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Abstract. Synthesis of individual molecules in the expression of genes of-

ten occurs in bursts of multiple copies. Gene regulatory feedback can affect
the frequency with which these bursts occur or their size. Whereas frequency

regulation has traditionally received more attention, we focus specifically on

the regulation of burst size. It turns out that there are (at least) two alter-
native formulations of feedback in burst size. In the first, newly produced

molecules immediately partake in feedback, even within the same burst. In

the second, there is no within-burst regulation due to what we call infini-
tesimal delay. We describe both alternatives using a minimalistic Markovian

drift-jump framework combining discrete and continuous dynamics. We derive
detailed analytic results and efficient simulation algorithms for positive non-

cooperative autoregulation (whether infinitesimally delayed or not). We show

that at steady state both alternatives lead to a gamma distribution of protein
level. The steady-state distribution becomes available only after a transcrit-

ical bifurcation point is passed. Interestingly, the onset of the bifurcation is

postponed by the inclusion of infinitesimal delay.

1. Introduction

Stochastic expression of individual genes drives random fluctuations in the con-
centration of protein molecules in individual cells and inhomogeneity of protein
concentration across cell populations [1, 2]. The production of protein molecules
in bursts, i.e. batches of many molecules within brief periods of time, has been
identified as a major source of gene-expression variability [3, 4].

The presence of feedback of a protein on its own gene expression is ubiquitous in
biological circuits [5]. If protein is produced in bursts, regulatory feedback can act
in two fundamentally different ways: it can affect the frequency with which bursts
occur in time [6]; alternatively, it can affect the size of the bursts [7]. Feedback can
be negative and positive; here, we shall specifically focus on positive feedback on
burst size. The impact of negative feedback on burst size and burst frequency has
been investigated in [8, 9]

Models of stochastic gene expression are typically based on the random telegraph
framework [10–17]. In a random telegraph model, a gene can be either in an On
state or in an Off state, transitioning randomly in time between the two. In addition
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2 POSITIVE FEEDBACK IN BURST SIZE WITH INFINITESIMAL DELAY

Figure 1. A: Random telegraph model for gene expression. Pro-
tein concentration increases if gene is On and decreases if gene
is Off. Short On periods accompanied by fast production lead
to burst-like gene expression. B: The burst dynamics can be de-
ciphered by looking on the fast timescale (the scaling factor is
set to ε = 0.05 here). C: Protein dynamics in the reduced drift-
jump model. Between bursts (vertical dotted lines) the protein
level decays exponentially (solid lines; one such period is demar-
cated by the braces). D: Positive feedback response function of
the Michaelis-Menten type (11) as function of protein level x for
selected values of the threshold level κ. The dotted black lines end-
ing in coloured markers indicate that the response is half-maximal
at x = κ.

to the binary variable indicating whether the gene is On and Off, there is another
time-dependent numerical variable indicating the amount of protein in the cell. In
many models the protein amount is considered to be a discrete variable [18–21],
but here we use a hybrid discrete-continuous formalism [22–29] and treat protein
level as a continuous variable; we refer to it also as concentration. The protein
concentration increases whenever the gene is On and decreases when the gene is
Off.

The mathematical abstraction of On and Off states can have alternative biolog-
ical interpretations in different contexts. They can represent active and inactive
states of the promoter region of the gene [30]. Alternatively, they can indicate the
presence or absence of a messenger transcript molecule [31].

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2018. ; https://doi.org/10.1101/379602doi: bioRxiv preprint 

https://doi.org/10.1101/379602
http://creativecommons.org/licenses/by-nc-nd/4.0/


POSITIVE FEEDBACK IN BURST SIZE WITH INFINITESIMAL DELAY 3

The random telegraph model can generate bursts if the time spent in the On
state is short but accompanied by rapid protein synthesis (Figures 1A). Bursts lead
to rapid but continuous increase in the protein concentration occurring on a fast
timescale (Figure 1B). In the singular limit of infinitesimally brief On periods, the
random telegraph model reduces to a jump-drift model for protein level (Figure
1C). The state of the gene is no longer explicitly needed in the reduced model;
burst are represented by discontinuous jumps in protein concentration (Figure 1C).

We will perform the bulk of our analysis on the reduced model with discontinuous
bursts. Nevertheless, the full random-telegraph model will initially be used to de-
rive the burst-size distribution. Importantly, the analysis of the random-telegraph
model will imply that there are two fundamentally different ways of implementing
feedback in burst size. First, feedback can act immediately at the level of fast
timescale of burst growth. Alternatively, feedback can only react on the changes
on the slow timescale. The latter differs from the former in the inclusion of what
we call an infinitesimal delay. It has been shown that that the inclusion of an in-
finitesimal delay in negative feedback on burst size can potentially destabilise the
noise-controlling capabilities of the negative feedback loop [9].

The purpose of the present work is to examine the effects of positive feedback on
burst size. For specificity, we consider non-cooperative Michaelis-Menten regulation
(Figure 1D). We investigate the effect of the feedback on the onset of a transcritical
bifurcation in the model. We focus systematically on the differences in the two
versions of the model which differ in the omission/inclusion of the infinitesimal
delay. The burst-size distributions are derived in Section 2. The master equations
are formulated and solved in Section 3. Exact stochastic simulation algorithms are
formulated in Section 4 and used in Section 5 to cross-validate analytic results. The
paper ends with a summary and discussion in Section 6.

2. Burst dynamics

Here we use the random telegraph model (Figure 1A) to examine the conse-
quences of the fast-timescale burst dynamics (Figure 1B). The deliverable is to
derive the burst-size distributions, which will serve as building blocks of jump-drift
models in later Sections. Two versions of the model are treated separately: one
in which feedback acts immediately; the other in which feedback operates with an
infinitesimal delay.

2.1. Undelayed case. Without loss of generality we assume that a burst starts at
time t = 0 and that its duration T is exponentially distributed, i.e.

P [T > t] = e−t, t > 0.

We also assume that within the burst duration the protein level grows according to
an ordinary differential equation

ẋ = θ(x), 0 < t < T, x(0) = y. (1)

The value y gives the before-burst protein level. The function θ(x), which is as-
sumed to be positive, characterises the feedback response. Later we will restrict
ourselves to a specific non-cooperative Michaelis-Menten-type form (Figure 1D).

The after-burst protein level is a random variable which is defined by

X = x(T ).
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4 POSITIVE FEEDBACK IN BURST SIZE WITH INFINITESIMAL DELAY

By the burst kernel B1(x|y) we will understand the right-tail cumulative distribu-
tion function of X. It follows that the burst kernel is given by

B1(x|y) = P [X > x] = P

[
T >

∫ x

y

dz

θ(z)

]
= exp

(
−
∫ x

y

dz

θ(z)

)
. (2)

The subscript one in the burst kernel indicates that this is the first formulation of
the burst-size feedback. The second one follows.

2.2. Infinitesimally delayed case. We modify the differential equation into

ẋ = θ(y), 0 < t < T, x(0) = y. (3)

Note that in (3) the growth rate is constant within the burst and depends only on
the initial before-burst protein level. The burst kernel B2(x|y) is now given by

B2(x|y) = P [X > x] = P

[
T >

x− y
θ(y)

]
= exp

(
−x− y
θ(y)

)
. (4)

The burst kernels (2) and (4) will be used in the jump-drift master equation in the
next section. The bursting timescale of this section will thereby be assumed to be
infinitesimally small. Therefore we refer to the delay that distinguishes (4) from (2)
as infinitesimal delay.

3. Master equation

Here we build a model that characterises the slow-timescale behaviour of the
reduced jump-drift model (Figure 1C). The burst kernels derived in Section 2 con-
sidering the fast timescale will serve as building blocks. It is assumed that bursts
occur with rate α and that between bursts the protein concentration decays expo-
nentially. Without loss of generality one can assume that the decay rate constant
is equal to one. Under such assumptions, the probability p(x, τ) of observing the
protein at level x at time τ satisfies a partial integro-differential equation

∂p

∂τ
+
∂J

∂x
= 0, J = α

∫ x

0

Bi(x|y)p(y, τ)dy − xp, (5)

where Bi(x|y) is either one of the kernels (2) or (4) depending on whether feed-
back is immediate or operates with infinitesimal delay. The parameter α gives the
(constant) burst rate or burst frequency. The first equation in (5) is a differential
form of probability conservation principle. The probability flux J is a sum of a
nonlocal integral flux due to bursts and a local flux −xp due to the deterministic
drift of protein concentration between bursts. Note that the time variable τ in (5)
is much slower than the time variable t used in Section 2. More precisely, we may
say that dτ/dt = ε, where ε � 1 is an infinitesimally small timescale ratio (cf.
Figure 1A,B).

In the absence of feedback, θ(y) ≡ θ is independent of the protein level, and
Bi(x|y) = exp(−(x − y)/θ). Equation (5) then reduces to a well known model
for constitutive bursty protein synthesis [6]. In particular, it is known that the
stationary distribution in the unregulated model is the gamma distribution with
shape parameter α and scale parameter θ [6]. Below, we intend to extend this result
to the case of positive feedback in burst size.

Equating the probability flux to zero, we obtain an integral equation

xp(x) = α

∫ x

0

Bi(x|y)p(y)dy (6)
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POSITIVE FEEDBACK IN BURST SIZE WITH INFINITESIMAL DELAY 5

for the steady-state protein distribution. The rest of this chapter is devoted to
solving this integral equation separately for i = 1 and i = 2. For its central
position in this paper, we will refer to (6) (and its specifications) as the master
equation. The master equation (6) is a singular homogeneous Volterra equation
of the second kind [32]. It is shown below that the integral kernel B1(x|y) allows
for an explicit solution. On the other hand, the integral kernel B2(x|y) leads to
tractable equations only in specific situations.

3.1. Undelayed case (i = 1). The kernel (2) can be factorised into

B1(x|y) = e−Φ(x)eΦ(y), where Φ(x) =

∫
dx

θ(x)
. (7)

Integral equations with factorised kernels can be transformed into a differential
equation [32]. Indeed, inserting (7) into (6) yields

xp(x)eΦ(x) = α

∫ x

0

eΦ(y)p(y)dy, (8)

and differentiation gives

d

dx

(
xp(x)eΦ(x)

)
= αeΦ(x)p(x), i.e.

d

dx
ln
(
xp(x)eΦ(x)

)
=
α

x
. (9)

Integrating (9) yields

p(x) = e−Φ(x)xα−1 (10)

up to a normalisation constant. Below we will focus specifically on a Michaelis-
Menten type regulation

θ(x) =
x

x+ κ
, (11)

where κ represents a critical concentration that is required to achieve half-maximal
production (cf. Figure 1D). The maximal production can be scaled to one without
loss of generality.

For Michaelis-Menten type regulation we easily find that

Φ(x) =

∫ (
1 +

κ

x

)
dx = x+ κlnx,

so that the steady-state solution (10) simplifies to

p(x) = e−xxα−κ−1. (12)

If α > κ, then (12) can be normalised into the gamma probability distribution with
shape α − κ and scale one. The steady state mean is then given by the product
of shape and scale which is also α − κ. If on the other hand α < κ, the master
equation does not possess normalised solutions, and the protein concentration will
decrease to zero with probability one. In summary, the protein mean is given by

〈x〉 = (α− κ)+, (13)

where (a)+ = max(a, 0) is the positive part of a real number a. Interestingly, the
steady-state mean of the undelayed stochastic formulation coincides with the global
attractor of the deterministic formulation

dx

dt
=

αx

x+ κ
− x. (14)

Differential equation (14) exhibits a transcritical bifurcation at κ = α [33]. There
are two steady states, 0 and α − κ, which coalesce at the point of bifurcation and
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6 POSITIVE FEEDBACK IN BURST SIZE WITH INFINITESIMAL DELAY

exchange stability. Consequently, the global attractor of (14) is given by (α −
κ)+, the same value as the steady-state mean (13) of the undelayed stochastic
formulation. Below we examine how the inclusion of infinitesimal delay affects the
bifurcation behaviour in the stochastic model.

3.2. Infinitesimally delayed case (i = 2). Unlike the undelayed burst kernel
(2), the burst kernel (4) is not factorisable. A general solution formula for the
master equation (6) with burst kernel (4) is unavailable. However, progress can be
made if the regulatory function is of Michaelis-Menten type (11), in which case the
master equation (6) takes the specific form of

xp(x) = α

∫ x

0

exp

(
−(x− y)

(
1 +

κ

y

))
p(y)dy. (15)

Multiplying both sides of 15 by ex simplifies it into

xexp(x) = α

∫ x

0

exp

(
−κ
(
x

y
− 1

))
eyp(y)dy. (16)

We look for a solution in the form

p(x) = e−xxγ−1, (17)

where γ is a real constant yet to be determined. Inserting (17) into (16) we see
that

xγ = α

∫ x

0

exp

(
−κ
(
x

y
− 1

))
yγ−1dy (18)

is required to hold for all x > 0. Substitution x/y − 1 = ξ in the integral on the
right-hand side yields

α

∫ x

0

exp

(
−κ
(
x

y
− 1

))
yγ−1dy = xγαIκ(γ), (19)

where

Iκ(γ) =

∫ ∞
0

e−κξdξ

(1 + ξ)γ+1
(20)

is a special function dependent on γ but independent of x. Equating the left-hand
side of (18) to the right-hand side of (19) and dividing the result by xγ we find
that

Iκ(γ) =
1

α
(21)

is a necessary and sufficient condition for (17) to solve the master equation (6).
The function Iκ(γ) is decreasing, and maps the interval (−∞,∞) onto the in-

terval (0,∞). Therefore for a given α > 0 there exists a unique solution γ to the
algebraic equation (21) which can formally be written as

γ = I−1
κ

(
1

α

)
. (22)

The function γ = γκ(α) defined through the formula (22) is an increasing function
which maps the interval (0,∞) onto (−∞,∞). It crosses zero at a value αbif =
1/Iκ(0). The solution (17), where γ is given by (22), can be normalised into a
probability density function only after α passes the bifurcation value αbif . The
condition α > αbif represents the analogue of the condition α > κ required for the
solution (12) to the undelayed problem to be integrable. Prior to the bifurcation
point, i.e. for α ≤ αbif , the random process giving the temporal dynamics of protein
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POSITIVE FEEDBACK IN BURST SIZE WITH INFINITESIMAL DELAY 7

concentration decreases to zero with probability one. It follows that the protein
mean is given by

〈x〉 = (γ)+, (23)

which represents an infinitesimally delayed analogue of (13).
Below, we derive inequalities that help establish bounds on the protein mean

(23) in the infinitesimally delayed model. For γ ≥ 0 the integrand in (20) can be
bounded from below and above by

e−(κ+γ+1)ξ <
e−κξ

(1 + ξ)γ+1
< (1 + ξ)−κ−γ−1. (24)

Integrating (24) with respect to ξ from zero to infinity, and using (20) and (21),
yields

1

κ+ γ + 1
<

1

α
<

1

κ+ γ
,

i.e.

α− κ− 1 < γ < α− κ if α ≥ αbif . (25)

The second inequality (25) implies that the protein mean (23) in the infinitesimally
delayed model is strictly smaller than the mean (13) in the undelayed model. Specif-
ically for α = αbif , for which γ = 0, the second inequality (25) reduces to αbif > κ.
Recall that α = κ gives the bifurcation condition in the undelayed and determinis-
tic models. Therefore, we can conclude that the introduction of infinitesimal delay
postpones the onset of the transcritical bifurcation.

The first inequality in (25) provides an upper bound on the bifurcation postpone-
ment. In particular, it implies that αbif < κ+1, i.e. that the onset of the bifurcation
cannot be delayed by more than one in the chosen units of burst frequency.

4. Exact stochastic simulation algorithm

The stochastic simulation algorithm iterates three essential steps: the drawing of
a waiting time until the upcoming burst; the discounting of the protein level during
the waiting period owing to protein decay; and the increase of the protein level by
a randomly sampled burst size. The first and second steps are the same for both
models (the undelayed and the infinitesimally delayed) of burst-size regulation. The
models differ in the third step of the algorithm. Let us start with the common steps.

Neither model incorporates feedback in burst frequency. Therefore, the burst
occurrences form a Poisson process whose intensity is given by the burst frequency
parameter α. The waiting times between successive bursts are exponentially dis-
tributed with mean 1/α. Consequently, the waiting time τi between the (i− 1)-th
and i-th bursts can be drawn using the well-known formula for drawing exponen-
tially distributed variates,

τi = − lnui
α

, i = 1, 2, . . . , (26)

in which ui, i = 1, . . ., are random variates drawn independently of each other from
the unit-interval uniform distribution.

Denoting by yi and xi the protein level immediately before and immediately after
the i-th burst, the second step of the simulation rests in discounting the amount of
protein degraded during the period between successive bursts,

yi+1 = xie
−τi , i = 0, 1, . . . . (27)
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8 POSITIVE FEEDBACK IN BURST SIZE WITH INFINITESIMAL DELAY

Applying formula (27) for i = 0, we obtain the protein level y1 immediately be-
fore the first burst from an initial value x0, which is specified in the input of the
algorithm.

We are now in position to unveil the third and final step, which samples the
post-burst level xi based on the knowledge of the pre-burst level yi. As advertised
above, the step takes a different form depending on the choice of the model. In the
infinitesimally delayed case, we will obtain a straightforward implementation which
can be universally applied regardless of the choice of the feedback response func-
tions θ(y). In the undelayed case, the implementation is more delicate and hinges
on the specifics of the chosen Michaelis-Menten-type regulation (11). Methodolog-
ically, this represents a reversal of the situation encountered in Section 3, where
the undelayed model was shown to admit an explicit steady-state distribution for
any choice of θ(y), whereas in the infinitesimally delayed case an explicit solution
was found only for the specific Michaelis-Menten regulation. Let us proceed with
the description of the post-burst level sampling procedure in the simpler case, here
being that of the infinitesimally delayed model.

4.1. Infinitesimally delayed model. The burst-size distribution (4), conditioned
on knowing the pre-burst level y, is exponentially distributed with mean θ(y). The
level xi of protein after the i-th burst can therefore be sampled by

xi = yi − θ(y)lnũi, i = 0, 1, . . . , (28)

where yi is the corresponding pre-burst level and ũi are random variates drawn
from the unit-interval uniform distribution independently of each other and of any
other random variates.

4.2. Undelayed model. In the Michaelis-Menten type regulation (11), the cumu-
lative distribution function (2) of the post-burst level X satisfies

P [X > x] = exp

(
−
∫ x

y

dz

θ(z)

)
= exp

(
−
∫ x

y

(
1 +

κ

z

)
dz

)
= exp(−κlnx− x+ κlny + y) =

(
x

y

)−κ
exp(−x+ y), (29)

where y is the pre-burst level and x > y is any admissible post-burst level. Next
we discuss how post-protein level x can be sampled from the distribution (29).
One option would be to use the inversion sampling method directly on (29). This
would involve equating the right-hand side of (29) to a randomly drawn variate
from the unit interval and solving in terms of the post-protein level x. However,
since this means that a transcendental equation needs to be solved, we choose to
use a different sampling procedure.

We define two independent auxiliary variables X(1) and X(2) with distributions

P [X(1) > x] =

(
x

y

)−κ
, for x > y, (30)

P [X(2) > x] = exp(−x+ y), for x > y. (31)

The minimum of these two has distribution

P [min(X(1), X(2)) > x] = P [X(1) > x & X(2) > x] = P [X(1) > x]P [X(2) > x],
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POSITIVE FEEDBACK IN BURST SIZE WITH INFINITESIMAL DELAY 9

which coincides with the distribution (29) of the post-burst level. The post-burst
level can therefore be sampled by drawing random variates x(1) and x(2) from the
distributions (30) and (31) and then taking the minimal of the two. Drawing from
the distributions (30) and (31) can readily be done using the inversion sampling
method.

Denoting, as before, the i-th burst’s pre- and post-levels by yi and xi, we find
that

xi = min
(
x

(1)
i , x

(2)
i

)
, x

(1)
i = yi

(
ũ

(1)
i

)− 1
κ

, x
(2)
i = yi − lnũ

(2)
i , (32)

in which ũ
(1)
i and ũ

(2)
i are random variates drawn from the uniform distribution on

the unit interval independently of each other and of any previous ones.

5. Cross-validation of analysis with simulations

Adapting a method previously used in [9], we estimate the steady-state protein

mean 〈x〉 by the time average 1
T

∫ T
0
x(t)dt, where T � 1, of a sample trajectory

x(t). The trajectory decays exponentially between successive bursts, so that

1

T

∫ T

0

x(t)dt =
1

T

N−1∑
i=0

∫ τi

0

xie
−tdt =

1

T

N−1∑
i=0

xi(1− e−τi), (33)

where yi and xi are the pre- and post-burst protein levels, τi give the waiting

times, and T =
∑N−1
i=0 τi, where N is a large integer. Given that τi are independent

and identically distributed with mean 1/α, we have T ≈ N/α by the law of large
numbers.

Numerical experiments suggest that the temporal average (33) can be sensitive
to the choice of the initial value x(0) = x0, which is typically arbitrarily chosen
(we use x0 = 1 throughout). In order to reduce the influence of the initial data,
we can shift the lower bound in the sum (33) from zero to a large positive integer
M ; to retain the number of summands we can move the upper bound from N to
N +M − 1. This leads to

〈̂x〉 =
α

N

N+M−1∑
i=M

xi(1− e−τi), (34)

where we also replaced 1/T by its law-of-large-numbers estimate α/N . We use
N = 105 and M = 104 throughout. The sequences yi, xi, and τi are obtained
iteratively from (26), (27), and (28) in the infinitesimally delayed case or from (32)
in the undelayed case. In order to obtain additional ensemble averaging, we perform
a hundred independent simulations to obtain a hundred independent estimates (34)
of protein mean. Each reported value of the protein mean is equal to the average
over the hundred estimates. We also calculate the standard deviation of these
estimates and the confidence intervals for the average value. In our simulations,
the confidence intervals are extremely narrow, suggesting that we obtained very
precise estimates of the actual steady-state protein mean.

Figure 2 shows the dependence of the steady-state protein mean 〈x〉 on the bi-
furcation parameter α (the burst frequency) for two selected values of the critical
concentration κ = 0.2 (Fig. 2, left panel), and κ = 5.0 (Fig. 2, right panel). The
theoretical results for the undelayed model (13) (orange lines) and for the infinites-
imally delayed model (23) (blue lines) are cross-validated with the kinetic Monte
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Figure 2. Transcritical bifurcation of steady-state protein mean
in the undelayed and infinitesimally delayed models. Analytical
results (13) and (23) (solid lines) are cross-validated with kinetic
Monte Carlo estimates (34) (discrete markers). Each individual
marker gives the average value based on one hundred independent
estimates (34).

Carlo estimate (34) (discrete markers). We observe an excellent agreement between
the two. In both panels, the onset of the transcritical bifurcation is postponed in
the infinitesimally delayed model. In the left panel of Fig. 2, the bifurcation value
is αbif = 0.69 in the infinitesimally delayed model and by κ = 0.2 in the undelayed
model. In the right panel of Fig. 2, the bifurcation occurs at αbif = 5.87 if the in-
finitesimal delay is included and at κ = 5 if it is omitted. Both panels demonstrate
that after the bifurcation the protein mean γ of the infinitesimally delayed model
stays below the mean α−κ of the undelayed model; this confirms the upper-bound
result in (25). For large values of κ (such as κ = 5 in the right panel and larger),
the mean γ of the infinitesimally delayed model is close to the lower-bound in (25).

The positive branch of the solid blue line in Fig. 2 (either panel) is the graph
of the function γ = γκ(α). Its definition (22) involves taking the inverse of the
special function Iκ(γ) defined through a parametric integral (20). Nevertheless, for
the purposes of plotting a graph it is not necessary to take the inverse, since it and
the original function share the same graph. The parametric integral (20) can be
expressed in terms of the confluent hypergeometric function of the second kind [34]

Iκ(γ) = U(1, 1− γ, κ),

which is widely available in common mathematical software; we used the imple-
mentation in Python’s scientific computation library SciPy (version 0.17.0) which
is accessible as hyperu from the module scipy.special.

6. Discussion

We investigated a stochastic model for the temporal dynamics of protein con-
centration x that positively autoregulates the size of its production bursts. Two
versions of the model were considered, differing in the inclusion or omission of an
infinitesimal delay in the feedback. The presence of infinitesimal delay means that
on the fast timescale of individual bursts, newly produced protein do not immedi-
ately promote protein synthesis within the same burst. The effect of the protein
concentration on the protein synthesis is characterised by the feedback response
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function θ(x). Some of our results apply to any choice of θ(x), whereas others are
restricted to a Michaelis-Menten type form of the function. The two versions of the
model differ in the burst kernels, Eqns (2) and (4), which give the probability of a
burst to surpass concentration x, having started at concentration y.

The large-time behaviour of the model is characterised by the stationary distri-
bution of protein concentration. We derived a Volterra integral equation for the
stationary distribution. The bursting kernel appears as the integral kernel of the
integral operator in the equation. For the undelayed model, the kernel is separa-
ble, and the integral equation admits an explicit solution regardless of the choice
of response function θ(x). For the infinitesimally delayed model, we were able to
determine the stationary distribution only for the Michaelis-Menten type response
function. In both versions of the model, the stationary distribution is a gamma dis-
tribution for Michaelis-Menten type response function. As is well known, gamma
distributions are a two-parametric family, one parameter giving the scale and the
other the shape of the distribution. The scale of the stationary distribution can be
set to one by a suitable choice of concentration units. The shape of the station-
ary distribution, which coincides with its mean, is a function of the dimensionless
model parameters. For the undelayed model, the mean is given by an explicit func-
tion (13) of the parameters, which coincides with the attractor of an associated
deterministic model (14). For the delayed model, on the other, the mean is given
implicitly through an equation (21) involving a special function (20).

In addition to analytic results, we presented a simulational approach to the both
versions of our model. The crucial step in the algorithm is to draw the post-burst
protein concentration from the burst-size distribution given by the burst kernel. For
the infinitesimally delayed model, the burst-size distribution is exponentially dis-
tributed, with the response function determining the dependence of the mean burst
size on the pre-burst level. Since drawing from an exponential distribution is easily
done using inversion sampling method, we obtain an exact and efficient algorithm
for simulating sample paths in the infinitesimally delayed version of our model. For
the undelayed version of our model, the burst-size distribution can assume nontriv-
ial (and non-parametric) forms depending on the choice of the response function.
In general, finding the post-burst protein level would require the use of numeri-
cal integration or some form of (possibly inefficient) rejection sampling method.
However, restricting ourselves to the Michaelis-Menten type response function, we
obtained an exact and efficient simulation algorithm that generates the post-burst
level based on two samples from the uniform distribution on the unit interval.

We crossvalidated our analytic results with stochastic simulations in Section 5.
Our results pertain to the onset of transcritical bifurcation in the positively autoreg-
ulated model. Transcritical bifurcation in deterministic dynamical systems occurs
when two steady states collide and exchange stability in response to parametric
change. The deterministic formulation of our model (14) presents a typical situa-
tion. Prior to the bifurcation, the trivial zero steady state is stable and a nontrivial
steady state is unstable and unrealistic (negative). As production rate increases, a
transcritical bifurcation occurs at which the two steady states coalesce at zero and
exchange stability. After the bifurcation, the trivial zero steady state is unstable
and the nontrivial steady state is positive, stable, and attracts all positive initial
conditions.
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An analogous behaviour is exhibited by both versions of our stochastic model.
For simplicity, we refer to it also as transcritical bifurcation. There are two solutions
to the master equation: a trivial one — the delta function giving all mass to zero
concentration —, and a non-trivial one (22). Prior to the bifurcation, the non-trivial
solution is inadmissible as it has an infinite L1 norm and cannot be normalised
into a probability density function. Initial distributions tend to the trivial steady
state. The bifurcation occurs as the parameter giving the burst frequency increases.
After the bifurcation, the non-trivial solution can be normalised into the probability
density function of a gamma distribution. It serves as the large-time attractor of
all initial distributions. Our results imply that the inclusion of the infinitesimal
delay postpones the onset of the transcritical bifurcation in the stochastic model
in the sense that greater burst frequencies are required to obtain a self-sustainable
steady-state distribution in an infinitesimally delayed model. After the bifurcation,
the mean protein concentration in the infinitesimally delayed model remains lower
than in the undelayed model (the latter being equal to the deterministic steady-
state level).

In summary, we have investigated two versions of a stochastic model for pulsatile
protein dynamics with feedback in burst size. Our methods combined differential
and integral equations with stochastic simulations. While we applied these method-
ologies specifically to the example at hand, we expect that combinations of such
approaches can be relevant in wider context of gene-expression and biological mod-
elling.
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