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Abstract 25 

Clinical interpretation of exome and genome sequencing data remains challenging and time 26 

consuming, with many variants with unknown effects found in genes with unknown 27 

functions. Automated prioritization of these variants can improve the speed of current 28 

diagnostics and identify previously unknown disease genes. Here, we used 31,499 RNA-seq 29 

samples to predict the phenotypic consequences of variants in genes. We developed 30 

GeneNetwork Assisted Diagnostic Optimization (GADO), a tool that uses these predictions in 31 

combination with a patient’s phenotype, denoted using HPO terms, to prioritize identified 32 

variants and ease interpretation. GADO is unique because it does not rely on existing 33 

knowledge of a gene and can therefore prioritize variants missed by tools that rely on 34 

existing annotations or pathway membership. In a validation trial on patients with a known 35 

genetic diagnosis, GADO prioritized the causative gene within the top 3 for 41% of the 36 

cases. Applying GADO to a cohort of 38 patients without genetic diagnosis, yielded new 37 

candidate genes for seven cases. Our results highlight the added value of GADO 38 

(www.genenetwork.nl) for increasing diagnostic yield and for implicating previously 39 

unknown disease-causing genes. 40 

Introduction 41 

With the increasing use of whole-exome sequencing (WES) and whole-genome sequencing 42 

(WGS) to diagnose patients with a suspected genetic disorder, diagnostic yield is steadily 43 

increasing [1]. Although our knowledge of the genetic basis of Mendelian diseases has 44 

improved considerably, the underlying cause remains elusive for a substantial proportion of 45 

cases. The diagnostic yield of genome sequencing varies from 8% to 70% depending on the 46 

patient’s phenotype and the extent of genetic testing [2]. Sequencing all ~20,000 protein-47 

coding genes by WES and entire genomes by WGS usually increases sensitivity but 48 

decreases specificity: it results in off-target noise and reveals many variants of uncertain 49 
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clinical significance. In a study by Yang et al., proband-only WES identified approximately 50 

875 variants in each patient, even after removing low quality variants [3].  51 

One strategy to manage the list of genetic variants is to perform trio analysis of samples 52 

from the proband and both of his or her biological parents to ascertain, for instance, 53 

whether a variant has de novo status [4]. Another strategy is to limit the analyses to a gene 54 

panel of Online Mendelian Inheritance in Men (OMIM) disease-annotated genes [5] or genes 55 

known to be directly related to the patient’s phenotype. However, determining the actual 56 

disease-causing variant requires further variant filtering based on information about its 57 

predicted functional consequence, population frequency data, conservation, disease-specific 58 

databases (such as the Human Gene Mutation Database [6]), literature, and segregation 59 

analysis [7]. 60 

Several tools have been developed that aid in variant filtering and prioritization [8,9]. 61 

Annotation tools, such as VEP [10] and GAVIN [9], offer additional functionality that allows 62 

variants to be filtered according to their population frequency and variant class. Other tools 63 

use phenotype descriptions to rank potential candidates genes [11]. The phenotypes are 64 

typically described in a structured manner, e.g. using Human Phenotype Ontology (HPO) 65 

terms [12]. AMELIE (Automatic Mendelian Literature Evaluation), for example, prioritizes 66 

candidate genes by their likelihood of causing the patient’s phenotype based on automated 67 

literature analysis [13]. However, this focus on what is known may inadvertently filter out 68 

variants in potential novel disease genes. Alternatively, the causative gene defect could be 69 

missed if a patient’s phenotype differs from the features previously reported to be 70 

associated to a disease gene. Tools like Exomiser can identify novel human disease genes, 71 

as it prioritizes variants based on semantic phenotypic similarity between a patient’s 72 

phenotype described by HPO terms and HPO-annotated diseases, Mammalian Phenotype 73 

Ontology (MPO)-annotated mouse and Zebrafish Phenotype Ontology (ZPO)-annotated fish 74 

models associated with each exomic candidate and/or its neighbors in an interaction 75 
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network [14]. However, most available algorithms are based on existing knowledge on 76 

human disease genes, their orthologues in animal models, or well-described biological 77 

pathways (for a detailed review see [11]).  78 

To overcome this, we hypothesized that co-regulation of expression data could be used to 79 

prioritize variants, including those in less well studied genes. We assumed that if a gene or 80 

a gene set is known to cause a specific disease or disease symptom, these genes will often 81 

have similar molecular functions or be involved in the same biological process or pathway. 82 

We reasoned that variants in genes with yet unknown function that are involved in the same 83 

biological pathway or co-regulated with known disease genes likely result in the same 84 

phenotype. In order to identify groups of genes with a related biological function, we used 85 

an expansive compendium of 31,499 RNA-sequencing (RNA-seq) gene expression samples 86 

to predict functions for genes with high accuracy. 87 

We then developed a user-friendly tool that can prioritize variants in known and unknown 88 

genes based on our functional predictions, which we designated GeneNetwork Assisted 89 

Diagnostic Optimization (GADO). GADO ranks variants based on gene co-regulation in 90 

publicly available expression data of a wide range of tissues and cell types using HPO terms 91 

to describe a patient’s phenotype. To validate our prioritization method, we tested how well 92 

our method predicts disease-causing genes based on features described for each of the 93 

genes in the OMIM database. We then used exome sequencing data of patients with a 94 

known genetic diagnosis to benchmark GADO. Finally, we applied our methodology to 95 

previously inconclusive WES data and identified several genes that contain variants that 96 

likely explain the phenotype of the respective patients. Thus, we show that our methodology 97 

is successful in identifying variants in novel, potentially relevant genes explaining the 98 

patient’s phenotype.  99 
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Results 100 

Gene prioritization using GADO 101 

We have developed GADO to perform gene prioritizations using the phenotypes observed in 102 

patients denoted as HPO terms [15]. In combination with a list of candidate genes (i.e. 103 

genes harboring rare and possibly damaging variants), this results in a ranked list of genes 104 

with the most likely candidate genes on top (Figure 1a). The gene prioritizations are based 105 

on the predicted involvement of the candidate genes for the specified set of HPO terms. 106 

These predictions are made by analyzing public RNA-seq data from 31,499 samples (Figure 107 

1b), resulting in a gene prediction score for each HPO term. These predictions are solely 108 

based on co-regulation of genes annotated to a certain HPO term with other genes. This 109 

makes it possible to also prioritize genes that currently lack any biological annotation. 110 
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 111 

Figure 1: Schematic overview of GADO. (a) Per patient, GADO requires a set of phenotypic 112 
features and a list of candidate genes (i.e. genes harboring rare alleles that are predicted to be 113 
pathogenic) as input. It then ascertains whether genes have been predicted to cause these features, 114 
and which ones are present in the set of candidate genes that has been provided as input. The 115 
predicted HPO phenotypes are based on the co-regulation of genes with sets of genes that are already 116 
known to be associated with that phenotype. (b) Overview of how disease symptoms are predicted 117 
using gene expression data from 31,499 human RNA-seq samples. A principal component analysis on 118 
the co-expression matrix results in the identification of 1,588 significant principal components. For 119 
each HPO term we investigate every component: per component we test whether there is a significant 120 
difference between eigenvector coefficients of genes known to cause a specific phenotype and a 121 
background set of genes. This results in a matrix that indicates which principal components are 122 
informative for every HPO term. By correlating this matrix to the eigenvector coefficients of every 123 
individual gene, it is possible to infer the likely HPO disease phenotype term that would be the result 124 
of a pathogenic variant in that gene. 125 

Public RNA-seq data acquisition and quality control 126 

To predict functions of genes and HPO term associations, we downloaded all human RNA-127 

seq samples publicly available in the European Nucleotide Archive (accessed June 30, 2016) 128 

(supplementary table 1) [16]. We quantified gene-expression using Kallisto [17] and 129 

removed samples for which a limited number of reads are mapped. We used a principal 130 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2018. ; https://doi.org/10.1101/375766doi: bioRxiv preprint 

https://doi.org/10.1101/375766
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

component analysis (PCA) on the correlation matrix to remove low quality samples and 131 

samples that were annotated as RNA-seq but turned out to be DNA-seq. In the end, we 132 

included 31,499 samples and quantified gene expression levels for 56,435 genes (of which 133 

22,375 are protein-coding).  134 

Although these samples are generated in many different laboratories, we previously 135 

observed that, after having corrected for technical biases, it is possible to integrate these 136 

samples into a single expression dataset [18]. We validated that this is also true for our new 137 

dataset by visualizing the data using t-Distributed Stochastic Neighbor Embedding (t-SNE). 138 

We labeled the samples based on cell-type or tissue and we observed that samples cluster 139 

together based on cell-type or tissue origin (Figure 2a). Technical biases, such as whether 140 

single-end or paired-end sequencing had been used, did not lead to erroneous clusters, 141 

which suggests that this heterogeneous dataset can be used to ascertain co-regulation 142 

between genes and can thus serve as the basis for predicting the functions of genes. 143 

Prediction of gene HPO associations and gene functions 144 

To predict HPO term associations and putative gene functions using co-regulation (Figure 145 

1b), we used a method that we had previously developed and applied to public expression 146 

microarrays [19]. Since these microarrays only cover a subset of the protein-coding genes 147 

(n = 14,510), we decided to use public RNA-seq data instead. This allows for more accurate 148 

quantification of lower expressed genes and the expression quantification of many more 149 

genes, including a large number of non-protein-coding genes. [20]. 150 

We applied this prediction methodology [19] to the HPO gene sets and also to Reactome 151 

[21], KEGG pathways [22], Gene Ontology (GO) molecular function, GO biological process 152 

and GO cellular component [23] gene sets. For 5,088 of the 8,657 gene sets (59%) with at 153 

least 10 genes annotated, the gene function predictions had significant predictive power 154 

(see materials and methods). For the 8,657 gene sets with at least 10 genes annotated, the 155 
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median predictive power, denoted as Area Under the Curve (AUC), ranged between 0.73 156 

(HPO) to 0.87 (Reactome) (Figure 2b).  157 
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Figure 2: A compendium of gene expression profiles that can be used for gene function 159 
prediction (a) 31,499 RNA-seq samples derived from many different studies show coherent clustering 160 
after correcting for technical biases. Generally, samples originating from the same tissue, cell-type or 161 
cell-line cluster together. The two axes denote the first t-SNE components. (b) Gene co-expression 162 
information of 31,499 samples is used to predict gene functions. We show the prediction accuracy for 163 
gene sets from different databases. AUC, Area Under the Curve, GO, Gene Ontology, HPO, Human 164 
Phenotype Ontology. 165 

Prioritization of known disease genes using the annotated HPO terms 166 

Once we had calculated the prediction scores of HPO disease phenotypes, we leveraged 167 

these scores to prioritize genes found by sequencing the DNA of a patient. For each 168 

individual HPO term–gene combination, we calculated a prediction z-score that can be used 169 

to rank genes. In practice, however, patients often present with not one feature but a 170 

combination of multiple features. Therefore, we combined the z-scores for each HPO term 171 

[24] to generate an overall z-score that explains the full spectrum of features in a patient. 172 

GADO uses these combined z-scores to prioritize the candidate genes: the higher the 173 

combined z-score for a gene, the more likely it explains the patient’s phenotype.  174 

Because many HPO terms have fewer than 10 genes annotated, and since we were unable 175 

to make significant predictions for some HPO terms, certain HPO terms are not suitable to 176 

use for gene prioritization. We solved this problem by taking advantage of the way HPO 177 

terms are structured. Each term has at least one parent HPO term that describes a more 178 

generic phenotype and thus has also more genes assigned to it. Therefore, if an HPO term 179 

cannot be used, GADO will make suggestions for suitable parental terms (supplementary 180 

figure 1). 181 

To benchmark our prioritization method, we used the OMIM database [5]. We tested how 182 

well our method was able to retrospectively rank disease-causing genes listed in OMIM 183 

based on the annotated symptoms of these diseases. We took each OMIM disease gene (n 184 

= 3,382) and used the associated disease features (15 per gene on average) as input for 185 

GADO. What we found was that for 49% of the diseases GADO ranks the causative gene in 186 

the top 5% (Figure 3a, b). Moreover, we observed a statistically significant difference 187 
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between the performance of GADO on true gene-phenotype combinations and its 188 

performance using a random permutation of gene-phenotype combinations (p-value = 2.16 189 

× 10-532).  190 

 191 

Figure 3: Performance of disease gene prioritization compared to random permutation. (a) 192 
OMIM disease genes and provisional disease genes have significantly stronger z-scores compared to 193 
permuted disease genes (T-test p-values: 2.16×10-532 & 5.38×10-80, respectively). We also observe 194 
that the predictions of the provisional OMIM genes are, on average, weaker than the other OMIM 195 
disease genes (T-test p-value: 1.89×10-7). (b) Ranking the disease based on z-scores shows GADO’s 196 
ability to prioritize the causative gene for a disease among all OMIM genes. For 49% of the disorders 197 
the causative gene is ranked in the top 5%. (c) We observe a clear relation between the prioritization 198 
z-scores and the gene predictability scores (Pearson r = 0.54). We don’t observe this relation in the 199 
permuted results. (d) GeneNetwork performs best for genes with high predictability scores. (e) The 200 
different groups have similar distributions of gene predictability scores. 201 

Gene predictability scores explains performance differences between genes 202 

For some combinations of genes and HPO terms listed in OMIM, GADO could not establish 203 

the gene-phenotype combination (Figure 3). For example, variants in SLC6A3 are known to 204 

cause infantile Parkinsonism-dystonia (MIM 613135) [25–27], but GADO was unable predict 205 

the annotated HPO terms related to the Parkinsonism-dystonia for this gene. This may, 206 
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however, be due to very low expression levels of SLC6A3 in most tissues except specific 207 

brain regions [28]. 208 

To better understand why we can’t predict HPO terms for all genes, we used the Reactome, 209 

GO and KEGG prediction scores. Jointly these databases comprise thousands of gene sets. 210 

Since these databases describe such a wide range of biology, we assumed that if a gene 211 

does not show any prediction signal for any gene set in these databases, gene co-212 

expression is probably not informative for this gene. To quantify this, we calculated, per 213 

gene, the average skewness of the z-score distribution of the Reactome, GO and KEGG gene 214 

sets. From this we were able to derive a ‘gene predictability score’ for every gene that is 215 

independent of whether this gene is already known to play a role in any a disease or 216 

pathway (Figure 3c, d, e). We then ascertained whether these ‘gene predictability scores’ 217 

are correlated with the prediction z-score of the OMIM diseases, and found a strong 218 

correlation (Pearson r = 0.54, p-value = 1.14 × 10-332) between the gene predictability 219 

scores and GADO’s ability to identify a known disease gene (Figure 3c).  220 

To investigate why some genes have a high ‘gene predictability score’ but low prediction 221 

performance, we scored a set of genes known to cause cardiomyopathy (CM) for the 222 

amount of literature evidence that these genes cause CM. We found several genes for which 223 

the prediction score for the CM phenotype is lower than expected based on the gene 224 

predictability scores (supplementary figure 2a). Pathogenic variants in the TTR gene 225 

implicated in hereditary amyloidosis (MIM 105210) [29], for instance, cause accumulation of 226 

the transthyretin protein in different organ systems, including the heart, resulting in CM. 227 

However, this gene is primarily expressed in the liver. Therefore, its disease mechanism is 228 

different from other mechanisms resulting in CM, as many inherited CMs are caused by 229 

deleterious variants in genes highly expressed in the heart and directly affecting the 230 

function of the cardiac sarcomere. Therefore, the phenotypic function prediction for this 231 

gene may be worse than we would expect based on the predictability score. We performed a 232 
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similar analysis using the HPO term ‘dilated cardiomyopathy’ and observed a low prediction 233 

performance for the TMPO gene, despite a high gene predictability score (supplementary 234 

figure 2b). Previously, this gene was reported to be related to dilated cardiomyopathy 235 

(DCM) and listed as such by OMIM. However, recent reclassification of the reported variants 236 

using the ExAC data revealed that the reported variant was far too common to be causative 237 

for DCM [30].   238 

Benchmarking GADO using solved cases with realistic phenotyping 239 

Although in silico benchmarking demonstrated the potential of GADO, it used all annotated 240 

HPO terms for a disease. In practice, however, patients may only present with a limited 241 

number of the annotated features. To perform a validation that was a more realistic 242 

reflection of clinical practice, we used exome sequencing data of 83 patients with a known 243 

genetic diagnosis. We used their phenotypic features as listed in their medical records prior 244 

to the genetic diagnosis (supplementary table 2). On average, per patient, GADO yielded 56 245 

possible disease-causing genes with variants that are rare and predicted to be deleterious.   246 

In 41% of the patients the actual causative gene was ranked in the top 3 and in 50% of the 247 

cases it was in the top 5 (mean rank 10) (Figure 4a).  248 

Clustering of HPO terms  249 

In addition to ranking potentially causative genes based on a patient’s phenotype, we 250 

observed that GADO can be used to cluster HPO terms based on the genes that are predicted 251 

to be associated to these HPO terms. This can help identify pairs of symptoms that often occur 252 

together, as well as symptoms that rarely co-occur, and we actually observed this for a patient 253 

suspected of having two different diseases. This patient is diagnosed with a glycogen storage 254 

disease, GSD type Ib, caused by compound heterozygous variants in SLC37A4 (MIM 602671) 255 

and DCM that is probably caused by a truncating variant in TTN (MIM 188840). Clustering of 256 

the assigned HPO terms placed the phenotypic features related to GSD type Ib (‘leukopenia’ 257 

(HP:0001882) and ‘inflammation of the large intestine’ (HP:0002037)) together, while 258 
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Cardiomyopathy (HP:0001638) was only weakly correlated to these specific features (Figure 259 

4b).  260 

 261 

Figure 4: Performance of GeneNetwork on solved cases (a) Rank of the known causative gene 262 
among the candidate disease causing variants. (b) Our cohort contained a case with two distinct 263 
conditions, and clustering showed the HPO terms of the same disease are closest to each other. Note, 264 
the HPO term “Inflammation of the large intestine” did not yield a significant prediction profile and 265 
therefore the parent terms “Abnormality of the large intestine”, “Increased inflammatory response” 266 
and “Functional abnormality of the gastrointestinal tract” where used for this case.  267 

Reanalysis of previously unsolved cases 268 

To assess GADO’s ability to discover new disease genes, we applied it to data from 38 269 

patients who are suspected to have a Mendelian disease but who have not had a genetic 270 

diagnosis. All patients had undergone prior genetic testing (WES with analysis of a gene 271 

panel according to their phenotype, supplementary table 3). On average three genes had a 272 

z-score ≥ 5 (which we used as an arbitrary cut-off and that correspond to a p-value of 5.7 X 273 

10-7) and were further assessed. In seven cases, we identified variants in genes not 274 

associated to a disease in OMIM or other databases, but for which we could find literature or 275 
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for which we gained functional evidence implicating their disease relevance (Table 1). For 276 

example, we identified two cases with DCM with rare compound heterozygous variants in 277 

the OBSCN gene (MIM 608616) that are predicted to be damaging. In literature, inherited 278 

variant(s) in OBSCN, encoding obscurin, are associated with hypertrophic CM [31] and DCM 279 

[32]. Furthermore, obscurin is a known interaction partner of titin (TTN), a well-known 280 

DCM-related protein [31]. Another example came from a patient with ichthyotic peeling skin 281 

syndrome, which is caused by a damaging variant in FLG2 (MIM 616284). We recently 282 

published this case where we prioritized this gene using an alpha version of GADO [33].  283 
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HP:0001644 226 3 OBSCN NM_001098623.2: 
c.[5545C>T]; 
[22384+3_22384
+21del] 

14.7 
7.8 

3.2 x 10-4 
0 
 

[31,
32] 

Yes 

HP:0008066 
HP:0008064 

359 3 FLG2 NM_001014342.2: 
c.[632C>G]; 
[632C>G] 

35.0 
35.0 

1.1 x 10-5 
1.1 x 10-5 

[34] Yes 

HP:0001263 
HP:0001249 
HP:0000717 
HP:0000708 
HP:0002167 
HP:0002360 
HP:0000664 

206 12 INO80 NM_017553.2: c. 
[898C>T] 

34 0 [35,
36] 

Yes 

HP:0001644 346* 2 MB NM_00203377.1: 
c.[214G>A] 

22.4 3.6 x 10-5 [37] Yes 

HP:0001644 126* 1 SYNPO2L** NM_001114133.2: 
c.[473G>A] 

24.1 5.4 x 10-4 [38] Yes 

HP:0001638 336 4 NRAP** NM_001261463.1: 
c.[ 4648C>T] 

20.4 8.7 x 10-4 [39] Yes 

Table 1: unsolved cases with new candidate genes. Out of the 38 unsolved patients investigated, 284 
we identified candidate genes in seven patients. For these genes we have found literature that 285 
indicates these genes fit the phenotype of these patients or for which we gained functional evidence 286 
implicating their disease relevance. *These variants where pre-filtered for family segregation. **The 287 
variants in these genes do not fully explain the phenotype but are likely contributing to the phenotype.  288 

www.genenetwork.nl 289 

All analyses described in this paper can be performed using our online toolbox at 290 

www.genenetwork.nl. Users can perform gene prioritizations using GADO by providing a set 291 

of HPO terms and a list of candidate genes (Figure 5a). Per gene, it is also possible to 292 

download all prediction scores for the HPO terms and pathways. Our co-regulation scores 293 

between genes can be used for clustering. Furthermore, the predicted pathway and HPO 294 
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annotations of genes can be used to perform function enrichment analysis (Figure 5b). We 295 

also support automated queries to our database. 296 
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Figure 5: www.genenetwork.nl (a) Prioritization results of one of our previously solved cases. This 298 
patient was diagnosed with Kleefstra syndrome. The patient only showed a few of the phenotypic 299 
features associated with Kleefstra syndrome and additionally had a neoplasm of the pituitary (which is 300 
not associated with Kleefstra syndrome). Despite this limited overlap in phenotypic features, GADO 301 
was able to rank the causative gene (EHMT1) second. Here, we also show the value of the HPO 302 
clustering heatmap, the two terms related to the neoplasm cluster separately from the intellectual 303 
disability and the facial abnormalities that are associated to Kleefstra syndrome. (b) Clustering of a set 304 
of genes allowing function / HPO enrichment of all genes or specific enrichment of automatically 305 
defined sub clusters. Here we loaded all known DCM genes and OBSCN, and we focus on a sub-cluster 306 
of genes containing OBSCN (highlighted by the arrow). We see that it is strongly co-regulated with 307 
many of the known DCM genes. Pathway enrichment of this sub-cluster reveals that these genes are 308 
most strongly enriched for the muscle contraction Reactome pathway. DCM, Dilated Cardiomyopathy. 309 

Discussion 310 

Prioritizing genes from WES or WGS data remains challenging. To meet this challenge, we 311 

developed GADO, a novel tool to prioritize genes based on the phenotypic features of a 312 

patient. Since the classification of variants is labor-intensive, prioritization of the most likely 313 

candidate variants saves time in the diagnostic process.  314 

Importantly, GADO can also aid in the discovery of currently unknown disease genes. The 315 

main advantage of our methodology is that it does not rely on any prior knowledge about 316 

disease-gene annotations. Instead, we used predicted gene functions based on co-317 

expression networks extracted from a large compendium of publicly available RNA-seq 318 

samples. RNA-seq has previously shown to be very helpful to accurately quantify expression 319 

levels of lowly expressed genes and non-coding genes [18]. To evaluate our diagnostic 320 

algorithm, we developed a testing scenario based on simulated patients presenting with all 321 

clinical features listed in OMIM for a certain disease or syndrome. This validation test 322 

showed that for 49% of the diseases the causative gene ranks in the top 5%. We also 323 

investigated the OMIM “provisional” category of genes for which there is limited evidence. 324 

Both the OMIM disease-gene annotation and the provisional annotations perform 325 

significantly better than a random permutation. While we do find a small but significant 326 

difference in prediction performance between the provisionally annotated genes and the 327 

more established disease associated genes, we conclude, based on our findings, that these 328 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2018. ; https://doi.org/10.1101/375766doi: bioRxiv preprint 

https://doi.org/10.1101/375766
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

provisional OMIM annotations are generally of similar reliability to the other OMIM disease 329 

annotations.  330 

Benchmarking on sequence data of patients with a known genetic diagnosis revealed that 331 

GADO returned the real causative variant within the top 3 results for 41% of the samples, 332 

indicating the potential power of GADO for a large number of diseases. Finally, in seven 333 

patients, GADO was able to identify potential novel disease genes that are strong candidates 334 

based on literature or functional evidence. For other cases we have identified genes with a 335 

strong prediction score harboring variants that might explain the phenotype. However, since 336 

very little is known about these genes it is not yet possible to draw firm conclusions. 337 

Hopefully this will become possible in the near future through initiatives like Genematcher 338 

[40].  339 

Potential to discover novel human disease genes 340 

Over the last decade, several computational tools have been developed to prioritize variants 341 

in genes. Some, such as GAVIN, focus on variant filtering and prioritization based on 342 

deleteriousness scores, allele frequency and inheritance model [9]. Other methods measure 343 

the similarity between the clinical manifestations observed in a patient and those 344 

representing each of the diseases in a database or literature. Exomiser is closely related to 345 

GADO as it prioritizes genes based on specified HPO terms and also infers HPO annotation 346 

for unknown genes [14]. The gene prioritization by Exomiser is based on the effects of 347 

orthologs in model organisms and applies a guilt-by-association method using protein-348 

protein associations provided by STRING [41]. Exomiser performs better than GADO in 349 

ranking known disease-causing genes (supplementary figure 3, supplementary table 4) and 350 

is also able to identify potential new genes in human disease. However, Exomiser has a 351 

limitation in that only a subset of the protein-coding genes has orthologous genes in other 352 

species for which a knockout model also exists. Additionally, the used STRING interactions 353 

are biased towards well studied genes and rely heavily on existing annotations to biological 354 
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pathways (supplementary figure 4). There are however, still 3,922 protein-coding genes 355 

that are not currently annotated in any of the databases we used, and there are even more 356 

non-coding genes for which the biological function or role in disease is unknown. Since 357 

GADO does not rely on prior knowledge, it can be used to prioritize variants in both coding 358 

and non-coding genes (for which no or limited information is available). GADO thus enables 359 

the discovery of novel human disease genes and can complement existing tools in analyzing 360 

the genomic data of patients who have a broad spectrum of phenotypic abnormalities. 361 

Limitations 362 

The gene predictability score indicates for which genes we can reliably predict phenotypic 363 

associations and for which genes we cannot based on gene co-regulation. This score gives 364 

insight into which genes are expected to perform poorly in our prioritization. We found 365 

strong correlation between these gene predictability scores and the gene prioritization z-366 

scores. Thus, genes with a high predictability score have more accurate HPO term 367 

predictions. However, since our predictions primarily rely on co-activation patterns that we 368 

identified from RNA-seq data, our method does not perform well for genes where gene-369 

expression patterns are not informative of their function. This could, for instance, be the 370 

case for proteins relying heavily on post-translation modifications for regulation or genes for 371 

which different transcripts have distinct functions. This last limitation can potentially be 372 

overcome by predicting HPO-isoform associations by using transcript-based expression 373 

quantification.  374 

Insufficient statistical power to obtain accurate predictions may be another explanation for 375 

the low predictability scores of certain genes. This may be true for genes that are poorly 376 

expressed or expressed in only a few of the available RNA-seq samples. The latter issue we 377 

expect to overcome in the near future as the availability of RNA-seq data in public 378 

repositories is rapidly increasing. Initiatives such as Recount enable easy analysis on these 379 
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samples [42], allowing us to update our predictions in the future, thereby increasing our 380 

prediction accuracy. 381 

For some genes we are unable to predict annotated disease associations despite having a 382 

high gene predictability scores. Some genes, such as TTR, simply act in a manner unique to 383 

a specific phenotype. Other genes, such as TMPO, turned out to be false positive disease 384 

associations. These examples show that our gene predictability score has the potential to 385 

flag genes acting in a unique manner as well as genes that might be incorrectly assigned to 386 

a certain disease or phenotype.  387 

We noted that the median prediction performance of HPO terms is lower compared to the 388 

other gene sets databases used in our study, such as Reactome. This may be due to the 389 

fact that phenotypes can arise by disrupting multiple distinct biological pathways. For 390 

instance, DCMs can be caused by variants in sarcomeric protein genes, but also by variants 391 

in calcium/sodium handling genes or by transcription factor genes [43]. As our methodology 392 

makes guilt-by-association predictions based on whether genes are showing similar 393 

expression levels, the fact that multiple separately working processes are related to the 394 

same phenotype can reduce the accuracy of the predictions (although it is often still 395 

possible to use these predictions as the DCM HPO phenotype prediction performance AUC = 396 

0.76). 397 

Complexity 398 

Given that nearly 5% of patients with a Mendelian disease have another genetic disease 399 

[44], it is important to consider that multiple genes might each contribute to specific 400 

phenotypic effects. Clinically, it can be difficult to assess if a patient suffers from two 401 

inherited conditions, which may hinder variant interpretation based on HPO terms. We 402 

showed that GADO can disentangle the phenotypic features of two different diseases 403 

manifesting in one patient by correlating and subsequently clustering the profiles of HPO 404 

terms describing the patient’s phenotype. If the HPO terms observed for a patient do not 405 
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correlate, it is more likely that they are caused by two different diseases. An early indication 406 

that this might be the case for a specific patient can simplify subsequent analysis because 407 

the geneticist or laboratory specialist performing the variant interpretation can take this in 408 

consideration. GADO also facilitates separate prioritizations on subsets of the phenotypic 409 

features. 410 

Conclusion 411 

Connecting variants to disease is a complex multistep process. The early steps are usually 412 

highly automated, but the final most critical interpretations still rely on expert review and 413 

human interpretation. GADO is a novel approach that can aid users in prioritizing genes 414 

using patient-specific HPO terms, thereby speeding-up the diagnostic process. It prioritizes 415 

variants in coding and non-coding genes, including genes for which there is no current 416 

knowledge about their function and those that have not been annotated in any ontology 417 

database. This gene prioritization is based on co-regulation of genes identified by analyzing 418 

31,499 publicly available RNA-seq samples. Therefore, in contrast to many other existing 419 

prioritization tools, GADO has the capacity to identify novel genes involved in human 420 

disease. By providing a statistical measure of the significance of the ranked candidate 421 

variants, GADO can provide an indication for which genes its predictions are reliable. GADO 422 

can also detect phenotypes that do not cluster together, which can alert users to the 423 

possible presence of a second genetic disorder and facilitate the diagnostic process in 424 

patients with multiple non-specific phenotypic features. GADO can easily be combined with 425 

any filtering tool to prioritize variants within WES or WGS data and can also be used in gene 426 

panels such as PanelApp [45]. GADO is freely available at www.genenetwork.nl to help 427 

guide the differential diagnostic process in medical genetics. 428 
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Materials and Methods 429 

Gene co-regulation and function predictions 430 

We used publicly available RNA-seq samples from the European Nucleotide Archive (ENA) 431 

database [46] to predict gene functions and gene-HPO term associations. After processing 432 

and quality control we included 31,499 sample for which we have expression quantification 433 

on 56,435 genes (supplementary methods 1). We performed a PCA on the gene correlation 434 

matrix and selected 1,588 reliable principal components (PCs) (Cronbach’s Alpha ≥ 0.7). 435 

We used the eigenvectors of these 1,588 PCs to predict gene functions and to predict HPO 436 

term associations [19]. We applied this methodology to the gene sets described by terms in 437 

the following databases: Reactome and KEGG pathways, Gene Ontology (GO) molecular 438 

function, GO biological process and GO cellular component terms and finally to HPO terms. 439 

We excluded terms for which fewer than 10 genes are annotated because predictions for 440 

smaller groups of genes are less accurate and might be misleading. Predictions were made 441 

for 8,657 gene sets in total. 442 

The following steps were taken to obtain the gene prediction scores per gene set (Figure 443 

1). First, for each PC, a student’s T-test was conducted between the eigencoefficients of the 444 

genes annotated to a particular gene set and a group of genes serving as a background. 445 

This background consisted of the genes annotated to any term in a specific database, 446 

excluding those annotated to the current term. Second, the resulting p-values of the T-test 447 

were transformed into a z-score, which indicate to which extend each PC represents a part 448 

of the biology underlying a gene set. This is done for each PC, resulting in a profile how 449 

important each PC is for a gene set. Finally, to predict which genes can be associated to a 450 

particular gene set, we correlated the 1,588 T-test z-scores for that gene set (as calculated 451 

above) with the 1,588 eigenvector coefficients of a gene. The p-value of this correlation 452 

indicates the fit between a gene and a pathway / HPO term, these p-values were 453 
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transformed to predictions z-scores. When a gene was already explicitly annotated to a 454 

gene-set and we wanted to predict whether that gene is involved in that gene set, then 455 

there is a small circular bias as the predictions profile of this set was partly calculated based 456 

on this gene. To remove this bias, the 1,588 z-scores for a gene set were first re-calculated 457 

while assuming this gene is not involved in that gene set, after which the gene prediction 458 

was made. 459 

To determine the accuracy of our predictions we assessed our ability to predict back known 460 

gene set annotations. For each gene-set, we calculated an Area Under the Curve (AUC), 461 

using a Mann-Whitney U test, on the predictions z-scores of the genes that are part of a set 462 

versus those that are not part of a set. These AUCs indicate how accurate the predictions 463 

were, with an AUC of 1 indicating perfect predictions and an AUC of 0.5 indicating no 464 

predictive power. The average AUC for each category was calculated based on all gene sets 465 

with at least 10 annotated genes and with a p-value ≤ 0.05 (Bonferroni corrected for the 466 

number of pathways in a database). 467 

Gene predictability scores 468 

To explain why for some genes we cannot predict known HPO annotation, we have 469 

established a gene predictability score. We have calculated this gene predictability using the 470 

prioritization z-scores based on Reactome, GO and KEGG. For each gene and for each 471 

database we calculated the skewness in the distribution of the prioritization z-scores of the 472 

gene sets. We used the average skewness as the gene predictability score. 473 

GADO predictions 474 

To identify potential causative variants in patients, we used HPO terms to describe a 475 

patient’s features. We only used the HPO terms which have significant predictive power 476 

(based on the p-value of U test to calculate the AUC). If the predictions for a patient's HPO 477 

term were not significant, the parent/umbrella HPO terms were used (supplementary figure 478 

1). The online GADO tool suggests the parent terms from which the user can then select 479 
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which terms should be used in the analysis. The gene prediction z-scores for an HPO term 480 

were used to rank the genes. If a patient’s phenotype was described by more than one HPO 481 

term, a meta-analysis was conducted. In these cases a weighted z-score was calculated by 482 

adding the z-scores for each of the patient's HPO terms and then dividing by the square root 483 

of the number of HPO terms [24]. The genes with the highest combined z-scores are 484 

predicted to most likely candidate causative genes for a patient. This analysis can be 485 

conducted at: https://www.genenetwork.nl.   486 

Validation of disease-gene predictions 487 

To benchmark our method we used the OMIM morbid map [5] downloaded on March 26, 488 

2018, containing all disease-gene-phenotype entries. From this list, we extracted the 489 

disease-gene associations, excluding non-disease and susceptibility entries. We extracted 490 

the provisional disease-gene associations separately. For each disease in OMIM, we used 491 

GADO to determine the rank of the causative gene among all genes in the OMIM morbid 492 

map. For this we used all phenotypes annotated to the OMIM disease. If any of the HPO 493 

terms did not have significant predictive power, the parent terms were used.  494 

To determine if these distributions were significantly different from what we expect by 495 

chance, we permuted the data. We replaced the existing gene-OMIM annotation but 496 

assigned every gene to a new disease (keeping the phenotypic features for a disease 497 

together), assuring that the randomly selected gene was not already annotated to any of 498 

the phenotypes of the original gene.  499 

Cohort of previously solved cases 500 

To test if GADO could help prioritize genes that contain the causative variant, we used 83 501 

samples of patients who were previously genetically diagnosed through whole exome 502 

analysis or gene panel analysis. These samples encompass a wide variety of different 503 

Mendelian disorders (supplementary table 2). To assess which genes harbor potentially 504 

causative variants, we first called and annotated the variants from the exome sequencing 505 
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files (Supplementary methods 3). For 11 of the previously solved cases, GAVIN did not flag 506 

the causative variant as a candidate. To be able to include these samples in our GADO 507 

benchmark, we added the causative genes for these cases manually to the candidate list. 508 

The phenotypic features of a patient were translated into HPO terms, which were used as 509 

input to GADO. Here we only used features reported in the medical records prior to the 510 

molecular diagnosis. If any of the HPO terms did not have significant predictive power, the 511 

parent terms were used. From the resulting list of ranked genes, the known disease genes 512 

harboring a potentially causative variant were selected. Next, we determined the rank of the 513 

gene with the known causative variant among the selected genes. If a patient harbored 514 

multiple causative variants in different genes, in case of di-genic inheritance or two 515 

inherited conditions, the median rank of these genes was reported (supplementary table 2). 516 

Unsolved cases cohorts 517 

In addition to the patients with a known genetic diagnosis, we tested 38 unsolved cases 518 

(supplementary table 3). These are patients with mainly cardiomyopathies or developmental 519 

delay. All patients were previously investigated using exome sequencing, by analyzing a 520 

gene panel appropriate for their phenotype. To allow discovery of potential novel disease 521 

genes, we used GADO to rank genes with candidate variants (Supplementary methods 3). 522 

For genes with a prediction z-score ≥ 5, a literature search for supporting evidence was 523 

performed to assess whether these genes are likely candidate genes.  524 

Website 525 

To make our method and data available we have developed a website available at 526 

www.genenetwork.nl that can be used to run GADO, lookup gene functions predictions, 527 

visualize networks using co-regulations scores and perform function enrichments of sets of 528 

genes (Supplementary methods 4). 529 
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Description of Supplemental Data 530 

Supplementary methods 1. Processing and quality control of public RNA-seq data 531 

Supplementary methods 2. Benchmark comparison with Exomiser 532 

Supplementary methods 3. Variant calling and processing of benchmark samples 533 

Supplementary methods 4. GeneNetwork website 534 

Supplementary figure 1. Selection of parent HPO term if GADO does not have significant 535 

predictive power for query term 536 

Supplementary figure 2. Comparison of GADO performance with the level of evidence for 537 

each cardiomyopathy-related gene 538 

Supplementary figure 3. Comparison between GADO and Exomiser rankings 539 

Supplementary figure 4. Correcting for biases in co-expression networks 540 

Supplementary figure 5. Histogram of the gene types included in our analyses 541 

Supplementary figure 6. PCA plot of 36,761 samples 542 

Supplementary figure 7. Investigation of principal components capturing technical biases 543 

Supplementary figure 8. Variance explained by first 1588 PCs 544 

Supplementary figure 9. Visualization of PC1 to PC 10 of PCA over gene correlation matrix 545 

Supplementary figure 10. Outlier genes in PC 8 and PC 9 of PCA over gene correlation 546 

matrix  547 

Supplementary figure 11. PC sample scores to distinguish different tissues 548 

Supplementary figure 12. Outlier samples in PC sample scores of PC 8 and PC 9 549 
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Supplementary table 1. A list of samples annotated in the European Nucleotide Archive June 550 

30, 2016 551 

Supplementary table 2. A list of 83 diagnosed patients with Mendelian disorders and 552 

corresponding predictions with GADO 553 

Supplementary table 3. A list of 38 undiagnosed patients with suspected Mendelian 554 

disorders 555 

Supplementary table 4. A comparison between GADO and Exomiser predictions using a list 556 

of 83 diagnosed patients with Mendelian disorders 557 
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