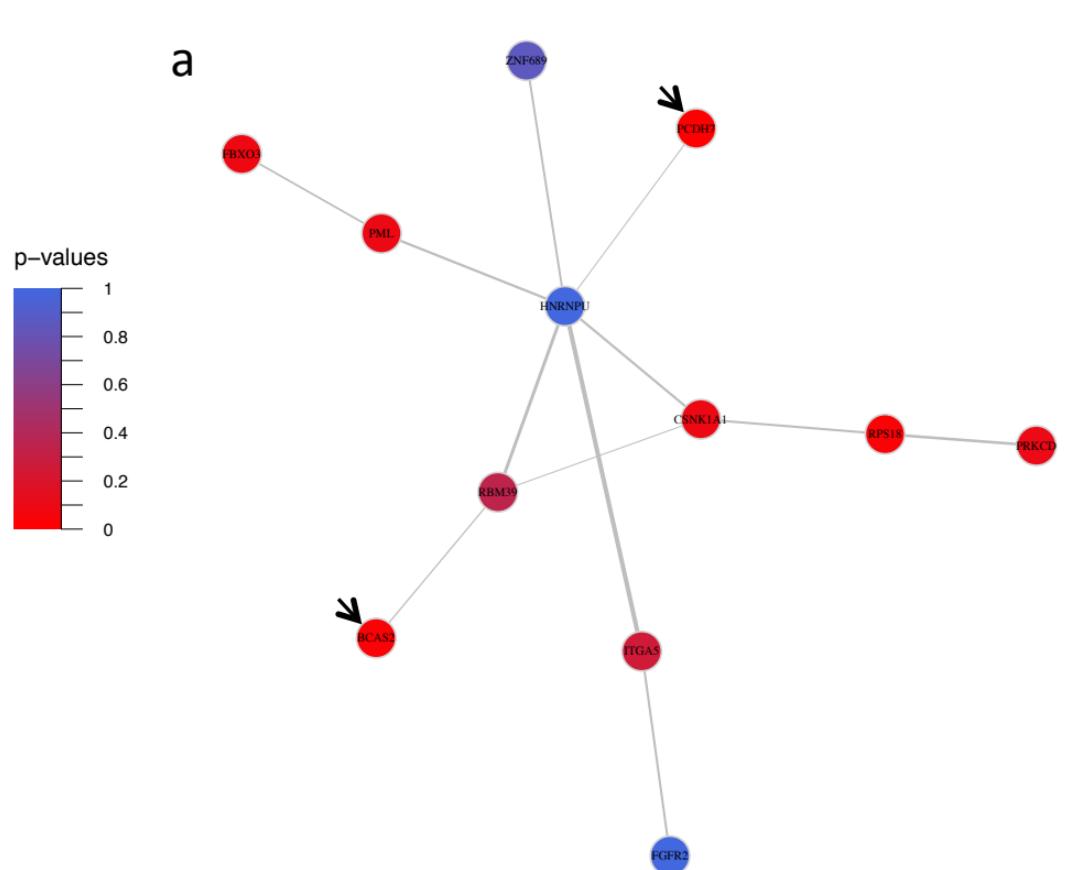
757 **S1 Fig. Analytical Pipeline of Steps Following EW-dmGWAS.** Empirical p-values were
758 calculated from standardized module scores based on a Z-distribution. The original EW-
759 dmGWAS module score, permutation, and score standardization algorithms were used to
760 calculate the respective Mega Modules parameters. Modules were considered to have
761 >80% overlap if >80% of the genes in the smaller module was contained in the larger
762 module. False Discovery Rates were calculated based on the Benjamini-Hochberg
763 algorithm, using the “stats” package in R. Intramodular connectivity was defined as the
764 number of edges (i.e. connections) attached to that node (i.e. gene). Eigen-Centrality was
765 calculated using the “igraph” package in R.

766 **S1 Table. Brain Region-Specific S-score Values.** One table per brain region, containing
767 each of the following values: RMA values and S-scores from the maximally expressed
768 probeset per gene, for each BXD strain; the associated probeset IDs, human gene symbols,
769 and mouse gene symbols; and the Fisher's combined False Discovery Rate (q-value) for
770 each probeset.

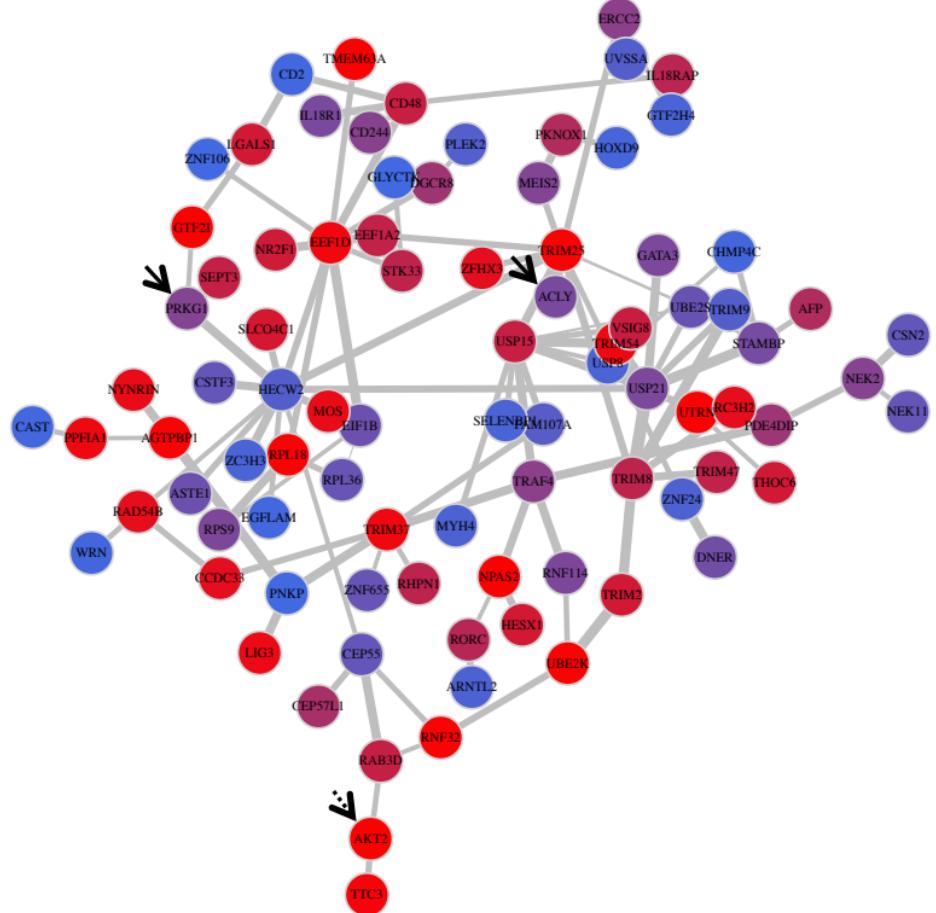
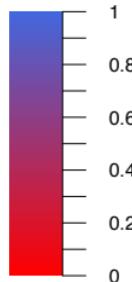

771 **S2 Table. Mega Module Characteristics.** One table per brain region, containing each of
772 the following characteristics, for all significant Mega Modules: name; constituent genes;
773 ALPSAC and IASPSAD p-values for each gene; Mega Module score (S_n), p-value (S_n _p), and
774 False Discovery Rate (S_n _qFDR); and intramodular eigencentrality and connectivity.


775 Significance values $< 10^{-16}$ are rounded to 0.



776 **S3 Table. Mega Module Gene Ontology Enrichment.** One table for each ALSPAC-
777 overrepresented Mega Module, containing ToppFun output for gene ontology enrichment
778 groups with $p < 0.01$ and minimum group size of 3 genes and maximum size of 1,000 genes,



36

779 for the following categories: Biological Process, Cellular Component, Molecular Function,
780 Human Phenotype, Mouse Phenotype, and Pathways.

p-values

