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Abstract 

Animal models have demonstrated that natural killer (NK) cells can limit the metastatic 
dissemination of tumors, however their ability to combat established human tumors has been 
difficult to investigate. 

A number of computational methods have been developed for the deconvolution of immune 
cell types within solid tumors. We have taken the NK cell gene signatures from several tools, 
then curated and expanded this list using recent reports from the literature. Using a gene set 
scoring method to investigate RNA-seq data from The Cancer Genome Atlas (TCGA) we show 
that patients with metastatic cutaneous melanoma have an improved survival rate if their 
tumor shows evidence of greater NK cell infiltration. Furthermore, these survival effects are 
enhanced in tumors which have a higher expression of NK cell stimuli such as IL-15, suggesting 
NK cells are part of a coordinated immune response within these patients. Using this signature 
we then examine transcriptomic data to identify tumor and stromal components which may 
influence the penetrance of NK cells into solid tumors. 

These data support a role for NK cells in the regulation of human tumors and highlight 
potential survival effects associated with increased NK cell activity. Furthermore, our 
computational analysis identifies a number of potential targets which may help to unleash 
the anti-tumor potential of NK cells as we enter the age of immunotherapy.  
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Introduction 

Natural killer (NK) cells are an essential component of the innate immune system, playing a 
critical role in the clearance of cells which carry a viral burden, or have undergone oncogenic 
transformation. They are a subset of innate lymphoid cells with an exquisite cytotoxic ability, 
allowing them to effectively kill tumor cells even at a relatively low ratio (e.g. 1:1) [1]. It has 
recently been demonstrated that NK cells are important for stimulating the anti-tumor 
immune response, recruiting conventional type-1 dendritic cells (cDC1) through chemokine 
signaling (via. XCL-1 & CCL-5/RANTES; Fig. 1), ultimately resulting in the generation of a robust 
T-cell response [2]. The cytotoxic mechanisms used by NK cells share many similarities to CD8+ 
T-cells (Fig. 1), including secretion of granzymes (e.g. GZMA, GZMB, GZMK, GZMM) and 
perforin (PRF1) [3, 4]. 

A number of in vivo studies have demonstrated a role for NK cells in limiting the metastatic 
dissemination of melanoma [5-8] and there is growing interest in the targeting of NK cells for 
novel immunotherapeutics [9]. Important regulators of NK cell activity include the cytokines 
IL-15 [10], IL-12 [11] and IL-18 [12], chemokines such as CCL5 (RANTES) [13], growth factors 
such as TGF-β [14, 15], and the intracellular JAK-STAT signaling component CIS [16]. Evidence 
suggest that modulation of NK cell populations is feasible for cancer treatment [17], and 
treatments based upon systemic administration of IL-15 constructs have shown promise in 
leukemic and solid tumors [18-20]. Thus, while IL-15 provides a promising treatment to 
stimulate immune targeting of cancers, we note that cytokine-mediated NK cell activation 
and expansion can be increased in combination with IL-12 and IL-18 [21] or further amplified 
through deletion of CIS (encoded by CISH), an important negative regulator of cytokine 
signaling and effector function, such that Cish-/- mice are resistant to a range of metastatic 
cancers [16]. Accordingly, we are yet to fully elucidate the range of molecular regulatory 
systems that control NK cell activity in vivo.  

Advances in sequencing technology and associated methods for data analysis over recent 
decades have allowed the application of transcriptomic profiling to complex tumor samples 
[22, 23]. Resulting data have enabled the development of mathematical methods, such as 
CIBERSORT [24] that infer the relative abundance of immune cells which have infiltrated into 
solid tumor samples. While these tools have provided insight into the nature and scope of 
immune infiltration [25-28], there are further opportunities to capitalize on public tumor 
transcriptomic data in order to identify how changes in tumor phenotype are associated with 
changes in the relative abundance of immune sub-populations. 

Phenotype-switching is an important regulatory program involved in the progression of 
melanoma [29] which has been linked to vemurafenib resistance [30] and general drug 
resistance [31]. It allows tumor cells to transition between proliferative (“epithelial-like”) and 
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invasive (“mesenchymal-like”) behaviours, and in melanoma, there is strong evidence that  
TGF-β is an important driver of EMT/phenotype-switching programs [32], mediated in part by 
signaling molecules such as thrombospondin 1 [33].  This work examines the LM-MEL panel 
of melanoma cell lines [34] which we have extensively profiled in the context of phenotype 
switching [33, 35].  

We have recently developed a single-sample gene set scoring method which uses a 
rank-based metric to quantify the relative enrichment of a gene set within a sample 
transcriptome [36]. We have combined NK cell signatures from the LM22/CIBERSORT [24] and 
LM7 [37] gene sets and curated this list to produce a gene set which reflects the relative 
abundance of NK cells within a tumor sample. As melanomas are highly-immunogenic, we 
have focused upon the analysis of TCGA skin cutaneous melanoma (SKCM) data [38] 
demonstrating that the relative expression of NK cell genes within metastatic tumors is 
associated with a strong survival advantage. Using the SKCM data we show how our scoring 
approach can be used to explore putative modulators of NK cell activity by examining their 
association with NK score and survival effects associated with their expression. 

 

 

Figure 1: Immune targeting of tumours. A schematic overview of the intercellular signalling and 
microenvironment factors which can impact on anti-tumour immune responses. NK cells: natural killer 
cells; cDC1: conventional type-1 dendritic cells. 
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Materials and Methods 

Data 

Table 1. Data used in this report. Sources and references for the transcriptomic data, and 
patient data survival data for the TCGA samples. 

Resource Data source & identifier Reference 

TCGA SKCM 
NIH Genomic Data Commons: 
https://gdc.cancer.gov/ 

[38] 

RNA-seq data for sorted 
immune populations 

NCBI Gene Expression Omnibus: GSE60424 
https://www.ncbi.nlm.nih.gov/geo/ 

[39] 

Microarray data for sorted 
immune populations 

NCBI Gene Expression Omnibus: GSE24759 
https://www.ncbi.nlm.nih.gov/geo/ 

[40] 

LM-MEL melanoma cell 
line panel 

EBI Array Express: E-MTAB-1496 
https://www.ebi.ac.uk/arrayexpress/  

[34] 

Data used in this study are available from listed repositories (Table 1). For TCGA SKCM data, 
RSEM abundance data without normalization were downloaded directly from the genomic 
data commons. For sorted immune cell populations (GSE60424 & GSE24759) and melanoma 
cell line data (E-MTAB-1496), processed transcript abundances were downloaded and used 
directly. For GSE24759, only samples derived from peripheral blood were used, data from 
colony-forming samples was excluded to exclude culturing effects, and CD56-/CD16+/CD3- 
mature NK cell data were excluded due to apparent batch effects (Fig. S1). In cases with gene 
multi-mapping (multiple probes/probe sets per gene), median values were used. 

As noted (Fig. S2A & B), there appear to be large survival differences between patients with 
primary and metastatic tumors. To avoid confounding effects from this, unless otherwise 
stated, we have focused on patients with metastatic tumors only who also had valid age and 
survival data. One patient with both a metastatic and primary sample was excluded. 

Computational Tools 

The computational analysis was performed using python v3.6 together with pandas [41] for 
data handling, scipy [42] and numpy [43] for numerical calculations and matplotlib [44] for 
plotting. Gene set scoring was performed using the singscore gene set scoring approach [36]. 

Relative log expression & principal component analysis 

For relative log expression, log-transformed transcript abundance data (as downloaded 
directly from GEO) were median-centered for each gene, and then within each sample the 
difference between the observed and population median of each gene was calculated. For 
the principal component analysis, genes with an expression level above the 10th percentile 
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(5.34) within at least 4 samples (corresponding to the smallest sample group) were retained. 
Data were normalised using the sklearn [45] StandardScaler function, before calculating 
the principal components using the sklearn PCA function. 

Immune gene sets 

A preliminary NK cell gene set was created from the CIBERSORT (LM22) active and resting NK 
cell gene sets [24] and the NK cell gene set from the LM7 gene sets [37]. These genes were 
further curated against a range of reports which have studied both human and mouse NK cell 
populations and the final gene list is given in Table S1. The TCGA immune gene set used for 
scoring was derived from Supplemental Table S4A and the TCGA classified ‘Immune high’ 
patients were taken from Supplemental Table 1D of the original SKCM manuscript [38]. 

Gene set scoring 

Gene set scoring was performed using the singscore approach [36]. Briefly, genes are ranked 
by increasing transcript abundance and for a set of target genes the mean rank is calculated 
and normalised against theoretical minimum and maximum values. If directional gene lists 
are provided (i.e. a set of genes expected to be upregulated and a set of genes to be 
downregulated), as with the TGF-β EMT signature [32] then the mean rank of expected up-
regulated genes is calculated from genes ranked by increasing abundance, while the mean 
rank of expected down-regulated genes is calculated from genes ranked by decreasing 
abundance, and these values are then normalised and summed. Accordingly, a high gene set 
score indicates that the pattern of gene expression in a sample is concordant with the pattern 
captured by the gene expression signature. 

Survival analyses 

All survival analyses, including the construction of Cox proportional hazard models and the 
generation of Kaplan-Meier survival curves were performed using the python package 
lifelines (v. 0.14.6; DOI: 10.5281/zenodo.1303381) with standard parameters. 

Code availability 

All computational scripts used in this work will be made freely available from our GitHub 
repository: 

https://github.com/DavisLaboratory/NK_scoring 

An alternative implementation of this analysis using R/Bioconductor libraries has also been 
made available. 
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Results 

Cutaneous melanoma is generally associated with a strong immunogenic response 

Cutaneous melanoma is an ideal target for immunotherapy as the high mutational burden of 
this malignancy is associated with the generation of neo-antigens which can induce an 
immune response [46]. Several reports demonstrate that immune infiltration signatures 
provide a strong prognostic indicator in melanoma [47-49], including the TCGA skin and 
cutaneous melanoma (SKCM) study which demonstrated that this effect was independent of 
the underlying genomic subtype of the melanoma [38]. 

Due to significant survival differences 
between patients with a primary or 
metastatic tumor (Fig. S1A & B) this 
report focusses on the 365 patients 
with only metastatic tumor samples. 
There are significant survival effects 
associated with the patient’s age at 
diagnosis (Fig. S1C), and while female 
patients had better survival rates (Fig. 
S1D), these effects were not 
significant (Table 2; Cox proportional 
hazards model, p-value = 0.40). 

To analyze survival effects associated with individual genes we built a series of Cox 
proportional hazard models for each gene where patient age at diagnosis was included as the 
only covariate (together with transcript abundance for that gene). As shown in Fig. 2A, many 
genes with a hazard reduction have a known immune function (genes in bold); associated 
patient survival curves are shown for patient age (Fig. 2B) and a selection of genes (Fig. 2C-E). 
Higher expression of the hallmark inflammatory cytokine encoded by IFNG corresponds to 
improved survival outcomes (Fig. 2C), while a number of interferon-induced genes are further 
associated with a hazard reduction (e.g. IRF1, IFITM1; Fig. 2A). High tumor transcript 
abundances of the NK cell marker gene KLRD1 (Fig. 2D; also known as CD94) or the cytokine 
IL-15 (Fig. 2E) which is an important regulator of NK cell [10, 50, 51] and T-cell activity [52, 53] 
are also associated with improved long-term survival outcomes. Finally, we note that 
transcript abundance for the B2M gene encoding beta-2 microglobulin has one of the most 
negative hazard coefficients, likely reflecting its role in MHC class I antigen presentation of 
neo-antigens to CD8 T cells and consistent with recent reports of the importance of this 
process for immune control of tumors [54]. Further, a truncation mutant of B2M can confer 
resistance to PD-1 blockade in melanoma [55], and mutations in B2M have been shown to  

Table 2. Covariate hazard coefficients for TCGA 
patients with metastatic melanoma. Variables 
were included within a Cox proportional hazards 
model and tested against the null hypothesis that 
the coefficient is equal to 0. 

Variable 
Coefficient mean 

(95% CI) p-value 

Age at diagnosis 
(years) 

0.026 
(0.016, 0.037) 

1.44 x 10-6 

Gender 
(is male) 

0.140 
(-0.184, 0.464) 

0.40 
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Figure 2: Hazard ratios associated with transcript abundance of individual genes. (A) A Cox 
proportional hazard model was created for each gene with patient age as the only co-variate. The top 
50 genes were selected by significance and ranked by hazard coefficient (red dot, 95% confidence 
intervals shown with black lines). (B) Kaplan-Meier survival curves for patients with metastatic 
melanoma partitioned by age at diagnosis. (C - F) Kaplan-Meier survival curves for patients 
partitioned by age and (C) IFNG, (D) KLRD1, (E) IL15, or (F) B2M transcript abundance. 
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disrupt immune surveillance in lung cancer [56]. The large negative hazard coefficient 
associated with HAPLN3, encoding a hyaluronan and proteoglycan link protein, suggests that 
this gene may warrant further investigation in the context of immune recognition and 
targeting. 

 

Gene set scoring allows dimensional reduction of RNA-seq data 

Gene set enrichment analyses are commonly used after differential expression to assess 
whether genes with the most significant changes are enriched for classifications of specific 
pathways or processes. An alternative ‘relative approach’ [23] is to analyze the gene 
expression patterns (transcript abundances) of individual samples and calculate the relative 
concordance of each one against specific gene set. 

We have recently developed a gene set scoring approach [36] which uses the normalised 
mean rank of genes that are associated with a specific molecular phenotype or cellular 
behavior [32, 57]. With this approach, a difference in score between two samples can be 
related to the percentile change in mean rank of the gene set, providing a metric which 
summarizes the concordance between the gene expression profile of an individual sample 
and the specified gene sets. Using this scoring method with “Immune cluster” genes from the 
original TCGA SKCM publication [38] we can largely recapitulate the original sample clustering 
(Fig. S3), and furthermore, we can easily extend this analysis to samples that have more 
recently been added to the TCGA SCKM cohort. 

 

Developing a more specific transcriptomic signature for natural killer cells 

A number of transcriptomic data deconvolution methods have generated gene signatures 
that are predictive of infiltration for specific immune cell sub-populations. Of note for this 
work, we examined the training data (transcriptomics from sorted immune cell populations) 
and NK cell signatures from the LM22 [24] and LM7 [37] gene sets. A common critique of 
immune deconvolution methods is the high co-linearity/cross-correlation between different 
signatures [37]. While this can largely be attributed to ‘marker genes’ which are common 
between immune cell subsets (demonstrated by similar positions of sorted cell populations 
in Fig. S1B & S1C), to an extent it also represents the cascading series of intercellular 
interactions that mediate immune activation within complex tissue samples. Accordingly, 
several immune-associated gene subsets are cross-correlated to a varying extent (Fig. S4). We 
combined the NK cell signatures from the LM7 and LM22 gene lists and curated this gene list 
to remove genes which are associated with a wide range of immune cell sub-populations (e.g. 
IFNG and IL15). The resulting 40 genes were used to score metastatic tumor samples from the 
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TCGA SKCM cohort. The transcript abundance of each gene is shown for metastatic tumor 
samples sorted by their overall NK score (Fig. 3, at left), together with RNA-seq (at center) and 
microarray data (at right) for sorted immune cell populations. As shown (center panel) many 
of the NK cell marker genes are shared with CD4+ and CD8+ T-cell populations, however the 
resulting score is still greater within NK cell samples (for reference, a similar figure with the 
T-cell signature is given in Fig. S5). Of note, CD244, GZMB, NKG7, XCL1 and XCL2 all appear to 
have greater expression within NK cells relative to the T-cell sub-populations examined. 
Examining the microarray data from a much larger subset of sorted immune cell populations 
(Fig. 3, at right), NK cells have the highest resulting score. Again, there appears to be a subset 
of granulocyte and CD8+ T-cell samples which have relatively high NK scores, however these 
still tend to be lower than scores for the sorted NK cell populations.  

  

 

Figure 3: A refined natural killer cell gene signature in selected transcriptomic data sets. Transcript 
abundance of NK cell marker genes across (A) TCGA SKCM metastatic tumours ranked by NK score; (B) 
RNA-seq data for sorted immune cell populations (GSE60424); (C) microarray data for sorted immune 
cell populations (GSE24759). NK: natural killer; DCs: dendritic cells; HSCs: hematopoietic stem cells. 
For further details please refer to Materials and Methods. 
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The NK cell score is associated with improved patient survival 

It was recently shown that NK cells play a critical role in the initiation of a robust immune 
response against melanoma, secreting the chemokines XCL1 and CCL5 [2] and the FLT3 ligand 
[58] to recruit conventional dendritic cells and promote their functions. NK-cell mediated 
killing of tumor cells facilitates DC phagocytosis of tumor cells, and, following the migration 

 

Figure 4: Survival outcomes for TCGA SKCM patients. Patients with metastatic tumours were 
partitioned by predicted NK cell infiltration as well as other indicated markers/gene set scores and 
associated Kaplan-Meier survival functions were examined. 
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of these cells to lymph nodes, this ultimately allows the development of a robust T-cell 
response against tumor antigens (summarized in Fig. 1). In agreement with this, tumors which 
have a high NK score are associated with much better patient survival (Fig. 4A), consistent 
with the results from Böttcher et al (2018) and a range of in vivo animal survival studies [5, 
15, 59]. This effect is largely recapitulated by the important NK cell-secreted chemokines XCL1 
and CCL5 (Fig. 4B & C), as well as the NK cell effector GZMB (Fig. 4D), and tumor-expressed 
FAS (Fig. 4E) for targeting by NK expressed FASLG (Fig. 3). Increased expression of NK cell 
adhesion protein CD96 is also associated with improved survival (Fig. 4F). 

We note that it is difficult to disentangle the survival effects of other cytotoxic/effector 
immune cells, as improved survival effects are also seen for the T cell markers CD3E and CD8B 
(Fig. 4G & H). This is reflected by the very strong association between our NK score, and scores 
derived from the TCGA Immune cluster genes (Fig. S6A) or the T cell signature (Fig. S6B), which 
also similar survival effects (Fig. S6C & D). As discussed above (Fig. 1), however, there is 
increasing evidence that NK cells play a key role initiating the intercellular signaling cascade 
which is necessary for strong immune recruitment. Using the Böttcher 5 gene NK cell 
signature [2] there is good concordance with our NK signature score (Fig. S6E), as well as 
between our NK score and a score calculated using the Böttcher 4 gene DC cell signature (Fig. 
S6F), again with similar survival effects (Fig. S6G & H). 

The cytokine IL-15 has received increasing attention as a potent cytokine to increase the 
activity of immune cells including NK cells. Accordingly, higher transcript abundance of IL15 
(Fig. 4I) as well as the receptor subunit IL15RA (Fig. 4J) are associated with improved patient 
survival. The gene encoded by CISH is a potent negative regulator of IL-15 induced signaling 
in NK cells [16] and intriguingly, tumors with high IL15 transcript show a protective effect 
associated with high CISH abundance, while tumors with low IL15 showed better patient 
survival when CISH was low (Fig. 4K). When NK score is compared to CISH abundance we note 
CISH abundance has little survival effect on the high NK score subset, whereas low CISH is still 
associated with improved survival for patients who have tumors with a low NK score (Fig. 4L). 
It should be noted, however, that there is a positive association between IL15, CISH and NK 
score abundance, and accordingly the Lo/Lo and Hi/Hi patient subsets are larger for these 
comparisons. It is tempting to speculate that this association reflects activation of CISH 
expression in response to active IL-15 signaling, particularly within the NK high tumor subset; 
conversely, within the low NK cell subset, higher expression of CISH appears to be particularly 
deleterious. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2018. ; https://doi.org/10.1101/375253doi: bioRxiv preprint 

https://doi.org/10.1101/375253
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

NK cell targeting of mesenchymal-like melanoma tumors with evidence of low TGF-β 
activity is associated with favorable patient survival 

Recent work on features of innate anti-PD-1 resistance in melanoma found similarities with 
markers of MAPK inhibitor resistance [60], and as noted earlier, melanoma phenotype 

 

Figure 5: Melanoma tumours with evidence of a mesenchymal-like phenotype but low TGF-β 
activity, and a high NK score show favourable patient outcomes. Associations across the TCGA SKCM 
metastatic tumour samples, between (A-C) NK score and scores associated with EMT/phenotype-
switching, (D) mesenchymal score and a score of specific TGF-β induced EMT; and (E, F) NK score or 
TGF-β EMT score and age. (G, H) Kaplan-Meier survival curves for patients partitioned by TGF-β EMT 
score and NK score, and split by age. 
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switching has been linked to general drug/MAPK inhibitor resistance [31]. Investigating this 
further, we examined the relative association between our NK score, and several phenotype-
associated scores, including: a proliferative, epithelial, phenotype; an invasive, mesenchymal 
phenotype; and a mesenchymal phenotype where EMT has been induced specifically by TGF-
β [32]. We found no association between NK score and epithelial score (Fig. 5A), however 
there was an association with mesenchymal score (Fig. 5B), such that less mesenchymal 
tumors have lower NK scores, while highly mesenchymal samples had a range of NK scores, 
suggesting that a subset of these tumors had higher NK cell infiltration. Intriguingly, there was 
no association with NK score relative to the TGF-β specific EMT gene score (Fig. 5C), despite 
the fact that there was a relatively strong positive association between TGF-β EMT score and 
mesenchymal score (Fig. 5D) – as we had previously observed however, while all samples with 
a high TGF-β EMT score scored high against general mesenchymal gene expression, a subset 
of highly mesenchymal samples showed no evidence of TGF-β driven EMT. Further, while 
neither the TGF-β EMT score (Fig. 5E) or NK score (Fig. 5F) had any association with age, when 
we partitioned patients by NK score and TGF-β EMT score, those with evidence of good NK 
cell infiltration and low TGF-β activity had favorable survival outcomes (Fig. 5G & H), 
particularly for patients within the younger cohort. 

Although most in vivo experiments indicate a primary role for NK cells in limiting metastatic 
colonization [6], these data suggest that not only are NK cells associated with established 
metastatic tumors, but the presence of NK cell infiltrate is associated with an improved 
prognostic outcome. 

 

Natural killer cells offer a promising avenue for targeted immunotherapeutics to control 
melanoma metastasis 

As noted above, a critical role for NK cells in driving a robust immune response has further 
support from a recent study which has demonstrated an important role for the NK-DC cell 
axis in modulating responsiveness to immunotherapy [58]. To further investigate potential 
modulators of NK cell infiltration we next examined transcriptomic data from the LM-MEL 
panel which contains representative cell lines for both the proliferative and invasive 
phenotype. Gene sets were filtered to retain only those present in both the TCGA and LM-
MEL data, and gene set scoring was repeated for both data sets to facilitate comparison 
between tumor samples and the corresponding cell line models (Fig. S7A-C). As shown, in the 
absence of a high NK score, patients with a high mesenchymal score show no survival effects 
associated with the TGFβ-EMT score (Fig. S7D). 

A number of melanoma cell lines from the LM-MEL panel appear to be associated with various 
subsets of high/low mesenchymal score and TGFβ-EMT score (Fig. S7A-C; colored scatter 
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markers). By contrasting genes correlated or anti-correlated with NK score across the TCGA 
data against these cell line data we can identify markers which may be derived from the 
melanoma tumor which exert an immunomodulatory effect (Fig. S7E). To demonstrate the 
association with phenotype-switching the markers CDH1 and MITF are included [29, 34]. 
Further, TGF-β activity in these cell lines has a demonstrated association with THBS1 [33]. 
Consistent with our observation that NK score tends to be higher in more mesenchymal tumor 
samples, many of the positively correlated genes tend to have higher expression in the MITF-
low cell lines. Similarly, many of the anti-correlated genes tend to have lower expression in 
the MITF-low cell lines. 

Several notable genes are present within these lists (Fig. S7E). Again, B2M is identified, 
together with a number of HLA- genes, suggesting that more mesenchymal-like melanomas 
may be more immunogenic in part because of increased antigen presentation associated with 
this phenotype. Given data linking IL-18 to NK cell activity [12] (Fig. 1), it is interesting to note 
that in the more mesenchymal cell lines, the expression of IL-18 appears to be slightly higher 
in the TGF-β EMT low samples. From the genes anti-correlated with NK score we note that 
CMTM4 was recently identified as a positive regulator of PD-L1 (together with its paralog 
CMTM6 which is not present) [61, 62] and this appears to have lower expression within more 
mesenchymal cell lines.  

 

Discussion 

Immune “checkpoint” inhibitor antibodies, which function by reactivating tumor-resident 
cytotoxic lymphocytes, have revolutionized cancer therapy. Although much research is 
currently directed towards programs that underlie immunotherapy resistance, we lack an 
in-depth understanding of the fundamental mechanisms dictating response and we do not 
yet have robust markers to identify patients who may respond preferentially in the context 
of metastasis. Checkpoint inhibitors primarily block inhibitory pathways in tumor-resident T 
cells, however interest in other effector populations, such as NK cells, is growing [9], with 
recent studies showing that NK cells have a critical role in immunotherapy success [58].  

Clinically, NK cell activity has been shown as inversely correlated with cancer incidence [63]. 
More recent evidence has shown that NK cell infiltration in human tumors is associated with 
better prognosis in squamous cell lung, gastric and colorectal carcinomas [6]. In melanoma 
cells, researchers have previously found specific HLA-I allelic losses in up to 50% of patients 
analyzed, and even when expressed on melanoma cells, specific HLA class I molecules are 
often at insufficient levels to inhibit NK cell-mediated cytotoxicity [64]. These data suggest 
that metastatic melanoma is an ideal target for NK cell-mediated killing and therapies that 
enhance NK cell activity should be investigated further. Accordingly, we have performed a 
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detailed investigation of the transcriptomic and matched clinical data available through the 
TCGA skin cutaneous melanoma cohort [38]. 

Consistent with previous reports which have elucidate the links between dendritic cells and 
natural killer cells [2, 58], we show that inferred NK cell infiltration is associated with 
improved patient survival. We note that while the gene set derived by Böttcher and 
colleagues performs well [2], they calculated NK scores using mean log2 abundance data 
which can be susceptible to outliers and places a greater weighting on genes with high 
transcript abundance. As demonstrated (Fig. S6E & S6F), while singscore has been developed 
for larger gene sets, it still performs relatively well with the 5 gene Böttcher NK signature 
(NCR3, KLRB1, PRF1, CD160, NCR1). While it is hard to directly compare the accuracy of these 
signatures without validation data for NK cell infiltration, these results demonstrate the 
application of our computational method in estimating the abundance and heterogeneity of 
different immune subsets across different tumors and patients. Importantly, our methods 
allow variations in these relative immune scores to be easily compared against other relevant 
phenotype-associated gene sets as demonstrated by the striking survival effects we have 
observed when our NK score is examined in the context of melanoma phenotype switching 
and TGF-β signaling (Fig. 5G & H). 

The observation that the inhibitory receptor CD96 appears to have a protective effect, with 
high CD96 corresponding to improved patient survival (Fig. 3F) is interesting since murine data 
has proposed that CD96 acts as a NK cell checkpoint limiting NK cell anti-melanoma immunity 
[65]. Furthermore, while both CD96 and TIGIT have been explored as potential 
immunotherapy targets [66], it has previously been shown that TIGIT appears to have a 
dominant role over CD96 as a checkpoint in NK activity [67]. Indeed, a recent murine report 
has evidenced a potent inhibitory role for TIGIT on NK cell anti-tumor immunity [68]. Further, 
while there are prominent long-term survival effects associated with patient age (Fig. 2B), we 
note that there is no association between NK score and age (Fig. 5E), yet the survival 
advantages associated with a low TGFβ-EMT score and a high NK score are particularly 
pronounced within younger patients (Fig. 5G). These results suggest that younger patients 
may receive a greater benefit from NK targeted immunotherapies, perhaps reflecting a higher 
capacity of the immune system in young patients to produce a robust anti-tumor response. 

The NK cell gene signature and NK cell gene score that we describe here can be readily applied 
to other cancer datasets which are becoming increasingly available thanks to the efforts of 
large cancer research consortia. The information from such gene signature analyses will also 
allow researchers to stratify responders and non-responders to conventional treatments, 
identify the patients that are likely to profit from NK cell-based immunotherapies, and 
facilitate the development of prognostic markers for personalized immunotherapeutics.   
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