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ABSTRACT Statistical analysis plays a significant role in both protein sequences and structures, expanding in recent years from
the studies of co-evolution guided single-site mutations to protein folding in silico. Here we describe a computational tool, termed
Sibe, with a particular focus on protein sequence analysis, folding and design. Since Sibe has various easy-interface modules,
expressive architecture and extensible codes, it is powerful in statistically analyzing sequence data and building energetic
potentials in boosting both protein folding and design. In this study, Sibe is used to capture positionally conserved couplings
between pairwise amino acids and help rational protein design, in which the pairwise couplings are filtered according to the
relative entropy computed from the positional conservations and grouped into several ‘blocks’. A human β2-adrenergic receptor
(β2AR) was used to demonstrated that those ‘blocks’ could contribute rational design at functional residues. In addition, Sibe
provides protein folding modules based on both the positionally conserved couplings and well-established statistical potentials.
Sibe provides various easy to use command-line interfaces in C++ and/or Python. Sibe was developed for compatibility with the
‘big data’ era, and it primarily focuses on protein sequence analysis, in silico folding and design, but it is also applicable to extend
for other modeling and predictions of experimental measurements.
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A protein’s biological function and structure are evolved properties. Co-evolution of amino acids plays a fundamental role in
protein evolutionary theory (1). Co-evolution refers to the coordinated changes that occur in pairs of biomolecules or residues to
maintain or refine functional interactions between those pairs. To better understand what co-evolutionary information encoded
in protein sequences is necessary for protein folding or design, several statistical approaches have been developed in the past
decades (2–9). For example, the remarkable results have demonstrated that statistical coupling analysis (SCA) can provide
sparsely coupled information for protein design (10), while direct coupling analysis (DCA) is applied to predict residue pair
contacts from evolutionary residue-residue couplings (8, 11). Recent studies have shown that existing statistical methods are
powerful enough to capture couplings among amino acids for designing foldable proteins (10) and predicting residue contacts
(8, 11).

Our ability to reliably detect co-evolutionary information can benefit from the development of additional systematic and
well-packed tools that can efficiently and rapidly extract evolutionary information from protein sequences. In computational
biology, statistical approaches have been applied to study effects of mutations (variations) on phenotypes, but it is expensive
and challenging to design functional assays (12) and create a ‘new’ protein (such as several WW-domain proteins have been
created by SCA method and experimentally demonstrated (10)). Protein design has been a long-standing challenge to test the
computational approaches in protein sequence analysis, folding and structure prediction, and there have been a number of
computational protein design methods (13–19), e.g. creating idealized proteins composed of canonical structural elements
(20), the design of coiled coils, repeat proteins, TIM barrels, and Rossman folds (13–18). Moreover, computational results on
sequences provided by statistical analysis methods contribute to bridging the gap between protein sequence and design, which
may be able to be reduced or filled if the approaches can contribute to protein stability and foldability. Until recently, most of
the statistical methods are focused on evolutionary sequence conservation analysis and predictions of residue-residue contacts,
which usually are used as constraints for protein structure prediction (11, 21), from the sequences.

Here we investigate whether and how positionally conserved couplings inferred from sufficiently large and diverse multiple
sequence alignment (MSA) can be used for specifying a protein’s structure and function, and even to build a ‘better’ version of
the protein. We describe the development of a general framework Sibe that meet these challenges. Sibe provides an easy and
rapid way for protein design from analytical and computational results on protein sequences. Moreover, we attempt to apply
the positionally conserved couplings estimated by co-evolutionary statistics from a protein MSA to define the sequence rules
for computationally creating artificial proteins and in silico predicting folding pathways & tertiary structures. Two instructive
examples are used to show the capabilities of Sibe on protein sequence analysis, design and folding. In the first example, we
apply Sibe to statistically analyze an MSA of a eukaryotic signal transduction protein, a G-protein coupled receptor (GPCR)
(22), and its design. We use Sibe to build a mutated GPCR protein based on co-evolutionary information inferred from the
MSA and compare the functional residues to those in ref. (22). Since the expressive architecture of Sibe, a variety of modules
are available to promote its use in both protein engineering and design. In the second example, Sibe is applied to the folding
simulation of a group of three proteins based on statistical potentials and the positionally conserved couplings.

SIBE
Sibe is an analytical and computational framework with functional modules that provides powerful tools for biological science
based on modern advances in the field, such as sequence data analysis, in silico protein folding and design. All modules in
Sibe are implemented in the C++ programming language. It employs an extensible application programming interface (API)
in both C++ and Python. Since the introduction of statistical analysis on proteins to the biophysics community, algorithmic
improvements for inferring couplings between pairwise residues has been the focus of intense study. Although the practical
implementation of these algorithms has presented several historical packages and each of them was strongly tied to the best
practice in basic research on protein sequence analysis and folding, software rewrites were common due to the fast-moving
research.

Sibe is orientated for extracting meaningful information hidden behind ‘big data’ based on statistical analysis (10, 12) and
machine learning (23). With the help of statistical analysis methods, Sibe can infer co-evolutionary information encoded in
protein amino acids sequences for folding and design. Through two instructive applications, as illustrated in Fig. 1, we show the
capabilities of Sibe. In the first, we apply Sibe to analyze protein sequences for study the relationship between sequence and its
thermostability and the analysis could contribute to protein rational design. In the application, Sibe builds a statistical potential
of positionally conserved couplings (PCCs) among residues that are accelerated by graphics processing unit (GPU) computing.
Due to rapid advances in protein sequence analysis, a variety of APIs is available to researchers. In the second application, we
instruct how Sibe implement protein folding using PCCs as drivers and biases that are predicted by machine learning.

Sibe incorporates statistical potentials derived from protein sequences (energy-like co-evolution) and structural (energetic
potentials (24)) for protein design and folding, respectively. All of the calculations described in this work were carried out
within the Sibe software suite and followed the same basic method. In computational protein design, within Sibe large-scale
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Sequence statistics for folding & design

protein sequences were generated by dead-end elimination (DEE) algorithm (25) according to the statistical (energy-like)
potential inferred from MSA. Mutants occur in a wild type protein sequence with the guidance of sequence energy-like potential
and are accepted by a Metropolis criterion. While the inferences of residue-contacts are also estimated from the MSA as a
constraint to aid Sibe in protein folding and structure prediction. Combining with predicted constraints of torsion angles (φ and
ψ) by a convolution neural network model (26), we performed iterative folding predictions using a Markov Chain Monte Carlo
protocol (27) on a set of three representative proteins.

FROM SEQUENCE TO DESIGN
Written in efficient C++ code, Sibe allows rapid analysis of large protein sequences and captures the evolutionary information for
protein folding, design and structure prediction (as illustrated in Fig. 1). In this section, we will describe how statistical analysis
in Sibe (as shown in three steps of right Fig. 1) works for a human β2-adrenergic receptor (β2AR) protein, which is critical
eukaryotic signal transduction protein that communicates across the lipid bilayer. The human β2AR protein recognizes and
binds diffusible ligands (22). Understanding its sequence evolution can provide insight into protein’s functional activities, and
help in the design of new drugs and better therapeutics. Here we apply Sibe to study the human β2AR protein and demonstrate
that Sibe can capture significant positionally conserved couplings and important structural features that have been linked to
ligand binding activities.

Broadly, the procedure for launching Sibe is to define a set of protein sequences and then align them for estimating
frequencies of variations in the sequence alignment. Before starting the statistical analysis, we must obtain the sequences
of a given protein we are interested in, and then conduct analysis on the multiple sequence alignment (MSA) for capturing
the co-evolution. Generally, the sequences are the output of searching the query against the UniRef90 database (28). In this
instructive example, we show in details from sequence alignment to positionally conserved couplings, then to protein design
and folding.

Statistical analysis on sequences
In this study, Sibe focuses on the co-evolution at the residue level including: (1) positionally conserved couplings; and (2)
statistical potential derived from site bias of residue and pairwise couplings of residues. As illustrated in Fig. 2, we describe
sequence statistics on anMSA. Given anMSA of N sequences by L positions, denoted asM = (Mk

i ), we can obtain an amino acid
frequency at an individual position is fi(A) = 1

N

∑
k δA,Mk

i
, where δ = 1 if sequence k has amino acid A at position i, otherwise

δ = 0. Similarly, a joint frequency of amino acid between a pair of positions is formulated as fi j(A, B) = 1
N

∑
k δA,Mk

i
δB,Mk

j
.

Here, the example of the human β2AR protein is used to show how Sibe can capture the couplings among residues and an
energy-like potential derived from site bias of residue and pairwise couplings of residues. Firstly, we searched the sequence of
the β2AR protein against the UniRef90 database (28) and obtained more than 270,000 sequences. Then we launch Sibe to
analyze the MSA of the human β2AR protein, and we also demonstrate how the statistical energetic potentials derived from the
MSA can be used as evolutionary constraints for protein design.

To capture couplings between pairs of residues, we employ the Kullback-Leibler relative entropy (29) to measure how
different the observed amino acid A at position i would be if A randomly occurred with an expected probability distribution (4).
The definition of the relative entropy is presented as follows,

Di(A) = fi(A) ln
(

fi(A)
p(A)

)
+ (1 − fi(A)) ln

(
1 − fi(A)
1 − p(A)

)
, (1)

where p(·) is the background probability.
As shown in ref. (10), the information calculated from the relative entropy of the MSA can remarkably reduce the potential

complexity of the protein-design problem. As illustrated in Fig. 3, an example of calculation of the Kullback-Leibler relative
entropy from the MSA of the human β2AR protein. Fig. 3(B) shows a matrix representation of the relative entropy values for
twenty different site-specific perturbations calculated from the MSA of the human β2AR protein.

To capture partial interactions, a global statistical model (DCA-based (5, 6, 8, 11)) is used to infer direct interaction
information between pairwise residues. Here, we describe within Sibe how to capture the direct couplings from the given MSA
using the model and create an energy-like potential for designing a variant of the human β2AR protein. Given the MSA, we
can easily compute the single site frequency fi(Ai) and joint frequency fi j(Ai , Aj). To maximize the entropy of the observed
probabilities, we can calculate the effective pair couplings and single site bias to meet the maximal agreement between the
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distribution of expected frequencies and the probability model of actually observed frequencies.
Pi(Ai) =

∑
Ak |k=i

P(A1, A2, · · · , AL) = fi(Ai)

Pi j(Ai , Aj) =
∑

Ak |k=i,j
P(A1, A2, · · · , AL) = fi j(Ai , Aj)

(2)

Maximizing the entropy of the probability model, we can get the statistical model as follows,

P(A1, A2, · · · , AL) =
1
Z

exp

{∑
i< j

ei j(Ai , Aj) +
∑
i

hi(Ai)

}
, (3)

where Z is a normalization constant, ei j(·, ·) is a pairwise coupling, and hi(·) is a single site bias.
Recently, the DCA-based methods have been reported to be correlated with protein stability and can help design targeted

single-point mutation (12, 30, 31). However, since it is difficult to completely disentangle the direct and indirect couplings, they
are not always reliable to guide rational protein design. Here, we suggested that positionally conserved couplings between
pairwise residues preserve much co-evolutionary information resulting in higher reliability in rational protein design. Rooting
in Eqs. (1) and (3), Sibe captures the positionally conserved couplings among residues from the MSA, which contribute to
evolutionary constraints for both protein folding and design. In the following paragraphs, we demonstrate that the statistically
inferred information of basic evolutionary principles, such as positional conservations and coupled-evolution, can be used to
predict protein structures and rationally design a diverse set of ‘better’ proteins.

Protein sequence design
A great testing ground for the sequence to structure paradigm is protein design (32). However, it is challenging to computationally
assay for function in such a large sequence space (12) (e.g. a protein of 25 amino acids has a space of 2025). How can we
explore the large sequence space to capture key mutations that relate to functional roles of a protein? How can evolutionary
information conserved and coupled in the sequences contribute to protein evolution (e.g. kinetic and thermodynamic stability
(33)) and lead us to design proteins of novel functional capabilities?

To address the questions, we applied Sibe to facilitate the design of proteins and attempt to uncover the biophysical
rules that govern protein folding. In this section, we will use the human β2AR protein (22) to illustrate how Sibe functions
for protein design in silico from sequence analysis. In Fig. 4, we provide an overview of the methodology for employing
evolutionary couplings as statistical energy-like potential (estimated from an MSA of a protein family by regularized maximum
pseudo-likelihood (34)) as constraints for underlying protein sequence design (see also Supplementary Methods).

Firstly, we assessed the energy is found significant correlations with transition temperatures as measured by differential
scanning calorimetry experiments for extant and ancestral Trx proteins in study (35), as shown in Fig. 5(A). We searched each
given protein sequence as listed in the ref. (35) against the UniRef90 database (28) by HMMER (36) to prepare an MSA for
its protein family. The obtained MSA of the given sequence was used as input to create the site bias and coupling matrices.
Accordingly, we calculated energies of site bias and couplings for the residues on the sequences. To enhance the ability of
the method in distinguishing proteins, we defined an energy equation E = Es + α · Ec , where Es, Ec and α are site bias
energy (contribution of a single amino acid to the whole sequence depending on the statistical potential), coupling energy
(contribution of pairwise amino acids) and a weight factor, respectively. According to the stability analysis on the thioredoxin
family (15 proteins) in the ref. (35), we maximized the correlation between the total energies E and the transition temperatures
by optimizing the weight factor (α). Based on the calculation, we got a maximum correlation factor about -0.74 when the
optimized α equals -0.43 as shown in Fig. 5(A).

Further, to demonstrate the ability of the derived potential, we applied it to distinguish the mesophilic proteins from
thermophilic ones in the same family (see supplementary Table S1). Likewise, we got MSAs of 136 different protein families
including mesophilic, thermophilic, moderately thermophilic and extremely thermophilic, and then we launched Sibe to infer
the site bias and couplings matrices for the test proteins from the different 136 families. The calculated E can distinguish the
proteins in the same family and it succeeded on about 83.3% families of all the protein families. As illustrated in Fig. 5(B),
red circle and blue cross indicate the energies of thermophilic and mesophilic proteins calculated from the potential in Sibe,
respectively. The blue circles in Fig. 5(C) show the differences between the energies E of the mesophilic and thermophilic
proteins in the same families. As demonstrated on the two experimental data sets, Sibe is able to distinguish mesophilic proteins
from thermophilic ones depending on the sequence energy potential.

We next investigated whether Sibe could be used in protein design using the evolutionary information inherent in an
MSA. We conducted a computational design study of the human β2AR protein with the goal of capturing the co-evolutionary
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information encoding in the natural evolutionary process for designing a new stable variant, which is likely to be functional (to
be validated in vitro). Accordingly, we calculated the changes in energy for point mutations (Fig. 6), and found that potential
mutants are rare (i.e., high energy) in the regions between residues Phe108-Lys149, Phe193-Arg228, His269-Val295, and
Tyr313-Leu342 (marked on top of Fig. 6), as well as regions near the carazolol ligand binding sites, residues Trp109, Asp113,
Tyr199, Ser203, Trp286, Phe289, Phe290 and Tyr308 (colored in blue at the bottom of Fig. 6) (22).

Starting from the estimated potential, we also analyzed the matrix consisting of coupling terms ei j in Eq. (3) between pair
of amino acids by independent component analysis (37). According to the analysis, we found that just the top two eigenvalues
are statistically significant. These two top eigenmodes of the coupling matrix (ei j as illustrated in Fig. 7A) that indicates all the
coupled interactions between pairwise residues) are transformed into two independent components for defining independent
‘blocks’ including groups of amino acids. Fig. 7B, C) shows that Sibe successfully obtained two ‘blocks’ for the human β2AR
protein. Each block indicates a group of amino acids that are physically connected (part of the residues in green block are
physically connected to each other) in the tertiary structure and may be functionally correlated. It is worth noting that the big
red block consists of 39 residues covering functional sites of the protein (22). In principle, the results suggest that Sibe could
capture coupled evolution among function-related residues and may contribute to design stabilizing proteins by mutating the
wild type residues according to the co-evolutionary information.

The critical feature of the design protocol is described in supplementary materials. Sibe can be used to identify of the
designed sequence with the lowest energy. To assess whether the approach can produce a ‘better’ protein from coupling
constraints encoded in the MSA, according to the co-evolution derived energies, we performed the DEE minimization protocol
(25) on sequence design. For each starting sequence, five thousand independent simulations, each trial of sequence design
with maximum iterations of 100,000, were performed to obtain a sequence of the lowest energy. As illustrated in Fig. 8, we
show the ligand-binding characterization in the human β2AR protein. As shown, the residues colored in green in Fig. 8 are the
ligand-binding sites, where extensive interactions occur between the human β2AR protein and carazolol at positions Phe289,
Phe290 and Trp286 (22). In the designed human β2AR protein, we got three mutants in the ligand-binding sites, which may
alter the function of the designed protein.

PROTEIN FOLDING AND STRUCTURE PREDICTION
Prediction of protein structure has been a long-standing challenge, and numerous advances have been made in the determination
of the three-dimensional structure of a protein from its amino acid sequence or primary structure (24, 38–40). Recently, due to
efforts in metagenome sequence projects, the number of protein sequences is growing considerably faster than ever before
(21, 41). However, there are remaining challenges regarding efficient computational methods for interpretation of large sequence
data in protein families and rapid structure modeling approaches bridging the gap between sequences and corresponding
structures. The gap between a protein sequence and its unknown structure can be also largely reduced by taking advantage of
progress in statistical analysis in both protein sequences and known structures. Moreover, co-evolution among amino acids
enhances capacities of existing computational approaches in predictions of contacts between different protein residues (5, 6, 8),
and the predicted constraints can provide an accurate way in modeling a protein of unknown structure (21).

To assess structure prediction, we carried out calculations on an instructive example consisting of three representative
proteins according to the three steps as shown in the left of Fig. 1, the low-molecular-weight protein tyrosine phosphatases
YwlE (PDB ID: 1ZGG), the flagellar capping protein (PDB ID: 5FHY), and the E. coli MCE protein MlaD (PDB ID: 5UW2),
using positionally conserved couplings and predicted protein (φ, ψ) torsion angle constraints (23). We present an iterative
framework (Fig. 9) to fold a protein using statistical potentials (24) and co-evolution constraints derived from its sequence
alignment (as described above). The iterative prediction using a Markov Chain Monte Carlo protocol (Supplementary Method)
includes multiple rounds, in which the predicted constraints (e.g. torsion angles, residue-contacts) can be collected from the
previous round to guide and bias the prediction.

Since each potential confirmation of a protein is drawn from the same Ramachandran map distribution according to the
given amino acid sequence, the conformations generated by the Markov Chain Monte Carlo method are partially correlated
with each other. In the folding simulation, starting from a query sequence, we generated five hundred initial conformations to
trigger its structure prediction by iteratively biasing the prediction from constraints. For example, Sibe was used to iteratively
predict the tertiary structure of the YwlE protein using the constraints of residue-contacts inferred from its MSA and predicted
torsion angles (which are used to increase probabilities of φ and ψ located in [φi − φpredi ]2 + [ψ − ψ

pred
i ]2 = [25◦]2 on the

Ramachandran map distribution) predicted by Phsior (23). After 500 single simulations were converged, we chose a hundred of
the predicted structures with the lowest energy (20% of all structures) and calculated the averaged residue-contacts (for spatial
interactions among residues) and torsion angles (define the square ranges for each pair of φ and ψ) (see also supplementary
methods).

As illustrated in Fig. 10, we present the predicted models for the target proteins by comparison to the crystal structures.
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The predicted results show the capability of the module of protein structure prediction in Sibe is demonstrated by the blind
predictions of protein tertiary structures close to the crystal structures.

CONCLUSION
We report here that a software suite (Sibe) provides an analytical and computational tool for protein folding & design studies.
Sibe allows rapid analysis of large protein sequences data for boosting protein design and folding.

The success of the software depends in part on the positionally conserved couplings derived method for detecting amino
acid variations, and the easy-interface modules presented in Sibe lay the ground-work for drawing interpretable conclusions
from protein sequence data to its folding and design studies in silico. For example, due to rapid advances in the software suite
Sibe, a variety of functional modules are available to researchers for analyzing protein sequences, protein folding and design in
silico. In the second example, we demonstrate how Sibes implementation of iteratively biasing conformation search can be used
to predict the tertiary structure from its amino acid sequence based on statistical potentials of protein sequences and structures.
Due to the limited diversity in the MSA of a given protein family, Sibe is imperfect in capturing significant co-variants as
co-evolutionary constraints for protein design and structure prediction. Accordingly, the remaining challenges are how to enrich
the diversity information in the MSA and how to efficiently detect important co-evolutionary couplings between pairwise amino
acids and distinguish the couplings from biases that arise from a protein family of less diversity. Future work may focus on
addressing those issues by extension and improvement of Sibe.

Generally, Sibe’s power and simple architecture are dependent on expressive and functional modules, which focus on
extending methods specifically designed for scientific applications. Understanding the co-evolutionary process frommetagenome
sequence data provides thermodynamic insights into the protein’s evolution, which can aid in the design of better proteins.
Hopefully, the methodology of protein design could have future applications in chemistry, bioremediation, and drug design &
discovery.
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Figure 1: The flowchart of in silico protein folding and design in Sibe using evolutionary couplings as drivers.
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Figure 2: Positionally conserved couplings in a multiple sequence alignment of N sequences by L positions. The residues at the
positions in black lines are conserved, while the residues at positions in bold orange lines are conserved and coupled with each
other.
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Figure 3: Positional conservation of and Point mutation effect on the human β2AR protein. (A) Positional conservation in the
MSA of the human β2AR protein. (B) Point mutation effect calculated from the MSA on the human β2AR protein according to
the Kullback-Leibler relative entropy Di . Scale bar shows the relative entropy ranging from 0 (white) to 2.85 (orange).
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Figure 4: Computational protein design protocol. Energy-like potential is estimated from the MSA, and the DEE is used to in
silico design the sequences based on the potential.
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Figure 5: Comparisons between experimental and calculation results. (A) Correlation between the sequence energy and the
transition temperatures for extant and ancestral Trx proteins at pH 7.0. (B) The sequence energies of the mesophilic and
thermophilic proteins in the different protein families. (C) The energy difference calculated by Sibe between the mesophilic and
thermophilic proteins in the same family.
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Figure 6: Effects of point mutations on the human β2AR protein. Substitutions at each position with negative ∆E values are
predicted to be deleterious; while those that are positive are predicted to be tolerated. Neutral substitutions are marked in 0.
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Figure 7: Matrix of pairwise residue-interactions for the human β2AR protein. (A) Evolutionary interactions inferred by PCC
between pairwise residues. (B) Two interaction ‘blocks’ mapped to the tertiary structure. (C) Coupling matrix reordered to
highlight two interaction blocks. Those blocks show that the residues in the same block may contribute similarly functions to
the protein.
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Figure 8: Sibe computationally designed a mutant sequence of the human β2AR protein (PDB ID: 2RH1) (22) that is mapped to
it tertiary structure. Yellow, green and red indicate mutations (made by Sibe) occurred at common sites, ligand-binding sites,
and experimentally mutated functional sites, respectively.
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Figure 9: Iterative structure prediction guided by co-evolution. Starting from unfolded (extended) structure, Sibe incorporates
residue-contacts derived from coupling analysis on the MSA and averaged residue-contacts from predicted structures (previous
round) with lower energy (best 20%) as constraints to iteratively predict the tertiary structures of targets.
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Figure 10: Comparison of models predicted by Sibe (green) to the crystal structures (red). The models accurately recapitulate
the structural details of the named proteins. The RMSD of each protein was computed by PyMOL software (42) as shown, and
the TM-scores are as follows: (A) YwlE (PDB ID: 1ZGG, TM-score 0.76), (B) the flagellar capping protein (PDB ID: 5FHY,
TM-score 0.64), (C) the E. coli MCE protein MlaD (PDB ID: 5UW2, TM-score 0.80).
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