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Abstract 
 

Polygenic scores can be used to distil the knowledge gained in genome-wide association 

studies for prediction of health, lifestyle, and environmental factors in independent samples. 

In this preregistered study, we used fourteen polygenic scores to predict variation in cognitive 

ability level at age 70 and cognitive change from age 70 to age 79 in the longitudinal Lothian 

Birth Cohort 1936 study. The polygenic scores were created for phenotypes that have been 

suggested as risk or protective factors for cognitive ageing. Cognitive abilities within old age 

were indexed using a latent general factor estimated from thirteen varied cognitive tests taken 

at four waves, each three years apart (initial n = 1,091 age 70; final n = 550 age 79). The 

general factor indexed over two-thirds of the variance in longitudinal cognitive change. We 

also ran an additional analysis using an age-11 intelligence test to index cognitive change 

from age 11 to age 70. Several polygenic scores were associated with the level of cognitive 

ability at age-70 baseline (range of standardized β-values = –.178 to .264), and the score for 

education was associated with cognitive change from childhood to age 70 (standardized β = 

.102). None was statistically significantly associated with variation in cognitive change 

between ages 70 and 79. APOE e4 status made a significant prediction of cognitive decline 

from age 70 to 79 (standardized β = –.319 for carriers vs. non-carriers). The results suggest 

that the predictive validity for cognitive ageing of polygenic scores derived from genome-

wide association study summary statistics is not yet on a par with APOE e4, a more well-

established predictor. 
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Introduction 

 

Mean levels of cognitive function decline as people grow older, even in those without 

dementia. This affects many important cognitive functions, such as memory, processing 

speed, and reasoning ability1,2,3, with so-called “crystallized” abilities, such as vocabulary, 

less affected. There is strong evidence that declines across all abilities are correlated: 

cognitive ageing, as with individual differences in cognitive ability level, is substantially a 

general phenomenon4,5,6. Declines in cognitive abilities in older age have practical 

consequences for daily life and independent living: they have been linked to lower ability to 

perform everyday functions such as understanding medicine labels7, and to increased 

vulnerability to financial fraud8,9. Discovering predictors of variation in cognitive ageing 

might help us to identify those at highest risk of more rapid decline, and—to the extent that 

such predictors are confirmed to be causal—devise appropriate interventions. In the present 

study, we assessed the value of a panel of genetic risk scores in predicting variation in 

general cognitive decline in a generally healthy sample across the eighth decade of life. 

 

Many studies have investigated whether variables that are known to correlate cross-

sectionally with cognitive ability are also predictive of variation in its decline. Numerous 

such factors have been tested, but few have been replicated consistently10. For instance, 

although higher educational attainment has been found to be predictive of shallower rates of 

cognitive decline11,12—a finding which has informed theories of “cognitive reserve”13—other 

studies have not found this same effect14,15. Other potential predictors, with varying degrees 

of evidentiary support, include physical fitness, as measured by variables such as grip 

strength and lung function16,17 (see ref.18 for a review), personality traits such as 

conscientiousness19 (see ref.20 for a review), and type 2 diabetes21 (see ref.22 for a review). 

 

Here, we investigate potential genetic predictors of cognitive level at age 70, and relative 

cognitive decline from age 11 to 70 years and from age 70 to 79 years. One such predictor is 

well-known already: carriers of either one or two APOE e4 alleles (as opposed to no such 

alleles) are not just at higher risk of a diagnosis of Alzheimer’s disease23,24, but also appear to 

be at risk of steeper cognitive decline25. In recent years, however, a new method has become 

commonly used in research investigating genetic prediction of traits: polygenic scoring. This 

method uses summary data from published genome-wide association studies (GWAS) that 

have tested the correlations of millions of single-nucleotide polymorphisms (SNPs) with 
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phenotypes of interest. Using the weightings (regression coefficients) for each SNP from 

these data, genotyped individuals in an independent sample (one not included in the original 

GWAS) can have a polygenic score (PGS) calculated that indexes their genetic liability to a 

certain disease, or their probability of a higher level of a particular trait26. Through meta-

analysis, and through the collection of ever-larger datasets, the sample size, and thus the 

statistical power, of GWAS studies continues to increase. For example, the variance 

explained in educational attainment in independent samples by the educational attainment 

PGS has increased alongside the sample size of the discovery GWASs27,28. 

 

PGSs can be used to predict variables other than their “own” phenotype. The PGS for 

educational attainment, for example, has been shown not just to predict educational 

attainment but also, among others, cognitive ability29, social mobility30,31, and longevity32. It 

is possible, then, that the genetic variants linked to phenotypic predictors of cognitive ability 

or relative cognitive decline may also themselves predict this decline33. 

 

Testing PGSs as predictors of outcomes such as cognitive level and change is potentially 

useful and efficient. Researchers or clinicians can use a single source material—a 

participant’s DNA—to test their genetic propensity to a very wide range of risk and 

protective factors34. Therefore, instead of having to measure all the phenotypes that might 

confer risk to or protection of cognitive decline, it might be possible—to the extent that those 

phenotypes are heritable and have had a large, high-quality GWAS performed—to assess the 

genetic propensity to the phenotype and use that information to predict cognitive level and 

decline. The approach using PGSs, if successful, would also allow the retrospective testing of 

risk and protective factors in cohorts where DNA and longitudinal cognitive data are 

available but who were never tested for the risk or protective factors in question. Beyond 

these possible strengths, PGSs can even be used to assess propensity to a phenotype that is 

never expressed, such as liability to schizophrenia in a sample in which no one develops the 

illness26. 

 

We selected fourteen PGSs based on, first, the relevant phenotype having been linked to 

cognitive decline in at least one previous study and, second, on there being a recent GWAS 

of that phenotype (Table S1 provides a list of references to the phenotypic studies, and to the 

respective GWASs). The PGSs in question were those for the following variables: 

educational attainment, the personality traits of neuroticism and conscientiousness, 
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Alzheimer’s disease, Parkinson’s disease, schizophrenia, major depressive disorder, coronary 

artery disease, stroke, type 2 diabetes, smoking, height, body mass index, lung function, and 

grip strength. We tested the associations of each of these PGSs with the level (at age 70 

years) and age-related slope (from age 70 to age 79 years) of general cognitive ability 

estimated from a battery of thirteen varied tests. We added a further analysis where we tested 

the association of the PGSs with change between a cognitive test taken at age 11 and age-70 

general cognitive ability. We tested their predictive value individually, simultaneously, and—

because the presence of the APOE e4 allele has previously been found to predict cognitive 

decline in this same cohort during almost the same period of life5—in models also including 

the APOE e4 status of the participants. 
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Method 

 

Sample 

 

The Lothian Birth Cohort 1936 (LBC1936) is an ongoing longitudinal study of older, 

community-dwelling individuals living mostly in the Edinburgh and Lothians area of 

Scotland, UK35,36. They were recruited on the basis of their having been part of the Scottish 

Mental Survey of 194737, and have, to date, attended four testing waves: the first at age 69.54 

years (SD = 0.83; n = 1,091; 543 females), the second at age 72.52 years (SD = 0.71; n = 

866; 418 females), the third at age 76.25 years (SD = 0.68; n = 697; 337 females), and the 

fourth at age 79.32 (SD = 0.62; n = 550; 275 females). For simplicity, we will henceforth 

refer to the ages at each wave as 70, 73, 76, and 79 years, respectively. Ethical approval for 

the LBC1936 study came from the Multi-Centre Research Ethics Committee for Scotland 

(MREC/01/0/56; 07/MRE00/58) and the Lothian Research Ethics Committee 

(LREC/2003/2/29). All participants, who were volunteers and received no financial or other 

reward, completed a written consent form before any testing took place. 

 

Cognitive measures 

 

In addition to completing the Moray House Test No. 12 at age 11 years38, which measures a 

variety of cognitive domains with an emphasis on verbal reasoning, the LBC1936 members 

completed a wide selection of cognitive tests at each of the later-life testing waves. Tests 

were administered identically at each occasion. Thirteen tests were used for the present 

analysis, covering the four broad cognitive domains described below.  

 

Visuospatial ability was measured using tests of pattern-based reasoning, recognition, and 

recall: the Matrix Reasoning and Block Design subtests of the Wechsler Adult Intelligence 

Scale, 3rd UK Edition (WAIS-IIUK 39), and the Spatial Span subtest of the Wechsler Memory 

Scale, 3rd UK Edition (WMS-IIIUK 40; the score used here was an average of forwards and 

backwards spatial span). 

 

Verbal memory was measured using three tests of recall of new verbal information: the 

Logical Memory and Verbal Paired Associates subtests of the WMS-IIIUK (both indicated by 

their total score), and the Digit Span backwards subtest of the WAIS-IIIUK. 
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Crystallized ability was measured by three tests: the National Adult Reading Test (NART41), 

the Wechsler Test of Adult Reading (WTAR42) and a test of phonemic verbal fluency43. All 

three tests assessed prior verbal knowledge. 

 

Processing speed was measured using four tests tapping cognitive speed in a variety of ways. 

Two of the tests were pencil-and-paper “clerical” tasks: the Digit-Symbol Substitution and 

Symbol Search tasks from the WAIS-IIIUK. A third was a psychophysical measure of 

Inspection Time performed on a computer monitor (as described in ref.44). A fourth was a test 

of Choice Reaction Time, measured using the dedicated button-box described in ref.45. Note 

that, in each of the analyses, we reversed scores on the Choice Reaction Time test so that 

higher scores would indicate better cognitive performance. 

 

Genetic measures 

 

The majority of participants provided blood samples at the age 70 wave that were used to 

extract DNA for the genetic analyses. To measure single-nucleotide polymorphisms (SNPs) 

we used the Illumina 610-Quadv1 whole-genome SNP array; measurements were completed 

at the Wellcome Trust Clinical Research Facility Genetics Core, Western General Hospital, 

Edinburgh. Polygenic scores (PGSs) were created using PRSice software46, with linkage-

disequilibrium clumping parameters set to r2 > 0.25 over 250kb sliding windows. All PGSs 

were calculated using all SNPs from their respective GWAS (see Table S1 for all references); 

that is, we used an association threshold of p = 1.00. In four cases, we ran a new GWAS on 

data we had available from the UK Biobank sample (see Supplementary Method and Figures 

S1-S3). This was either because this resulted in a larger GWAS than the most recent 

published GWAS at the time, or because the LBC1936 participants were included in that 

most recent GWAS. In addition to the PGS analyses, each participant’s APOE e4 genotype 

was ascertained using TaqMan technology, also at the Wellcome Trust Clinical Research 

Facility Genetics Core. Since there were few carriers of two APOE e4 alleles (~2% of the 

sample), we categorised this variable as the binary presence (306 participants; ~30%) or 

absence (722 participants; ~70%) of any APOE e4 alleles. 

 

Statistical analysis and preregistration 
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In a set of preliminary analyses, we estimated whether each polygenic score was significantly 

associated with its “own” phenotype in the Lothian Birth Cohort. We selected phenotypes 

that were as closely-related as possible given the data we had available. The selected 

phenotypes were as follows. For the education PGS, we used years of education, reported at 

age 70. For the Neuroticism and Conscientiousness PGSs, Neuroticism and 

Conscientiousness were estimated using the NEO-FFI personality instrument47, completed at 

age 70. For the Alzheimer’s disease and Schizophrenia PGR, we used WAIS-III Block 

Design at age 70 (since this test provided an estimate of cognitive ability, which is impaired 

in both disorders, and no test of schizophrenia symptoms was available). For the major 

depressive disorder PGR, we used the score on the depression subscale of the Hospital 

Anxiety and Depression Scale, taken at age 70 (HADS48). For the coronary artery disease, 

stroke, and type 2 diabetes PGRs, we used self-reports of whether the participants had ever 

received a diagnosis of any of these conditions by age 70. For the smoking PGR, we used a 

self-report of whether the participant was a never-, ex-, or current smoker at age 70. For the 

height and BMI PGSs, we used the measurements of these traits taken by nurses at the age-70 

testing wave. Finally, for the FEV1 and grip strength PGSs, we used the measurements of 

these physical functions taken at age 70 using a spirometer and a dynamometer, respectively. 

 

The analyses described below were preregistered, except for the final one described below 

(including age-11 intelligence scores to estimate lifetime cognitive change), which, therefore, 

should be considered as exploratory. The time-stamped preregistration document, written 

after data from the fourth testing wave of LBC1936 were entered but before any of these data 

had been seen by any of the authors of this study, can be found at the following URL: 

https://osf.io/vyy4u/. 

 

Before analysing any of the cognitive data, we used a parallel analysis, using the psych 

package for R49, to factor-analyse the PGSs, testing whether there was evidence for a general 

factor (as there is for cognitive tests). If evidence of such a general factor emerged, we 

planned to assess the value of this general factor as a predictor in the cognitive models. 

 

We estimated a “factors of of curves” structural equation model to characterise cognitive 

levels and changes within older age. This involved estimating a latent growth curve model for 

each cognitive test, then factor-analysing the latent intercepts and latent slopes from these 

models. The model follows the same structure as that of ref.5, where we used data from the 
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first three waves of the LBC1936 to examine predictors of cognitive change from age 70 to 

76 years. The factor models for both levels and slopes were hierarchical, as shown in Figure 

1: there were four domain-level factors estimated for both level and slope (Visuospatial 

ability, Verbal Memory, Crystallized ability, and Processing Speed), which were themselves 

factor-analysed to produce the general factors of cognitive level and slope.  

 

--Insert Figure 1 here-- 

 

To estimate the mean change in each cognitive ability over time, we first ran a model with 

the raw cognitive scores. The models where we included the genetic predictors had the 

cognitive scores pre-residualised for age in days at the time of testing and for sex. The 

models with genetic predictors also included the four genetic principal component variables. 

Where possible, the analyses were run within the structural equation model (that is, the 

factors of curves model and the association with the predictors were estimated 

simultaneously). However, in some cases where the structural equation model would not 

converge, we extracted factor scores for the general factors and used linear regression to 

predict them from the genetic predictors. All such models are noted below. 

 

We next ran the further analyses testing each PGS as a predictor alongside (that is, 

controlling for) APOE e4 status, to test for incremental predictive validity over this well-

established risk factor. We did this only for PGSs that had shown a significant relation to the 

relevant cognitive outcome in the main analysis. Then, we included all the PGSs together as 

predictors in a single model, assessing their incremental validity over one another. For a final 

analysis, which was not part of the preregistration, we tested whether each genetic predictor 

(the PGSs and APOE e4) was associated with age-70 general cognitive ability after correcting 

for the age-11 intelligence measure. In this way, we were able to test whether each measure 

was predictive of cognitive change across most of the life course (that is, between ages 11 

and 70). 

 

The LBC1936 participants had a homogeneous, White European background, and thus we 

did not expect population stratification to have a strong influence on the results. Nevertheless, 

for all analyses involving relating the PGSs (and APOE e4) to phenotypes, we included four 

SNP principal components (multidimensional scaling components) as covariates. We used 

the False Discovery Rate correction50 to adjust p-values for multiple comparisons across the 
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15 predictors (14 PGSs plus APOE e4). Structural equation modelling was performed using 

Mplus v7.351, and used full-information maximum likelihood estimation to use all of the 

available data in each model. All other analyses were run in R52. 
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Results 

 

Preliminary polygenic score analyses 

 

Thirteen of the fifteen PGSs were significantly associated with their “own” related phenotype 

(see Table 1) in the LBC1936 sample. These significant relations ranged from explaining 

1.00% of the variance (for both the grip strength and the major depressive disorder PGSs in 

grip strength and HADS depression score respectively), to the PGS for BMI explaining 

10.69% of the variance in BMI. Two of the scores were not significantly related to the 

outcome phenotype: the PGS for Alzheimer’s disease was not significantly related to 

cognitive ability (as measured by the Block Design test; explaining 0.02% of the variance, p 

= .64), and the PGS for stroke was not significantly related to self-reported stroke (explaining 

0.64% of the variance, p = .15). 

 

--Insert Table 1 here-- 

 

A correlation matrix of the relations among each of the PGSs is displayed in Table 2. The 

PGS for education showed the highest number of significant relations to the other PGSs, 

being related to nine of the other fourteen scores; this mostly consisted of education-linked 

variants being positively associated with variants linked to better health (broadly consistent 

with evidence from genetic correlations; see e.g. ref53). The correlation sizes were generally 

low: the strongest relation between any of the PGSs was that between the education and 

smoking PGSs, estimated at r = .25. As planned in the preregistration, we ran a parallel 

analysis of the fifteen PGSs using the psych package for R: this indicated that there were six 

factors in the data, with no evidence for a strong “general” factor. Therefore, we did not use 

any of these factors in the analyses below. 

 

--Insert Table 2 here-- 

 

Cognitive levels and slopes 

 

Descriptive statistics for each of the cognitive tests at each wave, and a full correlation matrix 

for the cognitive tests, are provided in Tables S2 and S3 in the Supplementary Materials, 

respectively. The longitudinal changes, estimated from the structural equation models, for 
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each cognitive test score are shown in Table 3. All but two of the tests showed statistically 

significant declines over time, with the largest per-year declines being seen in the processing 

speed tests. The two tests showing no significant age-related change were the NART and 

verbal fluency, both of which were in the category of “crystallized” tests and were thus 

expected to show less decline with age. The trajectory of each test with age is illustrated in 

Figure 2, for the model-implied trajectory as well as the change in the raw data for 

comparison (see Figure S4 for an alternative way of visualizing the data, showing each data 

point). In all but one case the model-implied trajectory was the same in sign as that in the raw 

data, though some slopes were different in magnitude. For verbal paired associates, the 

magnitude was reversed (it became negative in the model). These changes are to be expected 

given the use of FIML estimation in the structural equation model: several previous 

methodological investigations have shown that the choice of missing-data technique can 

influence results54,55. Foster et al.56 recommend that the technique is chosen on the basis of its 

assumptions being plausibly fit to a dataset; on the basis of a previous analysis where few of 

the LBC1936 sample’s predictor variables could predict dropout from age 70 to age 765, we 

conclude that the assumption of “missing at random”, the basis for the use of FIML, was 

justified here. 

 

--Insert Table 3 here-- 

--Insert Figure 2 here-- 

 

We then factor-analysed the levels and slopes of all the tests, as described above and shown 

in Figure 1. The baseline model (with the tests corrected for age within the wave and sex, but 

with no polygenic score predictors) showed excellent fit to the data, according to multiple fit 

indices: χ2(1298) = 2446.16, p < .001; Root Mean Square Error of Approximation = 0.028; 

Comparative Fit Index = 0.968; Tucker-Lewis Index = 0.967; Standardized Root Mean 

Square Residual = 0.057. The full parameters for this model are shown in Figure S5 in the 

Supplementary Materials. Squaring the product of each test’s loading on its domain and the 

domain’s loading on the general factor provided a proportion of variance in each test 

explained by the general factor; averaging these figures showed that the general factor of 

cognitive level explained 40.9% of the variance in performance across all the tests, and the 

general factor of cognitive slope explained 69.7% of the variance in cognitive change 

between ages 70 and 79. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2018. ; https://doi.org/10.1101/375691doi: bioRxiv preprint 

https://doi.org/10.1101/375691
http://creativecommons.org/licenses/by/4.0/


POLYGENIC PREDICTORS OF COGNITIVE DECLINE  13

Polygenic score prediction of general cognitive level and slope 

 

The associations of each PGS and APOE e4 with the age-70 level and age 70-to-79 slope of 

general cognitive ability are shown in Table 4 and Figure 3. Of the fifteen PGSs, six were 

statistically significantly associated with cognitive level at age 70: higher PGSs for education 

and height were associated with higher general cognitive levels, and PGSs for schizophrenia, 

coronary artery disease, smoking, and BMI were associated with lower general cognitive 

levels. All effect sizes for these significant effects were modest: the standardized betas 

ranged from –.178 (for smoking) to .264 (for education), the p-values that remained 

significant after multiple-comparisons correction ranged from 1.54×10-15 to .002. APOE e4 

status was only nominally significantly associated with level: its association became non-

significant after correction for multiple comparisons. 

 

Only one of the PGSs, that for schizophrenia, was a significant (negative) predictor of 

general cognitive slope between ages 70 and 79, but this did not survive multiple-

comparisons correction. APOE e4 status did, however, was a significant predictor of general 

cognitive decline—those with one or two APOE e4 alleles had significantly steeper general 

cognitive decline than those who had none—and this association survived multiple-testing 

correction. 

 

--Insert Table 4 here-- 

--Insert Figure 3 here-- 

 

We next tested whether the scores that had shown significant relations to the cognitive 

outcomes in the initial analysis were still statistically significantly related after including 

APOE e4 as a separate predictor. Results are shown in Table S4. In all cases, the polygenic 

score predictor remained significant after adjusting for APOE e4 status, with slightly 

attenuated effect sizes: that is, their associations seemed to be largely independent of any 

relation with APOE e4. 

 

Next we ran the simultaneous-predictor models, including all PGSs predicting general 

cognitive level, and (in a separate model) general cognitive slope. For general cognitive level 

at age 70, only the significant associations with the PGSs for education (β = .195) and 

schizophrenia (β = –.126) remained (see Table S5 for full results). As in the initial analysis, 
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none of the PGSs were significantly related to general cognitive slope over time after 

correction for multiple comparisons. 

 

Additional (non-preregistered) analyses 

 

We ran the analyses predicting general cognitive level at age 70 adjusted for age-11 cognitive 

ability – that is, predicting cognitive change across most of the life course. The basic 

cognitive model is shown in Figure S6. Note that age 11 cognitive ability was related very 

strongly to age 70 general cognitive level (β = .814, SE =.015, p = ~.00; see ref.5). Results 

from the genetic analyses are shown in Table 5, along with correlations between each of the 

genetic predictors and age-11 cognitive ability itself. Five of the sixteen PGSs were 

significantly associated with intelligence score at age 11 after multiple-comparisons 

correction: education, schizophrenia, coronary artery disease, smoking, and BMI. The 

association between lifetime cognitive change and the PGS for education was significant (and 

survived multiple-testing correction), with a standardized effect size of β = .102: those with a 

higher PGS for education saw relatively less cognitive change across the lifespan. The other 

PGSs were not related significantly to the lifetime cognitive change variable. 

 

--Insert Table 5 here-- 

 

We did not expect that the Alzheimer’s disease PGS would make such a poor (near-zero; see 

Table 4) prediction of general cognitive slope, especially when APOE e4 status had made a 

significant prediction, and SNPs associated with APOE e4 featured prominently in the 

Alzheimer’s GWAS results from which the PGR was calculated24. We tested whether this 

was due to our use of the p = 1.00 threshold when calculating the PGS—it is possible that 

inclusion of the large number of less- and non-significant SNPs overwhelmed the signal from 

APOE e4-linked loci—by recalculating the PGS at a more stringent threshold—p = .01—and 

re-running the relevant analyses. As would be expected, the more stringent PGS was had a 

somewhat higher (point-biserial) correlation with APOE e4 status (r(964) = .251, p = 

2.43×10-15) than did the PGS with the p = 1.00 threshold (r(963) = .097, p = .002). The more 

stringent Alzheimer’s PGS also made a significant prediction of the slope of general 

cognitive decline (β = –.128, SE = .043, p = .003), though not its initial level (β = –.016, SE = 

0.035, p = .648). 
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For comparison, we also re-calculated the other PGSs at the p = .01 threshold. The results for 

all p = .01 PGSs are shown in Table S6. Most results were similar: unlike the Alzheimer’s 

result reported above, all other non-significant associations with general cognitive slope 

remained non-significant with this new threshold. The predictions for cognitive level 

generally had similar effect sizes, though the association between level and coronary artery 

disease was no longer significant, while the nominally-significant associations for the height 

and BMI PGSs did not survive multiple comparisons correction.  
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Discussion 

 

The study reported here was an attempt to predict variation in cognitive ageing using 

polygenic scores. All the PGSs were chosen a priori to index genetic variants associated with 

key ageing-relevant traits and conditions. Although some of these PGSs were statistically 

significantly associated with the baseline cognitive level at age 70, and the education PGS 

was associated with cognitive change from age 11 to age 70, none of the PGSs was 

significantly associated with the gradient of the general cognitive slope between age 70 and 

79 – a general cognitive decline variable that explained over two-thirds of the slope variance 

across all thirteen tests). The presence of the APOE e4 allele, on the other hand, could make 

significant predictions of cognitive decline: having either one or two alleles, compared to 

zero, explained around 10% of the variance in the slope of cognitive decline. None of the 

PGSs approached this level of effect size. Below, we discuss some of the implications, 

strengths, and limitations of the study. 

 

Overall, the results were similar to results from studies attempting to use phenotypic data to 

predict cognitive decline (e.g. attempts in this same sample over a shorter period of change5): 

cognitive levels could be predicted far more easily than cognitive slopes. It should be noted 

that some of the PGS correlations with cognitive level were similar in effect size to those 

using the actual phenotypes themselves, examined in previous studies. For example, the 

authors in ref.5 found a correlation between measured BMI and age-70 cognitive level of –

.111 (see their Table S5); here, the PGS for BMI had a correlation with the same latent 

variable of –.109. It may be that any genetic effects indexed by the PGS occur at different 

points in the life course. For instance, variants linked to education and BMI—two PGSs that 

were significantly associated with baseline cognitive level, but not slope—may have their 

effects on cognitive ability during childhood or early adulthood, whereas effects of APOE 

e4—which significantly predicted slope, but not level—may appear only within older age. In 

one GWAS of general cognitive ability57, the effect of APOE e4 was particularly pronounced 

at older ages, consistent with these findings (see ref.58 for a longitudinal analysis in an even 

older sample). Note that any PGS associations reported herein were independent of APOE e4, 

as per our simultaneous regression analysis including them both as predictors. 

 

The result that the residual of cognitive ability between age 11 and age 70—an index of 

lifetime cognitive change—was statistically significantly predicted by the education PGS also 
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implies that education-linked variants are related to changes in cognitive abilities before old 

age (specifically, before age 70). These findings are of relevance to the concept of “cognitive 

reserve”13: they imply that researchers who find links between early-life education and later-

life cognitive abilities (or cognitive change) should take into account the fact that some of the 

effect may come from a genetic propensity to better educational attainment, and not the 

educational attainment itself. 

 

Given the general difficulty of finding significant predictors of cognitive decline, it may 

simply take a higher-powered study, with more participants, longer follow-up times, and 

additional waves, to detect genetic effects. On the other hand, as was noted above, larger 

GWAS studies have tended to produce PGSs with better predictive validity27, and this is 

likely also the case here. Another reason for the lack of prediction may be because the 

phenotypes linked to the PGSs do not themselves reliably predict cognitive decline. The most 

recent systematic review10 noted that much of the evidence in this sphere is weak; we do not 

have a strong, multi-study evidence base for many of the phenotypic—let alone genetic—

predictors of cognitive decline discussed here. It is also possible that genetic propensities 

interact with environments in ways that improve or worsen the cognitive ageing trajectory. 

Note that there is no existing large, well-powered GWAS of cognitive decline in particular, 

since there are too few samples with the relevant variables for such a GWAS to be run. 

Should such a well-powered study appear in future, we would expect to derive a PGS that 

would predict cognitive decline in separate samples. 

 

The case of the Alzheimer’s PGS warrants further consideration. As noted above, we chose 

to calculate all PGSs at the most liberal, whole-genome threshold (p = 1.00), including the 

effects of all SNPs, rather than a more restricted set. The choice of just one single threshold 

was to avoid the overfitting that often comes with choosing many thresholds and reporting 

the one with the highest association with the outcome trait of interest. However, the fact that 

the prediction of cognitive decline by APOE e4 status was so much larger than that of the 

Alzheimer’s PGS, which itself contains the effect of (SNPs in linkage disequilibrium with) 

APOE e4, suggested that the effects of the other SNPs—less significantly or not significantly 

related to cognitive decline—included in the PGS were overpowering the APOE e4-linked 

signal. This appeared to the be the case: the use of a more conservative threshold improved 

the predictive validity. This was not the case for the education PGS, however: it may be that 

for traits that have even higher levels of polygenicity, for which there are no large-effect 
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variants such as APOE e4 for Alzheimer’s, the PGS threshold matters less. As we noted 

above, larger GWASs of Alzheimer’s disease will produce summary data with more signals 

from non-APOE-e4-linked variants, and these should be tested for their association with 

normal-range cognitive ability and cognitive decline at different thresholds (note that a 

previous study59 found no relation between a PGS calculated from an older Alzheimer’s 

GWAS and cognitive abilities in this same sample; see also ref.60 for an example of a 

combination of APOE and PGS variables). Alternatively, performing a permutation test as 

described in ref.46 (Supplementary Note 4) would allow the calculation of an empirical p-

value threshold, potentially allowing for a better prediction than we had with our across-the-

board use of the p = 1.00 threshold. Generally, however, there are as yet no hard-and-fast 

rules for the use of PGSs by researchers who wish to maximise their predictive ability but are 

concerned about multiple-comparisons testing; ref.60 provides some recommendations.  

 

Another strategy to improve prediction would be to follow the approach of ref.61, where the 

authors took a much larger set of eighty-one PGSs and used them as predictors of the levels 

of various traits including cognitive ability and BMI (they used a sample of younger 

individuals and thus could not examine cognitive decline). They ran their analysis using 

penalized regression (specifically the Elastic Net62), which allowed the large number of PGS 

variables to be reduced to the best set of predictors, and allowed them to explain a somewhat 

larger proportion of the variance in the traits. Such a “hypothesis-free” approach, using 

algorithmic selection from many predictors rather than manually choosing those predictors on 

the basis of pre-existing links to cognitive decline, as we did here, may be a more fruitful 

approach. 

 

Strengths and limitations 

 

The LBC1936 sample is a rare dataset in that it is a narrow-age sample that covers nearly an 

entire decade within older age, with thirteen high-quality cognitive tests measured repeatedly 

and identically; moreover, and highly unusually for an ageing study, it has well-validated 

cognitive test data from age 11. Using longitudinal structural equation modelling, we 

estimated general factors of cognitive level and slope that removed any measurement error 

associated with the individual tests and produced an index of overall cognitive ability and its 

ageing. Overall, this was a powerful way to assess cognitive decline, and we used a variety of 
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PGSs from varied traits and disorders in an attempt to predict that decline’s variance. 

However, there are a number of limitations to the study. 

 

The self-selecting nature of the LBC1936 participants may have biased our results. That is, 

the participants were generally healthy, independently-living older adults and—by virtue of 

the fact they were able and interested to attend the initial testing—were likely substantially 

healthier and more intellectually engaged than the average person of their age. Non-random 

dropout, a problem for most longitudinal studies of ageing, compounds this issue: individuals 

who remained in the study across the four waves were healthier on average than those who 

dropped out. We thus probably missed individuals with the poorest health and, consequently, 

with the greatest degree of cognitive decline. This limitation—a restriction of range to the 

higher end of the health distribution—may have contributed to our lack of ability to predict 

cognitive decline in our sample. 

 

There may also be additional complexities in the cognitive decline paths that we did not 

consider here, since we focused on the relatively simple linear average trajectories. For 

example, there may be nonlinear trajectories, or multiple latent trajectories (see e.g. ref.63) 

within the dataset that, if analysed in future, may reveal differential relations to the genetic 

predictors. Finally, in a few cases, the complexity of the structural equation models meant 

that convergence could not be achieved without fixing some of the paths that were intended 

to be freely-estimated (see Figure S2), and in some cases without extracting factor scores and 

using them in linear regression models instead of estimating all relations within latent-

variable space (i.e. simultaneously to the estimation of the relevant structural equation 

model). We would not estimate that these issues would have changed our results to a great 

extent, but the latter practice (extracting factor scores) may have led to slight alterations to 

some of the standard errors we reported. 

 

Conclusions 

 

A key goal of cognitive ageing research is to be able to predict who will experience steeper 

general cognitive decline. In this study of a high-quality, longitudinal dataset, we attempted 

to do so using a panel of polygenic scores, but were broadly unsuccessful: despite statistically 

significant associations of several polygenic scores (those for education, schizophrenia, 

coronary artery disease, smoking, height, and BMI) with general cognitive level at baseline, 
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and the relation of the education PGS to cognitive change between age 11 and age 70, none 

of the scores predicted subsequent cognitive decline across the eighth decade of life in the 

pre-registered analysis. Future, larger GWAS studies might furnish us with summary 

statistics to produce more predictive PGSs, and different analytic methods might increase the 

predictive value of those we already have. Given that it is possible to formulate so many 

PGSs from only DNA, the approach retains its potential as an efficient and protean source of 

predictors. For the time being, however, the present study’s findings suggest that researchers 

interested in genetic prediction of longitudinal variability in cognitive ageing will derive 

more value from established predictors such as APOE e4 than newer methods such as 

polygenic scores. 
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Tables 
 
Table 1. Variance explained by each polygenic profile score in relevant Lothian Birth Cohort 
1936 outcome variables. 
Polygenic Profile 
Score 

Outcome Variable Std. 
β 
 

SE p-value % Variance 
Explained 

Educational 
attainment 

Years of education .22 .03 6.09×10-12 4.64% 

Neuroticism NEO-PI-R Neuroticism .18 .04 1.85×10-06 2.58% 

Conscientiousness NEO-PI-R 
Conscientiousness 

.08 .03 .01 0.69% 

Alzheimer’s disease Block Design –.02 .03 .63 0.02% 
Schizophrenia Block Design –.12 .03 4.57×10-04 1.23% 
Major depressive 
disorder 

HADS depression score .10 .03 .002 1.00% 

Coronary artery 
disease 

Cardiovascular disease† 

(24.5%) 
.27 .08 3.94×10-04 1.89% 

Stroke Stroke† (5.0%) .21 .15 .15 0.64% 
Type 2 diabetes Type 2 diabetes† (8.6%) .53 .13 2.40×10-05 4.17% 
Smoking Smoking .15 .03 5.41×10-06 2.05% 
Height Height .28 .03 2.27×10-16 6.53% 
BMI BMI .33 .03 ~.00 10.69% 
FEV1 FEV1 .19 .03 3.00×10-13 5.21% 
Grip strength Grip strength .06 .02 .002 1.00% 
Note. Standardized βs, SEs, and p-values are from general linear (continuous outcomes) or 
generalized linear (categorical outcomes, indicated with the † symbol and with the percentage 
of the sample who reported having, or having had, that condition at or by age 70) regression 
models adjusting for age at the time of measuring/reporting the outcome variable, sex, and 
four multidimensional scaling components. All significant p-values remained significant after 
False Discovery Rate correction. For continuous outcome variables, the % variance explained 
is derived from the partial R2. For categorical outcome variables, the % variance explained is 
derived from the Nagelkerke’s R2. Rows in bold survived false discovery rate correction for 
multiple testing. References for the GWAS source of each polygenic score can be found in 
Table S1. 
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Table 2. Pearson correlations between polygenic scores in the Lothian Birth Cohort 1936. 
Polygenic Score 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 
1. Education -             
2. Neuroticism –.11*** -            
3. Conscientiousness –.02 –.04 -           

4. Alzheimer’s disease –.11*** .01 .0004 -          
5. Schizophrenia .004 .08** –.03* –.02 -         
6. Major depressive disorder –.06* .18*** –.04 .04 .17*** -        
7. Coronary artery disease –.13*** .004 –.03 –.003 .06* .02 -       
8. Stroke –.10** .01 –.02 –.01 .05 .09** .11*** -      
9. Type 2 diabetes –.03 .02 .02 .02 .08* –.06 .12*** –.05 -     
10. Smoking –.25*** .06* –.01 .03 .12*** .04 .08** .03 .02 -    
11. Height .09** –.04 .02 –.10*** –.15*** –.10** –.03 .07* –.23*** –.04 -   
12. BMI –.16*** –.05 –.04 .03 .04 –.003 .07* .04 .16*** .14*** –.11*** -  
13. FEV1 .13*** .09* –.07* .03 .13*** .06* –.01 –.05 –.04 –.13*** -.07* –.08* - 
14. Grip strength .03 –.12*** .05 –.08 .03 –.09** .03 –.01 –.005 –.03 –.04 .04 .15*** 
Note: n = 1,005 for all correlations. *p < .05, **p < .01, ***p < .001. 
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Table 3. Estimates of the linear slope of each cognitive test. Illustrations of each trajectory 
are shown in Figure 2. 
Domain Cognitive test 

(max. score) 
Mean 
(SD) at 
age-70 
baseline 

Mean 
raw 
change 
per 
year 
 

SE of 
raw 
change 

p-value Mean 
no. of 
SDs 
change 
per year 

Visuospatial 
ability 

Matrix 
reasoning 

13.49 
(5.13) 

–0.133 0.016 6.12×10-16 –0.033 

Block design 33.79 
(10.32) 

–0.423 0.029 1.30×10-49 –0.046 

Spatial span 7.36 
(1.42) 

–0.038 0.005 1.27×10-15 –0.036 

Verbal 
memory 

Logical 
memory 

71.46 
(17.96) 

–0.150 0.072 .038 –0.010 

Verbal paired 
associates 

26.44 
(9.13) 

–0.156 0.033 3.00×10-06 –0.019 

Digit span 
backwards 

7.73 
(2.26) 

–0.038 0.007 1.72×10-07 –0.021 

Crystallized 
ability 

NART 34.48 
(8.15) 

0.012 0.013 .379 0.001 

WTAR 41.02 
(7.17) 

–0.034 0.012 .003 –0.005 

Verbal fluency 42.42 
(12.54) 

–0.032 0.035 .358 –0.003 

Processing 
speed 

Digit-symbol 
substitution 

56.60 
(12.93) 

–0.833 0.038 5.44×10-

105 
–0.070 

Symbol search 24.71 
(6.39) 

–0.258 0.023 1.50×10-28 –0.050 

Inspection time 112.14 
(11.00) 

–0.595 0.049 2.26×10-34 –0.071 

Choice reaction 
time (ms) 

64.21 
(0.09) 

–0.008 3.57×10-

04 
1.86×10-

108 
–0.104 

Note: Estimates of SD change are model-implied, using full-information maximum 
likelihood estimation, and thus may not precisely correspond to the raw SDs. 
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Table 4. Associations of each polygenic profile score, and APOE e4 status, with general 
cognitive level (age 70) and slope (age 70-79) in individual-predictor models. 
Genetic variable Association with baseline g Association with g slope 

Std. β 
 

SE p-value Std. β 
 

SE p-value 

APOE e4 –.153 .068 .025 –.319 .068 3.44×10-06 
Education .264 .033 1.54×10-15 .031 .043 .474 
Neuroticism –.077 .039 .047 –.004 .048 .929 
Conscientiousness –.017 .035 .634 .015 .044 .726 
Alzheimer’s disease –.035 .035 .316 .002 .045 .957 
Schizophrenia –.148 .038 1.07×10-04 –.110 .048 .022 
Major depressive disorder –.034 .035 .342 –.049 .044 .267 
Coronary artery disease –.108 .035 .002 –.011 .044 .808 
Stroke .026 .036 .463 .046 .044 .295 
Type 2 diabetes –.043 .032 .171 –.019 .032 .550 
Smoking –.178 .035 3.66×10-07 –.035 .045 .438 
Height .101 .038 .008 –.011 .049 .826 
BMI –.109 .035 .002 –.014 .044 .746 
FEV1 .074 .037 .048 .051 .047 .277 
Grip strength –.041 .036 .255 .035 .044 .425 
Note: All estimates come from hierarchical latent growth curve structural equation models. 
Associations are corrected for age at cognitive testing, sex, and four multidimensional scaling 
components. Bold values are those that were statistically significant after false discovery rate 
correction for multiple testing. Note that the results for APOE e4 and Type 2 diabetes were 
estimated using extracted factor scores in linear regression models; all other effect sizes were 
estimated within the structural equation models themselves. 
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Table 5. Associations of each polygenic score and APOE e4 status with age 11 intelligence 
and lifetime cognitive change (age 70 general intelligence (g) adjusted for age 11 
intelligence) 
Genetic variable Association with age 11 

intelligence 
Association with age 70 g, 
adjusted for age 11 
intelligence 

Std. β SE p-value Std. β SE p-value 
APOE e4 .024 .074 .740 –.080 .055 .141 
Education .236 .032 6.13×10-13 .102 .025 5.19×10-05 
Neuroticism –.032 .037 .377 –.016 .027 .563 
Conscientiousness .010 .033 .741 –.171 .119 .153 
Alzheimer’s disease –.011 .033 .731 –.026 .025 .282 
Schizophrenia –.136 .036 1.85×10-04 –.021 .028 .446 
Major depressive disorder –.028 .033 .400 .028 .025 .256 
Coronary artery disease –.098 .032 .003 –.039 .025 .116 
Stroke –.003 .033 .927 .052 .025 .038 
Type 2 diabetes –.024 .035 .489 –.006 .025 .818 
Smoking –.187 .033 2.60×10-08 –.023 .026 .369 
Height .053 .036 .142 .030 .027 .270 
BMI –.128 .033 1.44×10-04 –.012 .025 .636 
FEV1 .055 .035 .113 .023 .026 .380 
Grip strength –.030 .033 .362 –.002 .025 .927 
Note: Lifetime change come from a hierarchical latent model of general cognitive ability, 
comprising tests taken at age 70 (Figure S3), with the g-factor adjusted for age 11 
intelligence. Rows in bold are effects that survived (per-column) false discovery rate 
correction for multiple testing. All models included four principal components to adjust for 
population stratification.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2018. ; https://doi.org/10.1101/375691doi: bioRxiv preprint 

https://doi.org/10.1101/375691
http://creativecommons.org/licenses/by/4.0/


POLYGENIC PREDICTORS OF COGNITIVE DECLINE  31

Figures 
 
Figure 1. Simplified diagram of the structural equation model used to estimate the general cognitive level and the general cognitive slope. A 
latent growth curve was estimated across the four waves for each cognitive test (with the numbers showing the average length between each 
wave), and the levels and slopes were factor-analysed in a hierarchical model with four cognitive domains and a general factor. Note that, for 
illustrative purposes, not all tests are shown (the Speed domain had four tests and the other domains had three each; see Table 3). The main 
outcomes of interest—the association of each polygenic score with the general level and slope variables—are indicated by the dashed lines.
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Figure 2. Standardized linear trajectories of each cognitive test with age. Intercepts (at the 
youngest age) are set to zero for comparative purposes. The horizontal dotted line indicates 
zero. The coloured solid line is the model-implied trajectory (using full-information 
maximum likelihood estimation); the coloured dotted line is the regression line through the 
raw data (with shaded 95% confidence interval). 
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Figure 3. Associations of APOE e4 status and each polygenic score with cognitive level (age 
70) and cognitive decline (age 70 to 79). * = statistically significant after false-discovery rate 
correction. † = nominally significant, but no longer significant after false-discovery rate 
correction. Note that the effect for APOE e4 is standardized only with respect to the outcome 
(with a dichotomous predictor); all other effect sizes are standardized with respect to both the 
outcome and the predictor.
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