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26 Abstract

27  Small RNAs (sRNASs) are short noncoding RNAs that play rolesin many biological

28  processes, including drought responses in plants. However, how the expression of SRNAs
29  dynamically changes with the gradual imposition of drought stressin plantsis largely

30  unknown. We generated time-series SRNA sequence data from maize seedlings under

31 drought stress and under well-watered conditions at the same time points. Analyses of

32 length, functional annotation, and abundance of 736,372 non-redundant SRNAs from

33 both drought and well-watered data, as well as genome copy number and chromatin

34  modifications at the corresponding genomic regions, revealed distinct patterns of

35  abundance, genome organization, and chromatin modifications for different SRNA

36  classesof SRNAs. The analysisidentified 6,646 SRNAs whose regulation was altered in
37  responseto drought stress. Among drought-responsive sRNAS, 1,325 showed transient
38 down-regulation by the seventh day, coinciding with visible symptoms of drought stress.
39  The profiles reveaed drought-responsive microRNAS, as well as other SRNASs that

40  originated from ribosoma RNAs (rRNAS), splicing small nuclear RNAs, and small

41  nucleolar RNAs (snoRNA). Expression profiles of their SRNA derivers indicated that

42 snoRNAs might play aregulatory role through regulating stability of rRNAs and splicing
43 small nuclear RNAs under drought condition.

44
45

46
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47 Introduction

48  Physiological responses to drought in plants are complex and regulated through an

49  interplay of anetwork of genetic components and chromatin structure. One component is
50 comprised of drought-responsive small RNAs (SRNAS) (KHRAIWESH et al. 2012). sRNAS
51  areshort noncoding RNAS, predominately 20 to 24 nt in length, which function as

52 sequence-specific regulatorsin awide variety of biological processes, including DNA

53  methylation, RNA degradation, translation regulation, and histone modification

54 (KHRAIWESH et al. 2012; AXTELL 2013a). Plant SRNAs are typically categorized into two
55  major groups, which are distinguished by the structure of the SRNA precursors. The first
56  group consists of microRNAs (miRNAS), which are predominately 21 nt in length and
57  processed from single-stranded precursor RNA, or pri-sRNA, are transcribed by RNA

58 polymerase Il (Polll) and contain a hairpin structure. The second group is comprised of
59 small interfering RNAs (SSRNAS) are derived from DICER/DICER-like processing of

60  double-stranded RNAS (dsRNAS).

61

62  MiRNAs function in drought stress responses (COVARRUBIAS AND REYES 2010; SHUAI et
63  al. 2013) and are, conceptually, categorized into three functional categories -

64  homeostasis, detoxification, and growth regulation (ZHuU 2002) and function largely

65  through the destabilization of various transcription factors (RHOADES et al. 2002; DING et
66  al. 2013; FERDOUS et al. 2015; ZHANG 2015). The function of miRNASs in the regulation
67  of transcription factors places miRNAs at the hubs of gene regulatory networks for

68  drought responses. Whereas miRNAS primarily act in the posttranscriptional regulation

69  of gene expression, SIRNAs regulate gene transcription through both guiding DNA
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70  methylation by the pathway of RNA-directed DNA methylation (RdDM) and

71  posttranscriptional destabilization of transcripts in a sequence-specific manner (ONODERA
72  etal. 2005; WIERZBICKI et al. 2008). Small interfering RNAs can be further sub-grouped
73  into heterochromatic SSIRNAsS, secondary ssRNAs, and natural antisense transcripts

74  SIRNAs(NAT-siRNA). Heterochromatic SRNAS, typically, are 23-24 nt in length and
75  require RNA-dependent RNA polymerase (RDR) and RNA polymerase IV (PollV) for
76  biogenesis. Heterochromatic SsIRNAs were documented to be derived from

77  transposable/repetitive e ements located at heterochromatic regions of nuclear DNA

78 (MEYERS et al. 2008; NOBUTA et al. 2008). Secondary siRNAs include trans-acting

79 siRNAs (tasiRNA), which are formed through cleavage of capped and polyadenylated
80  SIRNA transcripts by specific miRNAS, followed by conversion into dsRNAs by RDR
81 (VAzQUEZz et al. 2010). NAT-siRNAs are derived from dsRNAs formed by annealing of
82  natural sense and antisense transcripts from the same or separate nearly identical genomic
83  regions (VAZQUEZ et al. 2010).

84

85  Small RNAs can also originate from ribosomal RNAs (rRNAS), transfer RNAs (tRNAS),
86  small nucleolar RNAs (snoRNAs), and small nuclear RNAs associated with mRNA

87  splicing (splicing snRNAS) and are respectively referred to as rsRNAs, tsRNAS, sno-

88  sRNAs, and splicing sn-sRNAs hereafter (VAzQUEZ et al. 2010). The rsRNAS, tsRNAs,
89  sno-sRNAs, and splicing sn-sRNAs play regulatory rolesin cellular processes (MORRIS
90 AND MATTICK 2014). In barley, tsSRNAs and sno-sRNAs tended to be up-regulated and
91  down-regulated, respectively, under drought conditions (HACKENBERG et al. 2015). In

92  maize, miRNA biosynthesis and regulation under drought stress has been explored (LI et
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93 al. 2013; Liu et al. 2014; WANG et al. 2014). However, the regulatory functions of

94  sRNAs other than miRNAs are largely unknown.

95

96  To understand sSRNA function and regulation in the drought response of maize, we

97  sequenced sRNAs from maize seedlings over a period of 3 to 11 days after witholding

98  water along with SRNAs from well-watered plants or drought treated plants that

99  recovered after watering. The sSRNAs were categorized with respect to length and
100  functional classification, and the genomic organization of SRNAs was analyzed. An
101  attempt was made to classify drought-responsive SRNAs using cluster and network
102  analyses on the time-series expression patterns, providing clues of destabilization of
103  ribosome RNA and splicing small nuclear RNAs under drought condition.

104
105 Materialsand M ethods

106  Plant materialsand drought treatments

107  Seedsof the maize (Zea mays) inbred line B73 were surface-sterilized and germinated on
108  the wet rolled brown paper towel at 28°C for 48h, and eighteen germinated seeds were
109  selected and transplanted in a plastic pot (17x12x10cm) filled with nutrient soil (1:1 peat
110  moss and vermiculite). Three-day seedlings after germination were subjected to drought
111  stressup to 10 days by withholding water (10 DAW), and the control plants were well
112 watered. The plants were grown on the controlled conditions (27 °C day/23°C night, 16 h
113  photoperiod, from 6 am to 10 pm, 300pmol m? s photons, 30-50% rel ative humidity).
114  Treatment (drought stress) and the control potswere randomly laid in growth chamber.

115  Eighteen seedlings were planted in a pot. For every harvest and sample time, five pots
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116  wereused for adrought treatment and other 5 pots were used as acontrol. At 10 DAW,
117  drought treated seedling plants were divided into two groups. a group of seedlings kept
118  under drought stress without watering and the other group of seedlings that were re-

119 watered. In summary, 36 samples of soils and leaf tissues were collected: i) 32 samples
120  resulting from 2 treatments (drought stress (DS) and well watered (WW)) x 8 days (from
121  day 3today 10) x 2 biological replicates; ii) 4 samples resulting from 2 treastments (DS
122  and WW at day 11th of plants previously subjected to 10 days of DS) x 2 biological

123 replicates.

124

125 Measurement of soil SWC, leaf RWC, and leaf REC

126  Soil samples and leaf tissues for measuring SWC (soil water content), RWC (relative
127  water content), and REC (Relative electrical conductivity) were daily collected at around
128  9:30 am. Five independent replicates were performed for the SWC measurement, and five
129  biological replicates were performed for RWC and REC measurements. SWC, RWC, and
130 REC were carried out according to the previously described method (ZHENG et al. 2010).
131  Briefly, the soil SWC was the percentage of the weight loss of soils after drying. The
132 RWC of the fresh leaves was calculated using the formula of (FW-DW)/(TW-DW)
133 x100%, where FW is the weight of fresh leaves, TW isthe leaf weight after saturated in
134  water for 8 h, and DW isthe leaf dry weight. REC was calculated using Ec1/Ec2 x 100%,
135  where Ecl is eectrical conductivity of fresh leaves after saturated in water for 3 h and
136  Ec2iselectrical conductivity of the same leaf samples after boiled in awater bath.

137

138  sRNA sequencing experiment
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139  Theabove ground tissues of five seedlings of each treatment at each day were collected
140  at approximately 10 am each day and immediately frozen in liquid nitrogen. Total RNA
141  wasisolated from harvested samples using TRIzol reagent (Invitrogen). A standard

142  Illluminasmall RNA library preparation kit was used to prepare small RNA sequencing
143  librariesfrom total RNAS. Briefly, atotal of 2 ug sSRNAsin the size range of 15 to 30
144  nucleotides were purified and ligated to 3' adaptor, and isolated by 15% denaturing

145 polyacrylamide gel electrophoresis gels to eliminate un-ligated 3' adaptors. The products
146  wereligated to 5’ adaptor and then were used to conduct reverse transcription PCR. The
147  final PCR product was isolated by 3.5% agarose gel electrophoresis and served as a small
148 RNA library for the sequencing. The libraries were quantified and sequenced at

149  HiSeq2000 analyzer to produce single-end 50 bp reads. Two biological replicates were
150 employed in the SRNA sequencing experiment.

151

152  sRNA data process

153  Trimmomatic (version 0.32) was used to trim the adaptor sequence of SRNA reads. The
154  parameters used for the trimming is: “ILLUMINACLIP:adaptor_seq:2:30:7:

155 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:13 MINLEN:16". The adaptor

156  sequence (adaptor_seq) includes a sequence of

157 “CTGTAGGCACCATCAATCAGATCGGAAGAGCACACGTCTGAACTCCAGTCA
158 C". These parameters were used to perform both adaptor and quality trimming. Although
159  quality trimming could shorten actual SRNAS, the percentage of reads subjected to

160  quality trimmingisonly ~0.3%. Therefore, quality trimming was applied to remove the
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161 low quality of nucleotides at the marginal compromise of changing SRNA lengths. At
162 least 16 nt in size was required for clean reads.

163

164 A non-redundant SRNA (NR-sRNA) set was obtained by pooling sSRNAs from all the
165  samplesand remove the redundancy. To remove most SRNA sequencesthat carry

166  sequence errors, only sSRNAs that were shown in at least two different samples and at
167 least twicein each sample were included in the unique SRNA set. After determining read
168  counts of each SRNA from all 36 samples, afurther reduction was performed to only
169  keep sSRNAswith at least 72 reads summed from all the samples, equivalent to 0.08 reads
170  per million of total reads, resulting in a NR-sSRNA set.

171

172 Functional annotation of SRNAs

173  Thesmall RNA annotation database was downloaded from Rfam 11.0 (BURGE et al.

174  2013). SRNAs generated from this experiment were aligned to Rfam 11.0 database using
175 Blastn (BLAST 2.2.29+) with the following parameters (-evalue 1le-1 —word_size 10 —
176  perc_identity 0.89 —strand plus—best_hit_overhang 0.2 —best_hit_score edge 0.1 —outfmt
177 6-—max_target_segs 10). The sSRNAswas functionally annotated only if they were

178  unambiguously hit an Rfam family.

179

180  Alignment to the reference genome to deter mine copy number of SRNA regions

181 Each sRNA was aligned to the B73 reference genome (Ref Gen2 and 4) using bwa

182  (version 0.7.5a-r405) (L1 AND DURBIN 2010). The command parameters were “bwa aln —

183 18k 048 -R 22500 followed by “bwa samse —n 22500”. The alignments were then
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184  parsed with the stringent criteria: perfect match with at least 18 bp matching length.

185  These aignment and parsing criteria alow the maximal 22,500 perfect hits.

186

187 K-mer analysisusing sequencing data to deter mine copy number of SRNA genomic
188 regions

189  B73 whole genome shotgun Illumina sequencing data were downloaded from Genbank
190 (SRR444422). Trimmomatic (version 0.32) was used for the adaptor and quality

191  trimming with the same parameters to those used in the SRNA data trimming. The

192  adaptor sequences used for the adaptor trimming are

193 (TACACTCTTTCCCTACACGACGCTCTTCCGATCT and

194 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT). The clean datawere

195  subjected to error correction using the error correction module (ErrorCorrectReads.pl) in
196 ALLPATHS-LG (BUTLER et al. 2008) with the parameters of “PHRED_ENCODING=33
197 PLOIDY=1". We then used the corrected sequencing data to perform k-mer counting
198  using the count functionin JELLY FISH (MARCAIS AND KINGSFORD 2011) with the

199  parameters of “-m k-mer —L 2 —s100M —C”, where the k-mer was from 18 to 30 nt. Once
200  theread depth of each k-mer from 18 to 30 nt was counted, the read depth of a

201  corresponding sSRNA can be determined. The highest density of k-mer counts was located
202  at 26.96 for a set of known single copy k-mers determined by reference genome

203  aignments, indicating approximately 26.96x sequencing depth was obtained. This

204  number was used as the base of read depths of a single copy to adjust counts of each k-
205  mer to roughly represent its genome copy number.

206
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207  Determination of mean levels of various histone modifications

208  ChlIP-Seq data of H3K27me3, H3K36me3, H3K4me3, and H3K9ac (WANG et al. 2009),
209  and H3K9mMe2 (WEST et al. 2014) of 14-day B73 seedlings were downloaded from

210  Genbank. To match sequencing datato sSRNA sequences, ChlP-Seq data were subjected
211  tok-mer counts at different k-mer lengths from 18 to 26 nt using JELLY FISH (MARCAIS
212 AND KINGSFORD 2011). Through k-mer counts, read counts from ChlP-Seq data of each
213 sRNA sequence was determined. Using sequencing read counts of whole genome

214  sequencing (WGS) data of SRNA sequences as the control, the histone modification

215  signal of each sSRNA, represented by ChiP read count divided by WGS read count of an
216  sRNA, was calculated. Due to the lack of biological replication and the limited

217  segquencing depth of ChiP-Seq data, we did not attempt to assess the histone modification
218 level of each sSRNA. Instead, mean of histone modification levels of all SRNAsin a

219  certain functional group (e.g., MiIRNA, rsRNA) were determined and used as the

220  modification level of that SRNA group for the comparison between functional groups.
221  Comparisons were only performed within the same length of SRNAs.

222

223  To enable the comparison of histone modification levels among different lengths of

224  sRNAs, al lengths of SRNAsfrom 18 to 26 nt were converted to 18 nucleotide fragments
225 andthe average signal of five epimarks were determined separately. As a control, 18 nt of
226  different genic regions, promoters, first exons, internal exons, introns, and last exons,
227  were sampled and the average histone modification levels of five epimarks of each genic

228  region were calculated.

229

10
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230 Identification of drought-responsive sSRNAs

231 A generdized linear model was fitted for each SRNA to identify drought responsive

232 sSRNAs. Theresponse variable in the model isthe read count of an SRNA, which were
233 assumed to follow negative binomial distribution. The model contains two factors, DAW
234  (day) and treatment, and their interactions. The DAW has eight factor levels (from 3 to
235 10) and the treatment has two factor levels (DS and WW). A deviance test of no

236  interaction effect between DAW and treatment was conducted for each SRNA. The

237  generdized linear model fit and test, assuming a negative binomial distribution for read
238  counts, were implemented in DESeg2 (LOVE et al. 2014). SRNAs having at least five
239  reads on average per sample were used for the statistical test, resulting in a p-value from
240  each SRNA. A false discovery rate (FDR) approach was applied to account for multiple
241  comparisons (BENJAMINI AND HOCHBERG 1995). Significant SRNAs were declared using
242  the 5% FDR asthe cutoff. The script was deposited at GitHub

243 (https://github.com/liu3zhenlab/sRNAs_drought).

244

245  Clustering of drought-responsive sSRNAs

246  Drought responsive sSRNAs were subjected to clustering analysis using mclust (FRALEY
247  AND RAFTERY 2007). For each drought-responsive sRNA, the Log2 of the ratio of the
248  mean of DS expression (the normalized value) to the mean of WW expression (the

249  normalized value) at a certain DAW (day) was determined, which represents the Log2 of
250 thefold changein expression between DS and WW. Log?2 ratio values were then used for
251  theclustering analysis. The script was deposited at GitHub

252  (https://github.com/liu3zhenlab/sRNAs_drought).

11
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253

254  Identification of significantly differentially expressed sSRNAs between DS and water
255  recovery

256  Totest the null hypothesisthat no differencein SRNA expression between two groups at
257 11 DAW, DR and water recovery (DWR), generalized linear model for the read count of
258  each sSRNA implemented in the DESeq2 package (version 1.4.5) was used (LOVE et al.
259  2014). A false discovery rate (FDR) approach was used to account for multiple tests
260  (BENJAMINI AND HOCHBERG 1995). The FDR 5% was used as the cutoff for declaration

261  of differential expression.

262

263  Enrichment analysis

264  The enrichment analyses were performed for determining if a certain type of category,
265  such asamember of SRNA functional families, is over-represented in a selected group of
266  sRNAs. To account for the biases read depth that influences the selection of membersin a
267  certain group, the resampling method in the GOSeq enrichment test (Y OUNG et al. 2010)
268  with the bias factor of read depth, total reads across all the samples of a certain SRNA,
269  wasapplied to enrichment analyses.

270

271  Analysisof SRNA co-expression networ k

272 Drought-responsive sSRNAs (FDR < 1%) were used to build co-expression SRNA

273  network using Bioconductor package WGCNA (v1.51) (LANGFELDER AND HORVATH

274  2008). WW sRNA network was built using SRNA expression profilesin WW samples,

12
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275 and DS sRNA network was constructed using sSRNA expression profilesin DS samples.
276  The package WGCNA uses an appropriate soft-thresholding power to construct a

277  weighted gene network. Modules of highly correlated SRNAs were identified using

278  topological overlap measure (TOM) implemented in WGCNA. Module preservation

279  analysiswas aso performed using WGCNA, with DS network as atest and WW network
280 asareference, and vice versa. An R script for network analysis has been deposited at
281  GitHub (https://github.com/liu3zhenlab/sRNASs_drought).

282

283  Identification of mMiRNAs

284  The database of mature miRNAs was downloaded from miRBase v22

285  (ftp://mirbase.org/pub/mirbase). In total, 325 mature B73 maize miRNAs from 174

286  miRNA geneswere extracted. Any SRNAs discovered in this study identical to these
287  mature miRNASs were annotated as known miRNAS.

288

289  ShortStack (v3.8.5) was used to de novo identify a set of miRNAs with the parameters (--
290  dicermin 18 --dicermax 30 --mismatches 0 --mincov 0.5rpm), and using B73Ref4

291  (version 4) asthe reference genome (AXTELL 2013b). ShortStack identified novel

292  miRNA loci that did not overlap with any known miRNA genes. Any mature miRNAS
293  from novel miRNA loci were referred to as novel miRNAs. Some mature miRNAS from
294  ShortStack are not known miRNAs but from known miRNA genes. Combining both
295  known mature miRNAs and all newly discovered mature miRNAs by ShortStack using
296  our massive SRNA datasets, we updated the miRNA set, referred to as

297  B73miRBase22plus.

13
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298

299  ldentification of 1somiRs

300 IsomiRsare variants of the reference mature miRNAs (MORIN et al. 2008). An isomiR in
301 thisstudy isasmall RNA perfectly matching a pri-miRNA but with a different sequence
302  from mature miRNAs in the B73miRBase22plus. Only 20-22 nt sSRNAs identical to the
303  plus-stranded sequence of aregion of pri-miRNAs were referred to asisomiRs.

304

305 Identification of ta-SRNAsS

306 sRNAs matching ta-siRNA downloaded from tassRNAdb

307  (http://bioinfo.jit.edu.cn/tasiRNADatabase/) were defined as known tas RNA. Also

308  seguences of maize trans-acting SRNA 3 (TAS3) wereretrieved from Dotto et al.

309 (DoTToet al. 2014).

310

311 Degradome analysis of drought-responsive miRNAS

312  Degradome raw reads were obtained from a previous maize miRNA study (Liu et al.
313  2014). After removing adaptor sequences and low-quality sequencing reads, clean reads
314 wereused to identify cleavage sites based on B73 cDNA sequences (5b+). CleavelLand
315 4.0 wasimplemented for degradome analysis with the default parameters (ADDO-QUAYE
316 etal. 2009), which provides evidence for gene targeting by miRNAS or isomiRs.

317

318 Prediction of miRNA targeted genes and GO enrichment analysis of targeted genes
319  psRNATarget (http://plantgrn.noble.org/psRNATarget/) was used to predict miRNA

320  target genes (DAI AND ZHAO 2011) . Gene targets of miRNAs were predicted based on

14
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321 B73 AGPv3.22 annotated transcript sequences with the expectation value no more than
322  1.5. Gene ontology (GO) enrichment of predicted miRNA-targeting genes was analyzed
323  with AgriGO (TIAN et al. 2017).

324

325 Transposable element analysis of 24 nt genomic loci

326  SRNA genomic clusters, from the ShortStack result, predominant by 24-nt SRNAs were
327  referred to as 24-nt genomic loci. RepearM asker (open-4.0.5) was used to identify

328  seguences matching transposable elements with the maize transposon database. As a
329  control, the “shuffle’ module in the bedtools was employed to randomly select intervals
330  simulating the number and sizes of genomic intervals of 24-nt loci.

331

332 Data Availability

333  Thedatasets supporting the conclusions of this article are included within the article and
334 itssupplemental materials. Supplemental files available at FigShare. All SRNA

335  sequencing raw data were deposited at Sequence Read Archive (SRA) (accession

336  number: SRP081275).

337

338 Results

339  Physiological changes of seedlings under drought conditions

340 Maize seedlings were subjected to drought over a period of nine days (Figure 1A).

341 Three-day-old B73 seedlings after germination were subjected to two treatments, drought

342  stress(DS) and well-watered (WW). Above ground tissues (referred to here as leaves)

343  werecollected at 3 t010 Days After Withholding water (DAW) or with watering with two
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344  biological replicates at each day. At 10 DAW, some seedlings from the DS treatment
345  group were subjected to two treatments: continuously withholding water (DS) and re-
346  watering, both of which were sampled at the 11th day. Two biological replicates were
347  collected, resulting in two additional DS samples on day 11 and two re-watering samples
348  at oneday after addition of water at day 10. A total of 36 plant samples were processed.
349  Compared to WW seedlings, DS-treated seedlings showed severe stressed phenotype by
350 8 DAW. Sail water content (SWC) decreased in the DS treatment from ~60% to 20% in
351 thesameperiod (Figure 1B). Leaf relative water content (RWC) of DS seedlings also
352  decreased upon the drought treatment, at alow declining rate from 3to 7 DAW and a
353 highrate after 7 DAW (Figure 1C). Leaf relative electrical conductivity (REC), whichis
354 ameasure of cellular damage, exhibited strongest response to drought between 8 and 9
355 DAW (Figure 1D), indicating that leaf cells began to experience damage after 8 DAW
356  under drought conditions. The DS-treated seedlings showed visible stressed phenotypes
357  after 10 DAW. When re-watered at 10 DAW, the DS-treated plant seedlings were visibly
358  recovered at 11 DAW.

359

360 Characterization of SRNAs

361 The 36 RNA samples were extracted for SRNA sequencing, resulting in more than 886.6
362  millions of 50 bp single-end reads, from 20.5 to 34.2 millions reads per sample. On

363  average, 97.5% of reads were retained after adaptor and quality trimming of each sample
364 (Table S1). The majority of SRNAs were between 18 and 26 nucleotides (nt). The 24-nt

365  SRNA length class was the largest, followed by the 21 nt and 22 nt SRNA classes (Figure
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366 2A). The same pattern of length distribution was observed across al the samples,

367 indicating that the drought treatment did not alter the global pattern of SRNA lengths.
368

369  All SRNA reads from the 36 samples were merged, and SRNAs with at least 72 reads
370  wereretained. Removing redundant reads with the same sequence for each SRNA

371 resulted in anon-redundant SRNA (NR-sRNAS) set of unique 736,372 SRNAS (134,283
372 NR-sRNAsused in the later time-series statistical analysiswere listed in Table S2 and
373  Table S3. The NR-sRNAs set was annotated using the Rfam database (Rfam11.0). 12.4%
374  (91,473) of the NR-sRNAs could be unambiguously annotated with regard to function
375  (see Methods). Among the Rfam-annotated subset of SRNAS, rsRNAs, tsRNAs, and

376  miRNAs are the most abundant, comprising of 40%, 27%, and 7%, respectively (Figure
377  2B). ThersRNA and tsRNAs represented nearly 70% of all annotated NR-sRNAs, while
378 miRNAsdistributed in adlightly narrower length range of 18 to 24 nt and a peak length
379 at 21 nt (Figure 2C). Of 21 nt NR-sSRNAS, 22% are miRNAs from approximately 65% of
380 thetotal 21-nt SRNA reads (redundant SRNAS), indicating that some 21 nt miRNAs were
381  highly expressed (Figure 2C, 2D). Indeed, the single SRNA showing the highest

382  abundanceisamiR159, with 14.8 million reads.

383

384 Genome organization of NR-sRNAsin B73

385  The copy number of individual NR-sRNAs in the B73 genome was estimated by both
386  mapping readsto the B73 reference genome (reference-based) and analyzing sequences
387  present in whole-genome-shotgun sequence reads (WGS-based) (see Methods). A small

388  number of NR-sRNAs, 20,452, were excluded based on alignment to either chloroplast or
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389  mitochondria DNA. Among the remaining NR-sRNAs (N=705,920), perfect matches for
390  93.2% of the NR-sRNAs were identified in either the B73 reference genome or the B73
391 WGSdata. The absence of perfect matches for 6.8% of the NR-sRNAs was attributed to
392  incomplete B73 genome assembly, contamination, sequencing errors, and/or RNA editing
393  (LIANG AND LANDWEBER 2007; SCHNABLE et al. 2009). The estimations of copy number
394  from the two approaches were largely consistent (Figure S1). Both estimations indicated
395  that most NR-sRNAs are from low-copy genomic loci (1-2 copies) except for NR-sRNAS
396 fromrRNA and tRNA (Figure S2). NR-sRNAs of differing lengths exhibit varying

397  mixtures of low- and high-copy loci (Figure S3). The 24 nt SRNAs are mostly single
398 copy inthe genome, while a high proportion of 21-23 nt SRNAs are derived from either
399  low-copy or very-high-copy genomic loci. Outside of the 21-24 sSRNA range, NR-RNAs
400  from highly repetitive genomic regions are dominant (Figure S3).

401

402 A linear association between expression level and genomic copy number of SRNAs was
403  not observed (Figure $4). Genomic single-copy NR-sRNAs can be highly expressed. For
404 example, the single copy miR168 locus was expressed at ahigh level (138,292 reads).
405  Conversaly, the expression of most genomic high-copy NR-sRNAs was low. Some high-
406  copy NR-sRNAswere highly expressed, such asrsRNAs. Analysis of SRNA expression
407  profiles based on functional classes also showed that high proportions of splicing sn-

408 sRNAsand sno-sRNAs exhibit low expression, while many rsRNAs were expressed at a
409 highlevel (Figure 2E). The 23 and 24 nt SRNAS, regardless of functional classes, were

410 mostly expressed at alow level, while 20-22 nt SRNASs tended to be expressed at
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411  relatively higher levels (Figure 2F). Compared to 21-24 nt SRNAs as awhole, a higher
412  proportion of 20 nt SRNAs were highly expressed (Figure 2F).

413

414 Digtinct histone modifications at genomic regions of different classes of SRNAs

415  Histone modification status at genomic regions of SRNAs was collected from genome-
416  scale datarepositories for B73 seedlings, including multiple histone modifications:

417  H3K27me3, H3K36me3, H3K4me3, H3K9ac, and H3K9me2. The lack of biological
418  replication and low depth of most chromatin modification data limited assessment of
419  histone modification levels for each SRNA locus. Therefore, the mean of histone

420  modification levels of genomic regionsin each functional SRNA class was used to

421  represent the overall genomic modification level of each SRNA functional class. To avoid
422  systematic biases, we compared histone modifications among different functional classes
423  at the same sSRNA length (Figure 3, Figures S5-S8 and Table $4). Average histone
424  modification levels on different functional classes showed that both miRNAs and sno-
425 sRNAsinsizeof 20, 21, and 23 nt were predominately found in open chromatin regions,
426  which were characterized by high modification levels of two hallmarks of open

427  chromatin regions, H3K4me3 and H3K9ac. The H3K4me3 signal at sno-sRNA genomic
428  regionswas much higher than those of genomic regions of any other functional SRNA
429  classes across al lengths from 20 to 24 nt. Genomic regions of 21 nt miRNAs and sno-
430 sRNAs, overall, had moderate levels of a silent chromatin mark H3K9me2, and genomic
431  regions of 20 and 23 nt miRNAs and sno-sRNAs exhibited low levels of H3K9me2

432  signals. H3K9me2 is associated with CHG (where H is A, T, or C) cytosine methylation

433  (STROUD et al. 2013; WEST et al. 2014), indicating that genomic regions producing
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434 miRNAs and sno-sRNAs, on average, exhibited low CHG cytosine methylation. At the
435  lengthsof 20, 21, 23 nt, miRNA genomic regions had high levels of H3K27me3, a

436  repressive chromatin mark associated with gene silence (GAN et al. 2015), and relatively
437  low H3K36me3 levelsthat are generally positively associated with transcriptional

438  activity but also were found to be enriched at heterochromatin regions (CHANTALAT &t al.
439  2011). The sno-sSRNA genomic regions, relative to miRNA genomic regions, exhibited
440  the opposite modification pattern with low H3K27me3 levels and high H3K36me3 levels.
441  Genomic regions of rsRNAS, splicing sn-sRNAs, and tsSRNAs had similar histone

442  modification patterns, namely, low levels of H3K27me3, H3K36me3, H3K4me3 and
443  H3K9ac and a high level of H3K9me2 across all lengths from 20 to 24 nt.

444

445  Through converting all lengths of SRNAs to the same 18 nt length, average signals of
446  histone modifications were compared among genomic regions producing different

447  lengths of SRNAs. Asthe control, 18 nt DNA fragments were also randomly sampled
448  from different genic regions, and their mean signals of histone modifications were

449  determined. The results showed that, except for H3K36me3, all epimarks shared asmilar
450 trend that the modification signals were at arelatively high level for genomic regions of
451  small lengths of SRNAs and gradually decrease until at 24 or 22 nt, followed by elevated
452  modification signals (Figure S9). For open chromatin marks H3K4me3 and H3K9ac, on
453  average sSRNAs exhibited lower levels relative to promoters and first exons but similar
454  levelstointernal exons, introns and last exons. Our result showed that H3K9me2 was
455  generally at much higher levels on SRNA genomic regions relative to genic regions, of

456  which 24 nt SRNAs whose genomic regions had the closest H3K9me2 signal to genic
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457  regions. That indicated that the CHG cytosine DNA methylation at genomic regions of 24
458 ntsRNAsisgenerally low.

459

460 Identification of drought-responsive sSRNAs

461 A statigtical test was performed to detect any interaction between drought stressed and
462  well-watered plants for each SRNA that had a minimum five SRNA reads per sample over
463 the3to 10 DAW period. The analysis revealed that 6,646 of the total 134,283 sRNAs
464  exhibited interactions between the DAW and the treatments at the 5% false discovery rate
465 (FDR) leve (Table S3). Interacting SRNAs showing different responses under DS and
466  WW conditions at certain DAWSs were scored as drought-responsive SRNAs. The

467  rsRNAsand 22 nt SRNAs are the two predominant groups in the drought-responsive

468  SRNA set (Figure S10). The DSto-WW ratios of SRNA expression were further

469  subjected to cluster analysis usng mclust (FRALEY AND RAFTERY 2007), resulting in 10
470  clusters. The sSRNAsof clusters 3, 4, 5, 7, and 9 exhibited a pattern of up-regulation

471  under drought stress (Figure 4A-F), while SRNAs of clusters 1 and 8 showed a pattern
472  for down-regulation (Figure 4G-I). More than five times up-regulated SRNAs (N=4,373)
473  were detected than down-regulated SRNAs (N=816) under drought stress (Figure 4). The
474  enrichment analyses indicate that rsSRNAs and splicing sn-sRNAs were over-represented
475  inup-regulated SRNAs, while miRNAs and sno-sRNAs were over-represented in down-
476  regulated sSRNAs. Additionally, SRNAs of clusters 2 and 6 exhibited transiently down-
477  regulation on drought (transiently down-regulation group, N=1,325), which were down-

478  regulated at around 7 DAW when drought stress became intense, followed by a gradual
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479  recovery of expression (Figure 4J-L). The enrichment analysis indicates that miRNAS
480 and sno-sRNAs are significantly over-represented in transiently down-regulated SRNAs.
481

482 A comparison of SRNA expression was performed between two additional seedling

483  groupsat 11 DAW, DS and drought water recovery (DWR), which was re-watered on 10
484 DAW. Using the 5% FDR cutoff, 7,140 sSRNAs were differentially expressed between
485  two groups, of which 2,264 and 4,876 sSRNAs were up-regulated and down-regulated in
486 DWR relativeto DS, respectively, and 486 were identified as drought-responsive sSRNAs
487 inthetime-series analysis (Table S3, S5). The 473 sRNAs (out of 486) were classified
488 into three groups in the time-series analysis: Down-regulated (N=43), up-regulated

489  (N=426), and transiently down-regulated (N=4). All 43 sSRNAs from the down-regulated
490  group were up-regulated after DWR. Of 426 sRNAs in the up-regulated group, 76.3%
491  (325/426) sRNAs showed decreased expression in DWR, while 23.7% (101/426) were
492  continuously up-regulated even with water recovery. All four SRNAs in the transiently
493  down-regulated response group were up-regulated after re-watering. Overal, the

494  expression levels of most drought-responsive sSRNAs were restored towards levels of
495  waell-watered plants upon re-watering.

496

497  Characteristics of co-expression networ ks of drought-responsive SRNAs

498 DS and WW weighted co-expression networks were constructed using WGCNA

499  (LANGFELDER AND HORVATH 2008). Both networks consist of a subset of drought-

500 responsive SRNAswith the FDR cutoff of less than 1% from the drought response

501 dStatistical test. The DS and WW networks were built using normalized sSRNA counts of
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502 DSand WW samples, respectively (Figure 5A, 5B, Table S3). Network statistics

503 indicateintrinsic differences between the two networks (T able S6). Although the DS and
504  WW networks share similar network clustering coefficients, network centralizations, and
505 network densities, the DS network (Figur e 5B) has the smaller network diameter and
506 lower heterogeneity, indicating expression of these drought-responsive SRNAs were more
507  correlated upon drought stress or tended to be co-expressed in response to drought stress.
508

509 Modularity analysisin the DS network and the WW network further revealed that the two
510 networks have different topology structures. Modularity analysis included two steps:

511 module identification and module preservation analysis. Modules are sub-networks,

512  consisting of co-expressed SRNAs. The sSRNAs in the same module are similar in

513  expression to some degree, thereby are likely associated each other. Module preservation
514 analysisisused to determineif the topology of a network module identified in one

515 network changesin the other network. For example, a module is considered preserved in
516 the DS network, if itstopology, based on preservation statistics, largely remainsin the
517  WW network. The module preservation analysis identified a preserved module (blue

518 module) in the DS network compared to the WW networks (Figure 5C) and a preserved
519  module (blue module) in the WW network in comparison to the DS networks (Figur e
520 5D). Most sSRNAs (N=546) in two blue modules overlapped, of which more than 95% are
521 from thetransiently down-regulated group (Table S3). The result indicated transiently
522  down-regulated sSRNAs tended to be co-regulated in both drought and well-watered

523  conditions. On the other hand, these SRNAs exhibited atransient down-regulation to

524  drought, which might serve as the signal to induce downstream drought responses. Of
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525 546 overlapping SRNAS, 343 and 178 are 22 nt and 24 nt SRNA, respectively, and afew
526  werefunctional annotated with the Rfam database (6 miRNAs and 9 sno-sRNAS). The
527  module preservation analysis also revealed differences between modulesin the DS and
528  WW networks. The yellow module in the DS network isthe least preserved module,
529 indicating SRNAs of the module were perturbed in response to drought stress (Figure
530  5C). Indeed, the yellow module consists of 38 SRNAs that were down-regul ated upon
531 drought stress. In the WW network, the green module is the least preserved one, and most
532  sRNAswere up-regulated upon drought.

533

534 Identification of drought-responsive miRNAs and the corresponding tar geted genes
535  sRNA homologous to Rfam miRNAs were referred to as miRNASs hereinbefore. We
536  refined the miRNA set based on the dedicated miRNA database, miRBase (KozOMARA
537  AND GRIFFITHS-JONES 2014), and de novo discovery of miRNASs from our massive

538 datasets. We employed the ShortStack pipeline (AXTELL 2013b) and identified 53

539  miRNA loci of which 47 loci are known maize miRNA genesin miRBase (v22)

540  containing 174 miRNA genes. We found 59 new mature miRNAs from, including 47
541  mature miRNAs from known miRNA loci but with different sequences of mature

542  miRNAs, aswell as 12 mature miRNAs from 6 novel miRNA loci. Requiring at least an
543 18 nt match with at least 90% identity, homologs of miRNAs from three novel miRNA
544 loci (Cluster_23765, Cluster_27697, and Cluster_45700) were identified in MIR1878,
545 MIR156¢c, and MIR166d, respectively. We combined both known and newly discovered
546  mature miRNAsto create anew miRNA set referred to as B73miRBase22plus (Table

547  S7) that contains 180 miRNA genes producing 392 mature miRNAS, of which 244 are
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non-redundant miRNAs (T able S8). We also identified 608 isomiRs that are in length of
20-22 nt and identical to aregion of apri-miRNA sequence, but different from 392

mature miRNASs in sequence (Table S9).

Some miRNAs were highly expressed. The top eight most highly expressed miRNAs
belong to six families: miR159, miR168, miR396, miR156, miR169, and miR167 (T able
S8). Although highly expressed miRNAS, statigtically, are most likely to be detected,
none of the top 25 miRNAs showed evidence of regulation under drought condition,
indicating that expression levels of most highly expressed miRNAs were kept at
relatively stable levels under drought stress. In total, 21/244 miRNAs and 18/608 isomiRs
showed significantly drought responses (T able 1). Most drought-responsive miRNASs
(N=13) were down-regulated by drought treatment, while four were up-regulated. The
remaining four were not categorized to any of the three major cluster groups. The 21
drought-responsive miRNAs belong to 13 families, including miR1432, miR156,
miR164, miR166, miR167, miR168, miR171, miR319, miR390, miR398, miR399,
miR408, and miR528 (Table 1). The miR390a-3p or miR390b-3p (MiR390a/b-3p) of the
miR390 family was drought responsive. But no significant regulation on drought was
observed for miR390a/b-5p (AAGCUCAGGAGGGAUAGCGCC) that cleaves trans-
acting SsSRNA 3 (TAS3) loci to produce ta-siRNAs (ALLEN et al. 2005; WILLIAMS et al.
2005; DoTTO €t al. 2014; XA et al. 2017). Predicted TAS3 ta-siRNAs triggered by
miR390a/b-5p were either low expressed or with no significant regulation upon drought
stress (Table S10). For isomiRs, 7, 8, and 3 were in down-regulation, up-regulation, and
uncategorized groups, respectively, adding two additional miRNA families, miR396 and

miR444, showing drought responses. Notably, multiple isomiRs, and mirR156i-3p, from
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572  the miR156 family were up-regulated on drought (Table 1). However, miR156j-3p was
573  down-regulated, implying that family members play divergent regulatory roles.

574

575  Targeted protein-coding genes of 21 miRNASs and 18 isomiRs responded to drought were
576  predicted with the psRNATarget tool (DAI AND ZHAO 2011). In total, 67 pairs of gene-
577  miRNA, including 43 non-redundant genes, were predicted to be targeted by 18 drought-
578 responsive miRNAs and isomiRs (Table S11). GO enrichment analysis showed that 43
579  miRNA-targeting genes are highly enriched in DNA binding function (GO:0003677, p-
580 value = 2.1E-16) and nucleus cell component (GO:0005634, p-value = 6.1E-16) (Table
581 S12), suggestive of considerable impacts of miRNAS on the genes regulating

582  transcription under drought stress. Nearly half of targets (18/43) are putative SPL

583  (Squamosa promoter binding protein-like) transcription factors, and 17/18 are targeted by
584  twoisomiRs of the miR156 (GACAGAAGAGAGUGAGCACA and

585 UGACAGAAGAGAGUGAGCACA). SPL genes have been reported to be associated
586  with miR156 under drought condition in multiple plant species, such asrice (NIGAM et al.
587  2015) cotton (WANG et al. 2013), alfafa (ARSHAD et al. 2017), and maize (MAO et al.
588  2016). In our result, both SPL-targeting miR156 were up-regulated upon drought (Figure
589  6), indicating the possible regulation in expression of SPL genes through miRNAS during
590  drought treatment. Another drought-responsive miRNA miR319a/b-3p

591 (UUGGACUGAAGGGUGCUCCC) was predicted to target one MY B and two TCP

592  transcription factors (GRMZM2G028054, GRMZM2G089361, GRMZM2G115516)

593 (ZHANG et al. 2009; Liu et al. 2014). This miR319a/b-3p remained at a low expression

594 level under high drought stress (Figure S11). Presumably, the expression of targeted
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595 geneswasunder alow level of suppression imposed by miR319 under drought condition.
596  Indeed, one of three genes GRMZM2G115516 was up-regulated >4 times on drought
597 (Table S11) (Liu et al. 2015). The transcriptional regulation of genes targeted by

598 isomiRsof miR156 and miR319a/b-3p was well supported from degradome sequencing
599 data(Table S11), which were used to identify miRNA cleavage sites (SHEN et al. 2013;
600 ZHAl etal. 2013; Liu et al. 2014).

601
602 Discussion

603  Inthisstudy, SRNA sequencing was performed on samples of maize seedlings under

604  drought stress (DS) and well-watered (WW) conditions. The SRNAs were characterized
605  with respect to SRNA lengths, functional class, aswell as copy number and epigenetic
606  modifications of SRNA genomic regions. Genomic copy number analysis indicates that
607  most 18-20 nt and 25-30 nt NR-sRNAs and approximately half of the 21-23 nt NR-

608 sRNAsare derived from high-copy genomic repeats. The 24 nt SRNAs were the

609  predominate species among single-copy sSRNAs in this study, which isinconsistent with
610 theobservationsin most other plant species. In fact, 24 nt SRNAs are generally referred
611  to asheterochromatic SRNAs and are primarily derived from intergenic and/or repetitive
612  genomic regions (DUNOYER et al. 2007; KASSCHAU et al. 2007; AXTELL 2013a).

613  However, 24 nt SRNAs were also recently shown to be enriched in euchromatic regions
614  with low DNA cytosine methylation in an independent maize study (HE et al. 2013),

615  whichisconsstent with our observation. Based on ShortStack SRNA genomic mapping,
616  24-nt SRNA genomic loci were largely located at intergenic regions, but closer to protein-

617  coding genes compared to randomly shuffled ssmulated loci (Figur e S12). The proximity
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618  of 24-nt SRNA genomic loci to protein-coding genes, particularly highly expressed genes,
619  waspreviously observed (LUNARDON et al. 2016), and the 24-nt SRNA was proposed to
620  function to reinforce silencing of transposable elements close to active genes (L1 et al.
621  2015a). Our transposon analysis found that 24-nt SRNA genomic loci were over-

622  represented at regions containing DNA transposon elements but under-represented at

623  regions containing LTR retrotransposon elements, Copia and Gypsy (Table S13),

624  suggesting the 24-nt SRNA might be more critical for silencing of DNA transposon

625  elements. Compared to other lengths of SRNAS, genomic regions generating 24 nt SRNAs
626  exhibited low histone modification levels for all histone epimarks examined. Given that
627 most 24 nt SRNAs are generated by PollV, heavy nucleosome loading and/or strong

628  histone modifications of examined epimarks are likely not prerequisites for transcription
629 viaPollV (LI et al. 2015b; LUNARDON €t al. 2016).

630

631  High proportions of SRNAs with two genomic copies were found in 21 and 22 nt SRNAs
632  but notin 23 or 24 nt SRNAs. Production of most 23 and 24 nt SRNAs requires RNA-
633  dependent RNA polymerase 2 (RDR2) to form dsRNAs and do not require multiple

634  genome copies for optimal function (NOBUTA et al. 2008). Two identical copiesin the
635  genome could increase the chance for the expression of sense and antisense transcripts to
636 form NAT-siRNAs, which indicates that many 21 and 22 nt SRNAs might be NAT-

637  siIRNAs. Genomic regions of 21 and 22 nt SRNAs have the highest modification levels of
638 H3K36me3 among all lengths of SRNAS, resembling H3K36me3 modification levels of
639 internal genic regions (internal exons and introns). The high H3K36me3 signals of 21 and

640 22 nt SRNAs genomic regions are likely contributed by sno-sRNA genomic regions,
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641  which exhibited the highest H3K36me3 modification levels. Our results revealed the
642  complexity of histone modifications of plant SRNA genomic regions. However, the lack
643  of high depth of epimark data as well as the different experimental sources between

644  epimark information and SRNA expression data restrict the conclusion about their

645  correlation a asingle locus level. Future stratification based on sRNA length, function,
646  aswell as genomic and more informative epimark information of SRNA genomic regions
647  would be useful for understanding biogenesis and cellular function aswell as further
648  classification of SRNAs.

649

650  Characterization of drought-responsive sSRNAs indicates that SRNAs are differentially
651  expressed in response to drought stress. The miRNAs of maize were clustered into three
652  groups based on expression patterns, namely, up-regulated, down-regulated, and

653 transently down-regulated upon drought stress and over-represented in the down-

654  regulated group, in which miRNAs were approximately 4.8x enriched. The miRNAs and
655  cognate gene targets are involved in drought stress responses in many plant species such
656 asArabidopsis (BUTLER et al. 2008), rice (ZHou et al. 2010; FANG et al. 2014), soybean
657  (AXTELL 2013b) and poplar (SHUAI et al. 2013). Drought-induced miRNAS suppress
658  their target MRNAS, while down-regulated miRNAs result in the de-repression of the
659  target MRNAs (FERDOUS et al. 2015). The miRNAs may exhibit distinct responses to
660  drought stressin different plant species (ZHAI et al. 2015). For example, miR168a/b
661  down-regulated on drought in rice (ZHou et al. 2010), but was induced in response to
662  drought stressin maize. We have identified 39 drought-responsive miRNAS or isomiRs,

663 aswell astheir potential gene targets. Detailed studies on their regulatory networks and
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664 ther functional divergence among species or genotypes within a species would be

665  valuable to modulate miRNA-mediated pathways for improving drought tolerance of
666  plants.

667

668  Inaddition to mIRNAS, sSRNAs derived from rRNAS, tRNAS, snoRNAS, and splicing
669 snRNAswere also differentially regulated under drought condition. rRNAs are an

670  essential component of ribosomes and catalyzes protein assembly. rsRNAs (small RNAs
671  derived from rRNAS) were over-represented in the up-regulated SRNA group. rsRNAs
672  weresignificantly enriched in down-regulated sSRNAs after addition of water at 10 DAW.
673  Thus, drought response involves an increase of rsRNAS, which is, in turn, suppressed
674  when water was supplied. Transfer RNAs (tRNAS) play an essential rolein protein

675  synthesis. Although tsRNAs (small RNAs derived from tRNAS) are not enriched in either
676  up- or down-regulated SRNAs groups, up-regulated tSRNAs are almost seven times more
677  represented than down-regulated tsSRNAS (148/22), which is higher than the ratio of all
678  up-regulated sSRNAsto all down-regulated SRNAs (4,373/816). A barley SRNA study
679  asofound that tsSRNASs, overall, have atendency to be up-regulated under drought

680  condition (HACKENBERG €t al. 2015). Both rsRNA and tsRNA were abundant at all

681 lengthsfrom 18 to 27 nt, implying that the cleavage activity of rRNA and tRNA is not
682  size-specific. Likely an unknown RNase I11 member isinvolved in rRNA or tRNA

683  cleavage, producing sSRNAs with a broad range of lengths (Wu et al. 2000). Splicing sn-
684  sRNAs, derived from splicing snRNAs that are involved in pre-mRNA splicing, were
685  over-represented in up-regulated SRNAs on drought. Alternative splicing of preemRNA

686  splicing under drought stress was observed in multiple tissues, particularly in the leaf and
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687  ear (THATCHER et al. 2016), which might partially attributes to amount and stability of
688  various splicing sn-RNAs.

689

690  The snoRNAs primarily include two classes of SRNASs, box C/D and box H/ACA

691  snoRNAs, which guide methylation and pseudouridylation of other RNAS, respectively
692  (BACHELLERIE et al. 2002; Kiss 2006). The snoRNA-mediated chemical modifications of
693 rRNAsand splicing snRNAs have been demonstrated to be essential for ribosomal

694  function aswell as MRNA splicing and maturation (MORRISAND MATTICK 2014;

695  DupPuIs-SANDOVAL et al. 2015). The sno-sRNA was over-represented in both down-

696 regulated and transiently down-regulated SRNA groups under drought stress. Down-

697  regulation of sno-sRNAs may be the result of the reduction of snoRNAs, which would
698  reduce the activity of methylation and pseudouridylation of rRNAs and splicing snRNAs.
699  Given thereduction of sno-sRNAs and the increase of rSRNA and splicing sn-sRNAs
700  upon drought stress, it istempting to speculate that rRNAs and splicing snRNAs are

701  destabilized with decreased methylations or pseudouridylations as mediated by snoRNAs.
702  Both changesin chemical modification, presumably, and the quantity of rRNAS upon
703  drought stress could effectively alter the activity of the protein synthesis machinery. The
704  observation of SRNA changes related to rRNAs and splicing shRNAs indicates the post-
705  transcriptional regulation is an important mechanism for adaptive response to drought
706  stress. snoRNAs exhibiting responses to drought were also found in another plant species
707  (HACKENBERG et al. 2015). Recently, snoRNAs were also found to beinvolved in

708  metabolic stress responses, including oxidative stress in human cells (MICHEL et al. 2011,

709  CHu et al. 2012; Y OUsSEF et al. 2015). Taken together, we propose that snoRNAs play a
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710 roleto regulate biological processes under drought stress through chemical modifications
711  of rRNAsand splicing snRNAs.
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915 Tablel. Thelist of drought-responsive miRNAs

miRNA sequence Len Total Genomic miRNA gene miRNA Cluster
(nt) reads copy® type group®
UGGGUGUCAUCUCGCCUGAAGC 22 531 1 MIR1432 3p Others
UCAGGAGAGAUGACACCGACG 21 9,059 1 MIR1432 5p UpP
GACAGAAGAGAGUGAGCACA 20 9,921 8 MIR156a,b,c,d,ehii,l, isomiR UpP
Cluster_27697
UGACAGAAGAGAGUGAGCACA 21 23,675 8 MIR156a,b,c,d.ehii,l, isomiR UpP
Cluster_27697
ACGGCGCGACGAACGACAUAGC 22 1,417 1 MIR156d isomiR Others
GCUCACUGCUCUAUCUGUCAUC 22 14,829 1 MIR156i 3p upP
GCUCACUGCUCUAUCUGUCAU 21 1,116 1 MIR156i isomiR UP
GCUCUCUGCUCUCACUGUCAUC 22 607 1 MIR156j 3p DOWN
CACGUGCUCCCCUUCUCCACC 21 499 1 MIR164g 3p DOWN
GGAAUGUUGUCUGGUUCAAGG 21 40,096 2 MIR166b,d 5p DOWN
GGAAUGUUGUCUGGUUCAAGGU 22 839 4 MIR166b,d isomiR DOWN
GGAAUGUCGUCUGGCGCGAGA 21 416 1 MIR166i 5p DOWN
GGUUUGUUUGUCUGGUUCAAGG 22 2,613 1 MIR166j 5p DOWN
GGAAUGUUGGCUGGCUCGAGG 21 2,563 2 MIR166m, 5p DOWN
Cluster_45700
GAUCAUGCUGUGGCAGCCUCACU 23 3,287 1 MIR167c 3p DOWN
AGGUCAUGCUGUAGUUUCAUC 21 3,986 1 MIR167g isomiR DOWN
AGAUCAUGUGGCAGUUUCAUU 21 2,807 1 MIR167j isomiR UpP
CCCGCCUUGCACCAAGUGAA 20 25,019 1 MIR168a 3p UpP
CGCUUGGUGCAGAUCGGGAC 20 19,995 2 MIR168a,b isomiR UpP
UCGCUUGGUGCAGAUCGGGA 20 294,017 2 MIR168a,b isomiR upP
UCGCUUGGUGCAGAUCGGGACC 22 59,451 2 MIR168a,b isomiR UP
UGUUGGCUCGGCUCACUCAGA 21 21,299 2 MIR171d,e 5p DOWN
UUGGACUGAAGGGUGCUCCC 20 62,868 4 MIR319a,b,c,d 3p Others
CGCUAUCUAUCCUGAGCUCCA 21 9,684 2 MIR390a,b 3p DOWN
CAGCUUUCUUGAACUUCUUCU 21 823 2 MIR396e,f isomiR DOWN
GGGGCGAACUGAGAACACAUG 21 5,992 1 MIR398a 5p DOWN
AUGUGUUCUCAGGUCGCCCCCG 22 1,920 2 MIR398a,b isomiR Others
GGGGCGGACUGGGAACACAUG 21 53,148 1 MIR398b 5p DOWN
GGGCGGACUGGGAACACAUGG 21 10,086 1 MIR398b isomiR DOWN
GGGUACGUCUCCUUUGGCACA 21 390 1 MIR399¢c 5p Others
GGGCUUCUCUUUCUUGGCAGG 21 2,098 1 MIR399% 5p Others
GGGCAACUUCUCCUUUGGCAGA 22 2,743 1 MIR399f 5p UpP
CAGGGAUGAGACAGAGCAUG 20 12,523 1 MIR408a isomiR DOWN
CAGGGAUGAGACAGAGCAUGG 21 51,773 1 MIR408a isomiR DOWN
CAGGGACGAGGCAGAGCAUGG 21 6,822 1 MIR408b 5p DOWN
CAGGGACGAGGCAGAGCAUG 20 10,218 1 MIR408b isomiR Others
UGCAAGUUGUGCAGUUGUUGU 21 2,125 3 MIR444a,b isomiR UP
CCUGUGCCUGCCUCUUCCAUU 21 8,186 2 MIR528a,b 3p DOWN
CUGUGCCUGCCUCUUCCAUU 20 1,137 2 MIR528a,b isomiR DOWN

916  “total SRNA readsfrom all 36 samples

917  *Genomic DNA copy number using the reference-based method

918  3Clustering group from the mclust analysis. Down and Up represent down-regulated and up-
919  regulated groups respectively on drought stress. Others represent the group that does not belong
920  todown-regulated, up-regulated, or transiently down regulated groups.
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Figurelegends

Figure 1. Morphological and physiological changes of maize seedlings during drought
stress. (A) Three-day-old B73 seedlings were subjected to gradual drought stress or well-
watered conditions. The photos were taken at each day from 3 to 11 days. Bar=5cm. (B)
The changing curves of water content of soil (SWC) from five replicated pots of each
datapoint. (C) Leaf relative water content (RWC) of seedlings along days. (D) Leaf
relative electrical conductivity (REC) of seedlings along days. Red and green curves
represent plants under drought stress and well water, respectively. Five seedlings were
pooled as one replicate, and five independent biological replicates were conducted to

determine RWC and REC. Vertical lines represent standard errors.

Figure 2. Characterization of SRNAs. (A) Proportions of SRNAs of different lengthsin

all samples. Each curve represents a sample. WW, DS, and DWR, represent well-watered,
drought stress, and drought water recovered plants, respectively. (B-D) Overview of
genomic copy number, lengths, functional categories, and expression of NR-sRNAs from
all the samples. (B) Pie chart of distribution of different classes of SRNAs. Others
represent SRNAs that were not unambiguously categorized. (C) Stacked barplot of
different functional classes of NR-sRNAs at varying sizes of SRNAs from 18 to 30 nt. (D)
Stacked barplot of different functional classes of SRNA reads, representing expression
levels, at varying lengths of SRNAs from 18 to 30 nt. (E) Density plots of expression
levels of different functional classes of SRNAs. Density on the y-axis represents the
probability of SRNA occurrences. (F) Density plots of expression levels of different

lengths of SRNAs. Density on the y-axis represents the probability of SRNA occurrences.
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945

946  Figure 3. Modification levels of five epimarks on SRNA genomic regions. The average
947  ChIP-Seq signals, represented by read depths of ChIP-Seq, of five epimarks were

948 determined and normalized by sequencing library sizes separately. Heights of bars

949  represent relative histone modification levels. The general function of each epimark is
950  briefly described in the subtitle of each barplot.

951

952  Figure4. Mgjor clusters of drought-responsive sSRNAs. Drought-responsive SRNAs were
953  subjected to clustering using the software mclust, which ended with 10 clusters. Nine
954 magjor clusters (A-E, G, H, J, K) were classified into three groups, up-regulated (light

955  Dblue), down-regulated (light orange), and transiently down-regulated (light purple). Each
956  curverepresents an average SRNA expression ratio of drought stress to well-watered with
957 alog2 transformation from two biological replicates along DAW. Three pie charts

958  designate proportions of different classes of SRNAs that were functionally annotated in
959  each of the three clustering groups: up-regulated (F); down-regulated (1); transiently

960  down-regulated (L).

961

962  Figure5. sSRNA co-expression networks

963 (A) Visudization of the DS network using Cytoscape, each node represents an sSRNA and
964  each lineisthe edge connecting SRNA nodes. Five modules (sub-network) were

965 highlighted by different colors. (B) Visualization of the WW network. Six modules (sub-
966  networks) were highlighted by different colors. Note that assignment of colorsin (A) and

967 (B) aresort of independent. The same color might not represent the same group of
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968 sRNAs. (C) Result of the module preservation analysis performed to evaluate whether a
969 moduleidentified in the DS network is preserved in the WW network. The color code
970  correspondsto that used in (A). (D) Result of the module preservation analysis of the
971  WW network in comparison with the WW network. The color code corresponds to that
972  usedin (B).

973

974  Figure6. Time-series expression profiles of two miR156 targeting SPL genes

975 (A, B) Normalized counts of each miR156 (y-axis) were plotted along 3-11 DAW. WW,
976 DS, DWR represent well-watered, drought stress, drought water recovery, respectively. A
977  sequence on the top of each plot isthe miR156 sequence. Each error bar represents the
978 range of astandard error above and below each mean value.

979
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