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Abstract

Clinical interpretation of exome and genome sequencing data remains challenging and time
consuming, with many variants with unknown effects found in genes with unknown
functions. Automated prioritization of these variants can improve the speed of current
diagnostics and identify previously unknown disease genes. Here, we used 31,499 RNA-seq
samples to predict the phenotypic consequences of variants in genes. We developed
GeneNetwork Assisted Diagnostic Optimization (GADO), a tool that uses these predictions in
combination with a patient’s phenotype, denoted using HPO terms, to prioritize identified
variants and ease interpretation. GADO is unique because it does not rely on existing
knowledge of a gene and can therefore prioritize variants missed by tools that rely on
existing annotations or pathway membership. In a validation trial on patients with a known
genetic diagnosis, GADO prioritized the causative gene within the top 3 for 41% of the
cases. Applying GADO to a cohort of 38 patients without genetic diagnosis, yielded new
candidate genes for seven cases. Our results highlight the added value of GADO

(www.genenetwork.nl) for increasing diagnostic yield and for implicating previously

unknown disease-causing genes.

Introduction

With the increasing use of whole-exome sequencing (WES) and whole-genome sequencing
(WGS) to diagnose patients with a suspected genetic disorder, diagnostic yield is steadily
increasing [1]. Although our knowledge of the genetic basis of Mendelian diseases has
improved considerably, the underlying cause remains elusive for a substantial proportion of
cases. The diagnostic yield of genome sequencing varies from 8% to 70% depending on the
patient’s phenotype and the extent of genetic testing [2]. Sequencing all ~20,000 protein-
coding genes by WES and entire genomes by WGS usually increases sensitivity but

decreases specificity: it results in off-target noise and reveals many variants of uncertain
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clinical significance. In a study by Yang et al., proband-only WES identified approximately

875 variants in each patient, even after removing low quality variants [3].

One strategy to manage the list of genetic variants is to perform trio analysis of samples
from the proband and both of his or her biological parents to ascertain, for instance,
whether a variant has de novo status [4]. Another strategy is to limit the analyses to a gene
panel of Online Mendelian Inheritance in Men (OMIM) disease-annotated genes [5] or genes
known to be directly related to the patient’s phenotype. However, determining the actual
disease-causing variant requires further variant filtering based on information about its
predicted functional consequence, population frequency data, conservation, disease-specific
databases (such as the Human Gene Mutation Database [6]), literature, and segregation

analysis [7].

Several tools have been developed that aid in variant filtering and prioritization [8,9].
Annotation tools, such as VEP [10] and GAVIN [9], offer additional functionality that allows
variants to be filtered according to their population frequency and variant class. Other tools
use phenotype descriptions to rank potential candidates genes [11]. The phenotypes are
typically described in a structured manner, e.g. using Human Phenotype Ontology (HPO)
terms [12]. AMELIE (Automatic Mendelian Literature Evaluation), for example, prioritizes
candidate genes by their likelihood of causing the patient’s phenotype based on automated
literature analysis [13]. However, this focus on what is known may inadvertently filter out
variants in potential novel disease genes. Alternatively, the causative gene defect could be
missed if a patient’s phenotype differs from the features previously reported to be
associated to a disease gene. Tools like Exomiser can identify novel human disease genes,
as it prioritizes variants based on semantic phenotypic similarity between a patient’s
phenotype described by HPO terms and HPO-annotated diseases, Mammalian Phenotype
Ontology (MPO)-annotated mouse and Zebrafish Phenotype Ontology (ZPO)-annotated fish

models associated with each exomic candidate and/or its neighbors in an interaction
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network [14]. However, most available algorithms are based on existing knowledge on
human disease genes, their orthologues in animal models, or well-described biological

pathways (for a detailed review see [11]).

To overcome this, we hypothesized that co-regulation of expression data could be used to
prioritize variants, including those in less well studied genes. We assumed that if a gene or
a gene set is known to cause a specific disease or disease symptom, these genes will often
have similar molecular functions or be involved in the same biological process or pathway.
We reasoned that variants in genes with yet unknown function that are involved in the same
biological pathway or co-regulated with known disease genes likely result in the same
phenotype. In order to identify groups of genes with a related biological function, we used
an expansive compendium of 31,499 RNA-sequencing (RNA-seq) gene expression samples

to predict functions for genes with high accuracy.

We then developed a user-friendly tool that can prioritize variants in known and unknown
genes based on our functional predictions, which we designated GeneNetwork Assisted
Diagnostic Optimization (GADOQO). GADO ranks variants based on gene co-regulation in
publicly available expression data of a wide range of tissues and cell types using HPO terms
to describe a patient’s phenotype. To validate our prioritization method, we tested how well
our method predicts disease-causing genes based on features described for each of the
genes in the OMIM database. We then used exome sequencing data of patients with a
known genetic diagnosis to benchmark GADO. Finally, we applied our methodology to
previously inconclusive WES data and identified several genes that contain variants that
likely explain the phenotype of the respective patients. Thus, we show that our methodology
is successful in identifying variants in novel, potentially relevant genes explaining the

patient’s phenotype.
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Results

Gene prioritization using GADO

We have developed GADO to perform gene prioritizations using the phenotypes observed in
patients denoted as HPO terms [15]. In combination with a list of candidate genes (i.e.
genes harboring rare and possibly damaging variants), this results in a ranked list of genes
with the most likely candidate genes on top (Figure 1a). The gene prioritizations are based
on the predicted involvement of the candidate genes for the specified set of HPO terms.
These predictions are made by analyzing public RNA-seq data from 31,499 samples (Figure
1b), resulting in a gene prediction score for each HPO term. These predictions are solely
based on co-regulation of genes annotated to a certain HPO term with other genes. This

makes it possible to also prioritize genes that currently lack any biological annotation.
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112 Figure 1: Schematic overview of GADO. (a) Per patient, GADO requires a set of phenotypic

113 features and a list of candidate genes (i.e. genes harboring rare alleles that are predicted to be

114 pathogenic) as input. It then ascertains whether genes have been predicted to cause these features,
115 and which ones are present in the set of candidate genes that has been provided as input. The

116 predicted HPO phenotypes are based on the co-regulation of genes with sets of genes that are already
117 known to be associated with that phenotype. (b) Overview of how disease symptoms are predicted
118 using gene expression data from 31,499 human RNA-seq samples. A principal component analysis on
119 the co-expression matrix results in the identification of 1,588 significant principal components. For
120 each HPO term we investigate every component: per component we test whether there is a significant
121 difference between eigenvector coefficients of genes known to cause a specific phenotype and a

122 background set of genes. This results in a matrix that indicates which principal components are

123 informative for every HPO term. By correlating this matrix to the eigenvector coefficients of every

124 individual gene, it is possible to infer the likely HPO disease phenotype term that would be the result
125 of a pathogenic variant in that gene.

126  Public RNA-seq data acquisition and quality control

127  To predict functions of genes and HPO term associations, we downloaded all human RNA-
128 seq samples publicly available in the European Nucleotide Archive (accessed June 30, 2016)
129  (supplementary table 1) [16]. We quantified gene-expression using Kallisto [17] and

130 removed samples for which a limited humber of reads are mapped. We used a principal
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131 component analysis (PCA) on the correlation matrix to remove low quality samples and
132  samples that were annotated as RNA-seq but turned out to be DNA-seq. In the end, we
133 included 31,499 samples and quantified gene expression levels for 56,435 genes (of which

134 22,375 are protein-coding).

135  Although these samples are generated in many different laboratories, we previously

136 observed that, after having corrected for technical biases, it is possible to integrate these
137 samples into a single expression dataset [18]. We validated that this is also true for our new
138 dataset by visualizing the data using t-Distributed Stochastic Neighbor Embedding (t-SNE).
139 We labeled the samples based on cell-type or tissue and we observed that samples cluster
140  together based on cell-type or tissue origin (Figure 2a). Technical biases, such as whether
141 single-end or paired-end sequencing had been used, did not lead to erroneous clusters,

142  which suggests that this heterogeneous dataset can be used to ascertain co-regulation

143 between genes and can thus serve as the basis for predicting the functions of genes.

144  Prediction of gene HPO associations and gene functions

145  To predict HPO term associations and putative gene functions using co-regulation (Figure
146 1b), we used a method that we had previously developed and applied to public expression
147 microarrays [19]. Since these microarrays only cover a subset of the protein-coding genes
148 (n = 14,510), we decided to use public RNA-seq data instead. This allows for more accurate
149  quantification of lower expressed genes and the expression quantification of many more

150 genes, including a large number of non-protein-coding genes. [20].

151  We applied this prediction methodology [19] to the HPO gene sets and also to Reactome
152 [21], KEGG pathways [22], Gene Ontology (GO) molecular function, GO biological process
153 and GO cellular component [23] gene sets. For 5,088 of the 8,657 gene sets (59%) with at
154  least 10 genes annotated, the gene function predictions had significant predictive power

155 (see materials and methods). For the 8,657 gene sets with at least 10 genes annotated, the
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156 median predictive power, denoted as Area Under the Curve (AUC), ranged between 0.73

157 (HPO) to 0.87 (Reactome) (Figure 2b).
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159 Figure 2: A compendium of gene expression profiles that can be used for gene function

160 prediction (a) 31,499 RNA-seq samples derived from many different studies show coherent clustering
161 after correcting for technical biases. Generally, samples originating from the same tissue, cell-type or
162 cell-line cluster together. The two axes denote the first t-SNE components. (b) Gene co-expression
163 information of 31,499 samples is used to predict gene functions. We show the prediction accuracy for
164 gene sets from different databases. AUC, Area Under the Curve, GO, Gene Ontology, HPO, Human
165 Phenotype Ontology.

166  Prioritization of known disease genes using the annotated HPO terms

167 Once we had calculated the prediction scores of HPO disease phenotypes, we leveraged
168  these scores to prioritize genes found by sequencing the DNA of a patient. For each

169 individual HPO term-gene combination, we calculated a prediction z-score that can be used
170  to rank genes. In practice, however, patients often present with not one feature but a

171 combination of multiple features. Therefore, we combined the z-scores for each HPO term
172 [24] to generate an overall z-score that explains the full spectrum of features in a patient.
173  GADO uses these combined z-scores to prioritize the candidate genes: the higher the

174  combined z-score for a gene, the more likely it explains the patient’s phenotype.

175 Because many HPO terms have fewer than 10 genes annotated, and since we were unable
176  to make significant predictions for some HPO terms, certain HPO terms are not suitable to
177 use for gene prioritization. We solved this problem by taking advantage of the way HPO
178  terms are structured. Each term has at least one parent HPO term that describes a more
179 generic phenotype and thus has also more genes assigned to it. Therefore, if an HPO term
180 cannot be used, GADO will make suggestions for suitable parental terms (supplementary

181  figure 1).

182  To benchmark our prioritization method, we used the OMIM database [5]. We tested how
183  well our method was able to retrospectively rank disease-causing genes listed in OMIM
184  based on the annotated symptoms of these diseases. We took each OMIM disease gene (n
185 = 3,382) and used the associated disease features (15 per gene on average) as input for
186  GADO. What we found was that for 49% of the diseases GADO ranks the causative gene in

187 the top 5% (Figure 3a, b). Moreover, we observed a statistically significant difference

10
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between the performance of GADO on true gene-phenotype combinations and its

performance using a random permutation of gene-phenotype combinations (p-value = 2.16

x 107532),
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Figure 3: Performance of disease gene prioritization compared to random permutation. (a)
OMIM disease genes and provisional disease genes have significantly stronger z-scores compared to
permuted disease genes (T-test p-values: 2.16x10%32 & 5.38x10°8°, respectively). We also observe
that the predictions of the provisional OMIM genes are, on average, weaker than the other OMIM
disease genes (T-test p-value: 1.89x1077). (b) Ranking the disease based on z-scores shows GADO’s
ability to prioritize the causative gene for a disease among all OMIM genes. For 49% of the disorders
the causative gene is ranked in the top 5%. (c) We observe a clear relation between the prioritization
z-scores and the gene predictability scores (Pearson r = 0.54). We don’t observe this relation in the
permuted results. (d) GeneNetwork performs best for genes with high predictability scores. (e) The
different groups have similar distributions of gene predictability scores.

Gene predictability scores explains performance differences between genes

For some combinations of genes and HPO terms listed in OMIM, GADO could not establish
the gene-phenotype combination (Figure 3). For example, variants in SLC6A3 are known to
cause infantile Parkinsonism-dystonia (MIM 613135) [25-27], but GADO was unable predict

the annotated HPO terms related to the Parkinsonism-dystonia for this gene. This may,

11
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however, be due to very low expression levels of SLC6A3 in most tissues except specific

brain regions [28].

To better understand why we can't predict HPO terms for all genes, we used the Reactome,
GO and KEGG prediction scores. Jointly these databases comprise thousands of gene sets.
Since these databases describe such a wide range of biology, we assumed that if a gene
does not show any prediction signal for any gene set in these databases, gene co-
expression is probably not informative for this gene. To quantify this, we calculated, per
gene, the average skewness of the z-score distribution of the Reactome, GO and KEGG gene
sets. From this we were able to derive a ‘gene predictability score’ for every gene that is
independent of whether this gene is already known to play a role in any a disease or
pathway (Figure 3c, d, e). We then ascertained whether these ‘gene predictability scores’
are correlated with the prediction z-score of the OMIM diseases, and found a strong
correlation (Pearson r = 0.54, p-value = 1.14 x 10-332) between the gene predictability

scores and GADO's ability to identify a known disease gene (Figure 3c).

To investigate why some genes have a high ‘gene predictability score’ but low prediction
performance, we scored a set of genes known to cause cardiomyopathy (CM) for the
amount of literature evidence that these genes cause CM. We found several genes for which
the prediction score for the CM phenotype is lower than expected based on the gene
predictability scores (supplementary figure 2a). Pathogenic variants in the TTR gene
implicated in hereditary amyloidosis (MIM 105210) [29], for instance, cause accumulation of
the transthyretin protein in different organ systems, including the heart, resulting in CM.
However, this gene is primarily expressed in the liver. Therefore, its disease mechanism is
different from other mechanisms resulting in CM, as many inherited CMs are caused by
deleterious variants in genes highly expressed in the heart and directly affecting the
function of the cardiac sarcomere. Therefore, the phenotypic function prediction for this

gene may be worse than we would expect based on the predictability score. We performed a

12
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similar analysis using the HPO term ‘dilated cardiomyopathy’ and observed a low prediction
performance for the TMPO gene, despite a high gene predictability score (supplementary
figure 2b). Previously, this gene was reported to be related to dilated cardiomyopathy
(DCM) and listed as such by OMIM. However, recent reclassification of the reported variants
using the EXAC data revealed that the reported variant was far too common to be causative

for DCM [30].

Benchmarking GADO using solved cases with realistic phenotyping

Although in silico benchmarking demonstrated the potential of GADO, it used all annotated
HPO terms for a disease. In practice, however, patients may only present with a limited
number of the annotated features. To perform a validation that was a more realistic
reflection of clinical practice, we used exome sequencing data of 83 patients with a known
genetic diagnosis. We used their phenotypic features as listed in their medical records prior
to the genetic diagnosis (supplementary table 2). On average, per patient, GADO yielded 56
possible disease-causing genes with variants that are rare and predicted to be deleterious.
In 41% of the patients the actual causative gene was ranked in the top 3 and in 50% of the

cases it was in the top 5 (mean rank 10) (Figure 4a).

Clustering of HPO terms

In addition to ranking potentially causative genes based on a patient’s phenotype, we
observed that GADO can be used to cluster HPO terms based on the genes that are predicted
to be associated to these HPO terms. This can help identify pairs of symptoms that often occur
together, as well as symptoms that rarely co-occur, and we actually observed this for a patient
suspected of having two different diseases. This patient is diagnosed with a glycogen storage
disease, GSD type Ib, caused by compound heterozygous variants in SLC37A4 (MIM 602671)
and DCM that is probably caused by a truncating variant in TTN (MIM 188840). Clustering of
the assigned HPO terms placed the phenotypic features related to GSD type Ib (‘leukopenia’

(HP:0001882) and ‘inflammation of the large intestine’ (HP:0002037)) together, while

13
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259 Cardiomyopathy (HP:0001638) was only weakly correlated to these specific features (Figure

260  4b).
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262 Figure 4: Performance of GeneNetwork on solved cases (a) Rank of the known causative gene
263 among the candidate disease causing variants. (b) Our cohort contained a case with two distinct

264 conditions, and clustering showed the HPO terms of the same disease are closest to each other. Note,
265 the HPO term "“Inflammation of the large intestine” did not yield a significant prediction profile and
266 therefore the parent terms "Abnormality of the large intestine”, “Increased inflammatory response”
267 and “Functional abnormality of the gastrointestinal tract” where used for this case.

268 Reanalysis of previously unsolved cases

269 To assess GADO'’s ability to discover new disease genes, we applied it to data from 38

270 patients who are suspected to have a Mendelian disease but who have not had a genetic
271 diagnosis. All patients had undergone prior genetic testing (WES with analysis of a gene
272 panel according to their phenotype, supplementary table 3). On average three genes had a
273  z-score = 5 (which we used as an arbitrary cut-off and that correspond to a p-value of 5.7 X
274 1077) and were further assessed. In seven cases, we identified variants in genes not

275 associated to a disease in OMIM or other databases, but for which we could find literature or
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276  for which we gained functional evidence implicating their disease relevance (Table 1). For
277 example, we identified two cases with DCM with rare compound heterozygous variants in
278 the OBSCN gene (MIM 608616) that are predicted to be damaging. In literature, inherited
279  variant(s) in OBSCN, encoding obscurin, are associated with hypertrophic CM [31] and DCM
280 [32]. Furthermore, obscurin is a known interaction partner of titin (TTN), a well-known

281 DCM-related protein [31]. Another example came from a patient with ichthyotic peeling skin
282  syndrome, which is caused by a damaging variant in FLG2 (MIM 616284). We recently

283 published this case where we prioritized this gene using an alpha version of GADO [33].
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HP:0001644 247 | 5 | OBSCN NM_001098623.2: | 24.8 | 8.0 x 10 | [31, | Yes
c.[15037C>T]l; 25.2 | 1.7 x 103 | 32]
[20963delC]
HP:0001644 226 | 3 | OBSCN NM_001098623.2: | 14.7 | 3.2 x 10* | [31, | Yes
C.[5545C>T]l; 7.8 0 32]
[22384+3_22384
+21del]
HP:0008066 359 | 3 | FLG2 NM_001014342.2: | 35.0 | 1.1 x 10> | [34] | Yes
HP:0008064 C.[632C>G]; 35.0 | 1.1 x 107
[632C>G]
HP:0001263 206 | 12 | INO8O NM_017553.2: c. 34 0 [35, | Yes
HP:0001249 [898C>T] 36]
HP:0000717
HP:0000708
HP:0002167
HP:0002360
HP:0000664
HP:0001644 346* | 2 | MB NM_00203377.1: 22.4 | 3.6 x 10 | [37] | Yes
C.[214G>A]
HP:0001644 126* | 1 | SYNPO2L** | NM_001114133.2: | 24.1 | 54 x 10* [38] | Yes
c.[473G>A]
HP:0001638 336 | 4 | NRAP** NM_001261463.1: | 20.4 | 8.7 x 10* | [39] | Yes

C.[ 4648C>T]

Table 1: unsolved cases with new candidate genes. Out of the 38 unsolved patients investigated,
we identified candidate genes in seven patients. For these genes we have found literature that

indicates these genes fit the phenotype of these patients or for which we gained functional evidence
implicating their disease relevance. *These variants where pre-filtered for family segregation. **The

variants in these genes do not fully explain the phenotype but are likely contributing to the phenotype.

www.genenetwork.nl

All analyses described in this paper can be performed using our online toolbox at

www.genenetwork.nl. Users can perform gene prioritizations using GADO by providing a set

of HPO terms and a list of candidate genes (Figure 5a). Per gene, it is also possible to

download all prediction scores for the HPO terms and pathways. Our co-regulation scores

between genes can be used for clustering. Furthermore, the predicted pathway and HPO
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295 annotations of genes can be used to perform function enrichment analysis (Figure 5b). We

296  also support automated queries to our database.
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Figure 5: www.genenetwork.nl (a) Prioritization results of one of our previously solved cases. This
patient was diagnosed with Kleefstra syndrome. The patient only showed a few of the phenotypic
features associated with Kleefstra syndrome and additionally had a neoplasm of the pituitary (which is
not associated with Kleefstra syndrome). Despite this limited overlap in phenotypic features, GADO
was able to rank the causative gene (EHMT1) second. Here, we also show the value of the HPO
clustering heatmap, the two terms related to the neoplasm cluster separately from the intellectual
disability and the facial abnormalities that are associated to Kleefstra syndrome. (b) Clustering of a set
of genes allowing function / HPO enrichment of all genes or specific enrichment of automatically
defined sub clusters. Here we loaded all known DCM genes and OBSCN, and we focus on a sub-cluster
of genes containing OBSCN (highlighted by the arrow). We see that it is strongly co-regulated with
many of the known DCM genes. Pathway enrichment of this sub-cluster reveals that these genes are
most strongly enriched for the muscle contraction Reactome pathway. DCM, Dilated Cardiomyopathy.

Discussion

Prioritizing genes from WES or WGS data remains challenging. To meet this challenge, we
developed GADO, a novel tool to prioritize genes based on the phenotypic features of a
patient. Since the classification of variants is labor-intensive, prioritization of the most likely

candidate variants saves time in the diagnostic process.

Importantly, GADO can also aid in the discovery of currently unknown disease genes. The
main advantage of our methodology is that it does not rely on any prior knowledge about
disease-gene annotations. Instead, we used predicted gene functions based on co-
expression networks extracted from a large compendium of publicly available RNA-seq
samples. RNA-seq has previously shown to be very helpful to accurately quantify expression
levels of lowly expressed genes and non-coding genes [18]. To evaluate our diagnostic
algorithm, we developed a testing scenario based on simulated patients presenting with all
clinical features listed in OMIM for a certain disease or syndrome. This validation test
showed that for 49% of the diseases the causative gene ranks in the top 5%. We also

III

investigated the OMIM “provisional” category of genes for which there is limited evidence.
Both the OMIM disease-gene annotation and the provisional annotations perform
significantly better than a random permutation. While we do find a small but significant

difference in prediction performance between the provisionally annotated genes and the

more established disease associated genes, we conclude, based on our findings, that these
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provisional OMIM annotations are generally of similar reliability to the other OMIM disease

annotations.

Benchmarking on sequence data of patients with a known genetic diagnosis revealed that
GADO returned the real causative variant within the top 3 results for 41% of the samples,
indicating the potential power of GADO for a large number of diseases. Finally, in seven
patients, GADO was able to identify potential novel disease genes that are strong candidates
based on literature or functional evidence. For other cases we have identified genes with a
strong prediction score harboring variants that might explain the phenotype. However, since
very little is known about these genes it is not yet possible to draw firm conclusions.
Hopefully this will become possible in the near future through initiatives like Genematcher

[40].

Potential to discover novel human disease genes

Over the last decade, several computational tools have been developed to prioritize variants
in genes. Some, such as GAVIN, focus on variant filtering and prioritization based on
deleteriousness scores, allele frequency and inheritance model [9]. Other methods measure
the similarity between the clinical manifestations observed in a patient and those
representing each of the diseases in a database or literature. Exomiser is closely related to
GADO as it prioritizes genes based on specified HPO terms and also infers HPO annotation
for unknown genes [14]. The gene prioritization by Exomiser is based on the effects of
orthologs in model organisms and applies a guilt-by-association method using protein-
protein associations provided by STRING [41]. Exomiser performs better than GADO in
ranking known disease-causing genes (supplementary figure 3, supplementary table 4) and
is also able to identify potential new genes in human disease. However, Exomiser has a
limitation in that only a subset of the protein-coding genes has orthologous genes in other
species for which a knockout model also exists. Additionally, the used STRING interactions

are biased towards well studied genes and rely heavily on existing annotations to biological
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pathways (supplementary figure 4). There are however, still 3,922 protein-coding genes
that are not currently annotated in any of the databases we used, and there are even more
non-coding genes for which the biological function or role in disease is unknown. Since
GADO does not rely on prior knowledge, it can be used to prioritize variants in both coding
and non-coding genes (for which no or limited information is available). GADO thus enables
the discovery of novel human disease genes and can complement existing tools in analyzing

the genomic data of patients who have a broad spectrum of phenotypic abnormalities.

Limitations

The gene predictability score indicates for which genes we can reliably predict phenotypic
associations and for which genes we cannot based on gene co-regulation. This score gives
insight into which genes are expected to perform poorly in our prioritization. We found
strong correlation between these gene predictability scores and the gene prioritization z-
scores. Thus, genes with a high predictability score have more accurate HPO term
predictions. However, since our predictions primarily rely on co-activation patterns that we
identified from RNA-seq data, our method does not perform well for genes where gene-
expression patterns are not informative of their function. This could, for instance, be the
case for proteins relying heavily on post-translation modifications for regulation or genes for
which different transcripts have distinct functions. This last limitation can potentially be
overcome by predicting HPO-isoform associations by using transcript-based expression

quantification.

Insufficient statistical power to obtain accurate predictions may be another explanation for
the low predictability scores of certain genes. This may be true for genes that are poorly
expressed or expressed in only a few of the available RNA-seq samples. The latter issue we
expect to overcome in the near future as the availability of RNA-seq data in public

repositories is rapidly increasing. Initiatives such as Recount enable easy analysis on these
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samples [42], allowing us to update our predictions in the future, thereby increasing our

prediction accuracy.

For some genes we are unable to predict annotated disease associations despite having a
high gene predictability scores. Some genes, such as TTR, simply act in a manner unique to
a specific phenotype. Other genes, such as TMPO, turned out to be false positive disease
associations. These examples show that our gene predictability score has the potential to
flag genes acting in a unique manner as well as genes that might be incorrectly assigned to

a certain disease or phenotype.

We noted that the median prediction performance of HPO terms is lower compared to the
other gene sets databases used in our study, such as Reactome. This may be due to the
fact that phenotypes can arise by disrupting multiple distinct biological pathways. For
instance, DCMs can be caused by variants in sarcomeric protein genes, but also by variants
in calcium/sodium handling genes or by transcription factor genes [43]. As our methodology
makes guilt-by-association predictions based on whether genes are showing similar
expression levels, the fact that multiple separately working processes are related to the
same phenotype can reduce the accuracy of the predictions (although it is often still
possible to use these predictions as the DCM HPO phenotype prediction performance AUC =

0.76).

Complexity

Given that nearly 5% of patients with a Mendelian disease have another genetic disease
[44], it is important to consider that multiple genes might each contribute to specific
phenotypic effects. Clinically, it can be difficult to assess if a patient suffers from two
inherited conditions, which may hinder variant interpretation based on HPO terms. We
showed that GADO can disentangle the phenotypic features of two different diseases
manifesting in one patient by correlating and subsequently clustering the profiles of HPO

terms describing the patient’s phenotype. If the HPO terms observed for a patient do not
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correlate, it is more likely that they are caused by two different diseases. An early indication
that this might be the case for a specific patient can simplify subsequent analysis because
the geneticist or laboratory specialist performing the variant interpretation can take this in
consideration. GADO also facilitates separate prioritizations on subsets of the phenotypic

features.

Conclusion

Connecting variants to disease is a complex multistep process. The early steps are usually
highly automated, but the final most critical interpretations still rely on expert review and
human interpretation. GADO is a novel approach that can aid users in prioritizing genes
using patient-specific HPO terms, thereby speeding-up the diagnostic process. It prioritizes
variants in coding and non-coding genes, including genes for which there is no current
knowledge about their function and those that have not been annotated in any ontology
database. This gene prioritization is based on co-regulation of genes identified by analyzing
31,499 publicly available RNA-seq samples. Therefore, in contrast to many other existing
prioritization tools, GADO has the capacity to identify novel genes involved in human
disease. By providing a statistical measure of the significance of the ranked candidate
variants, GADO can provide an indication for which genes its predictions are reliable. GADO
can also detect phenotypes that do not cluster together, which can alert users to the
possible presence of a second genetic disorder and facilitate the diagnostic process in
patients with multiple non-specific phenotypic features. GADO can easily be combined with
any filtering tool to prioritize variants within WES or WGS data and can also be used in gene
panels such as PanelApp [45]. GADO is freely available at www.genenetwork.nl to help

guide the differential diagnostic process in medical genetics.
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Materials and Methods

Gene co-regulation and function predictions

We used publicly available RNA-seq samples from the European Nucleotide Archive (ENA)
database [46] to predict gene functions and gene-HPO term associations. After processing
and quality control we included 31,499 sample for which we have expression quantification
on 56,435 genes (supplementary methods 1). We performed a PCA on the gene correlation

matrix and selected 1,588 reliable principal components (PCs) (Cronbach’s Alpha = 0.7).

We used the eigenvectors of these 1,588 PCs to predict gene functions and to predict HPO
term associations [19]. We applied this methodology to the gene sets described by terms in
the following databases: Reactome and KEGG pathways, Gene Ontology (GO) molecular
function, GO biological process and GO cellular component terms and finally to HPO terms.
We excluded terms for which fewer than 10 genes are annotated because predictions for
smaller groups of genes are less accurate and might be misleading. Predictions were made

for 8,657 gene sets in total.

The following steps were taken to obtain the gene prediction scores per gene set (Figure
1). First, for each PC, a student’s T-test was conducted between the eigencoefficients of the
genes annotated to a particular gene set and a group of genes serving as a background.
This background consisted of the genes annotated to any term in a specific database,
excluding those annotated to the current term. Second, the resulting p-values of the T-test
were transformed into a z-score, which indicate to which extend each PC represents a part
of the biology underlying a gene set. This is done for each PC, resulting in a profile how
important each PC is for a gene set. Finally, to predict which genes can be associated to a
particular gene set, we correlated the 1,588 T-test z-scores for that gene set (as calculated
above) with the 1,588 eigenvector coefficients of a gene. The p-value of this correlation

indicates the fit between a gene and a pathway / HPO term, these p-values were
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transformed to predictions z-scores. When a gene was already explicitly annotated to a
gene-set and we wanted to predict whether that gene is involved in that gene set, then
there is a small circular bias as the predictions profile of this set was partly calculated based
on this gene. To remove this bias, the 1,588 z-scores for a gene set were first re-calculated
while assuming this gene is not involved in that gene set, after which the gene prediction

was made.

To determine the accuracy of our predictions we assessed our ability to predict back known
gene set annotations. For each gene-set, we calculated an Area Under the Curve (AUQ),
using a Mann-Whitney U test, on the predictions z-scores of the genes that are part of a set
versus those that are not part of a set. These AUCs indicate how accurate the predictions
were, with an AUC of 1 indicating perfect predictions and an AUC of 0.5 indicating no
predictive power. The average AUC for each category was calculated based on all gene sets
with at least 10 annotated genes and with a p-value < 0.05 (Bonferroni corrected for the

number of pathways in a database).

Gene predictability scores

To explain why for some genes we cannot predict known HPO annotation, we have
established a gene predictability score. We have calculated this gene predictability using the
prioritization z-scores based on Reactome, GO and KEGG. For each gene and for each
database we calculated the skewness in the distribution of the prioritization z-scores of the

gene sets. We used the average skewness as the gene predictability score.

GADO predictions

To identify potential causative variants in patients, we used HPO terms to describe a
patient’s features. We only used the HPO terms which have significant predictive power
(based on the p-value of U test to calculate the AUC). If the predictions for a patient's HPO
term were not significant, the parent/umbrella HPO terms were used (supplementary figure

1). The online GADO tool suggests the parent terms from which the user can then select
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which terms should be used in the analysis. The gene prediction z-scores for an HPO term
were used to rank the genes. If a patient’s phenotype was described by more than one HPO
term, a meta-analysis was conducted. In these cases a weighted z-score was calculated by
adding the z-scores for each of the patient's HPO terms and then dividing by the square root
of the number of HPO terms [24]. The genes with the highest combined z-scores are
predicted to most likely candidate causative genes for a patient. This analysis can be

conducted at: https://www.genenetwork.nl.

Validation of disease-gene predictions

To benchmark our method we used the OMIM morbid map [5] downloaded on March 26,
2018, containing all disease-gene-phenotype entries. From this list, we extracted the
disease-gene associations, excluding non-disease and susceptibility entries. We extracted
the provisional disease-gene associations separately. For each disease in OMIM, we used
GADO to determine the rank of the causative gene among all genes in the OMIM morbid
map. For this we used all phenotypes annotated to the OMIM disease. If any of the HPO

terms did not have significant predictive power, the parent terms were used.

To determine if these distributions were significantly different from what we expect by
chance, we permuted the data. We replaced the existing gene-OMIM annotation but
assigned every gene to a new disease (keeping the phenotypic features for a disease
together), assuring that the randomly selected gene was not already annotated to any of

the phenotypes of the original gene.

Cohort of previously solved cases

To test if GADO could help prioritize genes that contain the causative variant, we used 83
samples of patients who were previously genetically diagnosed through whole exome
analysis or gene panel analysis. These samples encompass a wide variety of different
Mendelian disorders (supplementary table 2). To assess which genes harbor potentially

causative variants, we first called and annotated the variants from the exome sequencing
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files (Supplementary methods 3). For 11 of the previously solved cases, GAVIN did not flag
the causative variant as a candidate. To be able to include these samples in our GADO

benchmark, we added the causative genes for these cases manually to the candidate list.

The phenotypic features of a patient were translated into HPO terms, which were used as
input to GADO. Here we only used features reported in the medical records prior to the
molecular diagnosis. If any of the HPO terms did not have significant predictive power, the
parent terms were used. From the resulting list of ranked genes, the known disease genes
harboring a potentially causative variant were selected. Next, we determined the rank of the
gene with the known causative variant among the selected genes. If a patient harbored
multiple causative variants in different genes, in case of di-genic inheritance or two

inherited conditions, the median rank of these genes was reported (supplementary table 2).

Unsolved cases cohorts

In addition to the patients with a known genetic diagnosis, we tested 38 unsolved cases
(supplementary table 3). These are patients with mainly cardiomyopathies or developmental
delay. All patients were previously investigated using exome sequencing, by analyzing a
gene panel appropriate for their phenotype. To allow discovery of potential novel disease
genes, we used GADO to rank genes with candidate variants (Supplementary methods 3).
For genes with a prediction z-score > 5, a literature search for supporting evidence was

performed to assess whether these genes are likely candidate genes.

Website

To make our method and data available we have developed a website available at
www.genenetwork.nl that can be used to run GADO, lookup gene functions predictions,
visualize networks using co-regulations scores and perform function enrichments of sets of

genes (Supplementary methods 4).
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Description of Supplemental Data

Supplementary methods 1. Processing and quality control of public RNA-seq data
Supplementary methods 2. Benchmark comparison with Exomiser
Supplementary methods 3. Variant calling and processing of benchmark samples
Supplementary methods 4. GeneNetwork website

Supplementary figure 1. Selection of parent HPO term if GADO does not have significant

predictive power for query term

Supplementary figure 2. Comparison of GADO performance with the level of evidence for

each cardiomyopathy-related gene

Supplementary figure 3. Comparison between GADO and Exomiser rankings
Supplementary figure 4. Correcting for biases in co-expression networks

Supplementary figure 5. Histogram of the gene types included in our analyses
Supplementary figure 6. PCA plot of 36,761 samples

Supplementary figure 7. Investigation of principal components capturing technical biases
Supplementary figure 8. Variance explained by first 1588 PCs

Supplementary figure 9. Visualization of PC1 to PC 10 of PCA over gene correlation matrix

Supplementary figure 10. Outlier genes in PC 8 and PC 9 of PCA over gene correlation

matrix
Supplementary figure 11. PC sample scores to distinguish different tissues

Supplementary figure 12. Outlier samples in PC sample scores of PC 8 and PC 9
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Supplementary table 1. A list of samples annotated in the European Nucleotide Archive June

30, 2016

Supplementary table 2. A list of 83 diagnosed patients with Mendelian disorders and

corresponding predictions with GADO

Supplementary table 3. A list of 38 undiagnosed patients with suspected Mendelian

disorders

Supplementary table 4. A comparison between GADO and Exomiser predictions using a list

of 83 diagnosed patients with Mendelian disorders
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