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Abstract

Polygenic scores can be used to distil the knowledge gained in genome-wide association
studies for prediction of health, lifestyle, and environmental factors in independent samples.
In this preregistered study, we used fourteen polygenic scoresto predict variation in cognitive
ability level at age 70 and cognitive change from age 70 to age 79 in the longitudinal Lothian
Birth Cohort 1936 study. The polygenic scores were created for phenotypes that have been
suggested as risk or protective factors for cognitive ageing. Cognitive abilities within old age
were indexed using a latent general factor estimated from thirteen varied cognitive tests taken
at four waves, each three years apart (initial n = 1,091 age 70; final n = 550 age 79). The
general factor indexed over two-thirds of the variance in longitudinal cognitive change. We
also ran an additional analysis using an age-11 intelligence test to index cognitive change
from age 11 to age 70. Several polygenic scores were associated with the level of cognitive
ability at age-70 baseline (range of standardized S-values = —.178 to .264), and the score for
education was associated with cognitive change from childhood to age 70 (standardized g =
.102). None was statistically significantly associated with variation in cognitive change
between ages 70 and 79. APOE e4 status made a significant prediction of cognitive decline
from age 70 to 79 (standardized f = —319 for carriers vs. non-carriers). The results suggest
that the predictive validity for cognitive ageing of polygenic scores derived from genome-
wide association study summary statistics is not yet on a par with APOE e4, a more well-
established predictor.
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| ntroduction

Mean levels of cognitive function decline as people grow older, even in those without
dementia. This affects many important cognitive functions, such as memory, processing

12,3

speed, and reasoning ability~*, with so-called “crystallized” abilities, such as vocabulary,
less affected. Thereis strong evidence that declines across all abilities are correlated:
cognitive ageing, as with individua differencesin cognitive ability level, is substantially a
general phenomenon™>®. Declinesin cognitive abilities in older age have practical
conseguences for daily life and independent living: they have been linked to lower ability to
perform everyday functions such as understanding medicine labels’, and to increased
vulnerability to financial fraud®®. Discovering predictors of variation in cognitive ageing
might help us to identify those at highest risk of more rapid decline, and—to the extent that
such predictors are confirmed to be causal—devise appropriate interventions. In the present
study, we assessed the value of a panel of genetic risk scores in predicting variation in

general cognitive declinein agenerally healthy sample across the eighth decade of life.

Many studies have investigated whether variables that are known to correlate cross-
sectionally with cognitive ability are also predictive of variation in its decline. Numerous
such factors have been tested, but few have been replicated consistently™®. For instance,
although higher educational attainment has been found to be predictive of shallower rates of
cognitive decline**—a finding which has informed theories of “cognitive reserve’**—other
studies have not found this same effect'**°. Other potential predictors, with varying degrees
of evidentiary support, include physical fitness, as measured by variables such as grip

16,17

strength and lung function®*" (see ref.*® for areview), personality traits such as

conscientiousness™ (see ref.? for areview), and type 2 diabetes® (see ref.? for areview).

Here, we investigate potential genetic predictors of cognitive level at age 70, and relative
cognitive decline from age 11 to 70 years and from age 70 to 79 years. One such predictor is
well-known already: carriers of either one or two APOE e4 alleles (as opposed to no such

aleles) are not just at higher risk of a diagnosis of Alzheimer’s disease®

24 but also appear to
be at risk of steeper cognitive decline®. In recent years, however, a new method has become

commonly used in research investigating genetic prediction of traits: polygenic scoring. This

method uses summary data from published genome-wide association studies (GWAYS) that

have tested the correlations of millions of single-nucleotide polymorphisms (SNPs) with
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phenotypes of interest. Using the weightings (regression coefficients) for each SNP from
these data, genotyped individuals in an independent sample (one not included in the original
GWAYS) can have a polygenic score (PGS) calculated that indexes their genetic liability to a
certain disease, or their probability of a higher level of a particular trait®. Through meta-
analysis, and through the collection of ever-larger datasets, the sample size, and thus the
statistical power, of GWAS studies continues to increase. For example, the variance
explained in educational attainment in independent samples by the educational attainment
PGS has increased alongside the sample size of the discovery GWASs”" %,

PGSs can be used to predict variables other than their “own” phenotype. The PGS for
educational attainment, for example, has been shown not just to predict educational

%031 and longevity™. It

attainment but also, among others, cognitive ability®®, social mobility
is possible, then, that the genetic variants linked to phenotypic predictors of cognitive ability

or relative cognitive decline may also themselves predict this decline®.

Testing PGSs as predictors of outcomes such as cognitive level and change is potentially
useful and efficient. Researchers or clinicians can use a single source material—a
participant’s DNA—to test their genetic propensity to a very wide range of risk and
protective factors™. Therefore, instead of having to measure all the phenotypes that might
confer risk to or protection of cognitive decline, it might be possible—to the extent that those
phenotypes are heritable and have had alarge, high-quality GWAS performed—to assess the
genetic propensity to the phenotype and use that information to predict cognitive level and
decline. The approach using PGSs, if successful, would also allow the retrospective testing of
risk and protective factorsin cohorts where DNA and longitudinal cognitive data are
available but who were never tested for the risk or protective factors in question. Beyond
these possible strengths, PGSs can even be used to assess propensity to a phenotype that is

never expressed, such as liability to schizophreniain a sample in which no one develops the

illness®.

We selected fourteen PGSs based on, first, the relevant phenotype having been linked to
cognitive decline in at least one previous study and, second, on there being a recent GWAS
of that phenotype (Table S1 provides alist of references to the phenotypic studies, and to the
respective GWASs). The PGSsin question were those for the following variables:

educational attainment, the personality traits of neuroticism and conscientiousness,
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Alzheimer’s disease, Parkinson’s disease, schizophrenia, major depressive disorder, coronary
artery disease, stroke, type 2 diabetes, smoking, height, body mass index, lung function, and
grip strength. We tested the associations of each of these PGSs with the leve (at age 70
years) and age-related slope (from age 70 to age 79 years) of general cognitive ability
estimated from a battery of thirteen varied tests. We added a further analysis where we tested
the association of the PGSs with change between a cognitive test taken at age 11 and age-70
general cognitive ability. We tested their predictive value individually, simultaneously, and—
because the presence of the APOE e4 allele has previously been found to predict cognitive
declinein this same cohort during almost the same period of life>—in models also including
the APOE e4 status of the participants.
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Method

Sample

The Lothian Birth Cohort 1936 (LBC1936) is an ongoing longitudinal study of older,
community-dwelling individuals living mostly in the Edinburgh and Lothians area of
Scotland, UK*>%*, They were recruited on the basis of their having been part of the Scottish
Mental Survey of 1947%, and have, to date, attended four testing waves: the first at age 69.54
years (SD = 0.83; n = 1,091, 543 females), the second at age 72.52 years (SD = 0.71; n =
866; 418 females), the third at age 76.25 years (SD = 0.68; n = 697; 337 females), and the
fourth at age 79.32 (SD = 0.62; n = 550; 275 females). For simplicity, we will henceforth
refer to the ages at each wave as 70, 73, 76, and 79 years, respectively. Ethical approval for
the LBC1936 study came from the Multi-Centre Research Ethics Committee for Scotland
(MREC/01/0/56; 07/MREO00/58) and the Lothian Research Ethics Committee
(LREC/2003/2/29). All participants, who were volunteers and received no financial or other

reward, completed a written consent form before any testing took place.

Cognitive measures

In addition to completing the Moray House Test No. 12 at age 11 years®, which measures a
variety of cognitive domains with an emphasis on verbal reasoning, the LBC1936 members
completed a wide selection of cognitive tests at each of the later-life testing waves. Tests
were administered identically at each occasion. Thirteen tests were used for the present

analysis, covering the four broad cognitive domains described below.

Visuospatial ability was measured using tests of pattern-based reasoning, recognition, and
recall: the Matrix Reasoning and Block Design subtests of the Wechsler Adult Intelligence
Scale, 3" UK Edition (WAIS-11Y%®), and the Spatial Span subtest of the Wechsler Memory
Scale, 3 UK Edition (WM S-111Y% 4% the score used here was an average of forwards and
backwards spatial span).

Verbal memory was measured using three tests of recall of new verbal information: the
Logical Memory and Verbal Paired Associates subtests of the WM S-111Y (both indicated by
their total score), and the Digit Span backwards subtest of the WAIS-111Y¥.
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Crystallized ability was measured by three tests: the National Adult Reading Test (NART*),
the Wechsler Test of Adult Reading (WTAR™) and atest of phonemic verbal fluency™. All
three tests assessed prior verbal knowledge.

Processing speed was measured using four tests tapping cognitive speed in a variety of ways.
Two of the tests were pencil-and-paper “clerical” tasks: the Digit-Symbol Substitution and
Symbol Search tasks from the WAIS-111"¥. A third was a psychophysical measure of
Inspection Time performed on a computer monitor (as described in ref.*)). A fourth was a test
of Choice Reaction Time, measured using the dedicated button-box described in ref.*>. Note
that, in each of the analyses, we reversed scores on the Choice Reaction Time test so that

higher scores would indicate better cognitive performance.
Genetic measures

The mgjority of participants provided blood samples at the age 70 wave that were used to
extract DNA for the genetic analyses. To measure single-nucleotide polymorphisms (SNPs)
we used the Illumina 610-Quadv1 whole-genome SNP array; measurements were completed
at the Wellcome Trust Clinical Research Facility Genetics Core, Western General Hospital,
Edinburgh. Polygenic scores (PGSs) were created using PRSice software®, with linkage-
disequilibrium clumping parameters set to r? > 0.25 over 250kb sliding windows. All PGSs
were calculated using all SNPs from their respective GWAS (see Table S1 for al references);
that is, we used an association threshold of p = 1.00. In four cases, we ran anew GWAS on
data we had available from the UK Biobank sample (see Supplementary Method and Figures
S1-S3). This was either because this resulted in a larger GWAS than the most recent
published GWAS at the time, or because the LBC1936 participants were included in that
most recent GWAS. In addition to the PGS analyses, each participant’s APOE e4 genotype
was ascertained using TagMan technology, aso at the Wellcome Trust Clinical Research
Facility Genetics Core. Since there were few carriers of two APOE e4 alleles (~2% of the
sample), we categorised this variable as the binary presence (306 participants, ~30%) or
absence (722 participants; ~70%) of any APOE e4 alleles.

Statistical analysis and preregistration
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In aset of preliminary analyses, we estimated whether each polygenic score was significantly
associated with its “own” phenotype in the Lothian Birth Cohort. We selected phenotypes
that were as closely-related as possible given the data we had available. The selected
phenotypes were as follows. For the education PGS, we used years of education, reported at
age 70. For the Neuroticism and Conscientiousness PGSs, Neuroticism and
Conscientiousness were estimated using the NEO-FFI personality instrument”’, completed at
age 70. For the Alzheimer’ s disease and Schizophrenia PGR, we used WAIS-I11 Block
Design at age 70 (since this test provided an estimate of cognitive ability, which isimpaired
in both disorders, and no test of schizophrenia symptoms was available). For the major
depressive disorder PGR, we used the score on the depression subscale of the Hospital
Anxiety and Depression Scale, taken at age 70 (HADS®). For the coronary artery disease,
stroke, and type 2 diabetes PGRs, we used self-reports of whether the participants had ever
received adiagnosis of any of these conditions by age 70. For the smoking PGR, we used a
self-report of whether the participant was anever-, ex-, or current smoker at age 70. For the
height and BMI PGSs, we used the measurements of these traits taken by nurses at the age-70
testing wave. Finally, for the FEV and grip strength PGSs, we used the measurements of
these physical functions taken at age 70 using a spirometer and a dynamometer, respectively.

The analyses described below were preregistered, except for the final one described below
(including age-11 intelligence scores to estimate lifetime cognitive change), which, therefore,
should be considered as exploratory. The time-stamped preregistration document, written
after data from the fourth testing wave of LBC1936 were entered but before any of these data
had been seen by any of the authors of this study, can be found at the following URL.:
https.//osf.io/vyy4ul.

Before analysing any of the cognitive data, we used a parallel analysis, using the psych
package for R*, to factor-analyse the PGSs, testing whether there was evidence for a general
factor (asthereisfor cognitive tests). If evidence of such a general factor emerged, we

planned to assess the value of this general factor as a predictor in the cognitive models.

We estimated a “factors of of curves” structural equation model to characterise cognitive
levels and changes within older age. Thisinvolved estimating a latent growth curve model for
each cognitive test, then factor-analysing the latent intercepts and latent slopes from these

models. The model follows the same structure as that of ref.®, where we used data from the
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first three waves of the LBC1936 to examine predictors of cognitive change from age 70 to
76 years. The factor models for both levels and slopes were hierarchical, as shown in Figure
1: there were four domain-level factors estimated for both level and slope (Visuospatial
ability, Verbal Memory, Crystallized ability, and Processing Speed), which were themselves
factor-analysed to produce the general factors of cognitive level and slope.

--Insert Figure 1 here--

To estimate the mean change in each cognitive ability over time, we first ran a model with
the raw cognitive scores. The models where we included the genetic predictors had the
cognitive scores pre-residualised for age in days at the time of testing and for sex. The
models with genetic predictors also included the four genetic principal component variables.
Where possible, the analyses were run within the structural equation model (that is, the
factors of curves model and the association with the predictors were estimated
simultaneously). However, in some cases where the structural equation model would not
converge, we extracted factor scores for the general factors and used linear regression to
predict them from the genetic predictors. All such models are noted below.

We next ran the further analyses testing each PGS as a predictor alongside (that is,
controlling for) APOE e4 status, to test for incremental predictive validity over this well-
established risk factor. We did this only for PGSs that had shown asignificant relation to the
relevant cognitive outcome in the main analysis. Then, we included all the PGSstogether as
predictorsin asingle model, assessing their incremental validity over one another. For afinal
analysis, which was not part of the preregistration, we tested whether each genetic predictor
(the PGSs and APOE e4) was associated with age-70 general cognitive ability after correcting
for the age-11 intelligence measure. In this way, we were able to test whether each measure
was predictive of cognitive change across most of the life course (that is, between ages 11
and 70).

The LBC1936 participants had a homogeneous, White European background, and thus we
did not expect population stratification to have a strong influence on the results. Nevertheless,
for all analyses involving relating the PGSs (and APOE e4) to phenotypes, we included four
SNP principal components (multidimensional scaling components) as covariates. We used

the False Discovery Rate correction™ to adjust p-values for multiple comparisons across the
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15 predictors (14 PGSs plus APOE e4). Structural equation modelling was performed using
Mplus v7.3%, and used full-information maximum likelihood estimation to use all of the

available datain each model. All other analyses were runin R*,
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Results

Preliminary polygenic scor e analyses

Thirteen of the fifteen PGSs were significantly associated with their “own” related phenotype
(see Table 1) in the LBC1936 sample. These significant relations ranged from explaining
1.00% of the variance (for both the grip strength and the major depressive disorder PGSsin
grip strength and HADS depression score respectively), to the PGS for BMI explaining
10.69% of the variance in BMI. Two of the scores were not significantly related to the
outcome phenotype: the PGS for Alzheimer’s disease was not significantly related to
cognitive ability (as measured by the Block Design test; explaining 0.02% of the variance, p
= .64), and the PGS for stroke was not significantly related to self-reported stroke (explaining
0.64% of the variance, p = .15).

--Insert Table 1 here--

A correlation matrix of the relations among each of the PGSsis displayed in Table 2. The
PGS for education showed the highest number of significant relations to the other PGSs,
being related to nine of the other fourteen scores; this mostly consisted of education-linked
variants being positively associated with variants linked to better health (broadly consistent
with evidence from genetic correlations; see e.g. ref*®). The correlation sizes were generally
low: the strongest relation between any of the PGSs was that between the education and
smoking PGSs, estimated at r = .25. As planned in the preregistration, we ran aparallel
analysis of the fifteen PGSs using the psych package for R: this indicated that there were six
factorsin the data, with no evidence for astrong “genera” factor. Therefore, we did not use

any of these factors in the analyses below.
--Insert Table 2 here--
Cognitive levels and opes
Descriptive statistics for each of the cognitive tests at each wave, and afull correlation matrix

for the cognitive tests, are provided in Tables S2 and S3 in the Supplementary Materials,
respectively. The longitudinal changes, estimated from the structural equation models, for
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each cognitive test score are shown in Table 3. All but two of the tests showed statistically
significant declines over time, with the largest per-year declines being seen in the processing
speed tests. The two tests showing no significant age-related change were the NART and
verbal fluency, both of which were in the category of “crystallized” tests and were thus
expected to show less decline with age. The trajectory of each test with ageisillustrated in
Figure 2, for the model-implied trajectory as well as the change in the raw data for
comparison (see Figure $4 for an alternative way of visualizing the data, showing each data
point). In all but one case the model-implied trajectory was the samein sign as that in the raw
data, though some slopes were different in magnitude. For verbal paired associates, the
magnitude was reversed (it became negative in the model). These changes are to be expected
given the use of FIML estimation in the structural equation model: several previous
methodological investigations have shown that the choice of missing-data technique can
influence results®*°. Foster et al.>® recommend that the technique is chosen on the basis of its
assumptions being plausibly fit to a dataset; on the basis of a previous analysis where few of
the LBC1936 sample’s predictor variables could predict dropout from age 70 to age 76°, we
conclude that the assumption of “missing at random”, the basis for the use of FIML, was
justified here.

--Insert Table 3 here--

--Insert Figure 2 here--

We then factor-analysed the levels and slopes of all the tests, as described above and shown
in Figure 1. The baseline model (with the tests corrected for age within the wave and sex, but
with no polygenic score predictors) showed excellent fit to the data, according to multiple fit
indices: %(1298) = 2446.16, p < .001; Root Mean Square Error of Approximation = 0.028;
Comparative Fit Index = 0.968; Tucker-Lewis Index = 0.967; Standardized Root Mean
Square Residual = 0.057. The full parameters for this model are shown in Figure S5 in the
Supplementary Materials. Squaring the product of each test’ s loading on its domain and the
domain’s loading on the general factor provided a proportion of variance in each test
explained by the general factor; averaging these figures showed that the general factor of
cognitive level explained 40.9% of the variance in performance across all the tests, and the
general factor of cognitive slope explained 69.7% of the variance in cognitive change

between ages 70 and 79.
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Polygenic scor e prediction of general cognitive level and slope

The associations of each PGS and APOE e4 with the age-70 level and age 70-to-79 slope of
general cognitive ability are shown in Table 4 and Figure 3. Of the fifteen PGSs, six were
statistically significantly associated with cognitive level a age 70: higher PGSs for education
and height were associated with higher general cognitive levels, and PGSs for schizophrenia,
coronary artery disease, smoking, and BMI were associated with lower general cognitive
levels. All effect sizes for these significant effects were modest: the standardized betas
ranged from —.178 (for smoking) to .264 (for education), the p-values that remained
significant after multiple-comparisons correction ranged from 1.54x10™ to .002. APOE e4
status was only nominally significantly associated with level: its association became non-

significant after correction for multiple comparisons.

Only one of the PGSs, that for schizophrenia, was a significant (negative) predictor of
general cognitive slope between ages 70 and 79, but this did not survive multiple-
comparisons correction. APOE e4 status did, however, was a significant predictor of general
cognitive decline—those with one or two APOE e4 alleles had significantly steeper general
cognitive decline than those who had none—and this association survived multiple-testing

correction.

--Insert Table 4 here--

--Insert Figure 3 here--

We next tested whether the scores that had shown significant relations to the cognitive
outcomes in theinitial analysis were still statistically significantly related after including
APOE e4 as a separate predictor. Results are shown in Table $4. In all cases, the polygenic
score predictor remained significant after adjusting for APOE e4 status, with slightly
attenuated effect sizes: that is, their associ ations seemed to be largely independent of any
relation with APOE e4.

Next we ran the simultaneous-predictor models, including all PGSs predicting general
cognitive level, and (in a separate model) general cognitive slope. For general cognitive level
at age 70, only the significant associations with the PGSs for education (8 = .195) and
schizophrenia (f = —.126) remained (see Table S5 for full results). Asin theinitial analysis,
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none of the PGSs were significantly related to general cognitive slope over time after

correction for multiple comparisons.

Additional (non-preregistered) analyses

We ran the analyses predicting general cognitive level at age 70 adjusted for age-11 cognitive
ability —that is, predicting cognitive change across most of the life course. The basic
cognitive model is shown in Figure S6. Note that age 11 cognitive ability was related very
strongly to age 70 general cognitive level (8 = .814, SE =.015, p = ~.00; see ref.”). Results
from the genetic analyses are shown in Table 5, along with correlations between each of the
genetic predictors and age-11 cognitive ability itself. Five of the sixteen PGSs were
significantly associated with intelligence score at age 11 after multiple-comparisons
correction: education, schizophrenia, coronary artery disease, smoking, and BMI. The
association between lifetime cognitive change and the PGS for education was significant (and
survived multiple-testing correction), with a standardized effect size of g = .102: those with a
higher PGS for education saw relatively less cognitive change across the lifespan. The other

PGSs were not related significantly to the lifetime cognitive change variable.

--Insert Table 5 here--

We did not expect that the Alzheimer’s disease PGS would make such a poor (near-zero; see
Table 4) prediction of general cognitive slope, especially when APOE e4 status had made a
significant prediction, and SNPs associated with APOE e4 featured prominently in the
Alzheimer's GWAS results from which the PGR was cal culated®. We tested whether this
was due to our use of the p = 1.00 threshold when calculating the PGS—it is possible that
inclusion of the large number of less- and non-significant SNPs overwhelmed the signal from
APOE e4-linked loci—by recalculating the PGS at a more stringent threshold—p = .01—and
re-running the relevant analyses. Aswould be expected, the more stringent PGS was had a
somewhat higher (point-biserial) correlation with APOE e4 status (r(964) = .251, p=
2.43x10™") than did the PGS with the p = 1.00 threshold (r (963) = .097, p = .002). The more
stringent Alzheimer’s PGS also made a significant prediction of the slope of genera
cognitive decline (§ = —128, SE = .043, p = .003), though not itsinitial level (# = —.016, SE =
0.035, p = .648).
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For comparison, we also re-calculated the other PGSs at the p = .01 threshold. The results for
al p = .01 PGSs are shown in Table S6. Most results were similar: unlike the Alzheimer’s
result reported above, all other non-significant associations with general cognitive slope
remained non-significant with this new threshold. The predictions for cognitive level
generally had similar effect sizes, though the association between level and coronary artery
disease was no longer significant, while the nominally-significant associations for the height

and BMI PGSs did not survive multiple comparisons correction.
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Discussion

The study reported here was an attempt to predict variation in cognitive ageing using
polygenic scores. All the PGSs were chosen a priori to index genetic variants associated with
key ageing-relevant traits and conditions. Although some of these PGSs were statistically
significantly associated with the baseline cognitive level at age 70, and the education PGS
was associated with cognitive change from age 11 to age 70, none of the PGSs was
significantly associated with the gradient of the general cognitive slope between age 70 and
79 — ageneral cognitive decline variable that explained over two-thirds of the slope variance
across al thirteen tests). The presence of the APOE e4 allele, on the other hand, could make
significant predictions of cognitive decline: having either one or two alleles, compared to
zero, explained around 10% of the variance in the slope of cognitive decline. None of the
PGSs approached this level of effect size. Below, we discuss some of the implications,
strengths, and limitations of the study.

Overall, the results were similar to results from studies attempting to use phenotypic datato
predict cognitive decline (e.g. attempts in this same sample over a shorter period of change®):
cognitive levels could be predicted far more easily than cognitive slopes. It should be noted
that some of the PGS correlations with cognitive level were similar in effect size to those
using the actual phenotypes themselves, examined in previous studies. For example, the
authorsin ref.” found a correlation between measured BMI and age-70 cognitive level of —
111 (seetheir Table Sb); here, the PGS for BMI had a correlation with the same latent
variable of —109. It may be that any genetic effects indexed by the PGS occur at different
pointsin the life course. For instance, variants linked to education and BMI—two PGSs that
were significantly associated with baseline cognitive level, but not slope—may have their
effects on cognitive ability during childhood or early adulthood, whereas effects of APOE
ed—which significantly predicted slope, but not level—may appear only within older age. In
one GWAS of general cognitive ability®, the effect of APOE e4 was particularly pronounced
at older ages, consistent with these findings (see ref.*® for alongitudinal analysisin an even
older sample). Note that any PGS associations reported herein were independent of APOE e4,

as per our simultaneous regression analysis including them both as predictors.

The result that the residual of cognitive ability between age 11 and age 70—an index of
lifetime cognitive change—was statistically significantly predicted by the education PGS also
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implies that education-linked variants are related to changes in cognitive abilities before old
age (specifically, before age 70). These findings are of relevance to the concept of “cognitive
reserve’™*: they imply that researchers who find links between early-life education and later-
life cognitive abilities (or cognitive change) should take into account the fact that some of the
effect may come from a genetic propensity to better educational attainment, and not the

educational attainment itsalf.

Given the general difficulty of finding significant predictors of cognitive decline, it may
simply take a higher-powered study, with more participants, longer follow-up times, and
additional waves, to detect genetic effects. On the other hand, as was noted above, larger
GWAS studies have tended to produce PGSs with better predictive validity”’, and thisis
likely also the case here. Another reason for the lack of prediction may be because the
phenotypes linked to the PGSs do not themselves reliably predict cognitive decline. The most
recent systematic review™ noted that much of the evidence in this sphere is weak; we do not
have a strong, multi-study evidence base for many of the phenotypic—Ilet alone genetic—
predictors of cognitive decline discussed here. It is also possible that genetic propensities
interact with environmentsin ways that improve or worsen the cognitive ageing tragectory.
Note that thereis no existing large, well-powered GWAS of cognitive decline in particular,
since there are too few samples with the relevant variables for such a GWAS to be run.
Should such a well-powered study appear in future, we would expect to derive a PGS that

would predict cognitive declinein separate samples.

The case of the Alzheimer’s PGS warrants further consideration. As noted above, we chose
to calculate all PGSs at the most liberal, whole-genome threshold (p = 1.00), including the
effects of all SNPs, rather than a more restricted set. The choice of just one single threshold
was to avoid the overfitting that often comes with choosing many thresholds and reporting
the one with the highest association with the outcome trait of interest. However, the fact that
the prediction of cognitive decline by APOE e4 status was so much larger than that of the
Alzheimer’s PGS, which itself contains the effect of (SNPs in linkage disequilibrium with)
APOE e4, suggested that the effects of the other SNPs—Iless significantly or not significantly
related to cognitive decline—included in the PGS were overpowering the APOE e4-linked
signal. This appeared to the be the case: the use of a more conservative threshold improved
the predictive validity. This was not the case for the education PGS, however: it may be that

for traits that have even higher levels of polygenicity, for which there are no large-effect
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variants such as APOE e4 for Alzheimer’s, the PGS threshold matters less. As we noted
above, larger GWASs of Alzheimer’s disease will produce summary data with more signals
from non-APOE-e4-linked variants, and these should be tested for their association with
normal-range cognitive ability and cognitive decline at different thresholds (note that a
previous study™ found no relation between a PGS calculated from an older Alzheimer's
GWAS and cognitive abilities in this same sample; see also ref.®® for an example of a
combination of APOE and PGS variables). Alternatively, performing a permutation test as
described in ref.*® (Supplementary Note 4) would allow the calculation of an empirical p-
value threshold, potentially allowing for a better prediction than we had with our across-the-
board use of the p = 1.00 threshold. Generally, however, there are as yet no hard-and-fast
rulesfor the use of PGSs by researchers who wish to maximise their predictive ability but are

concerned about multiple-comparisons testing; ref.® provides some recommendeations.

Another strategy to improve prediction would be to follow the approach of ref.®!, where the
authors took a much larger set of eighty-one PGSs and used them as predictors of the levels
of various traits including cognitive ability and BMI (they used a sample of younger
individuals and thus could not examine cognitive decline). They ran their analysis using
penalized regression (specifically the Elastic Net®), which allowed the large number of PGS
variables to be reduced to the best set of predictors, and allowed them to explain a somewhat
larger proportion of the variance in the traits. Such a“hypothesis-free” approach, using
algorithmic selection from many predictors rather than manually choosing those predictors on
the basis of pre-existing links to cognitive decline, as we did here, may be a more fruitful
approach.

Strengths and limitations

The LBC1936 sample isarare dataset in that it is a narrow-age sample that covers nearly an
entire decade within older age, with thirteen high-quality cognitive tests measured repeatedly
and identically; moreover, and highly unusually for an ageing study, it has well-validated
cognitive test data from age 11. Using longitudinal structural equation modelling, we
estimated general factors of cognitive level and slope that removed any measurement error
associated with the individual tests and produced an index of overall cognitive ability and its

ageing. Overall, this was a powerful way to assess cognitive decline, and we used a variety of
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PGSs from varied traits and disorders in an attempt to predict that decline’ s variance.

However, there are a number of limitations to the study.

The self-selecting nature of the LBC1936 participants may have biased our results. That is,
the participants were generally healthy, independently-living older adults and—Dby virtue of
the fact they were able and interested to attend the initia testing—were likely substantially
healthier and more intellectually engaged than the average person of their age. Non-random
dropout, a problem for most longitudinal studies of ageing, compounds thisissue: individuals
who remained in the study across the four waves were healthier on average than those who
dropped out. We thus probably missed individuals with the poorest health and, consequently,
with the greatest degree of cognitive decline. This limitation—a restriction of range to the
higher end of the health distribution—may have contributed to our lack of ability to predict

cognitive decline in our sample.

There may also be additional complexitiesin the cognitive decline paths that we did not
consider here, since we focused on the relatively simple linear average trgjectories. For
example, there may be nonlinear trgjectories, or multiple |atent trajectories (see e.g. ref.%)
within the dataset that, if analysed in future, may reveal differential relations to the genetic
predictors. Finally, in afew cases, the complexity of the structural equation models meant
that convergence could not be achieved without fixing some of the paths that were intended
to be freely-estimated (see Figure S2), and in some cases without extracting factor scores and
using them in linear regression models instead of estimating all relations within latent-
variable space (i.e. simultaneously to the estimation of the relevant structural equation
model). We would not estimate that these issues would have changed our results to a great
extent, but the latter practice (extracting factor scores) may have led to slight alterationsto

some of the standard errors we reported.

Conclusions

A key goal of cognitive ageing research is to be able to predict who will experience steeper
general cognitive decline. In this study of a high-quality, longitudinal dataset, we attempted
to do so using apanel of polygenic scores, but were broadly unsuccessful: despite statistically
significant associations of several polygenic scores (those for education, schizophrenia,

coronary artery disease, smoking, height, and BMI) with general cognitive level at baseline,
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and the relation of the education PGS to cognitive change between age 11 and age 70, none
of the scores predicted subsequent cognitive decline across the eighth decade of lifein the
pre-registered analysis. Future, larger GWAS studies might furnish us with summary
statistics to produce more predictive PGSs, and different analytic methods might increase the
predictive value of those we already have. Given that it is possible to formulate so many
PGSs from only DNA, the approach retainsits potentia as an efficient and protean source of
predictors. For the time being, however, the present study’ s findings suggest that researchers
interested in genetic prediction of longitudinal variability in cognitive ageing will derive
more value from established predictors such as APOE e4 than newer methods such as

polygenic scores.
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Tables

Table 1. Variance explained by each polygenic profile score in relevant Lothian Birth Cohort

1936 outcome variables.

Polygenic Profile Outcome Variable Std. SE p-value % Variance
Score B Explained
Educational Y ears of education 22 .03 6.09x10%°  4.64%
attainment
Neuroticism NEO-PI-R Neuroticism 18 .04 1.85x10%  2.58%
Conscientiousness NEO-PI-R .08 .03 .01 0.69%
Conscientiousness
Alzheimer’s disease Block Design -02 .03 .63 0.02%
Schizophrenia Block Design ~12 .03 457x10% 1.23%
Major depressive HADS depression score 10 .03 .002 1.00%
disorder
Coronary artery Cardiovascular disease’ 27 .08 3.94x10%  1.89%
disease (24.5%)
Stroke Stroke' (5.0%) 21 15 .15 0.64%
Type 2 diabetes Type2 disbetes’ (8.6%) .53 .13 240x10%°  4.17%
Smoking Smoking A5 .03 541x10%®° 2.05%
Height Height 28 .03 227x10"® 6.53%
BMI BMI 33 .03 ~00 10.69%
FEV, FEV, 19 .03 3.00x10%  5.21%
Grip strength Grip strength 06 .02 .002 1.00%

Note. Standardized fs, SEs, and p-values are from general linear (continuous outcomes) or
generalized linear (categorical outcomes, indicated with the T symbol and with the percentage
of the sample who reported having, or having had, that condition at or by age 70) regression
models adjusting for age at the time of measuring/reporting the outcome variable, sex, and
four multidimensional scaling components. All significant p-values remained significant after
False Discovery Rate correction. For continuous outcome variables, the % variance explained
is derived from the partial R?. For categorical outcome variables, the % variance explained is
derived from the Nagelkerke’'s RP. Rowsin bold survived false discovery rate correction for
multiple testing. References for the GWAS source of each polygenic score can be found in
Table S1.
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Table 2. Pearson correlations between polygenic scores in the Lothian Birth Cohort 1936.

Polygenic Score 1 2. 3. 4, 5. 6. 7. 8. 9. 10. 11. 12. 13
1. Education -

2. Neuroticism 11 -

3. Conscientiousness -02 -04 -

4. Alzheimer’s disease -117 01 0004 -

5. Schizophrenia 004 08" -03 -02 -

6. Major depressive disorder —06 .18 —.04 .04 A7 -
7. Coronary artery disesase —-13°~ .004 -03 -003 .06 .02 -

8. Stroke -10° 01 -02 -01 .05 097 1177 -

9. Type 2 diabetes -.03 .02 .02 .02 08 -06 1277 —-05 -

10. Smoking -257 06 -01 .03 1277 04 08 .03 .02 -

11. Height 09" —04 02 -107 -15" -10" -03 07 =237 —04 -

12. BMI -16" -05 -04 .03 04 -003 .07 04 167 147 -117 -

13. FEV, 137 090 —o07* 03 137 06 -01 -05 -04 -137 -07 -08 -
14. Grip strength 03 -127" 05 -08 03 -09° 03 -01 -005 -03 -04 04 157

Note: n = 1,005 for all correlations. p< .05, p<.01,  p<.001.
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Table 3. Estimates of the linear slope of each cognitive test. Illustrations of each trajectory
are shown in Figure 2.

Domain Cognitivetest  Mean Mean  SEof p-value Mean
(max. score) (SD)at raw raw no. of
age-70 change change SDs
baseline per change
year per year
Visuospatial Matrix 1349 -0.133 0.016 6.12x10"° —-0.033
ability reasoning (5.13)
Block design 3379 0423 0.029 1.30x10% -0.046
(10.32)
Spatial span 7.36 -0.038  0.005 1.27x10™ -0.036
(1.42)
Verbal Logical 7146  -0.150 0.072 .038 -0.010
memory memory (17.96)
Verbal paired 2644  -0.156 0.033 3.00x10% -0.019
associates (9.13)
Digit span 7.73 -0.038 0.007 1.72x10% -0.021
backwards (2.26)
Crystallized NART 3448 0012 0.013 379 0.001
ability (8.15)
WTAR 41.02 -0.034 0.012 .003 -0.005
(7.17)
Verbal fluency 4242  -0.032 0.035 358 -0.003
(12.54)
Processing  Digit-symbol 56.60 -0.833 0.038 544x10° -0.070
speed substitution (12.93) 105
Symbol search 2471  -0.258 0.023 1.50x10% -0.050
(6.39)
Inspectiontime 11214 -0.595 0.049 2.26x10% -0.071
(11.00)
Choicereaction 64.21 -0.008 357x10 1.86x100 -0.104
time (ms) (0.09) 04 108

Note: Estimates of SD change are model-implied, using full-information maximum
likelihood estimation, and thus may not precisely correspond to the raw SDs.
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Table 4. Associations of each polygenic profile score, and APOE e4 status, with general
cognitive level (age 70) and slope (age 70-79) in individual-predictor models.
Genetic variable Association with baselineg  Association with g slope

Std.p SE  p-vaue Std.p SE  p-value
APOE e4 -153 .068 .025 —~319 .068 3.44x10*®
Education 264 033 154x10"° 031 .043 .474
Neuroticism -077 .039 .047 —004 .048 .929
Conscientiousness -017 .035 .634 .015 .044 .726
Alzheimer’'s disease -035 .035 .316 .002 .045 .957
Schizophrenia -148 .038 1.07x10% -110 .048 .022
Major depressivedisorder —034 .035 .342 —-049 .044 .267
Coronary artery disease -.108 .035 .002 -011 .044 .808
Stroke 026 .036 .463 046 .044 .295
Type 2 diabetes -043 032 .171 -019 .032 .550
Smoking -178 .035 3.66x10% —035 .045 .438
Height 101 .038 .008 —-011 .049 .826
BMI -109 .035 .002 —-014 .044 .746
FEV, 074 037 .048 051 .047 .277
Grip strength -041 .036 .255 035 .044 .425

Note: All estimates come from hierarchical latent growth curve structural equation models.
Associations are corrected for age at cognitive testing, sex, and four multidimensional scaling
components. Bold values are those that were statistically significant after false discovery rate
correction for multiple testing. Note that the results for APOE e4 and Type 2 diabetes were
estimated using extracted factor scoresin linear regression models; all other effect sizes were
estimated within the structural equation models themselves.
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Table 5. Associations of each polygenic score and APOE e4 status with age 11 intelligence
and lifetime cognitive change (age 70 general intelligence (g) adjusted for age 11
intelligence)

Genetic variable Association with age 11 Association with age 70 g,

intelligence adjusted for age 11

intelligence

Std.p SE p-value Std.p SE  p-value
APOE &4 024 .074 .740 -080 .055 .141
Education 236 .032 6.13x10® 102 .025 5.19x10%
Neuroticism -.032 .037 377 -016 .027 .563
Conscientiousness .010 .033 .741 =171 .119 .153
Alzheimer’'s disease -011 .033 .731 -026 .025 .282
Schizophrenia ~136 .036 1.85x10% —021 .028 .446
Major depressivedisorder —028 .033  .400 028 .025 .256
Coronary artery diseasse -.098 .032 .003 -039 .025 .116
Stroke —-.003 .033 927 .052 .025 .038
Type 2 diabetes —-024 .035 .489 -006 .025 .818
Smoking —~187 .033 2.60x10%® —023 .026 .369
Height .053 .036 142 .030 .027 .270
BMI —~128 .033 1.44x10% -012 .025 .636
FEV, .055 .035 113 .023 .026  .380
Grip strength —-.030 .033 .362 -002 .025 .927

Note: Lifetime change come from a hierarchical latent model of general cognitive ability,
comprising tests taken at age 70 (Figure S3), with the g-factor adjusted for age 11
intelligence. Rows in bold are effects that survived (per-column) false discovery rate
correction for multiple testing. All models included four principal components to adjust for
population stratification.
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Figures

Figure 1. Smplified diagram of the structural equation model used to estimate the general cognitive level and the general cognitive slope. A
latent growth curve was estimated across the four waves for each cognitive test (with the numbers showing the average length between each
wave), and the levels and slopes were factor-analysed in a hierarchical model with four cognitive domains and a general factor. Note that, for
illustrative purposes, not all tests are shown (the Speed domain had four tests and the other domains had three each; see Table 3). The main
outcomes of interest—the association of each polygenic score with the general level and slope variables—are indicated by the dashed lines.
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Figure 2. Standardized linear trajectories of each cognitive test with age. Intercepts (at the
youngest age) are set to zero for comparative purposes. The horizontal dotted line indicates
zero. The coloured solid line is the model-implied trajectory (using full-information
maximum likelihood estimation); the coloured dotted line is the regression line through the
raw data (with shaded 95% confidence interval).
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Figure 3. Associations of APOE e4 status and each polygenic score with cognitive level (age
70) and cognitive decline (age 70 to 79). * = statistically significant after false-discovery rate
correction. T = nominally significant, but no longer significant after false-discovery rate
correction. Note that the effect for APOE e4 is standardized only with respect to the outcome
(with adichotomous predictor); al other effect sizes are standardized with respect to both the
outcome and the predictor.
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