

1 **Title**

2 Local adaptation of a dominant coastal tree to freshwater availability and solar radiation
3 suggested by genomic and ecophysiological approaches

4 **Authors**

5 Mariana Vargas Cruz^{1,2}, Gustavo Maruyama Mori³, Caroline Signori Müller¹, Carla Cristina
6 da Silva², Dong-Ha Oh⁴, Maheshi Dassanayake⁴, Maria Imaculada Zucchi⁵, Rafael Silva
7 Oliveira¹ and Anete Pereira de Souza^{1,2*}

8

9 ¹Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp),
10 Campinas, SP 13083-863, Brazil.

11 ²Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp),
12 Campinas, SP 13083-875

13 ³Institute of Biosciences, São Paulo State University (Unesp), São Vicente, SP 11330-900,
14 Brazil.

15 ⁴Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA 70803,
16 United States.

17 ⁵São Paulo Agency for Agribusiness Technology (APTA), Piracicaba, SP 13400-790, Brazil.

18 *Author for correspondence. Tel: +55 19 3521 1132 Email: anete@unicamp.br

19

20

21 **Word count for the main text: 4,573**

22 Abstract: 199

23 Introduction: 622

24 Materials and Methods: 1,843

25 Results: 1,710

26 Discussion: 1,702

27 Conclusions: 264

28 Acknowledgements: 190

29 Author Contributions: 89

30 **Figures:** 6 figures, all in colour

31 **Tables:** 1 table

32 **Supplementary information:** Supplementary Figures S1-S7 (all in colour, except for S5);

33 Supplementary Tables S1-S13; Supplementary Methods; Supplementary Note,

34 Supplementary Data File.

35 **Abstract**

36 Local adaptation is often a product of environmental variations in the geographical space and
37 has implications for biodiversity conservation. We investigated the role of latitudinal
38 heterogeneity in climate on the organization of genetic and phenotypic variation in the
39 dominant coastal tree, *Avicennia schaueriana*. In a common garden experiment, samples
40 from an equatorial region, marked by rainy/dry seasons, accumulated less biomass, showed
41 lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and
42 higher reflectance of long wavelengths (red light) on the stem epidermis, than samples from a
43 subtropical region, marked by warm/cold seasons. Transcriptome differences identified
44 between trees sampled under field conditions at equatorial and subtropical sites, were
45 enriched in functional categories as responses to temperature, solar radiation, water deficit,
46 photosynthesis and cell wall biosynthesis. The diversity based on thousands of SNP loci
47 revealed a north-south genetic structure. Remarkably, signatures of selection were identified
48 in loci associated with photosynthesis, anthocyanin accumulation and the responses to
49 osmotic and hypoxia stresses. Our results suggest the existence of divergence in key
50 resource-use characteristics, likely driven by climate seasonality, based on water-deficit and
51 solar radiation. These findings provide a basis for conservation plans and for predictions for
52 coastal plant responses to climate change.

53 **Keywords**

54 *Avicennia schaueriana* (Black Mangrove); climate change; coastal ecosystems; comparative
55 transcriptomics; genome scans for selection; local adaptation; plant ecophysiology; resource-
56 use.

57 **Introduction**

58 Adaptation is frequently a consequence of spatial variations in selective
59 environmental forces acting on phenotypic diversity^{1,2}. As selective forces operate, they may
60 reduce the heritable variation within a population, leading to the specialization of
61 individuals². Conversely, in highly stochastic environments, selection can increase the
62 species potential for phenotypic plasticity³. Therefore, the investigation of adaptation is
63 fundamental for understanding the ability of a species to respond to environmental changes^{4,5}.

64 Alarmingly high rates of environmental changes have been observed over the last
65 decades, particularly affecting coastal ecosystems⁶⁻⁹, for instance, bleaching of coral reefs
66 worldwide¹⁰, large-scale dieback of mangrove communities¹¹ and increased mortality of
67 seagrass beds¹². Further environmental changes and coastal biodiversity loss threaten critical
68 socioeconomic and ecological services provided by coastal ecosystems, including their
69 pivotal role as blue carbon stocks¹³. In this context, studies on the organization of adaptive
70 variation of coastal habitat-forming species are necessary to improve predictions on the
71 impacts of future climate conditions on marine ecosystems¹⁴ and to support efficient
72 conservation practices¹⁵.

73 Coastal habitat-forming species are frequently water-dispersed over long distances^{16,17}
74 and often occur across wide latitudinal ranges. The connectivity among populations of these
75 species may be influenced, not only by their dispersion capabilities but also by means of
76 natural selection, caused by varying establishing success over the broad environmental
77 heterogeneity across latitudes¹⁸. For instance, distinct coastal species in the North Atlantic
78 show a north-south organisation of diversity with evidences of selection for different thermal
79 regimes¹⁹⁻²¹. Similarly, in the Southwest Atlantic, an overlapping north-south structure of the
80 genetic diversity, with reduced gene flow between northern and southern populations, has
81 been observed in phylogenetically distant habitat-forming species²²⁻²⁴. In this context, one
82 could expect northerly and southerly populations of these species to adapt differently to
83 contrasting environments over their latitudinal ranges, especially due to their large population
84 sizes^{2,25}. However, the neutrality of the molecular markers used in previous studies has
85 precluded inferences regarding adaptive variation. The existence of local adaptation remains
86 virtually unknown in species that play a central role in sustaining the coastal biodiversity in
87 the South Atlantic. This limited knowledge about the organization of non-neutral variation
88 compromises accurate predictions and suitable conservation efforts for sustainable
89 management.

90 Here, we tested the hypothesis that latitudinal heterogeneity in climate variables shape
91 the variation of genotypes and phenotypes involved in the optimisation of resource-use in
92 widely distributed coastal species. To reduce the potential for incorrect conclusions about
93 selection²⁶, we integrated three independent, but complementary approaches, making
94 predictions as follows: (1) using a common garden experiment, individuals from contrasting
95 latitudes would show genetically-based phenotypic divergence in ecophysiological traits; (2)
96 under contrasting latitudes, transcriptomic changes would be detected in genes involved in
97 responses to environmental variation; and (3) signatures of selection along the species
98 distribution would be detected in genes involved in responses to latitudinal variation in air
99 temperature, solar radiation and freshwater availability determined by air water vapour
100 pressure deficit (VPD), rainfall and tidal regime. We considered the new-world coastal tree
101 species, *Avicennia schaueriana* Stapf & Leechman ex Moldenke, found in the Lower Lesser
102 Antilles and widespread from Venezuela to the southernmost temperate mangroves on the
103 Atlantic coast of South America (~28 °S)²⁷ as a model to test this hypothesis. The broad
104 latitudinal range of *A. schaueriana*, spanning wide environmental variation (Fig. 1), and the
105 previously detected north-south structure of neutral variation²², facilitate ecological
106 predictions and the accumulation of divergence, motivating this choice. Our results indicated

107 that fluctuations in VPD, rainfall and solar radiation may be associated with the observed
108 phenotypic and genotypic variation as well as the regulation of gene expression in this
109 dominant coastal tree. We discuss the implications of our results for the persistence of coastal
110 biodiversity in the context of climate change.

111 **Materials and Methods**

112 *Propagule sampling*

113 Mature propagules were collected from 15 *Avicennia schaueriana* Stapf & Leechman
114 ex Moldenke mother trees that were at least 100 m apart from one another, at the following
115 two genetically contrasting populations²²: (1) the southernmost range limit of American
116 mangroves, in the subtropical region, and (2) an equatorial site in one of the world's largest
117 macrotidal mangrove forests^{28,29}, near the northernmost limit of the species range (Fig. 1).
118 We refer to samples collected in the former site as "subtropical" and those in the latter as
119 "equatorial" throughout this work. Sampling in more localities was impracticable due to the
120 absence of mature propagules during fieldwork. A detailed characterisation of each of these
121 contrasting sites can be found in Table 1, in the Supplementary Methods and in the
122 Supplementary information Figure S1.

123

124 *Comparative ecophysiology using a common garden experiment*

125 Propagules were germinated as described for *Avicennia germinans*³⁰. We grew
126 propagules in trays with local mangrove soil for two months. After this period, 44 similar-
127 sized seedlings from 30 distinct mother trees, 15 from equatorial and 15 from subtropical
128 sites — with an average height of 18 cm, most with three leaf pairs and senesced cotyledons
129 — were transplanted to 6 L pots filled with topsoil and sand (1:1). Seedlings were cultivated
130 for seven months under homogenous conditions in a glasshouse at the University of
131 Campinas, São Paulo, Brazil (22°49' S 47°04' W), where automatic sensors coupled with a
132 data logger (Onset Computer Corp.) measured the atmospheric humidity and temperature
133 every 15 minutes. Seedlings were irrigated daily at 10 a.m. and 5 p.m. with a 3-minute
134 freshwater spray. Twice a week, nutrients were added to the soil using 600 mL of 0.4X
135 Hoagland solution with 15.0 g L⁻¹ NaCl per pot. Pots were rotated weekly to reduce the
136 effects of environmental heterogeneity. The environmental conditions in the glasshouse were
137 different from those at each sampling site, as is shown in the Supplementary information Fig.
138 S2.

139 The light reflectance of stems was measured in ten plants from each sampling site
140 using a USB4000 spectrophotometer (OceanOptics, Inc.) coupled to a deuterium-halogen
141 light source (DH-2000; OceanOptics) using a light emission range from 200-900 nm.
142 Photosynthesis, stomatal conductance and transpiration rates were measured every 2.0-2.5
143 hours in five six-month-old individuals from each sampling site on two different days using a
144 Li-Cor 6400 XT (Li-Cor Corp.).

145 After harvest, three plants without flowers or flower buds from each sampling site
146 were split into leaves, stems and roots, washed with distilled water, dried for 7 days at 70 °C
147 and weighed. The individual leaf area, total leaf area and leaf lamina angle per plant were
148 measured through photographic analyses using ImageJ³¹. The specific leaf area (SLA, cm²
149 leaf area kg⁻¹ leaf dry biomass) was also calculated for these samples. Stems were fixed in
150 FAA (Formaldehyde Alcohol Acetic acid), stored in 70% alcohol for wood anatomy analysis
151 and cut into 30-µm thick transverse sections. Sections were stained with a mixture of 1%
152 Astra Blue and 50% alcohol (1:1) followed by 1% Safranin O. Micrographs were taken using
153 an Olympus BX51 microscope coupled to an Olympus DP71 camera (Olympus Corp.). The
154 following wood traits were quantified using ImageJ and R v.4.0.0: vessel lumen area (A),

155 vessel density in xylem (number of vessels/xylem area), vessel grouping index (mean number
156 of vessels per vessel grouping) and vessel lumen area in sapwood (vessel lumen
157 area/sapwood area). The vessel arithmetic diameter (D) was estimated according to Scholz et
158 al.³².

159 Shapiro-Wilk's normality tests and Fisher's F-tests of equality of variances were
160 performed in R v.4.0.0 to determine the suitability of group comparison statistical tests. In
161 comparisons between equatorial and subtropical samples, we used the unpaired Student's T-
162 tests or, alternatively, Mann-Whitney-Wilcoxon tests. Multiple-group comparisons were
163 conducted for the analysis of environmental conditions in the field vs. in the glasshouse using
164 one-way analysis of variance (ANOVA) with Tukey's post hoc honest significant difference
165 (HSD) tests. A significance level of 0.05 was used as the alpha for all tests. The Bonferroni
166 adjustment of P-values was conducted for multiple comparisons.
167

168 ***Plant material for RNA extraction and RNA-sequencing***

169 Plant material used for RNA-sequencing (RNA-Seq) was collected from the
170 equatorial and subtropical sites described in the "Propagule sampling" section and
171 immediately stored in RNAlater (Ambion, Inc.). Because precise species identification
172 requires the analysis of both vegetative branches and flower morphology, opportunities of
173 sampling were limited by the reproductive phenology at each visited site. Leaves, stems and
174 flowers from three adult trees at least 100 m apart were collected from July-August of 2014,
175 which corresponds to the end of winter at the subtropical site and the beginning of the dry
176 season at the equatorial site. To minimize the detection of differential transcripts expression
177 due to circadian changes, sampling was conducted during low tide and from 10:30 AM to
178 4:00 PM. A detailed description of the environmental conditions at the time of sampling is
179 available in the Supplementary information Table S1.

180 We extracted RNA according to Oliveira et al.³³ and evaluated its integrity and purity
181 using agarose gel electrophoresis and a NanoVue spectrophotometer (GE Healthcare Life
182 Sciences). Illumina TruSeq RNA Sample Preparation kits (Illumina, Inc.) were used to
183 construct cDNA libraries. cDNA quality was assessed using the Agilent 2100 Bioanalyzer
184 (Agilent Technologies) and concentrations were quantified by qPCR using the Sequencing
185 Library qPCR Quantification kit (Illumina, Inc.). Sequencing was performed using two 36-
186 cycle TruSeq SBS paired-end kits (Illumina, Inc.) and the Genome Analyzer IIx platform
187 (Illumina, Inc.).
188

189 ***Assembly and characterisation of the A. schaueriana transcriptome***

190 Adapter sequences were trimmed, and 72-bp paired-end reads were filtered by quality
191 (Phred score ≥ 20 for at least 70% of the read length) using the NGS QC Toolkit v.2.3³⁴.
192 High-quality reads were used for transcriptome assembly in the CLC Genomics Workbench
193 (<https://www.qiagenbioinformatics.com/>). We used the default settings, except for the
194 distance between pairs (300-500 bp) and k-mer size (45 bp).

195 Reads were mapped to transcripts using bowtie1³⁵ in single-read mode using the
196 default parameters. Transcripts without read-mapping support were removed. Functional
197 annotation was performed using blastx v.2.2.31³⁶ with an e-value $< 1^{-10}$. NCBI RefSeq³⁷, The
198 Arabidopsis Information Resource (TAIR)³⁸ and NCBI non-redundant (nr) databases were
199 used as reference databases. We excluded transcripts that were exclusively similar to non-
200 plant sequences. Protein family domains were identified using HMMER3³⁹, which iteratively
201 searched transcripts against the Pfam database. To assign Gene Ontology (GO) terms to
202 transcripts, we used the *Arabidopsis thaliana* gene association file from the GO Consortium⁴⁰
203 and retrieved the information for transcripts showing similar coding sequences in the *A.*
204 *thaliana* genome. Redundant transcripts were clustered with Cd-hit-est v.4.6.1⁴¹ using local

205 alignment mode with 95% identity and 70% coverage of the shortest sequence thresholds.
206 Open reading frames (ORFs) were identified using Transdecoder (<http://transdecoder.sf.net>).
207 We reduced the redundancy of transcripts in the final assembly by retaining for each CD-
208 HIT-EST cluster either the sequence with the longest ORF or, in the absence of sequences
209 containing ORF, the longest sequence.

210 The completeness of the final transcriptome was assessed using BUSCO⁴².
211 Additionally, a reciprocal blastn alignment using an e-value threshold of 10^{-10} and a
212 minimum alignment length of 100 nucleotides with at least 70% identity was used to
213 compare the *A. schaueriana* transcriptome with other publicly available transcriptomes of
214 congeneric species.

215

216 **Comparative transcriptomics using RNA-sequencing**

217 Tissue-specific count data were obtained from the number of reads uniquely mapped
218 to each transcript of the non-redundant transcriptome using bowtie1³⁵ and normalised using
219 edgeR⁴³. Differentially expressed transcripts (DETs) between equatorial and subtropical tree
220 tissue-specific samples were detected using the exact test for negative binomial distributions
221 with an FDR < 0.05 (Benjamini-Hochberg). GO term enrichment analyses of the DETs were
222 performed using GOseq⁴⁴ with the Wallenius approximation method and P-value < 0.05.
223 Differential expression results were verified using reverse transcription real-time PCR (qRT-
224 PCR) (Supplementary Methods).

225

226 **Detection of candidate adaptive loci**

227 We sampled leaves from 79 adult plants at ten locations spanning most of the
228 distribution of *A. schaueriana* Stapf & Leechman ex Moldenke (Fig. 1, Supplementary
229 information Table S2). We isolated DNA using the DNeasy Plant Mini Kit (QIAGEN) and
230 NucleoSpin Plant II (Macherey Nagel) following the manufacturers' instructions. DNA
231 quality and quantity were assessed using 1% agarose electrophoresis and the QuantiFluor
232 dsDNA System with a Quantus fluorometer (Promega). Nextera-tagmented reductively-
233 amplified DNA (nextRAD) libraries⁴⁵ were prepared and sequenced by SNPsaurus
234 (SNPsaurus) on a HiSeq 2500 (Illumina, Inc.) with 100-bp single-end chemistry. Genomic
235 DNA fragmentation and short adapter ligation were performed with the Nextera reagent
236 (Illumina, Inc.) followed by amplification with one of the primers matching the adapter and
237 extending nine arbitrary nucleotides into the genomic DNA. Assembly, mapping and single
238 nucleotide polymorphic loci (SNP) identification were performed using custom scripts
239 (SNPsaurus), which created a reference catalogue of abundant reads across the combined
240 sample set and mapped reads to this reference, allowing two mismatches and retaining
241 biallelic loci present in at least 10% of the samples. We further filtered markers by allowing
242 no more than 65% of missing data, Phred score > 30, 8x minimum coverage, only one SNP
243 per locus and a minor allele frequency ≥ 0.05 using vcftools v.0.1.12b⁴⁶. To reduce paralogy
244 or low-quality genotype calls, we used a maximum read coverage of 56 (the average read
245 depth times 1.5 standard deviation).

246 After excluding plants morphologically identified as *A. schaueriana* with genomic
247 signs of hybridisation with *A. germinans* (L.) L., we assessed the genetic structure
248 considering all SNPs, using the discriminant analysis of principal components (DAPC)⁴⁷ and
249 ADMIXTURE v.1.3.0⁴⁸. For DAPC analyses, we considered the number of groups (K)
250 varying from 1-50 and the Bayesian information criteria for inferring K. Additionally, we
251 used the optim.a.score function to avoid overfitting during the discrimination steps. For the
252 ADMIXTURE analyses, we performed three separate runs for K varying from 1-15 using the
253 block-relaxation method for point estimation; computing was terminated when estimates
254 increased by < 0.0001, and the most likely K was determined by cross-validation.

255 We used two programs to minimise false-positive signs of natural selection:
256 LOSITAN⁴⁹, assuming an infinite allele model of mutation, using a confidence interval of
257 0.99, a false-discovery rate (FDR) of 0.1, the neutral mean FST and forcing the mean FST
258 options; and pcadapt 3.0.4⁵⁰, which simultaneously identifies the population structure and the
259 loci excessively related to this structure, using an FDR < 0.1.

260 Putative evidence of selection was considered only for SNP loci that were
261 conservatively identified by pcadapt and five independent runs of LOSITAN to avoid false-
262 positives⁵¹. As selection is presumably stronger in coding regions of the genome and there is
263 no reference genome for the species, we used the *de novo* assembled transcriptome,
264 characterized herein, as a reference to identify candidate loci within putative coding regions.
265 We performed a reciprocal alignment between nextRAD sequences (75 bp) and longer
266 expressed sequences (\approx 300-11600 bp) using blastn v.2.2.31³⁶, with a threshold of at least 50
267 aligned nucleotides, a maximum of one mismatch and no gaps.
268

269 **Data accessibility**

270 Expression data and sequences that support the findings have been deposited in
271 GenBank with the primary accession code GSE116060. A Variant Call Format file and its
272 complementary file, both required for all of the genome-wide SNP diversity analyses are
273 provided as Supplementary Files (Supplementary Datasets 1-2).
274
275

276 **Results**

277 **Comparative physiology using a common garden experiment**

278 Seedlings from equatorial and subtropical sites diverged in key ecophysiological traits
279 in the common garden experiment (Fig. 2-4). The inclination angle of the leaf lamina and the
280 average size of individual leaves were smaller in equatorial than in subtropical plants, but
281 total leaf area and specific leaf area did not differ between the groups (Fig. 2, Supplementary
282 information Table S3, Supplementary information Fig. S3). Additionally, equatorial plants
283 showed lower stomatal conductance and transpiration rates than did subtropical plants (Fig.
284 4). Subtropical plants accumulated more biomass in leaves and roots than did equatorial
285 plants. However, the stem dry mass ratio (MR) (stem dry biomass/plant dry biomass) was
286 greater in equatorial plants, whereas the leaf MR (leaf dry biomass/plant dry biomass) was
287 greater in subtropical plants (Fig. 2). The dry biomass accumulated in the stems and the root
288 MR (root dry biomass/plant dry biomass) were indistinguishable between the groups
289 (Supplementary information Table S3). Unexpectedly, 63% of the equatorial plants flowered
290 after six months of growth (Supplementary information Fig. S3g). Since this was not
291 observed in any subtropical plant, flowering plants were not used in the biomass allocation
292 analyses.

293 Mean stem vessel diameter was smaller in the equatorial seedlings than in the
294 subtropical seedlings, indicating enhanced hydraulic safety (Fig. 2, Supplementary
295 information Fig. S3h-i). However, the vessel density, vessel grouping index, vessel lumen
296 area in sapwood and total hydraulic conductivity of the stems were not significantly different
297 between the groups (P-value > 0.05) (Supplementary information Table S3). Plants from
298 contrasting latitudes exhibited different stem epidermis pigmentation, with equatorial
299 seedlings reflecting more long wavelengths red light (635-700 nm) and less medium
300 wavelengths green light (520-560 nm) than subtropical seedlings (Fig. 3).
301

302 **Characterisation of the *A. schaueriana* transcriptome**

303 In the absence of a reference genome, we obtained the first reference transcriptome
304 for *A. schaueriana* from leaves, stems and flowers of adult individuals under field conditions
305 (Supplementary information Fig. S4, Supplementary information Table S1). Over 209 million
306 paired-end 72-bp reads showing high quality were *de novo* assembled into a reference, non-
307 redundant transcriptome containing 49,490 sequences, of which 30,227 (61%) were putative
308 protein-coding sequences. Over 91.9% of these reads were mapped to a single transcript,
309 indicating minimum redundancy and a wide representation of sequenced data
310 (Supplementary information Table S4). Moreover, 91.8% of universal plant orthologous
311 genes were present in the reference transcriptome (Supplementary information Table S4).
312 Sequences with complete ORFs represented approximately 42% (12,796) of all putative
313 protein-coding transcripts (Supplementary information Table S5, Supplementary information
314 Fig. S5). Most of these putative protein-coding sequences (94.33%) showed significant
315 similarity (e-value < 1e-10) to proteins in the Plant RefSeq and TAIR databases
316 (Supplementary information Fig. S5c). More than 80% of protein-coding sequences matched
317 proteins from *Sesamum indicum* or *Erythranthe guttata*, which, as *A. schaueriana*, belong to
318 the order Lamiales (Supplementary information Fig. S6d). We identified 27,658, 18,325 and
319 13,273 putative orthologs between the *A. schaueriana* reference transcriptome and
320 transcriptomes derived from *A. marina* leaves⁵² and *A. officinalis* leaves⁵³ and roots⁵⁴,
321 respectively (Supplementary information Table S6).

322

323 **Comparative transcriptomics between trees from contrasting latitudes**

324 To identify the effects of environmental variation on gene expression and, thus on
325 phenotypes, at contrasting source sites in the field, we compared expression levels in trees
326 under field conditions as comparable as possible. Sampling was conducted during the low
327 tide, from 10:30 AM to 4:00 PM, at the end of winter at the subtropical site and at the
328 beginning of the dry season at the equatorial site (Supplementary information Table S1). As
329 expected, we observed a consistent source-site pattern in overall transcript expression levels
330 from leaves and stems (Supplementary information Fig. S6a-b). However, flowers transcript
331 expression levels did not show a clear pattern among samples of the same origin
332 (Supplementary information Fig. S6c), leading to the identification of only one DET. Thus,
333 we did not include flowers in the subsequent analyses (Supplementary information Fig. S6f).
334 Conversely, 1,837 and 904 transcripts showed significantly different (FDR < 0.05) relative
335 abundances between equatorial and subtropical samples in leaves and stems, respectively
336 (Supplementary information Fig. S6d-e). Among the total 2,741 DETs, 1,150 (41.91%) were
337 putative protein-coding transcripts.

338 The assignment of transcripts to GO terms was possible for 25,184 (83.31%) of the
339 30,227 putative protein-coding sequences, allowing GO enrichment analyses. Analyses were
340 conducted separately for leaves and stems and for each of the following two sets of DETs:
341 one showing higher expression levels in equatorial than in subtropical samples (which we
342 refer to as “DET-Eq”) and the other showing higher abundance in subtropical than in
343 equatorial samples (which are referred as “DET-St”). We focused on the biological processes
344 associated with key aspects of the responses to contrasting climate conditions between the
345 equatorial and subtropical sites (Table 1, Supplementary information Fig. S1). The enriched
346 processes among the DET sets included photosynthesis; cell wall biosynthesis; plant
347 responses to ultraviolet radiation (UV), temperature stimulus and water stress
348 (Supplementary information Tables S7-S11, Supplementary information Fig. S6i-l).

349 **Photosynthesis:** Among the DET-St set, we observed various putative genes
350 participating in the biosynthesis of the photosynthetic apparatus, chlorophyll and
351 photoreceptors; the function of electron transporters and chloroplast movement coordination.
352 Contrastingly, the DET-Eq set showed enrichment of transcripts similar to proteins required

353 for disassembling the light-harvesting complex of photosystem II in thylakoid membranes⁵⁵
354 (Supplementary information Table S11).

355 *Cell wall biosynthesis:* Transcripts similar to 33 distinct proteins and transcription
356 factors that play central roles in the biosynthesis and deposition of cell wall components, such
357 as cellulose, hemicellulose, lignin and pectin, were identified among DET-Eq
358 (Supplementary information Table S10).

359 *Response to UV:* Both the DET-St and DET-Eq sets showed enrichment of functions
360 related to responses to UV radiation; however, the transcript annotations differed between
361 these sets. The DET-St set included putative UV-B protectants and genes involved in UV-B-
362 induced antioxidant biosynthesis, such as plastid copper/zinc superoxide dismutases,
363 photosystem II repair proteins, and L-ascorbic acid. In contrast, the DET-Eq set showed
364 enrichment of transcripts associated with photo-oxidative damage reduction and the positive
365 regulation of anthocyanin biosynthesis in response to UV. Antioxidants induced by UV
366 irradiation⁵⁶, such as putative iron superoxide dismutases and pyridoxine biosynthesis genes,
367 were among the DET-Eq set (Supplementary information Table S11).

368 *Response to temperature:* In the DET-St set, we observed putative genes presenting
369 critical roles in chloroplast protein translation during cold acclimation and that provide
370 tolerance to chilling temperatures^{57,58}. There included transcripts similar to the *GLYCINE-*
371 *RICH RNA-BINDING* (RZ1A), which has a chaperone activity during cold acclimation⁵⁹, and
372 to the cold-inducible ATP-dependent *DNA HELICASE ATSGS1*, required for DNA damage-
373 repair⁶⁰. Interestingly, DET-St included a putative *AGAMOUS-LIKE 24* (AGL24)
374 transcription factor that is involved in vernalisation-induced floral transition⁶¹. Contrastingly,
375 various transcripts similar to heat shock-inducible chaperones and to *ADENINE*
376 *NUCLEOTIDE ALPHA HYDROLASE-LIKE* (AT3G53990), involved in chaperone-mediated
377 protein folding⁶², were among the DET-Eq set, potentially enhancing tolerance to heat in
378 equatorial plants. Additionally, a transcript similar to the *ETHYLENE-RESPONSIVE*
379 *ELEMENT BINDING* (RAP2.3), which confers resistance to heat and hydrogen peroxide⁶³,
380 was observed in this group (Supplementary information Table S11).

381 *Response to water stress:* Transcripts associated with the response and tolerance to
382 water deficits and with cellular ion homeostasis and osmotic adjustment were enriched
383 among DET-Eq; for instance, a transcript similar to the *ETHYLENE-RESPONSIVE*
384 *TRANSCRIPTION FACTOR* (RAP2.4), which regulates the expression of several drought-
385 responsive genes, including aquaporins^{64,65}. Accordingly, a putative aquaporin *PLASMA*
386 *MEMBRANE INTRINSIC* (PIP1;4)⁶⁶ was found in this set. In DET-Eq, we observed putative
387 genes participating in the synthesis of raffinose, an osmoprotective soluble trisaccharide⁶⁷, as
388 well as transcripts similar to osmosensitive ion channels belonging to the *EARLY-*
389 *RESPONSIVE TO DEHYDRATION STRESS FAMILY*. Correspondingly, we observed an ion
390 channel, *SLAC1 HOMOLOGUE 3* (SLAH3), required for stomatal closure induced by
391 drought stress⁶⁸, and the putative *NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3*
392 (NCED3), which increases plant resistance to water deficits through the accumulation of
393 abscisic acid (ABA), leading to stomatal closure. Possibly as a consequence of decreased
394 stomatal conductance, a transcript similar to the photorespiration gene, *ALANINE-*
395 *GLYOXYLATE AMINOTRANSFERASE 2 HOMOLOG 3* (AT3G08860)⁶⁹, was also observed
396 among the DET-Eq (Supplementary information Table S11).

397 We confirmed the results obtained from RNA-Seq data computational analyses by
398 qRT-PCR using ten DETs from leaf samples (Supplementary information Fig. S7,
399 Supplementary information Table S12, Supplementary Note).

400
401 ***Detection of SNPs with signs of selection***

402 RNA-Seq enabled the assembly of a reference transcriptome and the identification of
403 biological processes influenced by the environmental divergence over the South American
404 coastline. To complement these analyses, as one cannot disentangle the effects of plasticity
405 and adaptive selection in the differential expression^{70,71}, we searched for gene sequence
406 variations among trees sampled along the Atlantic coast of South America (Fig. 1,
407 Supplementary information Table S2). After quality filtering of the sequenced data, we
408 selected 77 individuals without evidence of interspecific hybridisation with *A. germinans* for
409 downstream analyses. We identified a set of 6,170 high-quality unlinked biallelic SNP loci
410 with a minor allele frequency ≥ 0.05 and $\geq 8x$ coverage. The overall genetic structure of
411 genome-wide SNPs corroborated a previous study based on putatively neutral loci²², dividing
412 the species into two populations: north and south of the northeast extremity of South America
413 (Fig. 5).

414 We observed 122 loci showing considerable departures from neutral expectations of
415 interpopulational divergence, as conservatively detected⁷² by padapt and LOSITAN. Fifteen
416 of these loci aligned to *A. schaueriana* transcripts that were similar to gene models in *A.*
417 *thaliana* and *S. indicum* (Supplementary information Table S13), enabling screening for their
418 potential functional roles. However, five reference proteins did not have informative
419 functions described for the model plant, hindering functional inferences. Conversely, among
420 the remaining annotated candidates, we found five putative genes involved in processes
421 related to contrasting equatorial and subtropical environmental variables (Fig. 6). One
422 candidate locus was detected in the putative transcription factor *RAP2.4*, which is induced in
423 response to water and salt stress⁶⁴ and regulates the expression of aquaporins⁶⁵. Two other
424 candidates showed similarity to the transcription factors *ZINC-FINGER PROTEIN 1* (ZFN1),
425 involved in the regulation of the expression of several water stress genes⁷³, and the *HYPOXIA*
426 *RESPONSE ATTENUATOR* (HRA1), which is strongly induced in response to low oxygen
427 levels⁷⁴. A putative *UDP GLUCOSYL TRANSFERASE*, an enzyme that catalyses the final
428 step of anthocyanin biosynthesis wherein pigmentation is produced⁷⁵, also showed evidences
429 of positive selection. Additionally, one candidate locus was in a transcript similar to the
430 *TETRATRICOPEPTIDE REPEAT* gene (AT2G20710, TPR), which might play a role in the
431 biogenesis of the photosynthetic apparatus⁷⁶.

432 Discussion

433 In this study, we integrated genomic and ecophysiological approaches to investigate
434 the foundations of adaptive variations in a dominant tree from the Atlantic coast of South
435 America. We tested the hypothesis that latitudinal variations in climate regimens shape
436 genetic and phenotypic variation involved in resource-use strategies in widespread coastal
437 trees, using the mangrove *Avicennia schaueriana* as a model. Overall, our results supported
438 this hypothesis. Using a common garden experiment, we detected differences between plants
439 from contrasting latitudes in key ecophysiological traits involved in carbon and water
440 balances, indicating an inheritable basis of trait divergence. Accordingly, transcriptomic
441 changes between plants sampled in contrasting latitudes showed enrichment in processes
442 associated with central aspects of the environmental divergence across latitudes, such as
443 responses to temperature, solar radiation, water deficit, photosynthesis and cell wall
444 biosynthesis (Supplementary information Fig. S6i-l). The relevance of these biological
445 processes in the field was corroborated by the identification of SNP loci with signs of
446 selection present within putative coding transcripts similar to genes involved in responses to
447 osmotic stress, accumulation of anthocyanins and photosynthesis, unveiling a genetic basis
448 for environmental adaptation. Figure 6 summarises the integration of three independent

449 approaches that converge to suggest population adaptation to contrasting environments over
450 the species range.

451

452 ***Evidence of a conservative resource-use strategy in the equatorial population of *A.****
453 ***schaueriana***

454 Traits exhibited by equatorial plants compared to subtropical plants during the
455 common garden experiment, such as a smaller leaf size and angle, higher levels of red light-
456 reflecting pigments, narrower vessels and lower rates of stomatal conductance, limit carbon
457 acquisition⁷⁷ and may have imposed constraints on carbon gain in equatorial plants.
458 Accordingly, these plants also accumulated less biomass than subtropical plants (Fig. 2-4,
459 Supplementary information Fig. S3). Despite causing limitations in growth, these
460 characteristics allow plants to maintain suitable leaf temperature for photosynthesis while
461 reducing the risk of cavitation, UV exposure and water loss through the minimisation of
462 evaporative cooling⁷⁷. Given the relevance of these traits to water and carbon balances,
463 especially under high salinity environments, the prevalence of more conservative resource-
464 use traits among equatorial samples in the common garden experiment suggested a selection
465 favouring drought tolerance, likely being advantageous during hot-dry seasons in equatorial
466 wetlands (August-December). These seasons frequently present a combination of stressful
467 conditions, including high UV exposure; highly fluctuating soil salinity, resulting from wide
468 daily tidal range; and high vapour pressure deficit (VPD), resulting from high temperature (>
469 30 °C) and an air humidity below 60% (Figure 1, Table 1, Supplementary information Fig.
470 S1). Accordingly, equatorial plants also showed lower transpiration rates than subtropical
471 plants in the common garden (Fig. 4). Additionally, 63% of the six-month-old equatorial
472 plants flowered from July-August in the common garden experiment (Supplementary
473 information Fig. S3g), whereas subtropical plants did not flower. This period is consistent
474 with phenological observations reported for *A. schaueriana* in both equatorial⁷⁸ and southern
475 subtropical forests⁷⁹, and could indicate a genetic basis for the observed variation. Early
476 flowering is a phenotype with complex genetic components, rarely studied in non-model
477 organisms, but is renowned as an adaptive mechanism for maximising chances of
478 reproduction under stressful environments⁸⁰.

479

480 In their native environment, equatorial plants showed increased expression levels of
481 putative heat-shock proteins, drought-induced ion transporters, aquaporins and genes that
482 play central roles in stomatal closure and photorespiration compared to subtropical plants,
483 likely contributing to heat and drought tolerance. These findings provided multiple lines of
484 evidence of heat and water stress responses. Higher expression of aquaporins and genes
485 involved in the accumulation of organic solutes may contribute to lowering the cellular water
486 potential, while improving drought tolerance in equatorial plants compared to subtropical
487 plants^{67,81}. Additionally, higher expression of several transcripts associated with secondary
488 cell wall biosynthesis and thickening, may enhance the rigidity of cells and reduce the risk of
489 collapse during dehydration-rehydration cycles in equatorial trees⁸². Moreover, equatorial
490 plants showed lower expression of several putative photosynthesis genes than subtropical
491 plants. In response to drought, high-light and heat stress plants minimise the photooxidative
492 damage by reducing the photosynthetic activity via repression of photosynthesis genes⁸³⁻⁸⁶.
493 Remarkably, evidences of selection were detected in two putative transcription factors,
494 *RAP2.4* and *ZFN1*, which play key roles in the regulation of osmotic stress-response^{64,73}.
495 These findings support the hypothesis that dry seasons marked by low rainfall and high VPD,
496 which are caused by the combination of high temperatures and low air humidity⁸⁷ in the
497 equatorial region, induce a pivotal selective pressure for coastal trees populations.

498 ***Evidence of an acquisitive resource-use strategy in the subtropical population of *A.****

499 ***schaueriana***

500 Subtropical plants showed higher stomatal conductance and transpiration rates, higher
501 levels of green light-reflecting pigments, larger leaf area, wider leaf lamina angle and larger
502 xylem vessel diameter than equatorial plants in the common garden experiment (Fig. 2-4,
503 Supplementary information Fig. S3). These characteristics enhance light energy absorbance
504 and carbon acquisition, at the expense of a higher cavitation risk^{88,89}. Conversely, this
505 apparent riskier strategy may compensate for seasonal declines in growth resulting from
506 decreasing temperature, photoperiod and light quality at higher-latitudes⁹⁰ (Table 1,
507 Supplementary information Fig. S1). Although low temperatures reduce enzymatic activity⁹¹
508 and, thus, plant growth, the severity of low-temperature stress in the southernmost subtropical
509 mangrove forests of the Americas is likely insufficient to favour the selection of freezing-
510 tolerant adaptations, in contrast to results reported for mangroves at their northernmost edge
511 on the Atlantic coast of the Americas⁹². At the southernmost limit of American mangrove
512 forests, the minimum air temperature does not drop below 0 °C (Table 1, Supplementary
513 information Fig. S1) and remains within the expected mangrove physiological thresholds⁹³.
514 Additionally, the small population size of *A. schaueriana* at this location²⁷ and the arrival of
515 maladapted propagules from northerly populations likely reduce the potential strength of
516 selection favouring cold-adaptive traits.

517 Corroborating the observed differences in morphophysiological traits, we found
518 divergence at the molecular level that may also be related to the increasing amplitude of
519 variation in photoperiod and light quality towards high latitudes. Plants optimise the use of
520 light energy and adjust photosynthetic activity through the regulation of light-harvesting and
521 photosystem-component genes⁸³. Thus, the higher expression levels of transcripts associated
522 with photosynthesis in subtropical than in equatorial plants may have facilitated the
523 absorption of light energy in subtropical plants during winter. Although solar irradiance
524 levels were indistinguishable between sampling sites at the time of sampling (Supplementary
525 information Table S1), transcriptomic changes in putative UV-inducible antioxidant and
526 photodamage repair genes suggest the use of distinct strategies to respond to differential
527 seasonality in photoperiod and solar radiation levels between subtropical and equatorial
528 latitudes. Notably, we observed signatures of selection in two transcripts, one showing
529 similarity to a *UDP-GLUCOSYL TRANSFERASE*, a key enzyme in the anthocyanin
530 biosynthesis pathway, and the other in a transcript similar to a TPR gene, required for
531 chlorophyll biosynthesis and for the biogenesis of the photosynthetic apparatus⁷⁶. These
532 results imply that solar radiation, in addition to VPD, may act as an environmental factor
533 driving selection in *A. schaueriana*.

534 Although soil oxygen availability affects plant growth in intertidal areas, we did not
535 focus our experiments on the relevance of hypoxia in shaping adaptive divergence in coastal
536 wetlands⁹⁴. However, evidence of selection was detected in a transcription factor highly
537 induced by oxygen deprivation (HRA1)⁷⁴. Additionally, the HRA1 putative homolog also
538 showed a 1.75-fold higher expression in subtropical leaves relative to that in equatorial leaves
539 (Supplementary information Table S1), even though sampling was conducted during the low
540 tide at both sites. As tidal amplitude decreases with increasing latitude along the Atlantic
541 coast of South America⁹⁵ (Table 1, Fig. 6), trees are exposed to increasing anoxia conditions
542 southwards. These findings suggest that subtropical populations may have better stress
543 preparedness for hypoxia than equatorial populations.

544
545 ***Climate change and conservation implications***

546 Our results provide compelling evidence that adaptations to contrasting seasonality in
547 freshwater availability and solar radiation are involved in the organisation of diversity of the

548 dominant coastal tree *A. schaueriana*. The functional divergence described herein might
549 differentially affect the sensitivity of northerly and southerly populations to a rapidly
550 changing climate. It has been suggested that the southernmost mangrove forests in the
551 Americas could expand polewards in the near future⁹⁶. We expect that the observed
552 acquisitive resource-use characteristics may indeed favour subtropical tree growth under
553 increased CO₂ concentrations, temperatures and rainfall, as predicted for this region by
554 2100⁹⁷. However, a great landward relocation of subtropical populations will be necessary to
555 their persistence in the face of rising sea level⁹⁸, due to the narrowing of intertidal zones
556 towards mid-latitude areas on the Atlantic coast of South America (Fig. 1). Even though
557 subtropical populations apparently show a better preparedness for hypoxia than equatorial
558 populations, this scenario is aggravated by the dense coastal occupation by urban and
559 agricultural areas, which may preclude the landward migration of subtropical mangroves in
560 South America. Contrastingly, equatorial populations frequently have wider plains that are
561 potentially available for expansion and lower human occupation, but might be threatened by
562 reduced rainfall and increased VPD during more intense El Niño-Southern Oscillation
563 events⁹⁷. Increased temperature will stimulate both respiration⁹⁹ and photorespiration¹⁰⁰ and
564 may eventually offset benefits in carbon acquisition caused by increased CO₂
565 concentrations¹⁰¹. The critical temperature threshold for photosynthesis may be overcome
566 more frequently, possibly reducing carbon assimilation and productivity¹⁰². With a
567 conservative resource-use strategy, further limitations in net carbon assimilation could, in
568 extreme events, lead to biomass loss or tree mortality triggered by carbon starvation¹⁰³. This
569 scenario could be especially severe to the semiarid northeast South American coast,
570 particularly in the face of intense human use of adjacent plains and decreasing trends in
571 terrestrial freshwater availability and coastal freshwater input^{104,105}.

572 Our results corroborate previous studies of marine species from the Northern Atlantic
573 that associated limited north-south population connectivity with adaptation to latitudinal
574 environmental dissimilarity^{19–21}. As widespread trees distributed along the Atlantic coast of
575 South America show an overlapping north-south organisation of genetic variation^{22–24}, we
576 hypothesise that they may also show divergent adaptations to heterogeneous resource
577 availability over their distribution ranges. Conservation efforts of coastal ecosystems should
578 focus on resilient, habitat-forming species that give shelter and act as climate rescuers for
579 several stress-sensitive species¹⁰⁶. We recommend that populations of coastal trees occurring
580 north and south from the northeast extremity of South America should warrant attention as
581 distinct conservation management units¹⁰⁷ for the long-term persistence of coastal
582 biodiversity and the ecosystem services they provide.

583

584 **Conclusions**

585 Studies on local adaptations in tropical trees are frequently limited by difficulties in
586 implementing traditional approaches, such as reciprocal transplants, due to their long
587 generation time and the lack of basic biological information, as knowledge of their
588 evolutionary history, reproductive mode or phenological patterns. Despite limitations, we
589 provided integrated ecophysiological and genomic evidences that support the hypothesis that
590 seasonal environmental heterogeneity in solar radiation and freshwater availability may shape
591 the variation of traits associated with resource-use in *A. schaueriana*, a widespread tree along
592 the Atlantic coastline of South America. The non-neutral trait diversity derived from the
593 interdisciplinary approach used here provides a perspective into the molecular and
594 phenotypic scales at which environmental selection may shape functional variation of this
595 dominant species, on a continental scale. Integrating high-throughput sequencing and
596 ecophysiological approaches, has shown to be a promising strategy in the study of adaptation
597 in non-model, long-lived species. To provide more realistic predictions of how dominant

598 coastal trees may respond to current global climate changes we encourage the development of
599 further studies accounting for phenotypically¹⁴ and genetically¹⁰⁸ informed distribution
600 modelling. Since freshwater availability has been decreasing in coastal areas worldwide¹⁰⁴,
601 strongly compromising the productivity of coastal plants¹⁰⁵, such studies should focus on
602 biological variation involved in the balance between carbon gain and water loss. This
603 knowledge can improve predictions on the future of ecosystems they form and generate key
604 information for forest conservation and management efforts^{14,109}. Without the realization and
605 dissemination of such studies, the success of conservation plans for tropical forests and their
606 potential to mitigate climate change will likely be seriously compromised.

607 **Acknowledgements**

608 We thank Prof. Michel G. Vincentz and Prof. Juliana S. Mayer for advising and
609 making their laboratory available for our training and performing of RNA extraction and
610 slide preparation for the wood anatomy analyses. We acknowledge Ilmarina C. Menezes and
611 Stephanie K. Bajay for assistance in the field. We thank Stephanie K. Bajay for providing
612 assistance in the germination of the propagules used in the common garden experiment.
613 Moreover, we thank Greg Mellers and Alessandro Alves-Pereira for critically reading the
614 manuscript. M.V.C. received fellowships from the São Paulo Research Foundation - FAPESP
615 (PhD 2013/26793-7) and from the Coordination for the Improvement of Higher Education
616 Personnel - CAPES Computational Biology Program (PhD SWE 8084/2015-07, PhD
617 88887.177158/2018-00). G.M.M. received fellowships from FAPESP (PD 2013/08086-1, PD
618 BEPE 2014/22821-9) and a grant from the Brazilian National Council for Scientific and
619 Technological Development - CNPq (PD 448286/2014-9). C.C.S. received fellowships from
620 FAPESP (PD 2015/24346-9) and CAPES Computational Biology Program (88881.185134/2018-01). R.S.O. received a CNPq productivity scholarship and a grant from
621 Microsoft research-FAPESP (2011/52072-0). A.P.S. received a grant from CAPES -
622 Computational Biology Program (88882.160095/2013-01), a research fellowship from CNPq
623 (309661/2014-5) and a CNPq productivity scholarship.
624

625 **Author contributions**

626 A.P.S., R.S.O., G.M.M. and M.V.C. designed the study. M.V.C. and G.M.M. conducted
627 fieldwork. M.V.C. and C.S.M. cultivated seedlings and performed analyses of
628 morphophysiological data. M.V.C. prepared samples and performed RNA-sequencing.
629 M.V.C., M.D., D.H.O. and G.M.M. analysed RNA-Seq data. C.C.S. and M.V.C. verified
630 RNA-Seq data through qRT-PCR. G.M.M. prepared samples and performed genotyping of
631 genome-wide SNP. G.M.M. and M.V.C. analysed nextRAD results. A.P.S., M.I.Z., G.M.M.
632 and R.S.O. contributed material/reagents/analysis tools. M.V.C. and G.M.M. wrote the
633 manuscript. All authors discussed the results and contributed to the manuscript.

634 **Competing interests**

635 The authors declare no competing interests.
636

637 **References**

1. Hereford, J. A Quantitative Survey of Local Adaptation and Fitness Trade-Offs. *Am. Nat.* **173**, 579–588 (2009).
2. Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. *Ecol. Lett.* **7**, 1225–

641 1241 (2004).

642 3. Albert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G. & Violle, C. When and how
643 should intraspecific variability be considered in trait-based plant ecology? *Perspect. Plant Ecol. Evol. Syst.* **13**, 217–225 (2011).

644 4. Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation,
645 migration or extirpation: climate change outcomes for tree populations. *Evol. Appl.* **1**,
646 95–111 (2008).

647 5. Jump, A. S. & Peñuelas, J. Running to stand still□: adaptation and the response of
648 plants to rapid climate change. *Ecol. Lett.* **8**, 1010–1020 (2005).

649 6. Hoegh-Guldberg, O. & Bruno, J. F. The Impact of Climate Change on the World's
650 Marine Ecosystems. *Science (80-.)* **328**, 1523–1528 (2010).

651 7. Loarie, S. R. *et al.* The velocity of climate change. *Nature* **462**, 1052–1055 (2009).

652 8. Duke, N. C. *et al.* A World Without Mangroves? *Science (80-.)* **317**, 41 (2007).

653 9. Polidoro, B. A. *et al.* The loss of species: Mangrove extinction risk and geographic
654 areas of global concern. *PLoS One* **5**, e10095 (2010).

655 10. Normile, D. El Niño's warmth devastating reefs worldwide. *Science (80-.)* **352**, 15–
656 16 (2016).

657 11. Duke, N. *et al.* Large-scale dieback of mangroves in Australia. *Mar. Freshw. Res.* **68**,
658 1816–1829 (2017).

659 12. Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (*Posidonia*
660 *oceanica*) shoot mortality. *Glob. Chang. Biol.* **16**, 2366–2375 (2010).

661 13. Kauffman, J. B. *et al.* Carbon stocks of mangroves and salt marshes of the Amazon
662 region, Brazil. *Biol. Lett.* **14**, 20180208 (2018).

663 14. Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales:
664 Implications for understanding global change responses. *Glob. Chang. Biol.* **22**, 137–
665 150 (2016).

666 15. Wee, A. K. S. *et al.* The integration and application of genomic information in
667 mangrove conservation. *Conserv. Biol.* **33**, 206–209 (2018).

668 16. Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic
669 structure over the American continents and transoceanic dispersal in the mangrove
670 genus *Rhizophora* (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast
671 DNA analysis. *Am. J. Bot.* **100**, 1191–1201 (2013).

672 17. Mori, G. M., Zucchi, M. I., Sampaio, I. & Souza, A. P. Species distribution and
673 introgressive hybridization of two *Avicennia* species from the Western Hemisphere
674 unveiled by phylogeographic patterns. *BMC Evol. Biol.* **15**, 1–15 (2015).

675 18. Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype-
676 environment mismatches reduce connectivity in the sea. *Ecol. Lett.* **13**, 128–140
677 (2010).

678 19. Jeffery, N. W. *et al.* Range-wide parallel climate-associated genomic clines in Atlantic
679 salmon. *R. Soc. Open Sci.* **4**, 171394 (2017).

680 20. Bradbury, I. R. *et al.* Parallel adaptive evolution of Atlantic cod on both sides of the
681 Atlantic Ocean in response to temperature. *Proc. R. Soc. B Biol. Sci.* **277**, 3725–3734
682 (2010).

683 21. Chu, N. D., Kaluziak, S. T., Trussell, G. C. & Vollmer, S. V. Phylogenomic analyses
684 reveal latitudinal population structure and polymorphisms in heat stress genes in the
685 North Atlantic snail *Nucella lapillus*. *Mol. Ecol.* **23**, 1863–1873 (2014).

686 22. Mori, G. M., Zucchi, M. I. & Souza, A. P. Multiple-geographic-scale genetic structure
687 of two mangrove tree species: the roles of mating system, hybridization, limited
688 dispersal and extrinsic factors. *PLoS One* **10**, e0118710 (2015).

689 23. Francisco, P. M., Mori, G. M., Alves, F. M., Tambarussi, E. & Souza, A. P. De.

691 Population genetic structure, introgression, and hybridization in the genus *Rhizophora*
 692 along the Brazilian coast. *Ecol. Evol.* **8**, 3491–3504 (2018).

693 24. Takayama, K., Tateishi, Y., Murata, J. & Kajita, T. Gene flow and population
 694 subdivision in a pantropical plant with sea-drifted seeds *Hibiscus tiliaceus* and its
 695 allied species: Evidence from microsatellite analyses. *Mol. Ecol.* **17**, 2730–2742
 696 (2008).

697 25. Savolainen, O., Pyhäjärvi, T. & Knürr, T. Gene Flow and Local Adaptation in Trees.
 698 *Annu. Rev. Ecol. Evol. Syst.* **38**, 595–619 (2007).

699 26. Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the
 700 genetic level. *Nat. Rev. Genet.* **12**, 767–780 (2011).

701 27. Soares, M. L. G., Estrada, G. C. D., Fernandez, V. & Tognella, M. M. P. Southern
 702 limit of the Western South Atlantic mangroves: Assessment of the potential effects of
 703 global warming from a biogeographical perspective. *Estuar. Coast. Shelf Sci.* **101**, 44–
 704 53 (2012).

705 28. Souza-Filho, P. W. M. *et al.* Holocene coastal evolution and facies model of the
 706 Bragança macrotidal flat on the Amazon Mangrove Coast, northern Brazil. *J. Coast.*
 707 *Res.* **1**, 306–310 (2006).

708 29. Kjerfve, B. *et al.* Morphodynamics of muddy environments along the Atlantic coasts
 709 of North and South America. in *Muddy coasts of the World: Processes, Deposits and*
 710 *Function* (eds. Healy, T., Wang, Y. & Healy, J.-A.) **4**, 479–532 (Elsevier Science
 711 B.V., 2002).

712 30. Reef, R. *et al.* The effect of atmospheric carbon dioxide concentrations on the
 713 performance of the mangrove *Avicennia germinans* over a range of salinities. *Physiol.*
 714 *Plant.* **154**, 358–368 (2015).

715 31. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
 716 image analysis. *Nat. Methods* **9**, 671–675 (2012).

717 32. Scholz, A., Klepsch, M., Karimi, Z. & Jansen, S. How to quantify conduits in wood?
 718 *Front. Plant Sci.* **4**, 1–11 (2013).

719 33. Oliveira, R. R., Viana, A. J. C., Reátegui, A. C. E. & Vincentz, M. G. A. An efficient
 720 method for simultaneous extraction of high-quality RNA and DNA from various plant
 721 tissues. *Genet. Mol. Res.* **14**, 18828–18838 (2015).

722 34. Patel, R. K. & Jain, M. NGS QC toolkit: A toolkit for quality control of next
 723 generation sequencing data. *PLoS One* **7**, e30619 (2012).

724 35. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. Ultrafast and memory-efficient
 725 alignment of short DNA sequences to the human genome. *Genome Biol.* **10**, R25
 726 (2009).

727 36. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**,
 728 421 (2009).

729 37. O’Leary, N. A. *et al.* Reference sequence (RefSeq) database at NCBI: Current status,
 730 taxonomic expansion, and functional annotation. *Nucleic Acids Res.* **44**, D733–D745
 731 (2016).

732 38. Berardini, T. Z. *et al.* The Arabidopsis Information Resource: Making and Mining the
 733 “Gold Standard” Annotated Reference Plant Genome. *Genesis* **53**, 474–485 (2015).

734 39. Finn, R. D. *et al.* Pfam: The protein families database. *Nucleic Acids Res.* **42**, 222–230
 735 (2014).

736 40. Blake, J. A. *et al.* Gene ontology consortium: Going forward. *Nucleic Acids Res.* **43**,
 737 D1049–D1056 (2015).

738 41. Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of
 739 protein or nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).

740 42. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M.

741 43. BUSCO: Assessing genome assembly and annotation completeness with single-copy
742 orthologs. *Bioinformatics* **31**, 3210–3212 (2015).

743 44. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
744 differential expression analysis of digital gene expression data. *Bioinformatics* **26**,
745 139–140 (2010).

746 45. Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis
747 for RNA-seq: accounting for selection bias. *Genome Biol.* **11**, R14 (2010).

748 46. Russello, M. A., Waterhouse, M. D., Etter, P. D. & Johnson, E. A. From promise to
749 practice: pairing non-invasive sampling with genomics in conservation. *PeerJ* **3**, e1106
750 (2015).

751 47. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–
752 2158 (2011).

753 48. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal
754 components: a new method for the analysis of genetically structured populations. *BMC*
755 *Genet.* **11**, 94 (2010).

756 49. Antao, T., Lopes, A., Lopes, R. J., Beja-Pereira, A. & Luikart, G. LOSITAN: A
757 workbench to detect molecular adaptation based on a Fst -outlier method. *BMC*
758 *Bioinformatics* **9**, 1–5 (2008).

759 50. Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans
760 for selection based on principal component analysis. *Mol. Ecol. Resour.* **33**, 67–77
761 (2016).

762 51. Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local
763 adaptation depends on sampling design and statistical method. *Mol. Ecol.* **24**, 1031–
764 1046 (2015).

765 52. Huang, J. *et al.* Transcriptome Sequencing and Analysis of Leaf Tissue of *Avicennia*
766 *marina* Using the Illumina Platform. *PLoS One* **9**, e108785 (2014).

767 53. Lyu, H., Li, X., Guo, Z., He, Z. & Shi, S. *De novo* assembly and annotation of the
768 *Avicennia officinalis* L. transcriptome. *Mar. Genomics* **38**, 17–20 (2017).

769 54. Krishnamurthy, P. *et al.* Transcriptomics analysis of salt stress tolerance in the roots of
770 the mangrove *Avicennia officinalis*. *Nat. Sci. Reports* **7**, 1–19 (2017).

771 55. Park, S.-Y. *et al.* The Senescence-Induced Staygreen Protein Regulates Chlorophyll
772 Degradation. *Plant Cell* **19**, 1649–1664 (2007).

773 56. Myouga, F. *et al.* A Heterocomplex of Iron Superoxide Dismutases Defends
774 Chloroplast Nucleoids against Oxidative Stress and Is Essential for Chloroplast
775 Development in *Arabidopsis*. *Plant Cell Online* **20**, 3148–3162 (2008).

776 57. Wang, S. *et al.* Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance
777 through 23S rRNA Processing in *Arabidopsis*. *PLoS Genet.* **12**, 1–21 (2016).

778 58. Goulas, E. *et al.* The chloroplast lumen and stromal proteomes of *Arabidopsis thaliana*
779 show differential sensitivity to short- and long-term exposure to low temperature.
780 *Plant J.* **47**, 720–734 (2006).

781 59. Kim, Y. O., Kim, J. S. & Kang, H. Cold-inducible zinc finger-containing glycine-rich
782 RNA-binding protein contributes to the enhancement of freezing tolerance in
783 *Arabidopsis thaliana*. *Plant J.* **42**, 890–900 (2005).

784 60. Hartung, F., Suer, S. & Puchta, H. Two closely related RecQ helicases have
785 antagonistic roles in homologous recombination and DNA repair in *Arabidopsis*
786 *thaliana*. *Proc. Natl. Acad. Sci.* **104**, 18836–18841 (2007).

787 61. Michaels, S. D. *et al.* AGL24 acts as a promoter of flowering in *Arabidopsis* and is
788 positively regulated by vernalization. *Plant J.* **33**, 867–874 (2003).

789
790

791 62. Jung, Y. J. *et al.* Universal Stress Protein Exhibits a Redox-Dependent Chaperone
792 Function in *Arabidopsis* and Enhances Plant Tolerance to Heat Shock and Oxidative
793 Stress. *Front. Plant Sci.* **6**, 1–11 (2015).

794 63. Ogawa, T. *et al.* Functional Analysis of *Arabidopsis* Ethylene-Responsive Element
795 Binding Protein Conferring Resistance to Bax. *Plant Physiol.* **138**, 1436–1445 (2005).

796 64. Lin, R. C., Park, H. J. & Wang, H. Y. Role of *Arabidopsis* RAP2.4 in regulating light-
797 and ethylene-mediated developmental processes and drought stress tolerance. *Mol.*
798 *Plant* **1**, 42–57 (2008).

799 65. Rae, L., Lao, N. T. & Kavanagh, T. A. Regulation of multiple aquaporin genes in
800 *Arabidopsis* by a pair of recently duplicated DREB transcription factors. *Planta* **234**,
801 429–444 (2011).

802 66. Alexandersson, E. *et al.* Whole gene family expression and drought stress regulation of
803 aquaporins. *Plant Mol. Biol.* **59**, 469–484 (2005).

804 67. Nishizawa, A., Yabuta, Y. & Shigeoka, S. Galactinol and Raffinose Constitute a Novel
805 Function to Protect Plants from Oxidative Damage. *Plant Physiol.* **147**, 1251–1263
806 (2008).

807 68. Zhang, A. *et al.* S-Type Anion Channels SLAC1 and SLAH3 Function as Essential
808 Negative Regulators of Inward K⁺ Channels and Stomatal Opening in *Arabidopsis*.
809 *Plant Cell* **28**, 949–965 (2016).

810 69. Liepmann, A. H. & Olsen, L. J. Alanine aminotransferase homologs catalyze the
811 glutamate:glyoxylate aminotransferase reaction in peroxisomes of *Arabidopsis*. *Plant*
812 *Physiol.* **131**, 215–27 (2003).

813 70. Wolf, J. B. W., Lindell, J. & Backstrom, N. Speciation genetics: current status and
814 evolving approaches. *Philos. Trans. R. Soc. B Biol. Sci.* **365**, 1717–1733 (2010).

815 71. Gould, B. A., Chen, Y. & Lowry, D. B. Gene Regulatory Divergence Between Locally
816 Adapted Ecotypes in Their Native Habitats. *Mol. Ecol.* **27**, 4174–4188 (2018).

817 72. Ahrens, C. W. *et al.* The search for loci under selection: trends, biases and progress.
818 *Mol. Ecol.* **27**, 1342–1356 (2018).

819 73. Sakamoto, H., Araki, T., Meshi, T. & Iwabuchi, M. Expression of a subset of the
820 *Arabidopsis* Cys2/His2-type zinc-finger protein gene family under water stress. *Gene*
821 **248**, 23–32 (2000).

822 74. Giuntoli, B. *et al.* A trihelix DNA binding protein counterbalances hypoxia-responsive
823 transcriptional activation in *Arabidopsis*. *PLoS Biol.* **12**, (2014).

824 75. Tohge, T. *et al.* Functional genomics by integrated analysis of metabolome and
825 transcriptome of *Arabidopsis* plants over-expressing an MYB transcription factor.
826 *Plant J.* **42**, 218–235 (2005).

827 76. Bohne, A. V., Schwenkert, S., Grimm, B. & Nickelsen, J. Roles of Tetratricopeptide
828 Repeat Proteins in Biogenesis of the Photosynthetic Apparatus. *Int. Rev. Cell Mol.*
829 *Biol.* **324**, 187–227 (2016).

830 77. Reef, R. & Lovelock, C. E. Regulation of water balance in Mangroves. *Ann. Bot.* **115**,
831 385–395 (2015).

832 78. Menezes, M. P. M. de, Berger, U. & Mehlig, U. Mangrove vegetation in Amazonia: a
833 review of studies from the coast of Pará and Maranhão States, north Brazil. *Acta Amaz.*
834 **38**, 403–420 (2008).

835 79. De Alvarenga, A. M. S. B., Botosso, P. C. & Soffiatti, P. Stem growth and phenology
836 of three subtropical mangrove tree species. *Brazilian J. Bot.* **40**, 907–914 (2017).

837 80. Kazan, K. & Lyons, R. The link between flowering time and stress tolerance. *J. Exp.*
838 *Bot.* **67**, 47–60 (2016).

839 81. Lovelock, C. E. *et al.* The vulnerability of Indo-Pacific mangrove forests to sea-level
840 rise. *Nature* **526**, 559–563 (2015).

841 82. Gall, H. Le *et al.* Cell Wall Metabolism in Response to Abiotic Stress. *Plants* **4**, 112–
842 166 (2015).

843 83. Kimura, M. *et al.* Identification of *Arabidopsis* Genes Regulated by High Light –
844 Stress Using cDNA Microarray. *Photochem. Photobiol.* **77**, 226–233 (2003).

845 84. Wang, D. *et al.* Genome-wide temporal-spatial gene expression profiling of drought
846 responsiveness in rice. *BMC Genomics* **12**, 149 (2011).

847 85. Moumeni, A. *et al.* Comparative analysis of root transcriptome profiles of two pairs of
848 drought-tolerant and susceptible rice near-isogenic lines under different drought stress.
849 *BMC Plant Biol.* **11**, 174 (2011).

850 86. Wei, W. *et al.* Melatonin enhances plant growth and abiotic stress tolerance in soybean
851 plants. *J. Exp. Bot.* **66**, 695–707 (2015).

852 87. McRae, G. J. A Simple Procedure for Calculating Atmospheric Water Vapor
853 Concentration. *J. Air Pollut. Control Assoc.* **30**, 394–394 (1980).

854 88. Stuart, S. A., Choat, B., Martin, K. C., Holbrook, N. M. & Ball, M. C. The role of
855 freezing in setting the latitudinal limits of mangrove forests. *New Phytol.* **173**, 576–583
856 (2007).

857 89. Carlson, J. E., Holsinger, K. E. & Prunier, R. Plant responses to climate in the cape
858 floristic region of South Africa: Evidence for adaptive differentiation in the
859 proteaceae. *Evolution (N. Y.)* **65**, 108–124 (2011).

860 90. Pecot, S. D., Horsley, S. B., Battaglia, M. A. & Mitchell, R. J. The influence of
861 canopy, sky condition, and solar angle on light quality in a longleaf pine woodland.
862 *Can. J. For. Res.* **35**, 1356–1366 (2005).

863 91. Arcus, V. L. *et al.* On the Temperature Dependence of Enzyme-Catalyzed Rates.
864 *Biochemistry* **55**, 1681–1688 (2016).

865 92. Cavanaugh, K. C. *et al.* Poleward expansion of mangroves is a threshold response to
866 decreased frequency of extreme cold events. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 723–7
867 (2014).

868 93. Osland, M. J. *et al.* Climatic controls on the global distribution, abundance, and
869 species richness of mangrove forests. *Ecol. Monogr.* **87**, 341–359 (2017).

870 94. Colmer, T. D. & Flowers, T. J. Flooding tolerance in halophytes. *New Phytol.* **179**,
871 964–974 (2008).

872 95. Schaeffer-Novelli, Y., Cintrón-Molero, G., Adaime, R. R. & de Camargo, T. M.
873 Variability of mangrove ecosystems along the Brazilian coast. *Estuaries* **13**, 204–218
874 (1990).

875 96. Godoy, M. D. P. & De Lacerda, L. D. Mangroves Response to Climate Change: A
876 Review of Recent Findings on Mangrove Extension and Distribution. *Ann. Brazilian
877 Acad. Sci.* **87**, 651–667 (2015).

878 97. IPCC. *Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II
879 and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate
880 Change.* Cambridge University Press (IPCC, 2014).

881 98. Ellison, J. C. Vulnerability assessment of mangroves to climate change and sea-level
882 rise impacts. *Wetl. Ecol. Manag.* **23**, 115–137 (2015).

883 99. Heskell, M. A. *et al.* Convergence in the temperature response of leaf respiration across
884 biomes and plant functional types. *Proc. Natl. Acad. Sci.* **113**, 3832–3837 (2016).

885 100. Jordan, D. & Ogren, W. The CO₂/O₂ specificity of ribulose 1,5-bisphosphate
886 carboxylase/oxygenase. *Planta* **161**, 308–313 (1984).

887 101. Drake, B. G., González-Meler, M. A. & Long, S. P. More efficient plants: a
888 consequence of rising atmospheric CO₂? *Annu. Rev. Plant Physiol. Plant Mol. Biol.*
889 **48**, 609–639 (1997).

890 102. Saenger, P. & Moverly, J. Vegetative phenology along the Queensland coastline. *Proc.*

891 *Ecol. Soc. Aust.* **13**, 257–265 (1985).

892 103. Doughty, C. E. *et al.* Drought impact on forest carbon dynamics and fluxes in
893 Amazonia. *Nature* **519**, 78–82 (2015).

894 104. Rodell, M. *et al.* Emerging trends in global freshwater availability. *Nature* **557**, 651–
895 659 (2018).

896 105. Osland, M. J. *et al.* Climate and plant control on soil organic matter in coastal
897 wetlands. *Glob. Chang. Biol.* (2018). doi:10.1111/gcb.14376

898 106. Bulleri, F. *et al.* Harnessing positive species interactions as a tool against climate-
899 driven loss of coastal biodiversity. *Plos Biol.* **16**, (2018).

900 107. Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. *Trends Ecol.
901 Evol.* **9**, 373–375 (1994).

902 108. Ikeda, D. H. *et al.* Genetically informed ecological niche models improve climate
903 change predictions. *Glob. Chang. Biol.* **23**, 164–176 (2017).

904 109. Holliday, J. A. *et al.* Advances in ecological genomics in forest trees and applications
905 to genetic resources conservation and breeding. *Mol. Ecol.* 706–717 (2017).
906 doi:10.1111/mec.13963

907 110. Vestbo, S., Obst, M., Quevedo Fernandez, F. J., Intanai, I. & Funch, P. Present and
908 Potential Future Distributions of Asian Horseshoe Crabs Determine Areas for
909 Conservation. *Front. Mar. Sci.* **5**, (2018).

910 111. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high
911 resolution interpolated climate surfaces for global land areas. *Int. J. Climatol.* **25**,
912 1965–1978 (2005).

913 112. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate
914 surfaces for global land areas. *Int. J. Climatol.* **43**, 4302–4315 (2017).

915 113. Sbrocco, E. J. & Barber, P. H. MARSPEC: ocean climate layers for marine spatial
916 ecology. *Ecology* **94**, 979–979 (2013).

917 114. Forsythe, W. C., Rykiel, E. J., Stahl, R. S., Wu, H. i. & Schoolfield, R. M. A model
918 comparison for daylength as a function of latitude and day of year. *Ecol. Modell.* **80**,
919 87–95 (1995).

920

921 **Tables**

922 **Table 1.** Characterisation of subtropical and equatorial sampling sites of propagules used in
923 the common garden experiment and of plant material used for RNA-sequencing. SD:
924 standard deviation.

	Subtropical	Equatorial
Köppen-Geiger climate characterisation	Temperate oceanic with hot summer, without a dry season (Cfa)	Tropical monsoon (Am)
Latitude (°)	28 S	0
Annual Average tidal amplitude (m) [†]	0.45 (Microtidal)	4.00 (Macrotidal)
Annual mean temperature (°C) [‡]	20.1	26.4
Minimum temperature of the coldest month (°C) [‡]	11.8	22.0
Maximum temperature of the	28.7	31.1

warmest month (°C) [‡]		
Annual precipitation (mm) [‡]	1,435	2,216
Precipitation of the driest month (mm) [‡]	88	4
Precipitation of the wettest month (mm) [‡]	162	452
Mean air vapour pressure deficit (kPa) [¶]	-0.436	-0.625
Maximum air vapour pressure deficit (kPa) [¶]	-1.459	-1.799
Mean irradiance (KJ m ⁻² day ⁻¹) [‡]	14,270	17,414
Maximum irradiance (KJ m ⁻² day ⁻¹) [‡]	20,802	21,671
Minimum irradiance (KJ m ⁻² day ⁻¹) [‡]	8,201	13,874
Mean sea surface salinity (g/kg) [§]	35.50	34.96
Sea surface salinity in the saltiest month (g/kg) [§]	36.24	36.87
Sea surface salinity in the freshest month (g/kg) [§]	33.73	32.54
Average day length (hours (± SD)) [¶]	12.103 (±1.251)	12.115 (±0.033)
True mangrove species in the area	<i>Avicennia schaueriana</i> <i>Laguncularia racemosa</i>	<i>Avicennia germinans</i> <i>Avicennia schaueriana</i> <i>Laguncularia racemosa</i> <i>Rhizophora mangle</i> <i>Rhizophora racemosa</i> <i>Rhizophora harriisoni</i>

[†]Source: Vestbo *et al.* (2018). [‡]Source: WorldClim^{111,112}. [§]Source: MARSPEC¹¹³. [¶]Water vapour pressure deficit was calculated from WorldClim ‘water vapour pressure’ and ‘average’ and ‘maximum temperature’ raster layers, as the actual water vapour pressure minus the saturation water vapour pressure. [¶]Source: ‘daylength’ function from the R package ‘geosphere’¹¹⁴.

930

931 **Figures Legends**

932

933 **Figure 1. Geographical locations of *Avicennia schaueriana* sampling sites.**
 934 **Characterisation of *Avicennia schaueriana* sampling sites along a latitudinal gradient on**
 935 **the Atlantic coast of South America.** The green-shaded area represents the presence of the

936 species; coloured points represent sampling sites of propagules, used in a common garden
 937 experiment, and of plant tissues, used for both DNA- and RNA-sequencing; black points
 938 represent sampling sites of plant tissues, used for genomic DNA-sequencing only; arrows
 939 represent the flow directions of major oceanic currents. Environmental variation across
 940 sampling sites was obtained from public databases of climate (‘WorldClim’^{111,112}) and tide
 941 variables (‘Environment Climate Data Sweden’¹¹⁰).

942

Figure 2. Pairwise comparison of morphological traits between *Avicennia schaueriana* seedlings from equatorial and subtropical sites grown using a common garden experiment. Violin plots represent the distribution of observations for plants from equatorial (red) and subtropical (blue) sampling sites. Box plots represent the mean, standard error, and maximum and minimum values. (a) Leaf inclination angle (n = 15 leaves per group, 5 plants per group); (b) individual leaf area (n = 250 leaves per group, 3 plants per group); (c) vessel lumen diameter (n = 180 vessels per group, 3 plants per group); (d-f) leaf, stem and root dry weight (n = 15 plants per group); and (g-i) leaf, stem and root dry mass ratio (organ-specific dry biomass/plant dry biomass) (n = 15 plants per group). For all variables represented in the figure, the absence of difference between groups was rejected using the unpaired Student's T-test or the Mann-Whitney-Wilcoxon U-tests (b and c), at a significance threshold of 0.05.

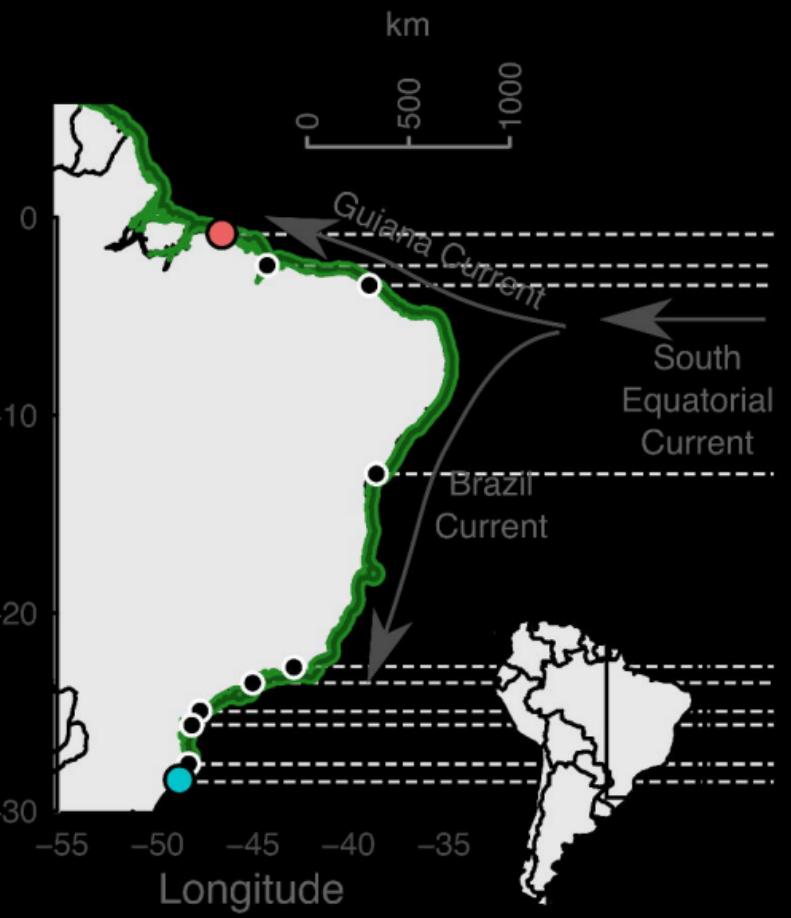
954

Figure 3. Light reflectance of the stem epidermis of five-month-old *Avicennia schaueriana* seedlings grown using a common garden experiment. Grey lines represent the mean reflectance, and colour-shaded areas represent the standard error for each seedling source site (red: equatorial; blue: subtropical, n = 10 plants per group). The visible light spectrum range is highlighted in the figure.

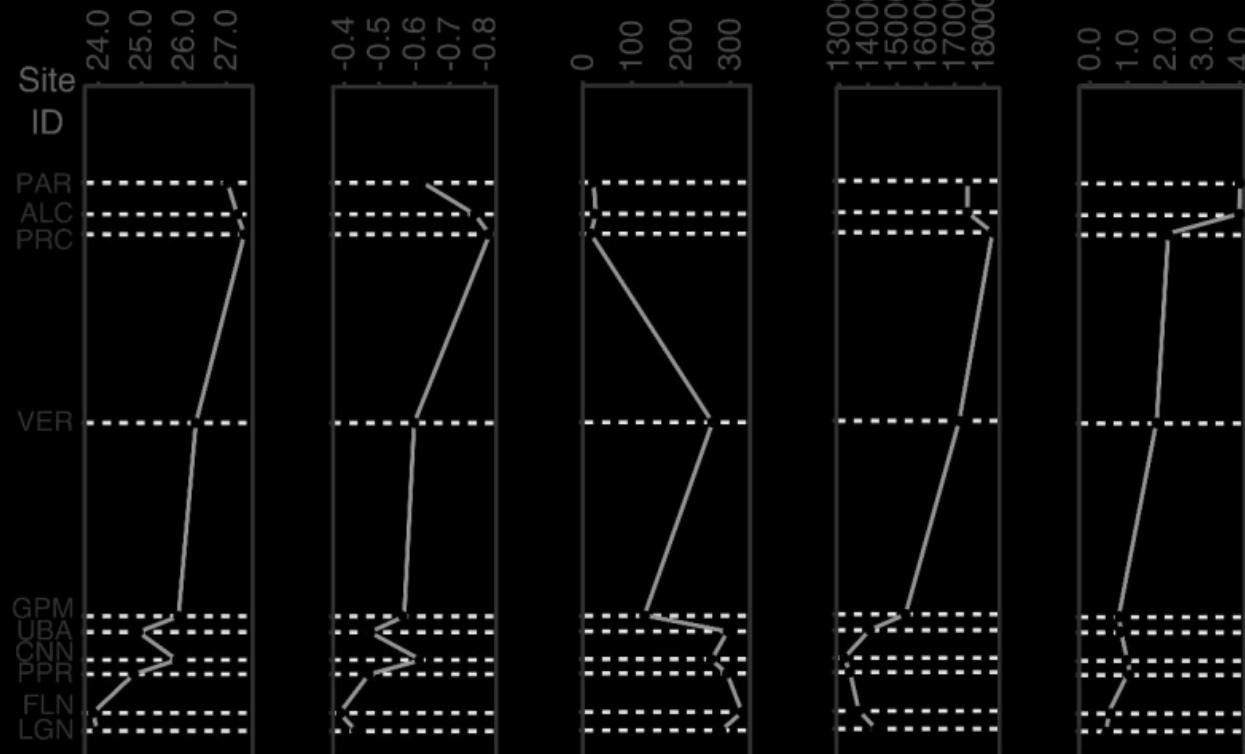
959

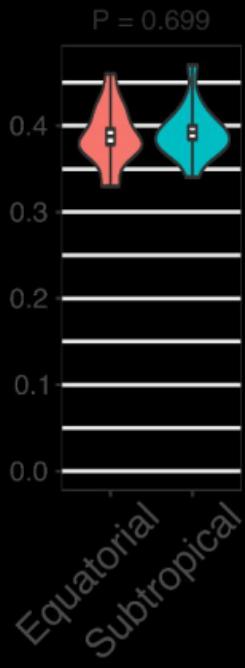
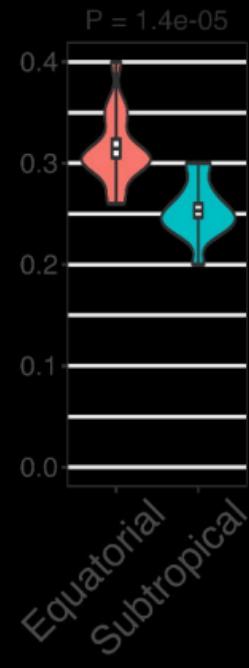
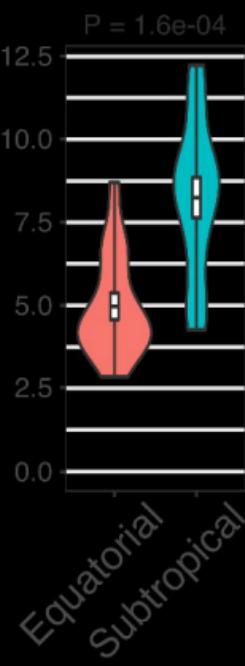
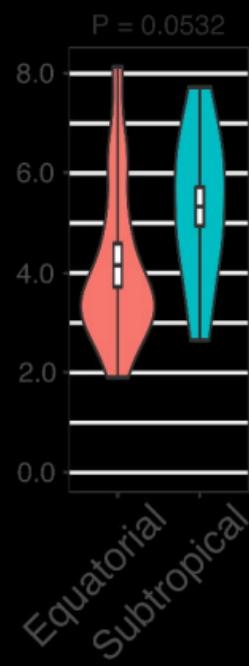
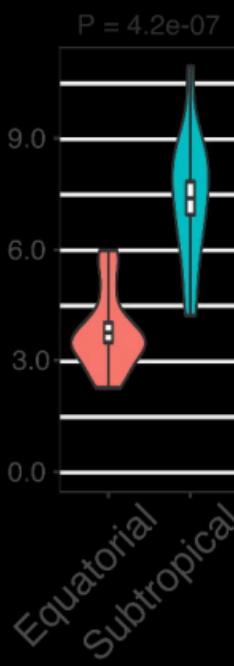
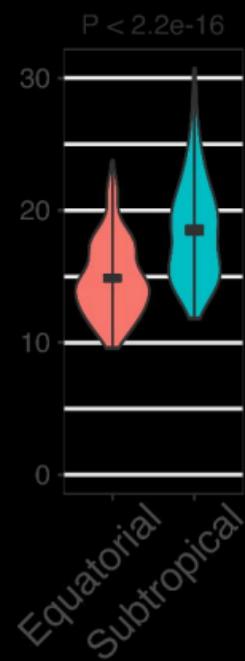
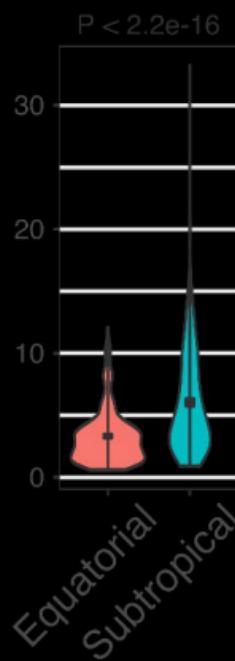
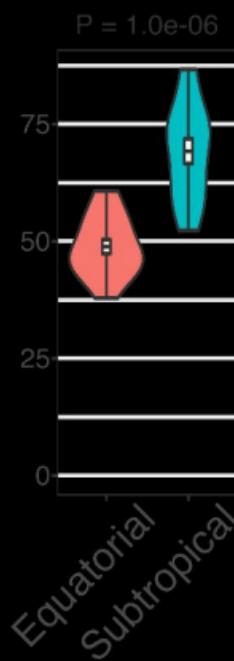
Figure 4. Daily curves of gas exchange in leaves from seven-months-old *Avicennia schaueriana* seedlings grown using a common garden experiment. * Represents rejection of the null hypothesis of the absence of a difference based on the unpaired Student's t-test, at a significance threshold of 0.05 after Bonferroni correction (n = 10 plants per group). Error bars represent the standard error. Red line: mean values for equatorial samples; blue line: mean values for subtropical samples. (a) Transpiration rate; (b) stomatal conductance; (c) net CO₂ assimilation rate.

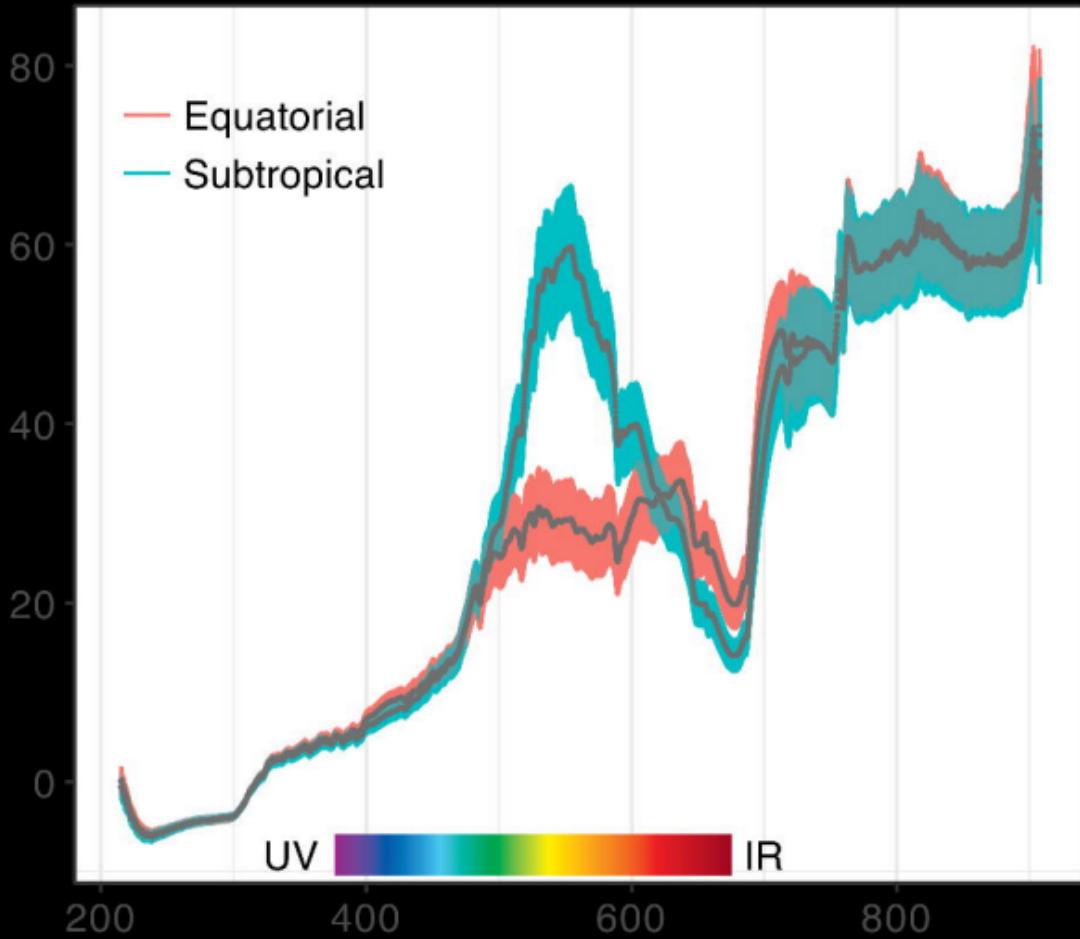
968

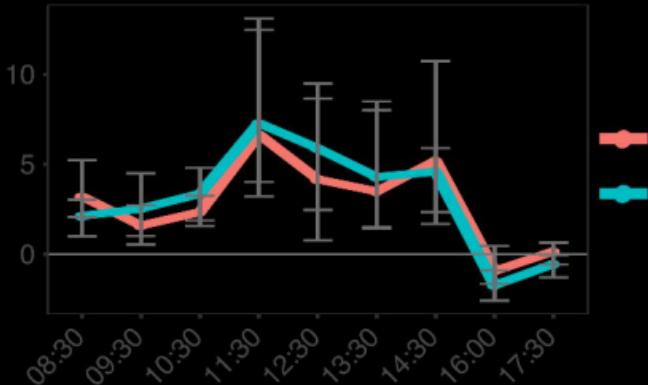
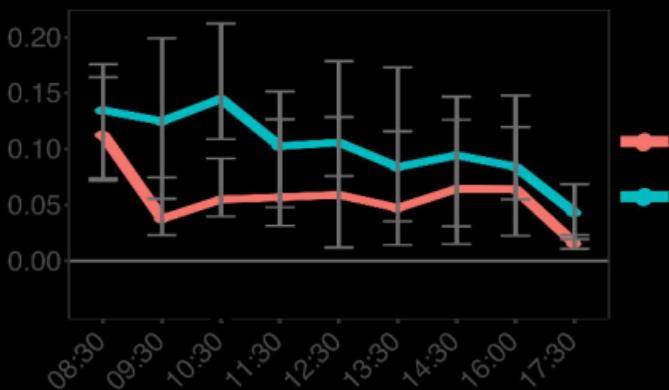
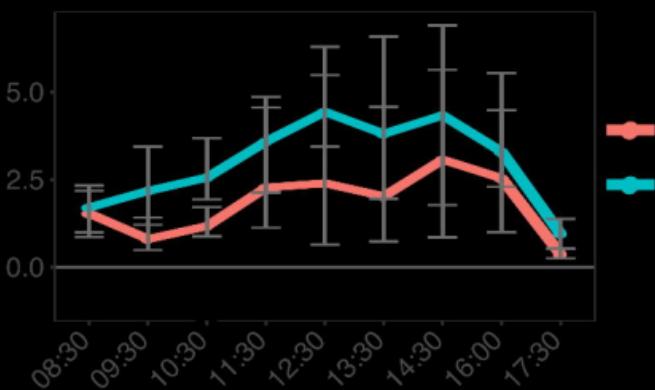

Figure 5. Population structure of *A. schaueriana* inferred from genome-wide genotyping of single nucleotide polymorphic (SNP) loci. (a) Density of individuals on the first retained discriminant function, calculated using a multivariate method, the discriminant analysis of principal components (DAPC); different colours represent inferred populations; (b) map showing the distribution of the species (green shaded area), the geographical location of sampling sites (points) and barplots in which each colour denotes an ancestral cluster and each bar represents an individual as inferred by the model-based method implemented in Admixture 1.3.0.

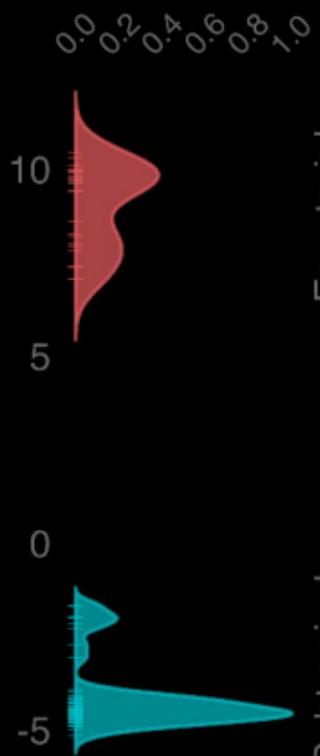
977

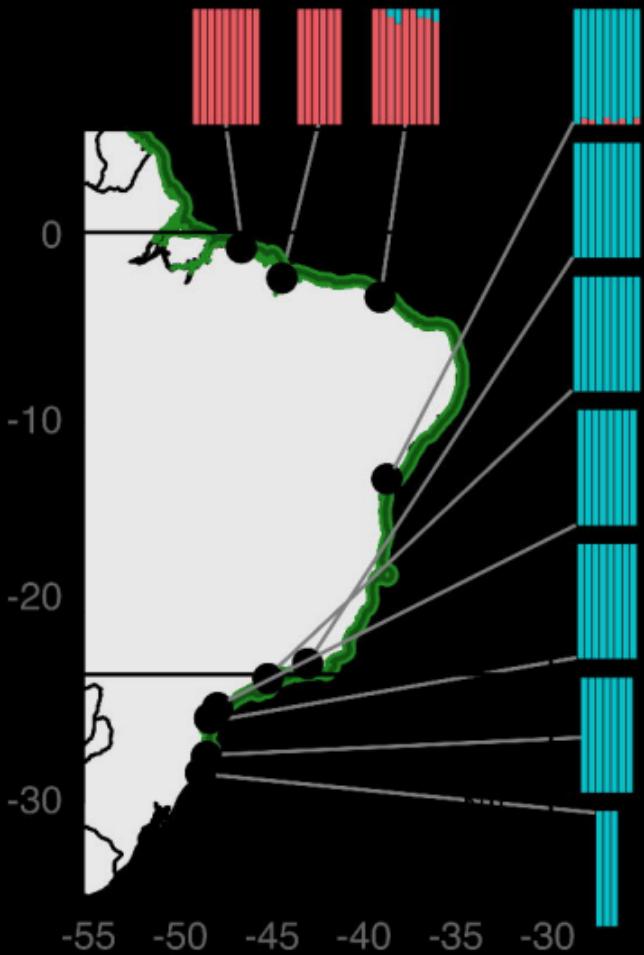

Figure 6. Graphical summary of results from ecophysiological and molecular approaches performed in this work. Under homogeneous conditions, plants from contrasting latitudes showed key divergences related to the use of water and to the acquisition of carbohydrates in ecophysiological traits. Differences associated with the response to contrasting environmental conditions were detected in transcripts expression levels of trees sampled in their natural habitats. Additionally, a north-south genetic divergence was observed in 77 trees sampled along the latitudinal gradient using genotypic data from over 6 thousand polymorphic loci. We also identified signatures of differential selective pressures on specific loci associated with the accumulation of anthocyanins (UDP-GLUCOSYLTRANSFERASE), with photosynthesis (TPR), and with the response to osmotic stress (RAP2.4 and ZFN1) and to hypoxia (HRA1). Our results suggest that the establishing success of propagules over the latitudinal gradient of the Atlantic coast of South America may play a role in shaping the diversity of genotypes and phenotypes in the widespread

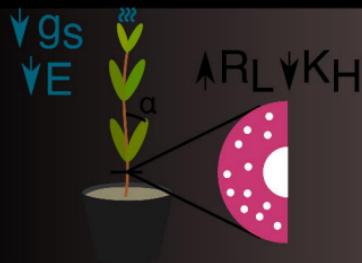








991 mangrove, *Avicennia schaueriana*. E: transpiration rate; gs: stomatal conductance; R_L : xylem
992 vessel lumen resistivity; K_H : xylem vessel conductivity.
993
994


Latitude

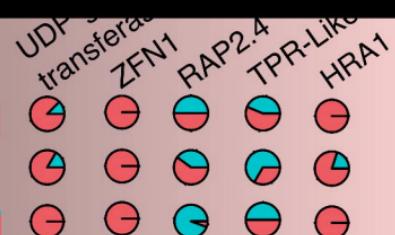




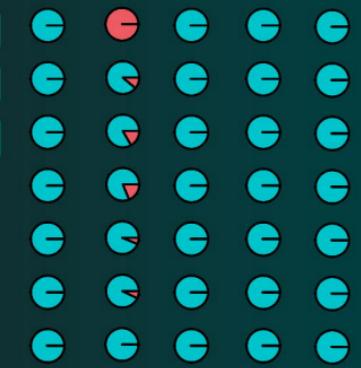

Longitude





Equatorial


Subtropical


Ion and water transport
Response to heat
Response to water deprivation
Anthocyanin biosynthesis
Photorespiration
Cell wall biosynthesis

PAR
ALC
PRC

Photosynthesis
Chlorophyll biosynthesis
Response to cold
Response to vernalization

VER
GPM
UBA
CNN
PPR
FLN
LGN

Acquisitive traits