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Importance 20 

Nitrogen (N) is a common limitation on primary productivity, and its source remains 21 

unresolved in northern peatlands that are vulnerable to environmental change. Decomposition of 22 

complex organic matter into free amino acids has been proposed as an important N source, but 23 

the genetic potential of microorganisms mediating this process has not been examined. Such 24 

information can elucidate possible responses of northern peatlands to environmental change. We 25 

show high genetic potential for microbial production of free amino acids across a range of 26 

microbial guilds. In particular, the abundance and diversity of bacterial genes encoding 27 

proteolytic activity suggests a predominant role for bacteria in regulating productivity and 28 

contrasts a paradigm of fungal dominance of organic N decomposition. Our results expand our 29 

current understanding of coupled carbon and nitrogen cycles in north peatlands and indicate that 30 

understudied bacterial and archaeal lineages may be central in this ecosystem’s response to 31 

environmental change.  32 
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Abstract 33 

Nitrogen (N) is a scarce nutrient commonly limiting primary productivity. Microbial 34 

decomposition of complex carbon (C) into small organic molecules (e.g., free amino acids) has 35 

been suggested to supplement biologically-fixed N in high latitude peatlands. We evaluated the 36 

microbial (fungal, bacterial, and archaeal) genetic potential for organic N depolymerization in 37 

peatlands at Marcell Experimental Forest (MEF) in northern Minnesota. We used guided gene 38 

assembly to examine the abundance and diversity of protease genes; and further compared to 39 

those of N-fixing (nifH) genes in shotgun metagenomic data collected across depth at two 40 

distinct peatland environments (bogs and fens). Microbial proteases greatly outnumbered nifH 41 

genes with the most abundant gene families (archaeal M1 and bacterial Trypsin) each containing 42 

more sequences than all sequences attributed to nifH. Bacterial protease gene assemblies were 43 

diverse and abundant across depth profiles, indicating a role for bacteria in releasing free amino 44 

acids from peptides through depolymerization of older organic material and contrasting the 45 

paradigm of fungal dominance in depolymerization in forest soils. Although protease gene 46 

assemblies for fungi were much less abundant overall than for bacteria, fungi were prevalent in 47 

surface samples and therefore may be vital in degrading large soil polymers from fresh plant 48 

inputs during early stage of depolymerization. In total, we demonstrate that depolymerization 49 

enzymes from a diverse suite of microorganisms, including understudied bacterial and archaeal 50 

lineages, are likely to play a substantial role in C and N cycling within northern peatlands.   51 

  52 
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Introduction 53 

Understanding the processes that govern coupled carbon (C) and nutrient dynamics in 54 

northern peatlands is critical to predicting future biogeochemical cycles. These ecosystems 55 

account for 15-30% of global soil carbon storage (1-3), primarily occurring within layers of 56 

partially decomposed plant materials where nitrogen (N) content is low (4, 5). Nitrogen is a 57 

critical nutrient regulating primary productivity in many terrestrial ecosystems (6) and can 58 

dictate belowground carbon storage through impacts on soil organic matter decomposition (7, 8). 59 

Ombrotrophic peatlands are characterized by Sphagnum moss that has a comparatively large N 60 

requirement (approximately 40-50 kg ha-1 year-1 of N (9-12)).  Nitrogen fixation historically has 61 

been considered to be the primary N source in peatlands (13-18). Yet, previous work has shown 62 

that N fixation alone cannot meet peatland N requirements (5, 19) and many studies have 63 

demonstrated the importance of organic molecules in fulfilling N demand (20-25). Symbiotic 64 

fungi are traditionally associated with organic N acquisition (22, 25), but there is an increasing 65 

appreciation for the role of bacteria in this process. Despite these advances, our understanding of 66 

the genetic mechanisms mediating N available remains nascent. We address this knowledge gap 67 

by exploring the genetic potential of peatland microbiomes to decompose polymeric organic N 68 

and subsequently influence peatland C and N cycles. 69 

 Depolymerization of proteinaceous organic material is an important pathway for 70 

generating bioavailable N in wide range of systems including boreal forests and is often 71 

considered a fungal trait (5, 7, 20, 22, 26-28). Depolymerization decomposes polymeric organic 72 

material into monomers and amino acids that can be used as C and N sources by soil 73 

microorganisms and plants (19, 20, 22, 29, 30). Several studies from terrestrial ecosystems under 74 
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strong inorganic N-limitation have shown that organic N, and free amino acids in particular, can 75 

be used directly by plants (19, 20, 22, 29, 30). Additionally, microorganisms (defined here as 76 

bacteria, archaea, and fungi) secrete extracellular proteases into soils to carry out organic matter 77 

depolymerization. Proteases are highly diverse and ubiquitous in soil and provide a large 78 

proportion of bioavailable N (31, 32). These enzymes catalyze the initial hydrolysis of proteins 79 

into smaller organic molecules such as oligopeptides and amino acids that can be subsequently 80 

acquired by plants (31).  81 

In peatlands, fungi are considered more important than bacteria or archaea in proteolytic 82 

activity and decomposition more generally, particularly within the oxic surface layer (33-35). 83 

Symbiotic ectomycorrhizal and ericoid fungi (EEM), which are supplied with C by a host plant, 84 

are especially relevant to organic N depolymerization in peatlands through N mining (36-38). 85 

EEM have been suggested to acquire N from soil organic matter (19, 39-41) and enable plants to 86 

directly compete with free-living microorganisms for N (42-44), and Orwin et al. (45) posited a 87 

critical role for EEM in generating microbial N limitation of decomposition by enhancing plant 88 

N uptake. This fungal-mediated plant organic N uptake may be particularly important in N-poor 89 

boreal ecosystems (19, 20). In these systems, free-living microorganisms should retain amino 90 

acids for growth instead of mineralizing organic N (22, 46). However, empirical evidence 91 

supporting the notion that fungi dominate proteolytic activity is sparse and primarily derived 92 

from correlative studies.  93 

Little is known about the roles various other microorganisms may play in peatland 94 

organic N depolymerization, and the genes that encode microbial proteases may provide valuable 95 

insight into the coupling of C and N cycles in these systems. Recent work has suggested 96 
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substantial involvement of bacteria in depolymerization. For example, Lin et al. (34, 47) 97 

indicated that bacteria may outcompete fungal communities for plant-derived substrates, 98 

including large polymeric molecules. Consistent with this work, Bragina et al. (48) demonstrated 99 

that peatland Sphagnum moss microbiomes contain a high abundance of genes involved in N 100 

cycling and recalcitrant organic matter decomposition. The involvement of archaeal proteases in 101 

peatland organic N decomposition remains largely unexplored. 102 

Here, we evaluate microbial proteolytic potential relative to N-fixation within the Marcell 103 

Experimental Forest (MEF) by examining the genes encoding a suite of microbial proteases vs. 104 

the nifH gene that is well-ascribed to N-fixation. Previous work has demonstrated that organic 105 

matter cycling differs between hydrologically-defined environments within peatlands (e.g., bogs 106 

vs. fens) (34, 49-51). Fungal biomass also typically declines with depth as oxygen and root 107 

exudates become depleted in soils. Based on these observations, we tested the following 108 

hypotheses: i) surface peatland protease genes are attributed more to fungi than bacteria, with a 109 

shift towards bacterial sequences as depth increased; ii) bog environments contain more 110 

proteolytic potential than fens due to stronger N-limitation; and iii) the total number and the 111 

diversity of protease genes decrease with depth corresponding with decreased organic matter 112 

inputs. 113 

Results 114 

Assembly overview 115 

Out of 24 gene groups constructed and investigated, we assembled 13 gene groups 116 

successfully (Table S1). The assembled groups include three housekeeping genes (rplB, rpb2_4, 117 

and rpb2_7), nine protease gene families (eight of which are extracellular), and nifH gene. 118 
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Approximately 34% of the fully covered contigs were annotated as housekeeping genes, 5% 119 

were annotated as nifH genes, and 61% were annotated as protease genes. Among all 120 

metagenomic reads mapped to the annotated fully covered contigs, approximately 83.5% were 121 

bacterial, 16% were archaeal, and 0.5% were fungal (Table 1).  122 

Overall gene stratification 123 

The standardized abundance of bacterial genes was similar across sample depth profile, 124 

whereas the standardized fungal gene abundance decreased and archaeal genes increased along 125 

the sampling depth (Figure 1). Archaeal N-acquisition genes in acrotelm samples were 126 

approximately 100 fold more abundant than archaeal housekeeping genes. Fungal protease 127 

encoding genes were consistently detected through the depth profile but fungal housekeeping 128 

genes were only detected in acrotelm (0-10 cm) samples.  129 

Few differences in standardized gene abundance were observed between bog and fen 130 

acrotelm samples, except that fungal genes were more abundant in fen acrotelm compared to bog 131 

acrotelm samples (Figure 1). At gene family level, three protease families (M14, M4_C, and 132 

Asp) were at least 12% more abundant in samples from the fen compared to bog acrotelm. 133 

Whereas assemblies resembling U56 and nifH genes were less abundant in the fen compared to 134 

bog. The rest of the protease genes were less than 10% different across environments (Table 2).   135 

N-acquisition genes 136 

Genes encoding for nifH were detected in archaea and bacteria only, and approximately 137 

97% of the nifH genes detected were bacterial. Nitrogen fixation is not known to be mediated by 138 

fungal communities (52). NifH genes were substantially less abundant than protease genes. The 139 

abundance of detected nifH genes was similar to the abundance of protease family S8, which is 140 
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the least abundant archaeal protease family and the fourth least abundant bacterial protease 141 

family (Figure 2).  142 

Protease encoding genes differed in distributions among archaea, bacteria, and fungi 143 

(Figure 2). Among nine protease gene families, eight were identified in bacteria, six were 144 

identified in fungi, and only three were identified in archaea. With some exceptions, archaeal 145 

protease genes increased with sampling depth, fungal protease genes decreased with depth, and 146 

bacterial protease genes varied. In contrast to these trend, archaeal Trypsin, bacterial Trypsin, 147 

M1, and U56 genes were the most abundant in the mesotelm, and fungal S8 genes were the most 148 

abundant in the catotelm and undetected in the mesotelm (Figure 2).  149 

The protease Asp genes were uniquely detected only in fungi, while M4_C and U56 150 

genes were uniquely detected in bacteria (Figure 2). Figure 3 shows the taxonomy distribution of  151 

the most abundant fungal Asp genes, bacterial M4_C genes, and bacterial U56 genes. In protease 152 

Asp family, a large fungal genera variation was observed among acrotelm samples. Asp genes 153 

similar to those of genera Phanerochaete, Pseudogymnoascus, and Aspergillus were detected in 154 

fen samples only (Figure 3A). In protease M4_C family, the bacterial genera in acrotelm sample 155 

Fen2_-10 is drastically different from the rest of the samples (Figure 3B). Protease genes similar 156 

to those found in Methylocella and Burkholderia were the most abundant genus identified with 157 

bacterial protease U56 (Figure 3C).  158 

 159 

Discussion 160 

 Nitrogen fixation has long been considered the primary N source for peatlands (13-18), 161 

but N fixation alone cannot meet ecosystem N requirements (5, 19). Similarly, N assimilation 162 
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has been shown to exceed gross mineralization in northern ecosystems (19, 20), and intact amino 163 

acid assimilation has been recognized as a potentially important source to meet N demand (22, 164 

30, 36, 53). Previous work suggested that microbial proteases may be a missing link in northern 165 

peatland C and N cycling (30, 54). We investigated the proteolytic potential of peatland 166 

microbiomes across depth and environment type. Our work contrasts the paradigm of fungal 167 

importance in depolymerization processes and suggests that niche complementarity among 168 

diverse microorganisms is likely to play a substantial role in C and N cycling within northern 169 

peatlands. 170 

We reveal unique niches for fungal, bacterial, and archaeal proteolytic potential, as 171 

protease families from each kingdom showed distinct stratification patterns across depth. Fungi 172 

were mostly found in the acrotelm, which constitutes the peat surface and is more oxygenated 173 

than deeper peat layers. This layer contains higher concentrations of C inputs from newly-174 

derived plant material, such as lignin and large proteinaceous molecules. Lignin in particular 175 

requires oxygen for decomposition due to its comparatively high chemical complexity, and other 176 

work has indicated an association between fungal proteases and lignin decomposition under N-177 

limited conditions (55, 56). Previous work in this system has also shown that carbohydrates are 178 

enriched in the surface layer, while amino sugars and saccharides increase with depth (34). We 179 

therefore suggest that fungi are particularly relevant players in early stages of decomposition, in 180 

which fresh plant material is degraded into smaller organic compounds, including proteins and 181 

oligopeptides. 182 

Bacteria were the most abundant sequences detected regardless of depth or environment, 183 

consistent with previous work by Lin et al. (50). Both house-keeping genes and N-acquisition 184 
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genes (nifH and protease genes) were approximately equally abundant throughout depth, and 185 

their sheer abundance suggest that at the community scale bacteria can outcompete fungi and 186 

archaea for plant-derived compounds. At gene family level, eight out of nine proteases families 187 

were detected in bacteria with a highly variable abundance across depth. Diversity throughout 188 

the depth profile despite relatively constant abundance indicates plasticity in bacterial resource 189 

use across a variety of organic matter degradation states. Additionally, large numbers of bacterial 190 

proteases relative to fungi and archaea signifies a possible dominance of bacterial 191 

depolymerization in northern peatlands.  192 

Complementary to fungal and bacteria niche space, archaea had clear advantage in deep 193 

peat. Archaeal N-acquisition genes were consistently more abundant in the mesotelm (25-50 cm) 194 

and catotelm (>50 cm) than the acrotelm (0-10 cm) at gene family level. Lin et al. (50) noted the 195 

presence of archaea more generally at depth in peat, reaching up to 60% of total small-subunit 196 

rRNA gene sequences below 75 cm. Archaea are found in a variety of anaerobic and extreme 197 

environments and may be more tolerant of low-oxygen conditions that persist in deep peat than 198 

their bacterial or fungal counterparts. The presence of archaeal proteases at depth specifically 199 

suggests that archaea may be vital to the decomposition of the oldest and most humified organic 200 

materials stored within peatlands. In total, the consistent differences in abundance and diversity 201 

of fungi, bacteria, and archaea across the three peat depths of the bog and fen suggests that niche 202 

partitioning across redox profiles may substantially influence the mechanisms of microbial 203 

decomposition. 204 

Protease gene abundance and taxonomic association differed between fen and bog 205 

acrotelm samples. Previous work has shown that MEF fens have roughly 10% more dissolved 206 
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organic C than bogs and that this difference in geochemistry explains most of the variation in 207 

microbiome composition between fen and bog samples (47). We note that fungal protease genes 208 

in particular are more abundant in the fen acrotelm than bog acrotelm (the layer in which most 209 

fungal biomass was found), consistent with observations that fungi are more active in low-210 

nutrient niches (57, 58). Although bacterial and archaeal protease gene abundances were mostly 211 

similar across environments, one bacterial protease gene family (U56) was 12% more abundant 212 

in the bog than the fen and mostly consisted of organisms belonging to Methylocella and 213 

Burkholderia (Table 2, Figure 3). While we did not explore the niches of these organisms 214 

beyond proteolytic activity, Methylocella are commonly associated with methantrophy (59) and 215 

Burkholderia are functionally diverse, but often considered to be plant-associated nitrogen fixers 216 

(60, 61). The abundance of proteases associated with these clades merits future investigation into 217 

their role in peatland biogeochemistry.  218 

Regardless of environment type or depth, bacterial protease abundance and diversity as a 219 

whole indicates a wide variety of possible niches for C and N cycling bacteria within peatlands. 220 

Aminopeptidase N (M1), which cleaves peptides and produces N-terminal amino acid residues 221 

(62, 63), was the most prevalent microbial protease. Work in other systems has shown that 222 

bacterial aminopeptidase N proteases can account for 99% of alanine released from substrate 223 

hydrolysis (64) and that they are critical in generating bioavailable organic N via microbial 224 

biomass turnover (65). Thus, we highlight the M1 gene family as a key enzyme in understanding 225 

peatland N cycles. 226 

Beyond the protease M1 family, extracellular protease genes were highly diverse. We 227 

propose that specific extracellular protease families we identified may fill unique steps in 228 
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decomposition of plant material (Figure 3) (66-68). Below we discuss families that are both 229 

abundant in our samples and ecologically-relevant to peatland ecosystems. Two gene families, 230 

Asp and Aspartic endopeptidase, are commonly associated with fungal wood decomposition (55, 231 

56). These proteases may therefore play an important role in the early stage of peatland 232 

depolymerization, in which large polymeric molecules are degraded. Asp gene families 233 

associated with Phanerochaete, Pseudogymnoascus, and Aspergillus were notably present only 234 

in fens (Figure 3). Proteases associated with Phanerochaete chrysosporium in particular are 235 

associated with highly N-limited systems (55, 56). Their high abundance within peatland 236 

metagenomes, and in the more N-limited fen environment, along with physiological selection 237 

under low N concentration reflects a distinct ecological niche for these organisms in peatlands. 238 

Finally, bacterial protease gene family U56 (formerly linocin M18 (69)) has been largely studied 239 

within the context of dairy fermentation but is identified as a key enzyme for the decomposition 240 

of milk proteins by Brevibacterium linens (69). They may play a similar role within peatland by 241 

targeting proteinaceous material though further investigation is necessary. 242 

While we also support previous work showing an the importance of N fixation in 243 

peatlands, particularly in surface peat (34), we suggest that microbial depolymerization 244 

compliments N fixation in highly N-limited ecosystems. We were able to assemble a substantial 245 

amount of archaeal and bacterial nifH  genes (>21,000). Sphagnum is known to harbor a 246 

diversity of N-fixing symbionts (48), including Cyanobacteria observed here (70). However, 247 

nifH genes were much less abundant than the most abundant protease gene families (archaeal M1 248 

and bacterial Trypsin), in line with Vile’s observation that N accumulation in boreal forests 249 

exceeded N deposition from atmosphere by 12-25 fold (10). 250 
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 251 

Conclusion 252 

We explored the genetic potential for organic matter depolymerization in a northern 253 

peatland based on previous work indicating that microbial proteases may be a vital uncertainty in 254 

C and N cycling within these ecosystems (30, 54). We hypothesized that i) surface peat protease 255 

genes are fungal dominated; ii) bogs contain more proteolytic potential than fens; and iii) 256 

protease gene abundance and diversity decreases with depth; however, our results were only 257 

partially consistent with these hypotheses. While we found that fungal protease genes were 258 

abundant in the acrotelm (surface layer), bacterial proteolytic potential was orders of magnitude 259 

greater and distributed through depth profiles. Prevalence of archaeal protease genes at depth 260 

suggests an importance of these organisms in C and N available below the rooting zone in 261 

peatlands. In contrast to our hypothesis, bacterial protease gene abundance was consistent across 262 

environments and fungal protease genes were more prevalent in the low-nutrient fen 263 

environment. We also show a diversity of protease genes that suggests strong niche 264 

complementarity among microorganisms with different physiologies. We identify proteases 265 

belonging to gene families M1, U56, Asp, and Aspartic endopeptidase as well as those 266 

associated with Phanerochaete chrysosporium as proteases that may be particularly important 267 

within northern peatlands. In total, proteases greatly outnumbered nifH genes attributed to N 268 

fixation, emphasizing their role in peatland C and N cycles. We contrast the historical paradigm 269 

of fungal dominance in depolymerization processes and suggest that bacteria are imperative in 270 

releasing free amino acids from peptides through depolymerization of older organic material. 271 

Our work demonstrates high genetic potential for depolymerization from a diverse suite of 272 
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microorganisms beyond those typically considered, and we urge a broader perspective on the 273 

organisms mediating C and N cycles in northern peatlands. 274 

 275 

Materials and Methods 276 

Sample description 277 

A large-scale field manipulation experiment known as Spruce and Peatland Response 278 

Under Changing Environments (SPRUCE) was initiated at the Marcell Experimental Forest 279 

(MEF), Minnesota, USA, by the U.S. Department of Energy, the U.S. Department of Agriculture 280 

(USDA) Forest Service, and Oak Ridge National Laboratory (http://mnspruce.ornl.gov/). The 281 

MEF itself is a 8.1-hectare acidic, forested bog (N47º30’31.132”, W93º27’15.146”). Sites within 282 

the MEF are classified based on their trophic status and water source as ombrotrophic bogs 283 

(receiving precipitation only) or minerotrophic fens [fed by both groundwater and precipitation 284 

(47, 71)]. Although fens are frequently considered more nutrient rich than bogs, both types of 285 

peatlands are highly limited in inorganic N. A full characterization of the field site including 286 

peatland hydrology and vegetation is described by Sebestyen et al. (72). Further information on 287 

samples is available in Lin et al. (34, 50).  288 

Six metagenomic libraries were obtained from MEF in February 2012 as per Lin et al. 289 

(34). Briefly, peat cores were collected from hollows in bogs and fens and sectioned from 0- to 290 

10- (acrotelm), 25- to 50- (mesotelm), and 75- to 100-cm (catotelm). The water table was at the 291 

surface of the Sphagnum layer. Each core section was homogenized. Two acrotelm samples (0 to 292 

-10 cm) were collected from bog lake fen (i.e. samples Fen1_-10 and Fen2_-10), two acrotelm 293 

samples (0 to -10 cm) from SPRUCE bog (i.e. samples T3M_-10 and T3F_-10), one mesotelm 294 
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sample (-25 to -50 cm) from SPRUCE bog (i.e. sample T3F_-50), and one catotelm sample (-75 295 

to -100 cm) from SPRUCE bog (i.e. sample T3F_-100). As described in Lin et al. (34, 50), 296 

samples differed in physicochemical properties across the depth layers. Sequencing coverage for 297 

each metagenome increased with depth and ranged from 42% to 86% (Table 1). Metagenomes 298 

were generally consistent between samples from the same depth and site, suggesting that the 299 

results reported here are likely to be robust (further details provided in Lin et al. (34)). Whole 300 

genome shotgun metagenome sequences are available in MG-RAST (34, 50).  301 

 302 

Hidden Markov Model construction 303 

We used 24 Hidden Markov Models (HMMs) constructed based on protein sequences 304 

(73) to investigate the microbial genetic potential in N acquisition in MEF peatlands, 20 of which 305 

were for microbial protease genes, one for nitrogenase gene (nifH), and three for microbial single 306 

copy housekeeping genes (Table S2). Nitrogenase enzymes are encoded by three genes [nifH, 307 

nifD, and nifK (reviewed in 74)]; however nifH is the most commonly used marker gene for 308 

nitrogenase potential (52, 75). Evidence suggests that nifD- and nifK-based assays are consistent 309 

with nifH-based results (76). Hereafter, we use ‘N-acquisition genes’ and related terms to 310 

represent all protease genes and nifH. The abundance of N-acquisition genes is therefore the sum 311 

of the abundance of all protease genes plus the abundance of nifH. The housekeeping genes used 312 

as bacterial, fungal, and archaeal markers are genes encoding for ribosomal protein L2 (rplB), 313 

RNA polymerase second largest subunit domain 4 (RPB2_4), and domain 7 (RPB2_7), 314 

respectively. We use the term ‘housekeeping genes’ to represent these domain-specific single 315 

copy housekeeping genes. The abundance of housekeeping genes is calculated as the sum of the 316 
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abundance all housekeeping genes. The HMM’s for nifH and rplB genes are available in 317 

Ribosomal Database Project (RDP) Fungene repository (77). Models for RPB2_4 and RPB2_7 318 

were obtained from Pfam database (http://pfam.sanger.ac.uk/). The protease genes (one 319 

intracellular and 19 extracellular) were selected based on literature characterizations (78-80). To 320 

construct the most informative HMM models for targeted gene groups, well-studied gene 321 

sequences were first selected from existing literature. These seed sequences were cross-checked 322 

against the reviewed protein database SwissProt (http://www.uniprot.org/). Genes encoding for 323 

proteases were also searched against the MEROPS peptidase database 324 

(http://merops.sanger.ac.uk/) to confirm their protease identity. Protein families and existing 325 

protein HMM models were queried from Pfam database. The retrieved Pfam HMMs were then 326 

used to extrapolate archaeal, bacterial, and fungal reference protein sequences from UniProt 327 

database. Pfam HMMs were used to search against SwissProt at different cutoffs (E value or Bit 328 

score) to ensure model accuracy. If existing Pfam HMMs could not accurately query sequences, 329 

a set of well-annotated sequences would be used to construct new models (Table S2). Reference 330 

protein sequences were retrieved from UniPort and aligned using finalized HMMs. 331 

 332 

Guided metagenomic assembly 333 

All metagenomic reads were filtered by using RDP SeqFilters (81) to a minimal average 334 

read quality of Q = 25. Genes with HMM models (Table S2) were assembled from combined 335 

filtered reads by using modified RDP Xander skeleton analysis pipeline 336 

(https://github.com/fishjord/xander_analysis_skel). Briefly, a De Brujin graph is built for the 337 

combined shotgun metagenome dataset. Potential gene start points (Kmer starts, k = 30 338 
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nucleotides) were identified from each gene reference sequences. Local assembling was carried 339 

out by searching constructed De Bruijin graphs at the given gene start points. These local 340 

assemblages were then merged to form the longest contigs possible. The final merged nucleotide 341 

sequences were dereplicated using CD-Hit 4.6.1 (-c 1.0) (82) to identify the longest unique 342 

contigs.  343 

Data processing 344 

All quality filtered reads were mapped (Bowtie2.2.5)(83) against the dereplicated merged 345 

contigs. Only contigs that were 100% covered (median base coverage = 1) were considered. The 346 

biological information of these fully covered contigs were identified using Basic Alignment 347 

Searching Tool (blastx) 2.2.30+; the best matching sequences with E-values ≤ 1×10-5 were kept 348 

(84). UniProt (UniProtKB release 10, 2014) was used as the annotation database.  349 

 Final gene abundance per peat sample was determined by mapping reads from each 350 

metagenome to fully covered contigs. The mapping results indicated ~9% of reads were mapped 351 

onto the contigs once only and majority of the fungal housekeeping contigs were mapped once. 352 

Hence, for downstream analyses, we included all reads mapped to final fully covered contigs at 353 

least once (Table S3). The mapped read abundances were standardized by sequencing depth for 354 

comparisons among samples. Gene abundance will be used to infer the abundance of mapped 355 

reads to fully covered contigs from now on unless otherwise specified. Final data analyses and 356 

visualization was done in R 3.1.0 (85) with packages plyr (86) and ggplot2 (87). 357 
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Figures and Tables. 584 
 585 

 586 
Figure 1. The standardized abundance of identified microbial genes in MEF peatlands through 587 
sampling depth. (A-C) show the distribution of house-keeping genes. (D-F) show the distribution 588 
of N acquisition genes. Fen -10 and Bog -10 represent the average standardized gene abundance 589 
of two surface fen and bog samples, respectively. 590 
 591 
  592 
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 593 

 594 
 595 
Figure 2. The abundance of identified nitrogen acquisition gene assemblies and their taxonomic 596 
distribution. Microbial proteases greatly outnumbered nifH genes (last column) with the most 597 
abundant gene families (bacterial Trypsin (column 1) and archaeal M1 (column 4) each 598 
containing more sequences than all sequences attributed to nifH. Additionally, the relative 599 
abundance of most bacterial protease genes did not differ across depth profiles. Samples from the 600 
same depth and environment are colored identically, as denoted in the legend. The sampling 601 
depth increases from left to right. A description of samples is located in Table 1.  602 
  603 
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 604 
Figure 3. Phylogenetic distribution of the most abundant (A) fungal Asp, (B) bacterial M4_C, 605 
and (C) bacterial U56 genes with variation across environments. Genus-level data are presented.  606 
 607 
 608 
 609 
 610 

611 
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Table 1. The distribution of mapped reads mapped to contigs identified as housekeeping genes, N fixation genes, and protease genes. 612 
The distribution of housekeeping genes among archaea, bacteria, and fungi is also provided. 613 
 614 

 
Samples Peatland Depth House-keeping genes N Fixing genes Protease genes Archaea Bacteria Fungi 

Fen1_-10 Fen -10 3,822 559 10,296 1,851 12,754 72 

Fen2_-10 Fen -10 2,506 469 5,757 894 7,701 137 

T3M_-10 Bog -10 2,680 339 7,704 1,418 9,201 104 

T3F_-10 Bog -10 2,785 736 6,194 663 9,003 49 

T3F_-50 Bog -50 8,003 1,061 22,256 4,733 26,538 49 

T3F_-100 Bog -100 4,174 266 11,420 4,933 10,888 39 

 615 
 616 
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Table 2. The standardized abundance of N acquisition genes in acrotelm peat samples. The values represent the average of two 618 
replicates of acrotelm samples from each geological location. The lighter color indicates a higher value. The percent difference = 100 619 
*(H/L-1), where H is high value and L is low value.  620 

Gene Categories pfam 

Average of two acrotelm 
replicates 

Percent differenceBog Fen 

Protease 

trypsin 2041.332082 1998.470798 2% 

S10 624.412566 643.052581 3% 

S8 516.762595 497.759234 4% 

M28 55.793862 59.416948 6% 

M1 2614.434573 2823.429947 8% 

U56 701.534165 619.595911 13% 

M14 222.278808 251.737591 13% 

M4_C 7.314997 9.486717 30% 

Asp 6.773885 16.040373 137% 

Nitrogen Fixation nifH 530.531558 453.149944 17% 
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