

1 Transdiagnostic characterization of neuropsychiatric disorders by hyperexcitation-induced
2 immaturity (100 characters)

3

4 Tomoyuki Murano^{1,2,3}, Hideo Hagiwara¹, Katsunori Tajinda⁴, Mitsuyuki Matsumoto⁵,
5 Tsuyoshi Miyakawa^{1*}

6

7 ¹Division of Systems Medical Science, Institute for Comprehensive Medical Science,
8 Fujita Health University, Japan

9 ²Department of Physiological Science, School of Life Science, The Graduate
10 University for Advanced Studies, Japan [SOKENDAI]

11 ³Division of Cell Signaling, National Institute for Physiological Sciences, Japan

12 ⁴ Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC,
13 USA

14 ⁵ Drug Discovery Research, Astellas Pharma Inc., Japan

15

16

17 *Correspondence: miyakawa@fujita-hu.ac.jp

18

19 **Abstract**

20 Biomarkers are needed to improve the diagnosis of neuropsychiatric disorders.
21 Promising candidates are imbalance of excitation and inhibition in the brain, and maturation
22 abnormalities. Here, we characterized different disease conditions by mapping changes in the
23 expression patterns of maturation-related genes whose expression was altered by experimental
24 neural hyperexcitation in published studies. This revealed two gene expression patterns:
25 decreases in maturity markers and increases in immaturity markers. These two groups of genes
26 were characterized by the overrepresentation of genes related to synaptic function and
27 chromosomal modification, respectively. We used these two groups in a transdiagnostic
28 analysis of 80 disease datasets for eight neuropsychiatric disorders and 12 datasets from
29 corresponding animal models, and found that transcriptomic pseudoimmaturity inducible by
30 neural hyperexcitation is shared by multiple neuropsychiatric disorders, such as schizophrenia,
31 Alzheimer disorders, and ALS. Our results indicate that this endophenotype serve as a basis for
32 transdiagnostic characterization of these disorders.

33 (147 words)

34

35 **Introduction**

36 Neuropsychiatric disorders—such as schizophrenia, bipolar disorder, major
37 depression disorders, and autism spectrum disorder—are common, with over a third of the
38 population in most countries being diagnosed with at least one such disorder at some point in
39 their life¹. Almost all neuropsychiatric disorders are currently classified mainly on the basis of
40 clinical signs and symptoms. However, there is evidence that patients with different clinical
41 diagnoses share similar biological features, such as genetic mutations, molecular expression, or
42 brain activity²⁻⁶. Recently, psychiatry has undergone a tectonic shift to incorporate the
43 concepts of modern biology. There have been recent attempts to reclassify psychiatric
44 disorders according to biological domains (e.g. genes, neural circuits, behavior), such as
45 through the Research Domain Criteria (RDoC) initiative⁷. Therefore, identifying appropriate
46 biomarkers which can be used for transdiagnostic assessment of neuropsychiatric disorders is
47 essential for better classification of these diseases and understanding of their biological basis.

48 Using coexpression network analysis, a recent study revealed that cross-disorder
49 gene expression overlaps could be used to characterize five major neuropsychiatric disorders⁸.
50 Some of these overlapping gene groups were biologically well-characterized by Gene
51 Ontology enrichment or cell-type specificity, but the biological properties of other gene groups
52 were rather unclear. Thus, non-biased coexpression network analyses do not necessarily detect
53 modules that extract the biological features of neuropsychiatric disorders. Then, to achieve
54 better characterization of neuropsychiatric disorders, it might be helpful to detect modules of
55 coexpressed genes and conduct gene expression analysis based on the findings derived from
56 researches on animal models of neuropsychiatric disorders.

57 To date, we have screened more than 180 strains of genetically engineered mice
58 using a large-scale and comprehensive battery of behavioral tests, and identified several strains
59 with abnormal behaviors related to neuropsychiatric disorders such as schizophrenia, bipolar
60 disorder, and intellectual disability⁹. We discovered common endophenotypes in the brains of
61 multiple strains of these genetically engineered mice with behavioral abnormalities. We termed
62 one such endophenotype in the hippocampus of adult mice the “immature dentate gyrus (iDG)”
63 phenotype¹⁰⁻¹³. In this phenotype, the molecular and electrophysiological properties of adult
64 DG neurons in the genetically engineered mice were similar to those of immature DG neurons
65 in typically developing infants. For example, the expression of calbindin, a marker of maturity
66 in DG neurons, was decreased and the expression of calretinin, a marker of immaturity, was
67 increased¹⁰⁻¹⁵. Similar molecular changes to some of those found in mice with iDG have been
68 observed in the postmortem brains of patients with schizophrenia¹⁶, bipolar disorder¹⁶, and
69 epilepsy¹⁷⁻¹⁹. Furthermore, there is growing evidence that changes in molecular markers of

70 pseudoimmaturity are also observed in other brain areas of patients with schizophrenia²⁰⁻²⁸,
71 bipolar disorder²⁶, autism²⁶, and alcoholism²⁹. Therefore, we proposed that pseudoimmaturity
72 of the brain could potentially be a useful transdiagnostic biomarker⁹.

73 Pseudoimmaturity of the brain can be induced in adulthood. Previously, we found
74 that chronic fluoxetine treatment reverses the maturation status of DG neurons in adult
75 wild-type mice, a phenomenon that we termed “dematuration”^{30,31}. Likewise, recent studies
76 suggest that several maturation-related genes and electrophysiological properties in the DG of
77 wild-type adult mice assume an immature-like status after treatment with pilocarpine or
78 electroconvulsive stimulation^{16,32}. As mentioned above, an iDG-like phenotype has been found
79 in patients with epilepsy¹⁷⁻¹⁹. Therefore, we hypothesized that the hyperexcitation of neurons
80 may be a cause of pseudoimmaturity of the brain in adulthood.

81 Some studies suggest that hyperexcitation of neurons may underlie abnormalities
82 related to certain types of neuropsychiatric disorders. Individuals with epilepsy are at increased
83 risk of developing schizophrenia, and vice versa^{33,34}, and patients with epilepsy can also
84 display psychotic symptoms that resemble those found in patients with schizophrenia³⁵.
85 Imbalances in excitatory and inhibitory brain circuitry have been proposed to be involved in
86 the pathogenesis and pathophysiology of schizophrenia³⁶⁻³⁹. Hyperactive action-potential
87 firing has also been observed in hippocampal granule-cell-like neurons derived from induced
88 pluripotent stem cells (iPSCs) of patients with bipolar disorder⁴⁰. Recent studies suggested that
89 human patients with Alzheimer’s disease and temporal lobe epilepsy may harbor common
90 underlying mechanisms^{17,41-43}. Considering these findings, we hypothesized that the
91 immature-like gene expression patterns induced by neural hyperexcitation may overlap with
92 the abnormal gene expression patterns in the brains of patients with neuropsychiatric disorders
93 and the related animal models. If this is the case, we hypothesized that this overlap can be used
94 to perform transdiagnostic characterization of neuropsychiatric disorders.

95 To test this hypothesis, we first performed a meta-analysis of microarray datasets,
96 comparing the changes in gene expression in rat DG after seizure induction with the
97 differences in gene expression in infant mice versus adult mice. To assess consistency across
98 species, we also conducted a similar comparison with human fetal hippocampus. The overlap
99 between gene sets was estimated using the Running Fisher test⁴⁴, which is a nonparametric
100 rank-based statistical method developed by BSCE. This method enables us to statistically
101 assess the pairwise correlations between any two datasets, including datasets from different
102 species and organs^{28,29,45,46}. The gene expression patterns in rat DG after seizure induction
103 significantly overlapped with those specific to immature mouse DG and also with those
104 specific to early-stage human fetal hippocampus. From the set of overlapping genes, we

105 defined two groups; maturity-marker genes and immaturity-marker genes that are inducible by
106 neural hyperexcitation. We assessed the expression patterns of these two groups of
107 maturation-related genes in 80 public gene-expression datasets derived from the postmortem
108 brains of patients with various neuropsychiatric disorders and from neural cells derived from
109 patient iPSCs, and in a further 12 datasets from the brains of related animal models. Through
110 this analysis, we characterized the expression patterns of maturation-related genes that are
111 inducible by neural hyperexcitation across different disease conditions.

112 (932 words)

113

114 **Results**

115

116 ***Neural hyperexcitation induces immature-like gene expression patterns in DG***

117 To examine the developmental changes in gene expression patterns in the rodent DG,
118 we created a microarray dataset from postnatal day 8, 11, 14, 17, 21, 25, and 29 infant mice
119 (GSE113727) and compared it with a dataset from 33-week-old adult mice (GSE42778)¹².
120 Within the entire mice DG dataset, the largest overlap for changes in gene expression after
121 pilocarpine injection was for the comparison between day 8 infant and 33-week-old adult mice
122 (Figure S1a). We included the dataset from postnatal day 8 infant mice for subsequent analysis.
123 The expression levels of 6552 genes were increased in the DG of infant mice compared with
124 adult mice, whereas the expression levels of 8637 genes were decreased (absolute fold change
125 > 1.2 and t-test $P < 0.05$). Next, we assessed the changes in gene expression induced by neural
126 hyperexcitation in a rodent model. We obtained publicly available microarray datasets from the
127 DG of adult rats after seizures induced by injection of pilocarpine (GSE47752)⁴⁷. The
128 expression levels of 7073 genes were significantly changed in the DG of epileptic-seizure rats
129 1 day after pilocarpine injection compared with rats treated with saline (absolute fold change >
130 1.2, $P < 0.05$).

131 To investigate whether the neuronal hyperexcitation datasets contain immature-like
132 gene expression patterns, we assessed the overlap between the set of genes with altered
133 expression in immature mice and the set of genes with altered expression in adult
134 seizure-model rats, using the Running Fisher algorithm on the BaseSpace platform to
135 determine the significance of the overlap (see Supplementary Methods for Details). We found a
136 striking degree of similarity: 2807 genes showed changes in expression in both datasets
137 (overlap $P = 3.8 \times 10^{-11}$) (Figure 1a). Among these 2807 genes, we named the 726 genes whose
138 expression levels decreased in both datasets “hyperexcitation-induced maturity-related genes”
139 (hiM genes (mouse): green bar in Figure 1a) and the 938 genes whose expression levels
140 increased in both datasets “hyperexcitation-induced immaturity-related genes” (hiI genes
141 (mouse): red bar in Figure 1a). The comprehensive gene lists of hiM and hiI genes are in Table
142 S1 (Table S1: hiM/hiI_GeneList). The overlap for genes with positively correlated expression
143 (red and green bars) was larger than the overlap for genes with negatively correlated expression
144 (light and dark yellow bars), indicating that the direction of expressional changes in the two
145 datasets are more alike than they are different. These results suggest that neuronal
146 hyperexcitation induces a pattern of immature-like gene expression in the adult DG.

147 Next, we compared the changes in expression during development in the human fetal
148 hippocampus with those in rats after seizure induction to assess consistency across species. We

149 obtained publicly available microarray datasets for the human fetal hippocampus during
150 development (GSE25219)⁴⁸. Within the entire fetal hippocampal dataset, the largest overlap for
151 changes in gene expression after pilocarpine injection was for the comparison between
152 8–9-week fetuses and 19–23-week fetuses (Figure S1b). We again found a striking degree of
153 similarity: 2043 genes showed changes in expression in both datasets (overlap $P = 1.8 \times 10^{-12}$)
154 (Figure 1b). Among these 2043 genes, we termed the 579 genes whose expression decreased in
155 both datasets “hiM genes (human)” (green bar in Figure 1b) and the 716 genes whose
156 expression increased in both datasets “hiI genes (human)” (red bar in Figure 1b). The overlap
157 for genes with positively correlated expression (red and green bars) were larger than those with
158 negatively correlated expression (light and dark yellow bars), suggesting that, similar to the
159 results in mice, the gene expression changes in rat DG after seizure induction are comparable to
160 the reverse of the changes that occur as the human hippocampus develops.

161

162 ***Hyperexcitation-induced maturity- and immaturity-related genes exhibit different biological***
163 ***properties***

164 To characterize the biological features associated with the hiM and hiI gene groups in
165 mouse and human, we conducted pathway enrichment analyses in BaseSpace. The 20
166 biogroups with the most significant overlap with hiM and hiI genes are listed in Table 1a and
167 1b. Among mouse hiM genes, 4 out of the top 20 biogroups are associated with synapse and
168 channel activity (e.g., transmission of nerve impulse, synapse, and synaptic transmission)
169 (Table 1a), whereas among human hiM genes, 6 out of the top 20 biogroups are also associated
170 with synapse and channel activity (e.g., transmission of nerve impulse, synaptic transmission,
171 axon, and synapse) (Table 1b).

172 Among the mouse hiI genes, 4 out of the top 20 biogroups were associated with the
173 nucleus (e.g., genes involved in the cell cycle and genes involved in DNA replication) (Table
174 1a). Among the human hiI genes, 15 out of the top 20 biogroups were associated with the
175 nucleus (e.g., genes involved in the cell cycle, chromosomes, and response to DNA damage
176 stimulus) (Table 1b). It is noteworthy that there is little overlap in the top 20 biogroups for the
177 hiM and hiI genes (Table 1a, 1b). Thus, the biogroups related to the hiM and hiI genes are
178 likely to be functionally different.

179 We also compared datasets from the DG of typically developing infants with datasets
180 from rat DG at three different timepoints after seizure induction by injection of pilocarpine or
181 kainite (day 1, day 3, and day 10), and performed principal component analysis on the changes
182 in mouse hiM/hiI genes at different timepoints (Figure S2a, S2b; Supplementary Results). The
183 time-course of changes in the mouse hiM genes after seizure induction was different from the

184 time-course of changes in the mouse hiI genes. In addition, we conducted a spatial pattern
185 analysis of the mouse hiM/hiI genes, which indicated that their protein products have slightly
186 different patterns of subcellular localization (Figure S2c; Supplementary Results). The mouse
187 hiM genes tend to be strongly expressed at the plasma membrane, with expression changes
188 stabilizing by the third day after seizure induction. By contrast, the hiI genes tend to be
189 expressed in the nucleus and changes in expression after seizure induction are slower to
190 stabilize. Together, these results indicate that the hiM/hiI genes have different spatiotemporal
191 patterns of changes in expression.

192

193 ***Gene expression patterns in patients can be characterized in terms of hiM/hiI genes***

194 Next, we investigated whether and to what extent the expression changes in
195 maturation-related genes induced by hyperexcitation overlap with gene expression patterns in
196 various neuropsychiatric disorders. As above, we evaluated similarities between the changes in
197 gene expression patterns in different groups using overlap *P*-values calculated by Running
198 Fisher algorithm (Figure 2a). Similarity indexes for each comparison were defined as the $-\log$
199 of the overlap *P*-values with hiM or hiI genes, denoted by hiM-index or hiI-index, respectively.
200 High values in hiM-/hiI-index represent that there is large overlap between the dataset analyzed
201 and hiM/hiI genes. We obtained the hiM-/hiI-indexes for the datasets from human patients and
202 plotted them in two-dimensional (2-D) space to show the extent of overlap between datasets
203 and hiM/hiI genes (Figure 2a).

204 We initially performed this 2-D analysis on a dataset containing the expression
205 profile of the prefrontal cortex in the postmortem brains of patients with schizophrenia
206 (schizophrenia dataset #1: details in Table S2) (Figure 2b). The expression of 1744 genes
207 differed between patients and healthy controls (significance level of 0.05). The numbers of hiM
208 and hiI genes with altered expression in schizophrenia dataset #1 were 87 and 76, respectively,
209 and the overlap *P*-values were 2.4×10^{-10} and 6.9×10^{-7} . The hiM-index and hiI-index for this
210 dataset were $9.62 (= -\log(2.4 \times 10^{-10}))$ and $6.16 (= -\log(6.9 \times 10^{-7}))$. This result corresponds to a
211 point in 2-D space (Figure 2b). Points that fall below the unity line (dashed line) indicate
212 datasets in which changes in hiM genes are dominant, whereas points above the unity line
213 indicate datasets with dominant changes in hiI genes. The angle from unity line indicates the
214 degree of the hiM-/hiI- dominance. The same analysis was performed for other schizophrenia
215 datasets (schizophrenia datasets #2–#16), including ones obtained from different areas of the
216 postmortem brain and from cultured neurons derived from the iPSCs of patients. Scatter plots
217 of the results from the schizophrenia datasets are shown in Figure 3a. Thirteen out of sixteen
218 points were below the unity line. Most of the schizophrenia datasets exhibited hiM-index

219 dominant patterns, showing high hiM-index values and low hiI-index values (Figure 3a).

220 We extended the same analysis to 80 disease datasets from seven other
221 neuropsychiatric diseases (amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD),
222 autism spectrum disorder (ASD), Parkinson's disease (PD), bipolar disorder (BPD),
223 Huntington's disease (HD), and major depressive disorder (MDD); Table S2). Results of each
224 dataset are shown in Figure 3b-3h. Overall distribution patterns of each disease are shown in
225 Figure 3i. The ALS datasets tended to show higher hiI-index values than hiM-index values,
226 indicating hiI-index-dominant pattern (Figure 3b). The AD datasets showed different patterns
227 in the hiM-/hiI-index depending on the type of sample; datasets from the postmortem brains of
228 patients with AD tended to show high values only in the hiM-index, and datasets from patient
229 iPSCs tended to show high values only in the hiI-index (Figure 3c). Datasets from ASD did not
230 show any dominant patterns either in the hiM-index or hiI-index (Figure 3d). Most datasets
231 from patients with PD, BPD, HD, and MDD did not show pronounced values in the hiM-index
232 or the hiI-index (Figure 3e, 3f, 3g, 3h).

233 Thus, the 2-D analysis revealed that some neuropsychiatric diseases have
234 characteristic patterns in the hiM-/hiI-indexes: for example, most datasets from patients with
235 schizophrenia exhibited a higher hiM-index than hiI-index, whereas ALS datasets showed
236 hiI-index-dominant pattern (Figure 3i). Meanwhile, different diseases sometimes show similar
237 changes in the hiM- or hiI-index; for example, some of the schizophrenia, ASD, and AD
238 datasets shared a high hiM-index, and some of the ALS, and AD datasets shared a high
239 hiI-index. The other four diseases—PD, BPD, HD, and MDD—did not show pronounced
240 changes in hiM-/hiI-indexes, suggesting that these diseases may not share endophenotype as
241 pseudoimmaturity inducible by neural hyperexcitation. These results raise the possibility that
242 there are patterns of gene-expression perturbations that are shared and distinct across these
243 neuropsychiatric disorders.

244

245 ***Genetic and environmental risk factors induce changes in the pattern of expression of***
246 ***hiM/hiI genes***

247 Previous studies suggest that many genetic risk and environmental factors, such as
248 seizure, hypoxia, and infection, contribute to the development of neuropsychiatric
249 disorders^{2,49,50}. We next applied the 2-D analysis technique to datasets from genetic animal
250 models of disorders and from animals that experienced risk events.

251 First, we obtained publicly available datasets for mice that had experienced putative
252 risk events for schizophrenia, bipolar disorders, and Alzheimer's disease, including seizure
253 (#1: GSE49030, #2: GSE4236)^{51,52}, ischemia (#1: GSE32529, #2: GSE35338)¹⁻³, and infection

254 (mimicked by CpG; GSE32529)^{53,54}. All the studies used here included datasets for different
255 time points after the risk event; hence, we were able to examine the time-course of changes in
256 the hiM- and hiI-indexes to reveal the short- and long-term effect of risk event on expression
257 patterns of hiM/hiI genes. The results showed that datasets from mouse hippocampus treated
258 with kainite, seizure-inducing drug, exhibited time-course changes in the hiM- and hiI-indexes:
259 the hiM-index tended to be dominant in the early stage after seizure induction, and the
260 hiI-index became more dominant in the late stages (Figure 4a: seizure #1). The results from
261 other datasets on seizure, ischemia, and infection showed roughly similar time-course pattern
262 changes in the hiM- and hiI-indexes as those observed in seizure dataset #1, being relatively
263 hiM-index-dominant in the early stage, and then relatively hiI-index-dominant in the later
264 stage (Figure 4a: seizure, ischemia, and CpG infection). These results indicate that different
265 types of putative risk events for neuropsychiatric disorders induce roughly similar time-course
266 changes in the expression of maturation-related genes induced by neural hyperexcitation.

267 Next, we obtained datasets from animal models with a genetic risk of a
268 neurodegenerative disease: mice with transgenic expression of a G93A mutant form of human
269 SOD1, as a model of ALS (#1: GSE46298, #2: GSE18597)^{55,56}; transgenic mice with mutant
270 human amyloid precursor protein (APP) and presenilin1 (PSEN1) genes, which cause familial
271 Alzheimer's disease (#1: GSE64398, #2: GSE64398)⁵⁷; and Df16(A) heterozygous mice
272 carrying a chromosome 16 deletion syntenic to human 22q11.2 microdeletions, as a model of
273 schizophrenia (GSE29767)⁵⁸. We also obtained datasets from Schnurri-2 (Shn-2) knockout
274 mice as a model of schizophrenia¹² and intellectual disability^{14,59,60} and from mice with
275 heterozygous knockout of the alpha-isoform of calcium/calmodulin-dependent protein kinase
276 II (alpha-CaMKII^{+/−})^{10,13} as a model of bipolar disorder. We performed 2-D analysis on these
277 datasets and evaluated the changes in the hiM-/hiI-indexes of these model mice. Both datasets
278 from transgenic mice with a SOD1(G93A) mutation exhibited a higher hiI-index than
279 hiM-index in the later stages of disease progression (Figure 4b). These hiI-index-dominant
280 patterns were also observed in the results derived from human patients with ALS (Figure 3b).
281 In the mice with mutant human APP and PSEN1, both the hiM- and hiI-indexes increased in
282 dataset from hippocampus and only hiI-index increased in dataset from cortex during the
283 course of disease progression (Figure 4c). These patterns are neutral or hiI-index-dominant.
284 These patterns partially mimic the results from human patients with Alzheimer's disease
285 (Figure 3c). The Df16(A) heterozygous mice and alpha-CaMKII^{+/−} mice showed
286 hiM-index-dominant patterns, which are similar to results from human patients with
287 schizophrenia (Figure 4d). Shn-2 KO mice showed high values for both the hiM- and
288 hiI-indexes (Figure 4d). Thus, the results from the 2-D analysis of animal models are to some

289 extent consistent with the results from human patients, indicating that these model mice share
290 similar patterns of pseudoimmaturity induced by neural hyperexcitation with those of human
291 patients.

292 (2236 words)

293

294 **Discussion**

295 In this study, we demonstrated that neural hyperexcitation induces changes in the
296 pattern of gene expression in the DG that are significantly similar to the immature
297 hippocampus of typically developing human fetuses. From the pool of genes, we identified two
298 groups of genes, and found that these are shared by multiple neuropsychiatric disorders, such
299 as schizophrenia, Alzheimer disorders, and ALS.

300 Many of the datasets from patients with schizophrenia and from the postmortem
301 brains of patients with Alzheimer's disease exhibited hiM-index-dominant pattern changes.
302 The hiM genes include a GABA receptor, voltage-dependent calcium channel, glutamate
303 receptor, and voltage-dependent sodium channel (Table S1). These genes have been reported to
304 be implicated in the pathological changes in the brains of patients with schizophrenia and
305 Alzheimer's disease⁶¹⁻⁶⁴. Thus, many of the synaptic genes that changed in the brains of
306 patients with schizophrenia or Alzheimer's disease could be genes whose expression increases
307 during maturation and decreases with neural hyperexcitation. Although reductions in the
308 expression of some synaptic genes in these disorders are well documented, our results are the
309 first to raise the possibility that neuronal hyperexcitation may also induce reductions in such
310 synaptic molecules.

311 Most of the datasets from patients with ALS and Alzheimer's disease exhibited
312 hiI-index-dominant patterns. The hiI genes include DNA methyltransferase, cyclin,
313 cyclin-dependent kinase, integrin beta 3 binding protein, and tumor protein p53 (Table S1).
314 These genes are known to be important in chromosomal modification and DNA repair, and
315 abnormal functions of these systems have been observed in patients with ALS and Alzheimer's
316 disease⁶⁵⁻⁶⁹. Thus, some of the genes that are considered to be important in the development of
317 these disorders are immaturity-related genes, whose expressions decrease during maturation
318 and can be increased by neural hyperexcitation.

319 As for the datasets from patients with PD, BPD, HD, and MDD, most of them did not
320 show significant overlap either hiM or hiI genes, indicating that there might not be pathological
321 changes of pseudoimmaturity inducible by neural hyperexcitation in the datasets of these four
322 diseases. Thus, we suggest that gene expression analysis based on the findings derived from
323 shared endophenotypes are helpful to conduct transdiagnostic characterization of
324 neuropsychiatric disorders.

325 Our study has some limitations. First, the number of available datasets was limited.
326 All the datasets except the one for mouse development were obtained from the BaseSpace
327 Correlation Engine. On this platform, vast numbers (over 21,000) of complex biological and
328 clinical datasets are available. Even though we used all the gene expression dataset hits from

329 our keyword query to avoid sampling bias, the number of datasets was still small, from 8
330 datasets for ALS to 16 datasets for schizophrenia. Further accumulation of the studies will
331 improve the reliability of our results. Another limitation is that the datasets used in this study
332 are from different types of sample, including various central nervous system areas, such as the
333 hippocampus, prefrontal cortex, striatum, and the spinal cord. The gene expression
334 abnormalities in patients could differ depending on the brain area⁴⁸. We also used datasets from
335 cultured neurons differentiated from the iPSCs of human subjects, and it is controversial
336 whether the pattern of gene expression in these neurons is comparable with that of neurons in
337 the patients' brains^{70,71}. It is also possible that the altered gene expression in the postmortem
338 brains is due to the effects of medication rather than pathological changes from the disease
339 itself⁷². Other conditions that were not controlled in this study include the age at death, storage
340 conditions of the samples, genetic background of animals, and animal housing conditions. For
341 these reasons, we need to be careful in interpreting the results of the analyses. It is noteworthy,
342 however, that despite the variety of sample types used, we were able to identify some shared
343 and distinct patterns of gene expression.

344 Recent attempts such as RDoC initiative have tried to reclassify psychiatric disorders
345 according to biological domains (e.g. genes, neural circuits, behavior)⁷. While Gandal *et al*
346 conducted non-biased coexpression analyses⁸, in this study, we utilized gene groups which
347 were derived from the findings based on the studies of animal models of neuropsychiatric
348 disorders. Characterization by these gene groups enabled us to extract novel biological features
349 of some neuropsychiatric disorders which are related to pseudoimmaturity inducible by neural
350 hyperexcitation. Detecting such domains that extract the biological features of each
351 neuropsychiatric disorder will move this diagnostic framework forward, from criteria based on
352 signs and symptoms to those including biological dimensions.

353 In conclusion, biological domain, which is pseudoimmaturity inducible by neural
354 hyperexcitation, are common endophenotype among several neuropsychiatric disorders.
355 Future studies are needed to find translational indices that correspond to these features and can
356 be applicable to human patients for better diagnosis of these neuropsychiatric disorders. Our
357 findings here may promote the development of novel biomarkers, leading to better diagnosis of
358 neuropsychiatric disorders.

359 (793 words)

360 (Main Text Total: 3967 words)

361

362 **Methods**

363

364 ***Microarray experiments to examine mouse DG development***

365 Wild-type mouse DGs were sampled at postnatal day 8, 11, 14, 17, 21, 25, 29
366 (C57BL/6J × BALB/cA background; n = 5)⁷³, and microarray experiments were performed as
367 previously described¹⁰. The microarray data, including those used in this study, were deposited
368 in the GEO database under accession number GSE113727. We also obtained a dataset for
369 33-week-old wild-type mice, which we previously reported (C57BL/6J × BALB/cA
370 background) (GSE42778)¹². We integrated these two datasets into one to construct the dataset
371 for the development of wild-type mouse DG used in this study (P8 versus adult, fold change >
372 1.2, $P < 0.05$).

373

374 ***Data collection and processing***

375 Except for the mouse DG developmental dataset mentioned above, the 91 gene
376 expression datasets used in this study were obtained from publicly available databases (listed
377 in Table S2). All gene expression datasets were analyzed with the BaseSpace Correlation
378 Engine (BSCE; formerly known as NextBio)
379 (<https://japan.ussc.informatics.illumina.com/c/nextbio.nb>; Illumina, Cupertino, CA), a
380 database of biomedical experiments. BaseSpace is a repository of analyzed gene expression
381 datasets that allows researchers to search expression profiles and other results⁴⁴. The datasets
382 registered in BaseSpace undergo several preprocessing, quality control, and organization
383 stages. Quality control ensures the integrity of the samples and datasets and includes
384 evaluations of pre- and postnormalization boxplots, missing value counts, and P -value
385 histograms (after statistical testing) with false-discovery rate analysis to establish whether the
386 number of significantly altered genes is larger than that expected by chance. Other microarray
387 data processing was performed in MAS5 (Affymetrix, Santa Clara, CA, USA)⁴⁴.

388 Genes with a P -value < 0.05 (without correction for multiple testing) and an absolute
389 fold change > 1.2 were included in the differentially expressed gene datasets. This sensitivity
390 threshold is typically the lowest used with commercial microarray platforms and the default
391 criterion in BaseSpace analyses⁴⁴. All data from the Affymetrix GeneChip series were
392 downloaded from the NCBI GEO database. Affymetrix Expression Console software
393 (specifically the robust multiarray average algorithm) was used to preprocess the data.

394 We used the expression values (on a log base-2 scale) to calculate the fold changes
395 and P -values between two conditions (infants–adults and patients–healthy controls). To
396 determine the fold changes, the expression values of the probes/genes in the test data sets were

397 divided by those of the control data sets. If the fold change was < 1.0 , these values were
398 converted into the negative reciprocal or $-1/(\text{fold change})$. Genes with an absolute fold change
399 > 1.2 and a *t*-test *P*-value < 0.05 were imported into BSCE according to the instructions
400 provided by the manufacturer. The rank order of these genes was determined by their absolute
401 fold change. We compared the signatures in two given gene sets using BSCE. All statistical
402 analyses were performed in BaseSpace and similarities between any two datasets were
403 evaluated as overlap *P*-values using the Running Fisher algorithm⁴⁴.

404 (472words)

405 **Funding and Disclosures**

406 Competing financial interests: K.T. and M.M. are employees of Astellas Pharma Inc.

407 Other authors report no biomedical financial interests.

408

409 **Acknowledgments**

410 We thank Wakako Hasegawa, Yumiko Mobayashi, Misako Murai, Tamaki
411 Murakami, Miwa Takeuchi, Yoko Kagami, Harumi Mitsuya, Aki Miyakawa and other
412 members of Miyakawa lab for their support. This work was supported by JSPS Grant-in-Aid
413 for Scientific Research on Innovative Areas Grant Number 25116526, 15H01297
414 (“Microendophenotype”), 16H06462 (“Scrap & Build”), JSPS KAKENHI Grant Number
415 25242078, and grant from Astellas Pharma Inc.

416

417 **Author Contribution Statement**

418 T.M. generated the data, performed the analysis, prepared all figures and wrote the
419 manuscript. All authors reviewed the manuscript.

420

421 **Figure legends**

422

423 **Figure 1.**

424 The patterns of changes in gene expression in rat DG 1 day after pilocarpine
425 treatment compared with developmental changes in mouse DG and human hippocampus. Venn
426 diagrams illustrating the overlap in genome-wide gene-expression changes between rat DG
427 after seizure induction (GSE47752) and the DG of typically developing mouse infants
428 (GSE113727; P8 infants compared with 33-week adults) (a) or the hippocampus of typically
429 developing human fetuses (GSE25219: 19–23 week fetuses compared with 8–9 week fetuses)
430 (b). Bar graphs illustrate the –log of the overlap *P*-values for genes upregulated (red arrows) or
431 downregulated (green arrows) by each condition. The Bonferroni correction was used to adjust
432 the significance level according to the number of dataset pairs (see the Methods section and
433 Supplementary Method). Genes that were downregulated in both conditions were defined as
434 mouse hiM genes (green bar in (a)), and genes that were upregulated in both conditions are
435 defined as mouse hiI genes (red bar in (a)). Similarly, human hiM genes and human hiI genes
436 were defined as the groups of genes with positive correlation between the two conditions,
437 development and seizure (b).

438

439 **Figure 2.**

440 Overview of the two-dimensional analysis (2-D analysis) for disease datasets. (a)
441 Genes with expression changes in the disease datasets are compared with the hiM and hiI gene
442 groups. The hiM- and hiI-indexes were defined as the –log of the overlap *P*-values with the
443 hiM and hiI genes. The gene expression patterns of the disease datasets are plotted in
444 two-dimensional coordinates, in which the x-/y-axes are defined by the hiM-/hiI-indexes. Each
445 dataset is characterized as hiM- or hiI- dominant by the ratio of hiM-/hiI-indexes, and the
446 degree of the hiM-/hiI-dominance are evaluated by deviation from the unity line. Distance of
447 each dataset from the origin show the degree of overlap with hiM-/hiI-genes. (b) 2-D analysis
448 applied to a dataset of postmortem brains (prefrontal cortex) from patients with schizophrenia
449 (schizophrenia dataset #1). The expression levels of 1744 genes were significantly changed in
450 this disease dataset. Of these, 87 and 76 genes overlap with the hiM/hiI genes. The overlap
451 *P*-values between the disease dataset and the hiM/hiI genes were 2.4×10^{-10} and 6.9×10^{-7} .
452 The hiM- and hiI-indexes for the disease dataset were therefore 9.62 and 6.16, indicating that
453 this dataset is hiM-dominant. The results of the 2-D analysis for this dataset are plotted in the
454 two-dimensional coordinates defined by the hiM- and hiI-indexes.

455

456 **Figure 3.**

457 Two-dimensional analysis (2-D analysis) for disease datasets from various
458 neuropsychiatric disorders. Each point corresponds to the result from one independent study.
459 (a-h) Results of the 2-D analysis of datasets for schizophrenia (a), ALS (b), Alzheimer's
460 disease (c), autism (d), Parkinson's disease (e), bipolar disorder (f), Huntington's disease (g),
461 and major depression (h). Filled points indicate datasets from the postmortem brain or spinal
462 cord (ALS) of patients, and open points indicate those from cultured neural cells from patient
463 iPSCs. (i) The distribution patterns of hiM- and hiI-index for all diseases analyzed. The extent
464 of the changes in hiM-/hiI-indexes is assessed by the average distance of all datasets in each
465 disease from origins. Four diseases whose average distance from origin are over 5.0 are shown
466 as circular sectors, and others are shown as points. The radii of circular sector indicate the
467 average distance of all datasets in each disease from origins, and the central angles of circular
468 sector are average deviation \pm sem from unity line. Each point indicates their average
469 distance from origin and average deviation from unity line.

470

471 **Figure 4.**

472 Time-dependent changes in the hiM-/hiI-indexes in animals subjected to various
473 putative risk events for neuropsychiatric disorders and in genetic mouse models of
474 schizophrenia, bipolar disorder, ALS, and Alzheimer's disease. (a) Pattern of changes in the
475 hiM- and hiI-indexes in mouse and rat hippocampus after treatment with kainite (seizure #1
476 (GSE1831) and seizure #2 (GSE4236)), in mouse cortex and astrocytes after middle cerebral
477 artery occlusion (MCAO; ischemia #1 (GSE32529), ischemia #2 (GSE35338)), and in mouse
478 cortex after CpG infection (GSE32529). (b) Pattern of changes in the hiM- and hiI-indexes of
479 the spinal cord of an ALS mouse model with the SOD1(G93A) mutation. (c) Pattern of changes
480 in the hiM- and hiI-indexes of the hippocampus and cortex of an Alzheimer's disease mouse
481 model with mutations in APP and PSEN1. (d) hiM- and hiI-indexes in mouse models of
482 schizophrenia and bipolar disorder.

483

484 **Table 1.**

485 Summary of results from the pathway analyses of hiM/hiI genes. (a) The 20
486 biogroups with the most significant similarities to mouse hiM genes and mouse hiI genes.
487 Green columns indicate biogroups that are related to the plasma membrane. Red columns
488 indicate biogroups that are related to reactions in the nucleus. (b) The 20 biogroups with the
489 most significant similarities to human hiM genes and human hiI genes.

490 (790 words, 4 figures, 1 table)

492 **References**

- 493 1. Cross-national comparisons of the prevalences and correlates of mental
494 disorders. WHO International Consortium in Psychiatric Epidemiology. *Bull World Health
495 Organ* **78**, 413–426 (2000).
- 496 2. Cardno, A. G. & Owen, M. J. Genetic Relationships Between
497 Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder. *Schizophr Bull* **40**, 504–515
498 (2014).
- 499 3. Hall, J., Trent, S., Thomas, K. L., O'Donovan, M. C. & Owen, M. J.
500 Genetic Risk for Schizophrenia: Convergence on Synaptic Pathways Involved in Plasticity.
501 *Biological Psychiatry* **77**, 52–58 (2015).
- 502 4. Forero, D. A. *et al.* A network of synaptic genes associated with
503 schizophrenia and bipolar disorder. *Schizophrenia Research* **172**, 68–74 (2016).
- 504 5. Douaud, G. *et al.* A common brain network links development, aging, and
505 vulnerability to disease. *PNAS* **111**, 17648–17653 (2014).
- 506 6. Argyelan, M. *et al.* Resting-State fMRI Connectivity Impairment in
507 Schizophrenia and Bipolar Disorder. *Schizophr Bull* **40**, 100–110 (2014).
- 508 7. Insel, T. R. & Cuthbert, B. N. Brain disorders? Precisely. *Science* **348**,
509 499–500 (2015).
- 510 8. Gandal, M. J. *et al.* Shared molecular neuropathology across major
511 psychiatric disorders parallels polygenic overlap. *Science* **359**, 693–697 (2018).
- 512 9. Hagiwara, H., Takao, K., Walton, N. M., Matsumoto, M. & Miyakawa, T.
513 Immature Dentate Gyrus: An Endophenotype of Neuropsychiatric Disorders. *Neural Plasticity*
514 **2013**, (2013).
- 515 10. Yamasaki, N. *et al.* Alpha-CaMKII deficiency causes immature dentate
516 gyrus, a novel candidate endophenotype of psychiatric disorders. *Molecular Brain* **1**, 6 (2008).
- 517 11. Ohira, K. *et al.* Synaptosomal-associated protein 25 mutation induces
518 immaturity of the dentate granule cells of adult mice. *Molecular Brain* **6**, 12 (2013).
- 519 12. Takao, K. *et al.* Deficiency of Schnurri-2, an MHC Enhancer Binding
520 Protein, Induces Mild Chronic Inflammation in the Brain and Confers Molecular, Neuronal,
521 and Behavioral Phenotypes Related to Schizophrenia. *Neuropsychopharmacology* **38**,
522 1409–1425 (2013).
- 523 13. Hagiwara, H. *et al.* Circadian Gene Circuitry Predicts Hyperactive
524 Behavior in a Mood Disorder Mouse Model. *Cell Reports* **14**, 2784–2796 (2016).
- 525 14. Nakao, A. *et al.* Immature morphological properties in subcellular-scale
526 structures in the dentate gyrus of Schnurri-2 knockout mice: a model for schizophrenia and

527 intellectual disability. *Molecular Brain* **10**, 60 (2017).

528 15. Hagihara, H., Fujita, M., Umemori, J., Hashimoto, M. & Miyakawa, T.

529 Immature-like molecular expression patterns in the hippocampus of a mouse model of

530 dementia with Lewy body-linked mutant β -synuclein. (2018).

531 16. Shin, R. *et al.* The immature dentate gyrus represents a shared phenotype

532 of mouse models of epilepsy and psychiatric disease. *Bipolar Disord* **15**, 405–421 (2013).

533 17. You, J. C. *et al.* Epigenetic suppression of hippocampal calbindin-D28k by

534 Δ FosB drives seizure-related cognitive deficits. *Nature Medicine* **23**, 1377 (2017).

535 18. Maglóczky, Z., Halász, P., Vajda, J., Czirják, S. & Freund, T. F. Loss of

536 Calbindin-D28K immunoreactivity from dentate granule cells in human temporal lobe

537 epilepsy. *Neuroscience* **76**, 377–385 (1997).

538 19. Karádi, K. *et al.* Correlation between calbindin expression in granule cells

539 of the resected hippocampal dentate gyrus and verbal memory in temporal lobe epilepsy.

540 *Epilepsy & Behavior* **25**, 110–119 (2012).

541 20. Zhang, Z. J. & Reynolds, G. P. A selective decrease in the relative density

542 of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. *Schizophrenia*

543 *Research* **55**, 1–10 (2002).

544 21. Hashimoto, T. *et al.* Gene Expression Deficits in a Subclass of GABA

545 Neurons in the Prefrontal Cortex of Subjects with Schizophrenia. *J. Neurosci.* **23**, 6315–6326

546 (2003).

547 22. Fung, S. J. *et al.* Expression of Interneuron Markers in the Dorsolateral

548 Prefrontal Cortex of the Developing Human and in Schizophrenia. *AJP* **167**, 1479–1488

549 (2010).

550 23. Pantazopoulos, H., Woo, T.-U. W., Lim, M. P., Lange, N. & Berretta, S.

551 Extracellular Matrix-Glial Abnormalities in the Amygdala and Entorhinal Cortex of Subjects

552 Diagnosed With Schizophrenia. *Arch Gen Psychiatry* **67**, 155–166 (2010).

553 24. Berretta, S. Extracellular matrix abnormalities in schizophrenia.

554 *Neuropharmacology* **62**, 1584–1597 (2012).

555 25. Hagihara, H., Ohira, K., Takao, K. & Miyakawa, T. Transcriptomic

556 evidence for immaturity of the prefrontal cortex in patients with schizophrenia. *Molecular*

557 *Brain* **7**, 41 (2014).

558 26. Gandal, M. J., Nesbitt, A. M., McCurdy, R. M. & Alter, M. D. Measuring

559 the Maturity of the Fast-Spiking Interneuron Transcriptional Program in Autism,

560 Schizophrenia, and Bipolar Disorder. *PLOS ONE* **7**, e41215 (2012).

561 27. Mellios, N. *et al.* Molecular Determinants of Dysregulated GABAergic

562 Gene Expression in the Prefrontal Cortex of Subjects with Schizophrenia. *Biological*
563 *Psychiatry* **65**, 1006–1014 (2009).

564 28. Hashimoto, T. *et al.* Alterations in GABA-related transcriptome in the
565 dorsolateral prefrontal cortex of subjects with schizophrenia. *Mol. Psychiatry* **13**, 147–161
566 (2008).

567 29. Murano, T., Koshimizu, H., Hagiwara, H. & Miyakawa, T. Transcriptomic
568 immaturity of the hippocampus and prefrontal cortex in patients with alcoholism. *Scientific*
569 *Reports* **7**, srep44531 (2017).

570 30. Kobayashi, K. *et al.* Reversal of hippocampal neuronal maturation by
571 serotonergic antidepressants. *Proceedings of the National Academy of Sciences* **107**,
572 8434–8439 (2010).

573 31. Ohira, K., Takeuchi, R., Iwanaga, T. & Miyakawa, T. Chronic fluoxetine
574 treatment reduces parvalbumin expression and perineuronal netsin gamma-aminobutyric
575 acidergic interneurons of the frontal cortex in adultmice. *Molecular Brain* **6**, 43 (2013).

576 32. Imoto, Y., Segi-Nishida, E., Suzuki, H. & Kobayashi, K. Rapid and stable
577 changes in maturation-related phenotypes of the adult hippocampal neurons by
578 electroconvulsive treatment. *Molecular Brain* **10**, 8 (2017).

579 33. Chang, Y.-T. *et al.* Bidirectional relation between schizophrenia and
580 epilepsy: A population-based retrospective cohort study. *Epilepsia* **52**, 2036–2042 (2011).

581 34. Hyde, T. M. & Weinberger, D. R. Seizures and schizophrenia. *Schizophr*
582 *Bull* **23**, 611–622 (1997).

583 35. Casella, N. G., Schretlen, D. J. & Sawa, A. SCHIZOPHRENIA AND
584 EPILEPSY: IS THERE A SHARED SUSCEPTIBILITY? *Neuroscience research* **63**, 227
585 (2009).

586 36. Coyle, J. T. Glutamate and Schizophrenia: Beyond the Dopamine
587 Hypothesis. *Cell Mol Neurobiol* **26**, 363–382 (2006).

588 37. Mouri, A., Noda, Y., Enomoto, T. & Nabeshima, T. Phencyclidine animal
589 models of schizophrenia: Approaches from abnormality of glutamatergic neurotransmission
590 and neurodevelopment. *Neurochemistry International* **51**, 173–184 (2007).

591 38. Kehrer, C., Maziashvili, N., Dugladze, T. & Gloveli, T. Altered
592 Excitatory-Inhibitory Balance in the NMDA-Hypofunction Model of Schizophrenia. *Front*
593 *Mol Neurosci* **1**, (2008).

594 39. O'Donnell, C., Gonçalves, J. T., Portera-Cailliau, C. & Sejnowski, T. J.
595 Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes
596 in brain disorders. *eLife* **6**,

597 40. Mertens, J. *et al.* Differential responses to lithium in hyperexcitable
598 neurons from patients with bipolar disorder. *Nature* **527**, 95–99 (2015).

599 41. Vossel, K. A. *et al.* Incidence and impact of subclinical epileptiform
600 activity in Alzheimer's disease. *Annals of Neurology* **80**, 858–870

601 42. Lam, A. D. *et al.* Silent Hippocampal Seizures and Spikes Identified by
602 Foramen Ovale Electrodes in Alzheimer's Disease. *Nat Med* **23**, 678–680 (2017).

603 43. Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z. & Miller, B.
604 L. Epileptic activity in Alzheimer's disease: causes and clinical relevance. *The Lancet
605 Neurology* **16**, 311–322 (2017).

606 44. Kupershmidt, I. *et al.* Ontology-Based Meta-Analysis of Global
607 Collections of High-Throughput Public Data. *PLOS ONE* **5**, e13066 (2010).

608 45. Takao, K. & Miyakawa, T. Genomic responses in mouse models greatly
609 mimic human inflammatory diseases. *PNAS* **112**, 1167–1172 (2015).

610 46. Ryan, S. D. *et al.* Isogenic Human iPSC Parkinson's Model Shows
611 Nitrosative Stress-Induced Dysfunction in MEF2-PGC1 α Transcription. *Cell* **155**, 1351–1364
612 (2013).

613 47. Dingledine, R. *et al.* Data Descriptor: Transcriptional profile of
614 hippocampal dentate granule cells in four rat epilepsy models. *Scientific Data* **4**, (2017).

615 48. Kang, H. J. *et al.* Spatio-temporal transcriptome of the human brain.
616 *Nature* **478**, 483–489 (2011).

617 49. van Os, J., Kenis, G. & Rutten, B. P. F. The environment and
618 schizophrenia. *Nature* **468**, 203–212 (2010).

619 50. DeMichele-Sweet, M. a. A. *et al.* Genetic risk for schizophrenia and
620 psychosis in Alzheimer disease. *Molecular Psychiatry* (2017). doi:10.1038/mp.2017.81

621 51. Wilson, D. N. *et al.* Microarray analysis of postictal transcriptional
622 regulation of neuropeptides. *J Mol Neurosci* **25**, 285 (2005).

623 52. Hermey, G. *et al.* Genome-Wide Profiling of the Activity-Dependent
624 Hippocampal Transcriptome. *PLOS ONE* **8**, e76903 (2013).

625 53. Vartanian, K. B. *et al.* LPS preconditioning redirects TLR signaling
626 following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury.
627 *Journal of Neuroinflammation* **8**, 140 (2011).

628 54. Stevens, S. L. *et al.* Multiple Preconditioning Paradigms Converge on
629 Interferon Regulatory Factor-Dependent Signaling to Promote Tolerance to Ischemic Brain
630 Injury. *J. Neurosci.* **31**, 8456–8463 (2011).

631 55. Nardo, G. *et al.* Transcriptomic indices of fast and slow disease

632 progression in two mouse models of amyotrophic lateral sclerosis. *Brain* **136**, 3305–3332
633 (2013).

634 56. Lerman, B. J. *et al.* Deletion of galectin-3 exacerbates microglial
635 activation and accelerates disease progression and demise in a SOD1 G93A mouse model of
636 amyotrophic lateral sclerosis. *Brain and Behavior* **2**, 563–575 (2012).

637 57. Matarin, M. *et al.* A Genome-wide Gene-Expression Analysis and
638 Database in Transgenic Mice during Development of Amyloid or Tau Pathology. *Cell Reports*
639 **10**, 633–644 (2015).

640 58. Xu, B., Hsu, P.-K., Stark, K. L., Karayiorgou, M. & Gogos, J. A.
641 Derepression of a Neuronal Inhibitor due to miRNA Dysregulation in a Schizophrenia-Related
642 Microdeletion. *Cell* **152**, 262–275 (2013).

643 59. Srivastava, S. *et al.* Loss-of-function variants in *HIVEP2* are a cause of
644 intellectual disability. *European Journal of Human Genetics* **24**, 556–561 (2016).

645 60. Steinfeld, H. *et al.* Mutations in *HIVEP2* are associated with
646 developmental delay, intellectual disability, and dysmorphic features. *Neurogenetics* **17**,
647 159–164 (2016).

648 61. Harrison, P. J. The hippocampus in schizophrenia: a review of the
649 neuropathological evidence and its pathophysiological implications. *Psychopharmacology* **174**,
650 151–162 (2004).

651 62. Glausier, J. R. & Lewis, D. A. Dendritic spine pathology in schizophrenia.
652 *Neuroscience* **251**, 90–107 (2013).

653 63. Fatemi, S. H., Folsom, T. D. & Thuras, P. D. GABAA and GABAB
654 receptor dysregulation in superior frontal cortex of subjects with schizophrenia and bipolar
655 disorder. *Synapse* **71**, (2017).

656 64. Lisman, J. E. *et al.* Circuit-based framework for understanding
657 neurotransmitter and risk gene interactions in schizophrenia. *Trends Neurosci.* **31**, 234–242
658 (2008).

659 65. Chestnut, B. A. *et al.* Epigenetic Regulation of Motor Neuron Cell Death
660 through DNA Methylation. *J. Neurosci.* **31**, 16619–16636 (2011).

661 66. Martin, L. J. & Wong, M. Aberrant Regulation of DNA Methylation in
662 Amyotrophic Lateral Sclerosis: A New Target of Disease Mechanisms. *Neurotherapeutics* **10**,
663 722–733 (2013).

664 67. Nguyen, M. D. *et al.* Cell Cycle Regulators in the Neuronal Death Pathway
665 of Amyotrophic Lateral Sclerosis Caused by Mutant Superoxide Dismutase 1. *J. Neurosci.* **23**,
666 2131–2140 (2003).

667 68. Dorszewska, J. *et al.* Mutations of TP53 Gene and Oxidative Stress in
668 Alzheimer's Disease Patients. *Advances in Alzheimer's Disease* **03**, 24 (2014).

669 69. Moskalev, A. A. *et al.* Gadd45 proteins: Relevance to aging, longevity and
670 age-related pathologies. *Ageing Research Reviews* **11**, 51–66 (2012).

671 70. Brennand, K. J. *et al.* Modelling schizophrenia using human induced
672 pluripotent stem cells. *Nature* **473**, 221–225 (2011).

673 71. Wen, Z. *et al.* Synaptic dysregulation in a human iPS cell model of mental
674 disorders. *Nature* **515**, 414–418 (2014).

675 72. Chan, M. K. *et al.* Evidence for disease and antipsychotic medication
676 effects in post-mortem brain from schizophrenia patients. *Mol Psychiatry* **16**, 1189–1202
677 (2011).

678 73. Hagiwara, H., Toyama, K., Yamasaki, N. & Miyakawa, T. Dissection of
679 hippocampal dentate gyrus from adult mouse. *J Vis Exp* (2009). doi:10.3791/1543
680

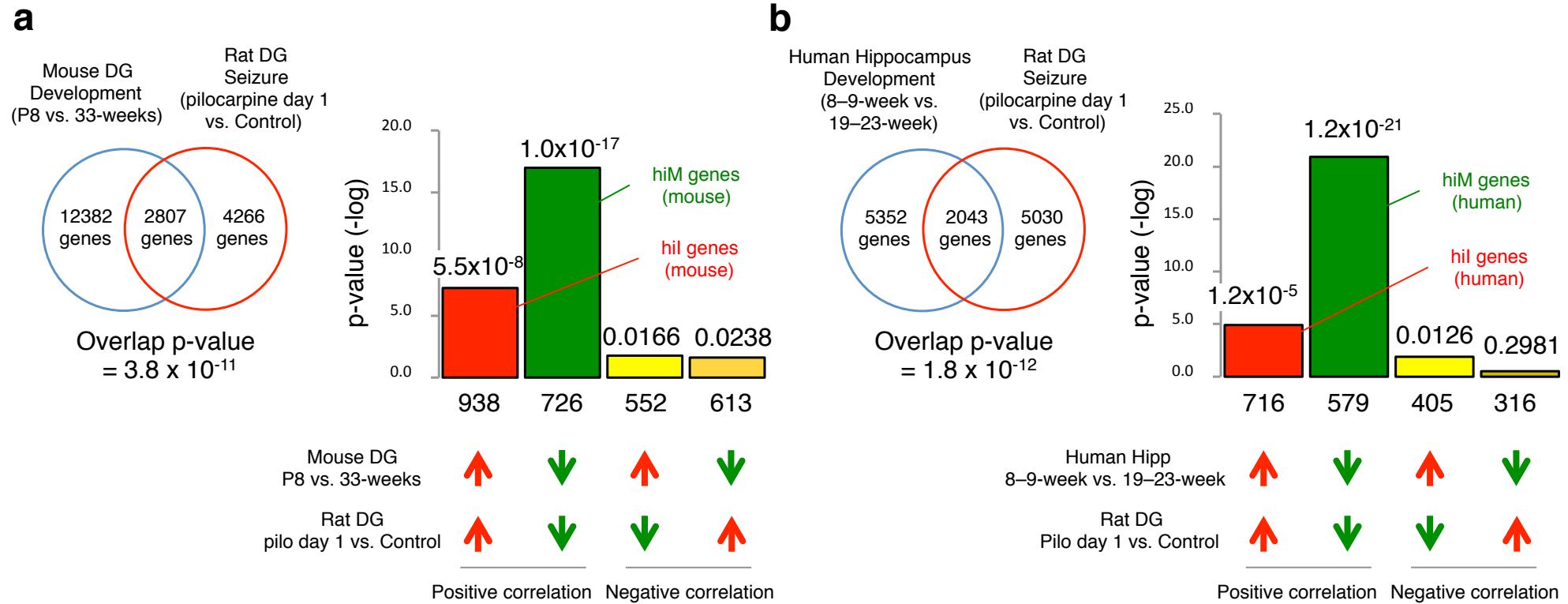
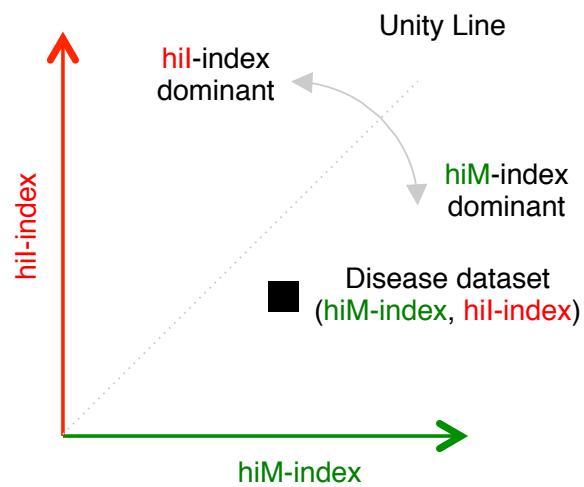
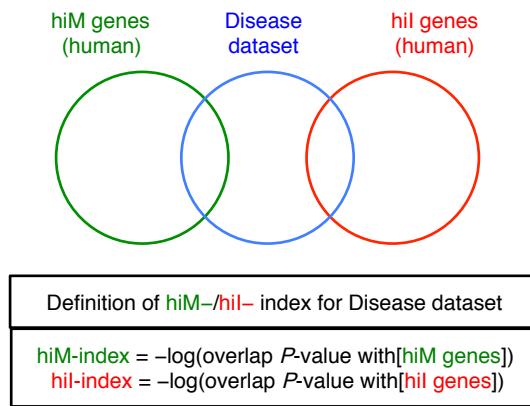
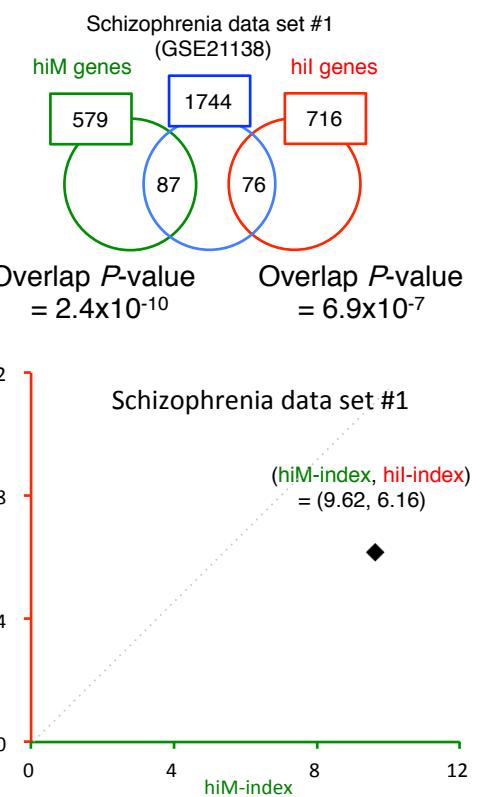
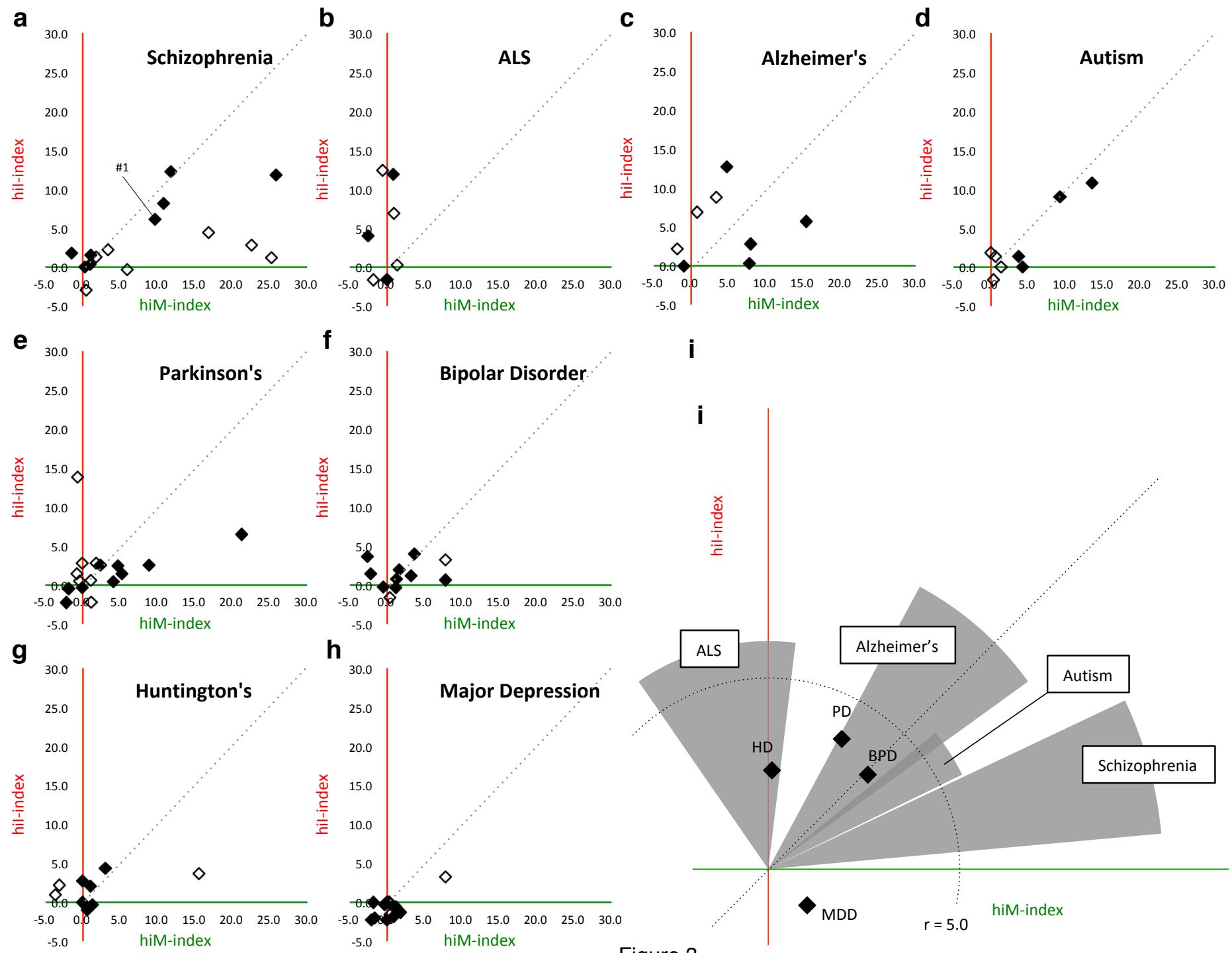






Figure 1

a**b****Figure 2**

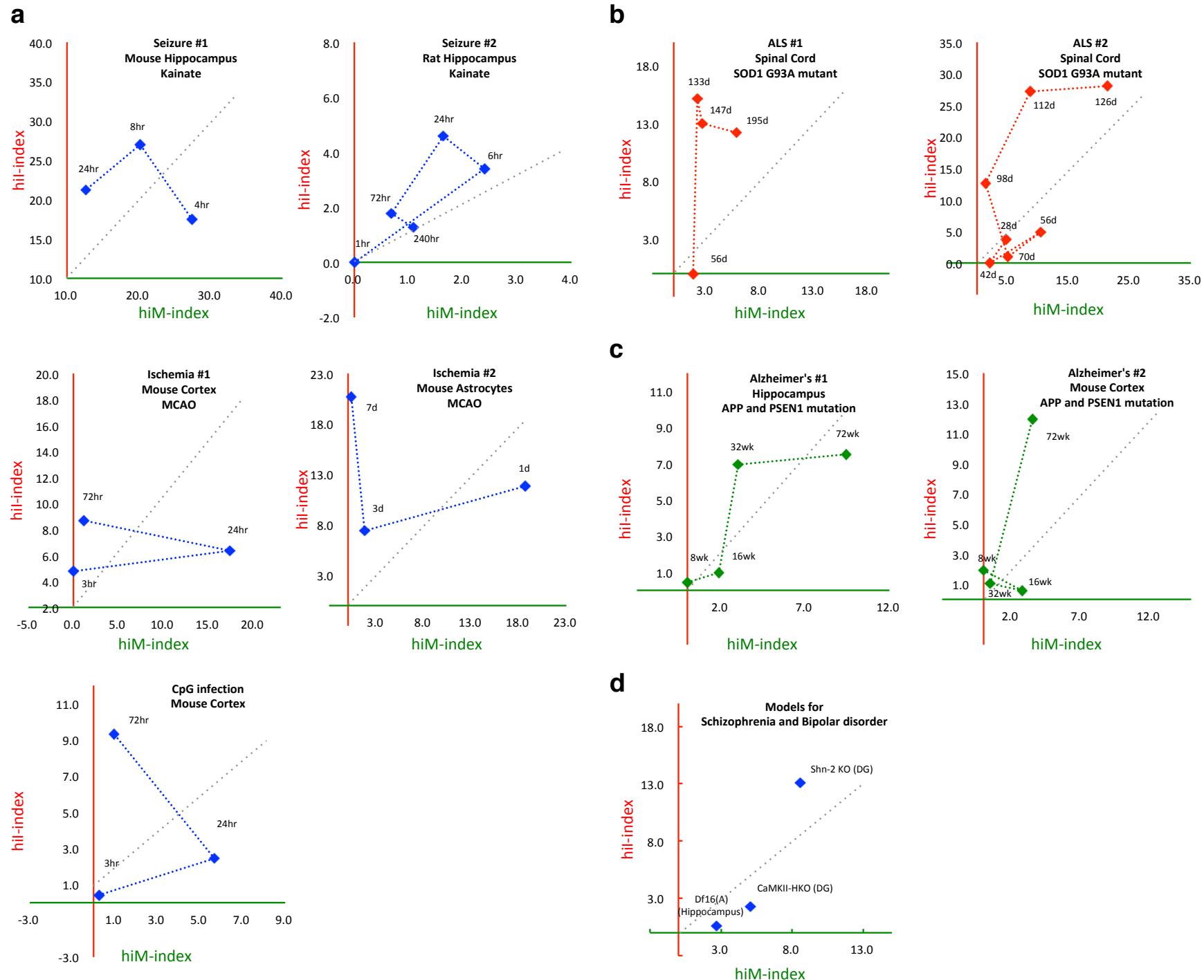


Figure 4

Table 1

a

hiM genes (mouse)				hiI genes (mouse)			
Biogroup name	direction	Common genes	p-value	Biogroup name	direction	Common genes	p-value
multicellular organismal signaling	down	56	4.00E-23	response to wounding	up	60	1.10E-16
transmission of nerve impulse	down	51	3.10E-19	positive regulation of developmental process	up	66	9.30E-16
axon	down	45	7.30E-19	cardiovascular system development	up	61	7.70E-15
neuron differentiation	down	58	4.70E-17	circulatory system development	up	61	7.70E-15
synapse	down	57	5.70E-17	proteinaceous extracellular matrix	up	32	7.80E-15
neuron development	down	50	1.50E-16	Genes involved in Cell Cycle	up	47	1.00E-14
neuronal cell body	down	45	5.20E-16	extracellular matrix	up	37	1.30E-14
cell junction	down	56	3.00E-15	Genes involved in Cell Cycle, Mitotic	up	42	6.30E-14
cell part morphogenesis	down	43	4.70E-15	protein domain specific binding	up	60	7.00E-14
neuron projection development	down	42	6.20E-15	positive regulation of signal transduction	up	58	8.70E-14
cell projection part	down	56	6.50E-15	Genes involved in DNA Replication	up	32	9.20E-14
cell morphogenesis involved in neuron differentiation	down	35	2.90E-14	cell cycle	up	67	3.00E-13
cell morphogenesis involved in differentiation	down	40	6.70E-14	Genes involved in Adaptive Immune System	up	56	3.20E-13
cellular chemical homeostasis	down	53	2.50E-13	Focal adhesion	up	31	5.60E-13
cell-cell signaling	down	44	2.60E-13	kinase binding	up	44	5.50E-12
synaptic transmission	down	37	3.60E-13	cytoskeleton organization	up	54	5.60E-12
regulation of neurological system process	down	31	1.10E-12	neuron differentiation	up	52	5.80E-12
regulation of transmission of nerve impulse	down	30	1.40E-12	basement membrane	up	19	7.50E-12
Genes involved in Neuronal System	down	31	1.70E-12	regulation of cell migration	up	36	1.10E-11
cellular ion homeostasis	down	49	1.80E-12	MAPKinase Signaling Pathway	up	20	1.40E-11

b

hiM genes (human)				hiI genes (human)			
Biogroup name	direction	Common genes	p-value	Biogroup name	direction	Common genes	p-value
multicellular organismal signaling	up	87	4.40E-58	chromosome	down	65	1.30E-32
transmission of nerve impulse	up	83	1.40E-54	response to DNA damage stimulus	down	60	4.80E-32
synaptic transmission	up	75	6.70E-50	Genes involved in Cell Cycle	down	50	3.60E-31
neuron projection	up	70	2.60E-44	Genes involved in Cell Cycle, Mitotic	down	43	1.20E-30
axon	up	42	2.90E-33	Genes involved in DNA Replication	down	34	2.00E-30
synapse	up	51	2.60E-32	interphase	down	47	8.20E-30
neuron development	up	58	1.60E-30	interphase of mitotic cell cycle	down	46	5.10E-29
Genes involved in Neuronal System	up	41	3.40E-30	Genes involved in Mitotic M-M/G1 phases	down	29	2.60E-26
Genes involved in Transmission across Chemical Synapses	up	32	1.50E-29	Cell cycle	down	25	7.60E-23
regulation of neurological system process	up	35	6.50E-29	DNA repair	down	40	2.30E-22
regulation of transmission of nerve impulse	up	34	9.20E-29	wound healing	down	50	7.40E-22
cell projection part	up	53	1.80E-27	response to ionizing radiation	down	21	1.20E-20
passive transmembrane transporter activity	up	44	1.80E-26	nuclear division	down	35	8.00E-20
ion channel activity	up	43	2.20E-26	mitosis	down	35	8.00E-20
cell part morphogenesis	up	49	1.80E-24	cell division	down	38	2.20E-19
behavior	up	38	2.90E-24	G1/S transition of mitotic cell cycle	down	26	1.70E-18
single-organism behavior	up	35	3.70E-24	cardiovascular system development	down	46	3.20E-18
cell morphogenesis involved in neuron differentiation	up	44	4.30E-24	circulatory system development	down	46	3.20E-18
neuron projection development	up	47	4.40E-24	S phase	down	22	3.80E-18
dendrite	up	37	2.00E-23	blood coagulation	down	41	6.10E-18