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Abstract

Animal models have demonstrated that natural killer (NK) cells can limit the metastatic
dissemination of tumors, however their ability to combat established human tumors has been

difficult to investigate.

A number of computational methods have been developed for the deconvolution of immune
cell types within solid tumors. We have taken the NK cell gene signatures from several tools,
then curated and expanded this list using recent reports from the literature. Using a gene set
scoring method to investigate RNA-seq data from The Cancer Genome Atlas (TCGA) we show
that patients with metastatic cutaneous melanoma have an improved survival rate if their
tumor shows evidence of greater NK cell infiltration. Furthermore, these survival effects are
enhanced in tumors which have a higher expression of NK cell stimuli such as IL-15, suggesting
NK cells are part of a coordinated immune response within these patients. Using this signature
we then examine transcriptomic data to identify tumor and stromal components which may

influence the penetrance of NK cells into solid tumors.

These data support a role for NK cells in the regulation of human tumors and highlight
potential survival effects associated with increased NK cell activity. Furthermore, our
computational analysis identifies a number of potential targets which may help to unleash

the anti-tumor potential of NK cells as we enter the age of immunotherapy.
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Introduction

Natural killer (NK) cells are an essential component of the innate immune system, playing a
critical role in the clearance of cells which carry a viral burden, or have undergone oncogenic
transformation. They are a subset of innate lymphoid cells with an exquisite cytotoxic ability,
allowing them to effectively kill tumor cells even at a relatively low ratio (e.g. 1:1) [1]. It has
recently been demonstrated that NK cells are important for stimulating the anti-tumor
immune response, recruiting conventional type-1 dendritic cells (cDC1) through chemokine
signaling (via. XCL-1 & CCL-5/RANTES; Fig. 1), ultimately resulting in the generation of a robust
T-cell response [2]. The cytotoxic mechanisms used by NK cells share many similarities to CD8*
T-cells (Fig. 1), including secretion of granzymes (e.g. GZMA, GZMB, GZMK, GZMM) and
perforin (PRF1) [3, 4].

A number of in vivo studies have demonstrated a role for NK cells in limiting the metastatic
dissemination of melanoma [5-8] and there is growing interest in the targeting of NK cells for
novel immunotherapeutics [9]. Important regulators of NK cell activity include the cytokines
IL-15 [10], IL-12 [11] and IL-18 [12], chemokines such as CCL5 (RANTES) [13], growth factors
such as TGF-B [14, 15], and the intracellular JAK-STAT signaling component CIS [16]. Evidence
suggest that modulation of NK cell populations is feasible for cancer treatment [17], and
treatments based upon systemic administration of IL-15 constructs have shown promise in
leukemic and solid tumors [18-20]. Thus, while IL-15 provides a promising treatment to
stimulate immune targeting of cancers, we note that cytokine-mediated NK cell activation
and expansion can be increased in combination with IL-12 and IL-18 [21] or further amplified
through deletion of CIS (encoded by CISH), an important negative regulator of cytokine
signaling and effector function, such that Cish”- mice are resistant to a range of metastatic
cancers [16]. Accordingly, we are yet to fully elucidate the range of molecular regulatory

systems that control NK cell activity in vivo.

Advances in sequencing technology and associated methods for data analysis over recent
decades have allowed the application of transcriptomic profiling to complex tumor samples
[22, 23]. Resulting data have enabled the development of mathematical methods, such as
CIBERSORT [24] that infer the relative abundance of immune cells which have infiltrated into
solid tumor samples. While these tools have provided insight into the nature and scope of
immune infiltration [25-28], there are further opportunities to capitalize on public tumor
transcriptomic data in order to identify how changes in tumor phenotype are associated with

changes in the relative abundance of immune sub-populations.

Phenotype-switching is an important regulatory program involved in the progression of
melanoma [29] which has been linked to vemurafenib resistance [30] and general drug

resistance [31]. It allows tumor cells to transition between proliferative (“epithelial-like”) and
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Figure 1: Immune targeting of tumours. A schematic overview of the intercellular signalling and
microenvironment factors which can impact on anti-tumour immune responses. NK cells: natural killer

cells; cDC1: conventional type-1 dendritic cells.

invasive (“mesenchymal-like”) behaviours, and in melanoma, there is strong evidence that
TGF-B is an important driver of EMT/phenotype-switching programs [32], mediated in part by
signaling molecules such as thrombospondin 1 [33]. This work examines the LM-MEL panel
of melanoma cell lines [34] which we have extensively profiled in the context of phenotype
switching [33, 35].

We have recently developed a single-sample gene set scoring method which uses a
rank-based metric to quantify the relative enrichment of a gene set within a sample
transcriptome [36]. We have combined NK cell signatures from the LM22/CIBERSORT [24] and
LM7 [37] gene sets and curated this list to produce a gene set which reflects the relative
abundance of NK cells within a tumor sample. As melanomas are highly-immunogenic, we
have focused upon the analysis of TCGA skin cutaneous melanoma (SKCM) data [38]
demonstrating that the relative expression of NK cell genes within metastatic tumors is
associated with a strong survival advantage. Using the SKCM data we show how our scoring
approach can be used to explore putative modulators of NK cell activity by examining their

association with NK score and survival effects associated with their expression.
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Materials and Methods

Data

Table 1. Data used in this report. Sources and references for the transcriptomic data, and

patient data survival data for the TCGA samples.

Resource Data source & identifier Reference

NIH Genomic Data Commons:
TCGA SKCM (38]
https://gdc.cancer.gov/

RNA-seq data for sorted NCBI Gene Expression Omnibus: GSE60424

immune populations https://www.ncbi.nlm.nih.gov/geo/ 139]
Microarray data for sorted NCBI Gene Expression Omnibus: GSE24759 (40]
immune populations https://www.ncbi.nlm.nih.gov/geo/

LM-MEL melanoma cell EBI Array Express: E-MTAB-1496 34]
line panel https://www.ebi.ac.uk/arrayexpress/

Data used in this study are available from listed repositories (Table 1). For TCGA SKCM data,
RSEM abundance data without normalization were downloaded directly from the genomic
data commons. For sorted immune cell populations (GSE60424 & GSE24759) and melanoma
cell line data (E-MTAB-1496), processed transcript abundances were downloaded and used
directly. For GSE24759, only samples derived from peripheral blood were used, data from
colony-forming samples was excluded to exclude culturing effects, and CD56-/CD16+/CD3-
mature NK cell data were excluded due to apparent batch effects (Fig. S1). In cases with gene

multi-mapping (multiple probes/probe sets per gene), median values were used.

As noted (Fig. S2A & B), there appear to be large survival differences between patients with
primary and metastatic tumors. To avoid confounding effects from this, unless otherwise
stated, we have focused on patients with metastatic tumors only who also had valid age and

survival data. One patient with both a metastatic and primary sample was excluded.
Computational Tools

The computational analysis was performed using python v3.6 together with pandas [41] for
data handling, scipy [42] and numpy [43] for numerical calculations and matplotlib [44] for

plotting. Gene set scoring was performed using the singscore gene set scoring approach [36].
Relative log expression & principal component analysis

For relative log expression, log-transformed transcript abundance data (as downloaded
directly from GEO) were median-centered for each gene, and then within each sample the
difference between the observed and population median of each gene was calculated. For

the principal component analysis, genes with an expression level above the 10%" percentile
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(5.34) within at least 4 samples (corresponding to the smallest sample group) were retained.
Data were normalised using the sklearn [45] StandardScaler function, before calculating

the principal components using the sklearn PCA function.
Immune gene sets

A preliminary NK cell gene set was created from the CIBERSORT (LM22) active and resting NK
cell gene sets [24] and the NK cell gene set from the LM7 gene sets [37]. These genes were
further curated against a range of reports which have studied both human and mouse NK cell
populations and the final gene list is given in Table S1. The TCGA immune gene set used for
scoring was derived from Supplemental Table S4A and the TCGA classified ‘Immune high’

patients were taken from Supplemental Table 1D of the original SKCM manuscript [38].
Gene set scoring

Gene set scoring was performed using the singscore approach [36]. Briefly, genes are ranked
by increasing transcript abundance and for a set of target genes the mean rank is calculated
and normalised against theoretical minimum and maximum values. If directional gene lists
are provided (i.e. a set of genes expected to be upregulated and a set of genes to be
downregulated), as with the TGF-B EMT signature [32] then the mean rank of expected up-
regulated genes is calculated from genes ranked by increasing abundance, while the mean
rank of expected down-regulated genes is calculated from genes ranked by decreasing
abundance, and these values are then normalised and summed. Accordingly, a high gene set
score indicates that the pattern of gene expression in a sample is concordant with the pattern

captured by the gene expression signature.
Survival analyses

All survival analyses, including the construction of Cox proportional hazard models and the
generation of Kaplan-Meier survival curves were performed using the python package
lifelines (v. 0.14.6; DOI: 10.5281/zenodo0.1303381) with standard parameters.

Code availability

All computational scripts used in this work will be made freely available from our GitHub

repository:

https://github.com/DavisLaboratory/NK scoring

An alternative implementation of this analysis using R/Bioconductor libraries has also been

made available.
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Results

Cutaneous melanoma is generally associated with a strong immunogenic response

Cutaneous melanoma is an ideal target for immunotherapy as the high mutational burden of
this malignancy is associated with the generation of neo-antigens which can induce an
immune response [46]. Several reports demonstrate that immune infiltration signatures
provide a strong prognostic indicator in melanoma [47-49], including the TCGA skin and
cutaneous melanoma (SKCM) study which demonstrated that this effect was independent of

the underlying genomic subtype of the melanoma [38].

Due to significant survival differences  taple 2. Covariate hazard coefficients for TCGA

between patients with a primary or
metastatic tumor (Fig. S1A & B) this

patients with metastatic melanoma. Variables

were included within a Cox proportional hazards

report focusses on the 365 patients  5del and tested against the null hypothesis that

with only metastatic tumor samples.
There are significant survival effects

associated with the patient’s age at

the coefficient is equal to 0.

Coefficient mean

Variable (95% Cl) p-value
diagnosis (Fig. S1C), and while female Age at diagnosis 0.026
patients had better survival rates (Fig. (vears) (0.016, 0.037) 1.44 x 10°°
S1D), these effects were not Gonder 5140
significant (Table 2; Cox proportional (is male) (:0.184, 0.464) 0.40

hazards model, p-value = 0.40).

To analyze survival effects associated with individual genes we built a series of Cox
proportional hazard models for each gene where patient age at diagnosis was included as the
only covariate (together with transcript abundance for that gene). As shown in Fig. 2A, many
genes with a hazard reduction have a known immune function (genes in bold); associated
patient survival curves are shown for patient age (Fig. 2B) and a selection of genes (Fig. 2C-E).
Higher expression of the hallmark inflammatory cytokine encoded by IFNG corresponds to
improved survival outcomes (Fig. 2C), while a number of interferon-induced genes are further
associated with a hazard reduction (e.g. IRF1, IFITM1; Fig. 2A). High tumor transcript
abundances of the NK cell marker gene KLRD1 (Fig. 2D; also known as CD94) or the cytokine
IL-15 (Fig. 2E) which is an important regulator of NK cell [10, 50, 51] and T-cell activity [52, 53]
are also associated with improved long-term survival outcomes. Finally, we note that
transcript abundance for the B2M gene encoding beta-2 microglobulin has one of the most
negative hazard coefficients, likely reflecting its role in MHC class | antigen presentation of
neo-antigens to CD8 T cells and consistent with recent reports of the importance of this
process for immune control of tumors [54]. Further, a truncation mutant of B2ZM can confer

resistance to PD-1 blockade in melanoma [55], and mutations in B2M have been shown to
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Figure 2: Hazard ratios associated with transcript abundance of individual genes. (A) A Cox
proportional hazard model was created for each gene with patient age as the only co-variate. The top
50 genes were selected by significance and ranked by hazard coefficient (red dot, 95% confidence
intervals shown with black lines). (B) Kaplan-Meier survival curves for patients with metastatic
melanoma partitioned by age at diagnosis. (C - F) Kaplan-Meier survival curves for patients

partitioned by age and (C) IFNG, (D) KLRD1, (E) IL15, or (F) B2M transcript abundance.
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disrupt immune surveillance in lung cancer [56]. The large negative hazard coefficient
associated with HAPLN3, encoding a hyaluronan and proteoglycan link protein, suggests that
this gene may warrant further investigation in the context of immune recognition and

targeting.

Gene set scoring allows dimensional reduction of RNA-seq data

Gene set enrichment analyses are commonly used after differential expression to assess
whether genes with the most significant changes are enriched for classifications of specific
pathways or processes. An alternative ‘relative approach’ [23] is to analyze the gene
expression patterns (transcript abundances) of individual samples and calculate the relative

concordance of each one against specific gene set.

We have recently developed a gene set scoring approach [36] which uses the normalised
mean rank of genes that are associated with a specific molecular phenotype or cellular
behavior [32, 57]. With this approach, a difference in score between two samples can be
related to the percentile change in mean rank of the gene set, providing a metric which
summarizes the concordance between the gene expression profile of an individual sample
and the specified gene sets. Using this scoring method with “Immune cluster” genes from the
original TCGA SKCM publication [38] we can largely recapitulate the original sample clustering
(Fig. S3), and furthermore, we can easily extend this analysis to samples that have more
recently been added to the TCGA SCKM cohort.

Developing a more specific transcriptomic signature for natural killer cells

A number of transcriptomic data deconvolution methods have generated gene signatures
that are predictive of infiltration for specific immune cell sub-populations. Of note for this
work, we examined the training data (transcriptomics from sorted immune cell populations)
and NK cell signatures from the LM22 [24] and LM7 [37] gene sets. A common critique of
immune deconvolution methods is the high co-linearity/cross-correlation between different
signatures [37]. While this can largely be attributed to ‘marker genes’ which are common
between immune cell subsets (demonstrated by similar positions of sorted cell populations
in Fig. S1B & S1C), to an extent it also represents the cascading series of intercellular
interactions that mediate immune activation within complex tissue samples. Accordingly,
several immune-associated gene subsets are cross-correlated to a varying extent (Fig. S4). We
combined the NK cell signatures from the LM7 and LM22 gene lists and curated this gene list
to remove genes which are associated with a wide range of immune cell sub-populations (e.g.

IFNG and IL15). The resulting 40 genes were used to score metastatic tumor samples from the
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Figure 3: A refined natural killer cell gene signature in selected transcriptomic data sets. Transcript
abundance of NK cell marker genes across (A) TCGA SKCM metastatic tumours ranked by NK score; (B)
RNA-seq data for sorted immune cell populations (GSE60424); (C) microarray data for sorted immune
cell populations (GSE24759). NK: natural killer; DCs: dendritic cells; HSCs: hematopoietic stem cells.
For further details please refer to Materials and Methods.

TCGA SKCM cohort. The transcript abundance of each gene is shown for metastatic tumor
samples sorted by their overall NK score (Fig. 3, at left), together with RNA-seq (at center) and
microarray data (at right) for sorted immune cell populations. As shown (center panel) many
of the NK cell marker genes are shared with CD4* and CD8" T-cell populations, however the
resulting score is still greater within NK cell samples (for reference, a similar figure with the
T-cell signature is given in Fig. S5). Of note, CD244, GZMB, NKG7, XCL1 and XCL2 all appear to
have greater expression within NK cells relative to the T-cell sub-populations examined.
Examining the microarray data from a much larger subset of sorted immune cell populations
(Fig. 3, at right), NK cells have the highest resulting score. Again, there appears to be a subset
of granulocyte and CD8* T-cell samples which have relatively high NK scores, however these

still tend to be lower than scores for the sorted NK cell populations.

10


https://doi.org/10.1101/375253
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/375253; this version posted August 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The NK cell score is associated with improved patient survival
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Figure 4: Survival outcomes for TCGA SKCM patients. Patients with metastatic tumours were

partitioned by predicted NK cell infiltration as well as other indicated markers/gene set scores and

associated Kaplan-Meier survival functions were examined.

It was recently shown that NK cells play a critical role in the initiation of a robust immune
response against melanoma, secreting the chemokines XCL1 and CCL5 [2] and the FLT3 ligand
[58] to recruit conventional dendritic cells and promote their functions. NK-cell mediated

killing of tumor cells facilitates DC phagocytosis of tumor cells, and, following the migration
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of these cells to lymph nodes, this ultimately allows the development of a robust T-cell
response against tumor antigens (summarized in Fig. 1). In agreement with this, tumors which
have a high NK score are associated with much better patient survival (Fig. 4A), consistent
with the results from Bottcher et al (2018) and a range of in vivo animal survival studies [5,
15, 59]. This effect is largely recapitulated by the important NK cell-secreted chemokines XCL1
and CCL5 (Fig. 4B & C), as well as the NK cell effector GZMB (Fig. 4D), and tumor-expressed
FAS (Fig. 4E) for targeting by NK expressed FASLG (Fig. 3). Increased expression of NK cell

adhesion protein CD96 is also associated with improved survival (Fig. 4F).

We note that it is difficult to disentangle the survival effects of other cytotoxic/effector
immune cells, as improved survival effects are also seen for the T cell markers CD3E and CD8B
(Fig. 4G & H). This is reflected by the very strong association between our NK score, and scores
derived from the TCGA Immune cluster genes (Fig. S6A) or the T cell signature (Fig. S6B), which
also similar survival effects (Fig. S6C & D). As discussed above (Fig. 1), however, there is
increasing evidence that NK cells play a key role initiating the intercellular signaling cascade
which is necessary for strong immune recruitment. Using the Bottcher 5 gene NK cell
signature [2] there is good concordance with our NK signature score (Fig. S6E), as well as
between our NK score and a score calculated using the Bottcher 4 gene DC cell signature (Fig.

S6F), again with similar survival effects (Fig. S6G & H).

The cytokine IL-15 has received increasing attention as a potent cytokine to increase the
activity of immune cells including NK cells. Accordingly, higher transcript abundance of IL15
(Fig. 41) as well as the receptor subunit IL15RA (Fig. 4J) are associated with improved patient
survival. The gene encoded by CISH is a potent negative regulator of IL-15 induced signaling
in NK cells [16] and intriguingly, tumors with high IL15 transcript show a protective effect
associated with high CISH abundance, while tumors with low IL15 showed better patient
survival when CISH was low (Fig. 4K). When NK score is compared to CISH abundance we note
CISH abundance has little survival effect on the high NK score subset, whereas low CISH is still
associated with improved survival for patients who have tumors with a low NK score (Fig. 4L).
It should be noted, however, that there is a positive association between IL15, CISH and NK
score abundance, and accordingly the Lo/Lo and Hi/Hi patient subsets are larger for these
comparisons. It is tempting to speculate that this association reflects activation of CISH
expression in response to active IL-15 signaling, particularly within the NK high tumor subset;
conversely, within the low NK cell subset, higher expression of CISH appears to be particularly

deleterious.
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NK cell targeting of mesenchymal-like melanoma tumors with evidence of low TGF-8

activity is associated with favorable patient survival
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Figure 5: Melanoma tumours with evidence of a mesenchymal-like phenotype but low TGF-
activity, and a high NK score show favourable patient outcomes. Associations across the TCGA SKCM
metastatic tumour samples, between (A-C) NK score and scores associated with EMT/phenotype-
switching, (D) mesenchymal score and a score of specific TGF-B induced EMT; and (E, F) NK score or
TGF-B EMT score and age. (G, H) Kaplan-Meier survival curves for patients partitioned by TGF- EMT

score and NK score, and split by age.

Recent work on features of innate anti-PD-1 resistance in melanoma found similarities with

markers of MAPK inhibitor resistance [60], and as noted earlier, melanoma phenotype
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switching has been linked to general drug/MAPK inhibitor resistance [31]. Investigating this
further, we examined the relative association between our NK score, and several phenotype-
associated scores, including: a proliferative, epithelial, phenotype; an invasive, mesenchymal
phenotype; and a mesenchymal phenotype where EMT has been induced specifically by TGF-
B [32]. We found no association between NK score and epithelial score (Fig. 5A), however
there was an association with mesenchymal score (Fig. 5B), such that less mesenchymal
tumors have lower NK scores, while highly mesenchymal samples had a range of NK scores,
suggesting that a subset of these tumors had higher NK cell infiltration. Intriguingly, there was
no association with NK score relative to the TGF-B specific EMT gene score (Fig. 5C), despite
the fact that there was a relatively strong positive association between TGF-B EMT score and
mesenchymal score (Fig. 5D) —as we had previously observed however, while all samples with
a high TGF-B EMT score scored high against general mesenchymal gene expression, a subset
of highly mesenchymal samples showed no evidence of TGF-B driven EMT. Further, while
neither the TGF-B EMT score (Fig. 5E) or NK score (Fig. 5F) had any association with age, when
we partitioned patients by NK score and TGF-f EMT score, those with evidence of good NK
cell infiltration and low TGF-B activity had favorable survival outcomes (Fig. 5G & H),

particularly for patients within the younger cohort.

Although most in vivo experiments indicate a primary role for NK cells in limiting metastatic
colonization [6], these data suggest that not only are NK cells associated with established
metastatic tumors, but the presence of NK cell infiltrate is associated with an improved

prognostic outcome.

Natural killer cells offer a promising avenue for targeted immunotherapeutics to control
melanoma metastasis

As noted above, a critical role for NK cells in driving a robust immune response has further
support from a recent study which has demonstrated an important role for the NK-DC cell
axis in modulating responsiveness to immunotherapy [58]. To further investigate potential
modulators of NK cell infiltration we next examined transcriptomic data from the LM-MEL
panel which contains representative cell lines for both the proliferative and invasive
phenotype. Gene sets were filtered to retain only those present in both the TCGA and LM-
MEL data, and gene set scoring was repeated for both data sets to facilitate comparison
between tumor samples and the corresponding cell line models (Fig. S7A-C). As shown, in the
absence of a high NK score, patients with a high mesenchymal score show no survival effects
associated with the TGFB-EMT score (Fig. S7D).

A number of melanoma cell lines from the LM-MEL panel appear to be associated with various

subsets of high/low mesenchymal score and TGFB-EMT score (Fig. S7A-C; colored scatter
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markers). By contrasting genes correlated or anti-correlated with NK score across the TCGA
data against these cell line data we can identify markers which may be derived from the
melanoma tumor which exert an immunomodulatory effect (Fig. S7E). To demonstrate the
association with phenotype-switching the markers CDH1 and MITF are included [29, 34].
Further, TGF-B activity in these cell lines has a demonstrated association with THBS1 [33].
Consistent with our observation that NK score tends to be higher in more mesenchymal tumor
samples, many of the positively correlated genes tend to have higher expression in the MITF-
low cell lines. Similarly, many of the anti-correlated genes tend to have lower expression in

the MITF-low cell lines.

Several notable genes are present within these lists (Fig. S7E). Again, B2M is identified,
together with a number of HLA- genes, suggesting that more mesenchymal-like melanomas
may be more immunogenic in part because of increased antigen presentation associated with
this phenotype. Given data linking IL-18 to NK cell activity [12] (Fig. 1), it is interesting to note
that in the more mesenchymal cell lines, the expression of IL-18 appears to be slightly higher
in the TGF-B EMT low samples. From the genes anti-correlated with NK score we note that
CMTM4 was recently identified as a positive regulator of PD-L1 (together with its paralog
CMTMG6 which is not present) [61, 62] and this appears to have lower expression within more

mesenchymal cell lines.

Discussion

Immune “checkpoint” inhibitor antibodies, which function by reactivating tumor-resident
cytotoxic lymphocytes, have revolutionized cancer therapy. Although much research is
currently directed towards programs that underlie immunotherapy resistance, we lack an
in-depth understanding of the fundamental mechanisms dictating response and we do not
yet have robust markers to identify patients who may respond preferentially in the context
of metastasis. Checkpoint inhibitors primarily block inhibitory pathways in tumor-resident T
cells, however interest in other effector populations, such as NK cells, is growing [9], with

recent studies showing that NK cells have a critical role in immunotherapy success [58].

Clinically, NK cell activity has been shown as inversely correlated with cancer incidence [63].
More recent evidence has shown that NK cell infiltration in human tumors is associated with
better prognosis in squamous cell lung, gastric and colorectal carcinomas [6]. In melanoma
cells, researchers have previously found specific HLA-I allelic losses in up to 50% of patients
analyzed, and even when expressed on melanoma cells, specific HLA class | molecules are
often at insufficient levels to inhibit NK cell-mediated cytotoxicity [64]. These data suggest
that metastatic melanoma is an ideal target for NK cell-mediated killing and therapies that

enhance NK cell activity should be investigated further. Accordingly, we have performed a
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detailed investigation of the transcriptomic and matched clinical data available through the

TCGA skin cutaneous melanoma cohort [38].

Consistent with previous reports which have elucidate the links between dendritic cells and
natural killer cells [2, 58], we show that inferred NK cell infiltration is associated with
improved patient survival. We note that while the gene set derived by Bdéttcher and
colleagues performs well [2], they calculated NK scores using mean log, abundance data
which can be susceptible to outliers and places a greater weighting on genes with high
transcript abundance. As demonstrated (Fig. S6E & S6F), while singscore has been developed
for larger gene sets, it still performs relatively well with the 5 gene Bottcher NK signature
(NCR3, KLRB1, PRF1, CD160, NCR1). While it is hard to directly compare the accuracy of these
signatures without validation data for NK cell infiltration, these results demonstrate the
application of our computational method in estimating the abundance and heterogeneity of
different immune subsets across different tumors and patients. Importantly, our methods
allow variations in these relative immune scores to be easily compared against other relevant
phenotype-associated gene sets as demonstrated by the striking survival effects we have
observed when our NK score is examined in the context of melanoma phenotype switching
and TGF- signaling (Fig. 5G & H).

The observation that the inhibitory receptor CD96 appears to have a protective effect, with
high CD96 corresponding to improved patient survival (Fig. 3F) is interesting since murine data
has proposed that CD96 acts as a NK cell checkpoint limiting NK cell anti-melanoma immunity
[65]. Furthermore, while both CD96 and TIGIT have been explored as potential
immunotherapy targets [66], it has previously been shown that TIGIT appears to have a
dominant role over CD96 as a checkpoint in NK activity [67]. Indeed, a recent murine report
has evidenced a potent inhibitory role for TIGIT on NK cell anti-tumor immunity [68]. Further,
while there are prominent long-term survival effects associated with patient age (Fig. 2B), we
note that there is no association between NK score and age (Fig. 5E), yet the survival
advantages associated with a low TGFB-EMT score and a high NK score are particularly
pronounced within younger patients (Fig. 5G). These results suggest that younger patients
may receive a greater benefit from NK targeted immunotherapies, perhaps reflecting a higher

capacity of the immune system in young patients to produce a robust anti-tumor response.

The NK cell gene signature and NK cell gene score that we describe here can be readily applied
to other cancer datasets which are becoming increasingly available thanks to the efforts of
large cancer research consortia. The information from such gene signature analyses will also
allow researchers to stratify responders and non-responders to conventional treatments,
identify the patients that are likely to profit from NK cell-based immunotherapies, and

facilitate the development of prognostic markers for personalized immunotherapeutics.
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