

1 **Natural variation in *C. elegans* arsenic toxicity is explained by differences in**
2 **branched chain amino acid metabolism**

3
4 Stefan Zdraljevic^{1,2}, Bennett W. Fox³, Christine Strand⁵, Oishika Panda^{3,4}, Francisco J. Tenjo^{3,4},
5 Shannon C. Brady^{1,2}, Tim A. Crombie², John G. Doench⁵, Frank C. Schroeder³, and Erik C.
6 Andersen^{1,2,6 *}

7
8 1. Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208,
9 USA

10 2. Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA

11 3. Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell
12 University, Ithaca, NY 14853, USA

13 4. The Buck Institute for Research on Aging, Novato, CA 94945, USA (Current address)

14 5. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

15 6. Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
16 60611, USA

17 * Corresponding author

18
19 **Erik C. Andersen**

20 Assistant Professor of Molecular Biosciences

21 Northwestern University

22 Evanston, IL 60208, USA

23 Tel: (847) 467-4382

24 Fax: (847) 491-4461

25 Email: Erik.Andersen@Northwestern.edu

26

27

28 Stefan Zdraljevic, stefanzdraljevic2018@u.northwestern.edu, ORCID 0000-0003-2883-4616

29 Bennett William Fox, bwf7@cornell.edu, ORCID 0000-0002-9749-3491

30 Christine Strand, cstrand@broadinstitute.org, ORCID 0000-0001-5783-6667

31 Oishika Panda, OPanda@buckinstitute.org, ORCID 0000-0002-1217-8231

32 Francisco J. Tenjo, fjt38@cornell.edu, ORCID 0000-0003-4848-916X

33 Shannon C. Brady, shannonbrady2014@u.northwestern.edu, ORCID 0000-0002-3043-1544

34 Tim A. Crombie, tcrombie@northwestern.edu, ORCID 0000-0002-5645-4154

35 John G. Doench, jdoench@broadinstitute.org, ORCID 0000-0002-3707-9889

36 Frank C. Schroeder, fs31@cornell.edu, ORCID 0000-0002-4420-0237

37 Erik Andersen, erik.andersen@northwestern.edu, ORCID 0000-0003-0229-9651

38 **Abstract**

39

40 We find that variation in the *dbt-1* gene underlies natural differences in *Caenorhabditis*
41 *elegans* responses to the toxin arsenic. This gene encodes the E2 subunit of the branched-chain
42 α -keto acid dehydrogenase (BCKDH) complex, a core component of branched-chain amino acid
43 (BCAA) metabolism. We causally linked a non-synonymous variant in the conserved lipoyl domain
44 of DBT-1 to differential arsenic responses. Using targeted metabolomics and chemical
45 supplementation, we demonstrate that differences in responses to arsenic are caused by variation
46 in iso-branched chain fatty acids. Additionally, we show that levels of branched chain fatty acids
47 in human cells are perturbed by arsenic treatment. This finding has broad implications for arsenic
48 toxicity and for arsenic-focused therapeutics across human populations. Our study
49 implicates the BCKDH complex and BCAA metabolism in arsenic responses, demonstrating the
50 power of *C. elegans* natural genetic diversity to identify novel mechanisms by which
51 environmental toxins affect organismal physiology.

52 **Introduction**

53

54 An estimated 100 million people are currently at risk of chronic exposure to arsenic, a toxic
55 metalloid that can be found in the environment [1]. The high prevalence of environmental arsenic
56 and the severe toxicity associated with exposure has made it the number one priority for the
57 United States Agency for Toxic Substances and Disease Registry
58 (<https://www.atsdr.cdc.gov/SPL/>). Inorganic trivalent arsenic As(III) compounds, which include
59 arsenic trioxide (As₂O₃), are the most toxic forms of environmental arsenic [2,3]. In humans, As(III)
60 is detoxified by consecutive methylation events, forming dimethylarsenite (DMA) [4,5]. However,
61 this methylation process also creates the highly toxic monomethylarsenite (MMA) intermediate,
62 so ratios of DMA to MMA determine levels of arsenic toxicity. Both MMA and DMA are produced
63 from As(III) via the arsenic methyltransferase (AS3MT) [6]. Interestingly, individuals from human
64 subpopulations that inhabit high arsenic environments have higher DMA/MMA ratios than
65 individuals from low-arsenic environments. The elevated DMA/MMA ratio in these individuals is
66 associated with natural differences in the AS3MT gene [7–9], which shows signs of strong positive
67 selection. These results suggest that a more active AS3MT enzyme in these human
68 subpopulations makes more DMA and enables adaptation to elevated environmental arsenic
69 levels [6]. Importantly, population-wide differences in responses to environmental arsenic cannot
70 be explained solely by variation in AS3MT, indicating that other genes must impact arsenic
71 toxicity.

72 Despite its toxicity, arsenic trioxide has been used as a therapeutic agent for hundreds of
73 years. Most recently, it was introduced as a highly effective cancer chemotherapeutic for the
74 treatment of acute promyelocytic leukemia (APL) [10–13]. Hematopoietic differentiation and
75 apoptosis in APL patients is blocked at the level of promyelocytes by the Promyelocytic
76 Leukemia/Retinoic Acid Receptor alpha fusion protein caused by a t(15;17) chromosomal
77 translocation [14,15]. Arsenic trioxide has been shown to directly bind a cysteine-rich region of
78 the RING-B box coiled-coil domain of PML-RAR α , which causes the degradation of the oncogenic
79 fusion protein [16,17]. The success of arsenic trioxide (Trisenox®) has spurred its use in over a
80 hundred clinical trials in the past decade [18]. Despite these successes, individual differences in
81 the responses to arsenic-based treatments, including patient-specific dosing regimens and side
82 effects, limit the full therapeutic benefit of this compound [19]. Medical practitioners require
83 knowledge of the molecular mechanisms for how arsenic causes toxicity to provide the best
84 individual-based therapeutic benefits.

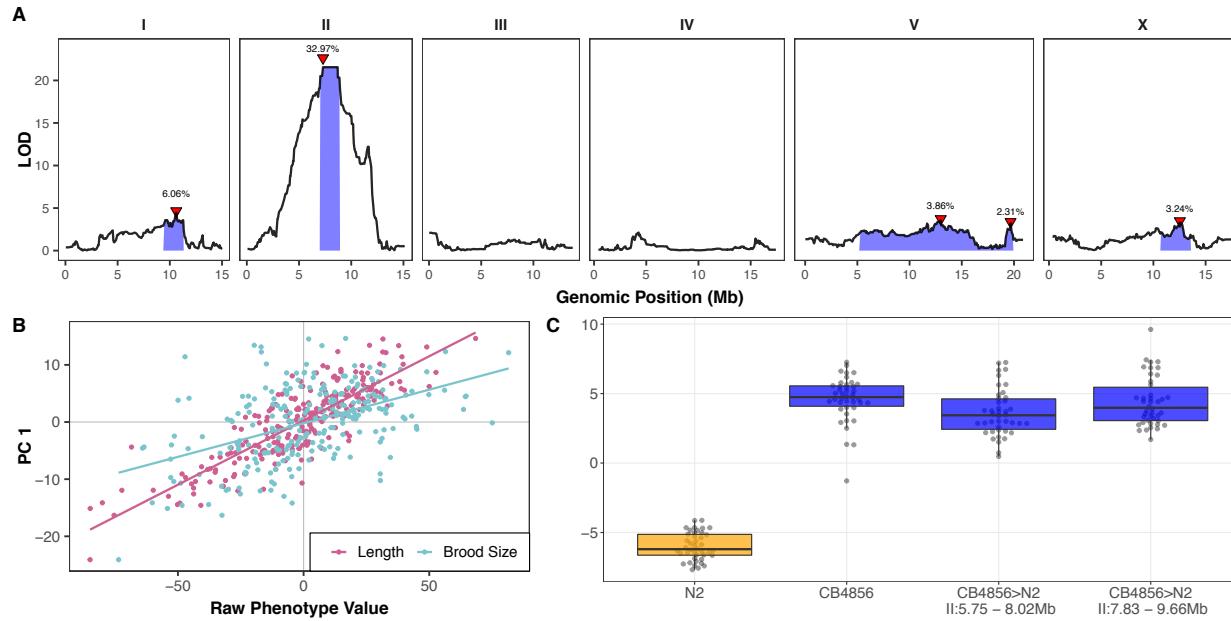
85 Studies of the free-living roundworm *Caenorhabditis elegans* have greatly facilitated our
86 understanding of basic cellular processes [20–23], including a number of studies that show that
87 the effects of arsenic are similar to what is observed in mammalian model systems and humans.
88 These effects include mitochondrial toxicity [24,25], the generation of reactive oxygen species
89 (ROS) [26], genotoxicity [27], genome-wide shifts in chromatin structure [28], reduced lifespan
90 [26], and the induction of the heat-shock response [29]. However, these studies were all
91 performed in the genetic background of the standard *C. elegans* laboratory strain (N2). To date,
92 152 *C. elegans* strains have been isolated from various locations around the world [30–32], which
93 contain a largely unexplored pool of genetic diversity much of which could underlie adaptive
94 responses to environmental perturbations [33].

95 We used two quantitative genetic mapping approaches to show that a major source of
96 variation in *C. elegans* responses to arsenic trioxide is caused by natural variation in the *dbt-1*
97 gene, which encodes an essential component of the highly conserved branched-chain α -keto acid
98 dehydrogenase (BCKDH) complex [34]. The BCKDH complex is a core component of branched-
99 chain amino acid (BCAA) catabolism, which has not been previously implicated in arsenic
100 responses. Furthermore, we show that a single missense variant in DBT-1(S78C), located in the
101 highly conserved lipoyl-binding domain, underlies phenotypic variation in response to arsenic.
102 Using targeted and untargeted metabolomics and chemical rescue experiments, we show that
103 differences in wild isolate responses to arsenic trioxide are caused by differential synthesis of
104 mono-methyl branched chain fatty acids (mmBCFA), metabolites with a central role in
105 development [20]. These results demonstrate the power of using the natural genetic diversity
106 across the *C. elegans* species to identify mechanisms by which environmental toxins affect
107 physiology.

108

109 **Results**

110


111 **Natural variation on chromosome II underlies differences in arsenic responses**

112 We quantified arsenic trioxide sensitivity in *C. elegans* using a high-throughput fitness assay that
113 utilizes the COPAS BIOSORT [35,36]. In this assay, three L4 larvae from each strain were sorted
114 into arsenic trioxide or control conditions. After four days of growth, we quantified various
115 attributes of populations that relate to the ability of *C. elegans* to grow in the presence of arsenic
116 trioxide or control conditions (see Materials and Methods). To determine an appropriate
117 concentration of arsenic trioxide for mapping experiments, we performed dose-response
118 experiments on four genetically diverged isolates of *C. elegans*: N2, CB4856, JU775, and DL238
119 (Figure 1-source data 1). We focused on brood size and progeny length traits because they are
120 the most direct measures of animal responses to environmental perturbations. We defined brood
121 size as the total number of objects detected by the BIOSORT and progeny length by the median
122 of populations of specific *C. elegans* strains. When compared to control conditions, all four strains
123 produced fewer progeny at all arsenic trioxide concentrations, and the lowest concentration at
124 which we observed a significant reduction in brood size for all strains was 1 mM (Figure 1-figure
125 supplement 1A). We estimated broad-sense heritability (H^2) for the brood size trait in 1 mM
126 arsenic trioxide to be (0.65) (Figure 1-source data 2) and the strain effect to be 0.48 (partial omega
127 squared, ω_p^2 , Figure 1-source data 3), indicating that this trait has a large genetic component and
128 a large strain effect. In addition to reduced brood sizes, we observed that the progeny of animals
129 exposed to arsenic trioxide were shorter in length than the progeny of animals grown in control
130 conditions (Figure 1-figure supplement 1B), which indicates an arsenic-induced developmental
131 delay ($H^2 = 0.15 - 0.49$; Figure 1-source data 2 and $\omega_p^2 = 0.02 - 0.60$; Figure 1-source data 3,
132 depending on the animal length summary statistic used). We found that CB4856 animals
133 produced approximately 16% more offspring that were on average 20% larger than the other three
134 strains when treated with 1 mM arsenic trioxide, suggesting that the CB4856 strain was more
135 resistant to arsenic trioxide than the other three strains. To reduce the number of traits for
136 subsequent analyses, we performed principal component analysis on all measured traits, which
137 transforms the data to orthogonal axes that capture the most phenotypic variance (Figure 1-
138 source data 1 and 4-6; See Materials and Methods). For 1 mM arsenic trioxide, we estimated the

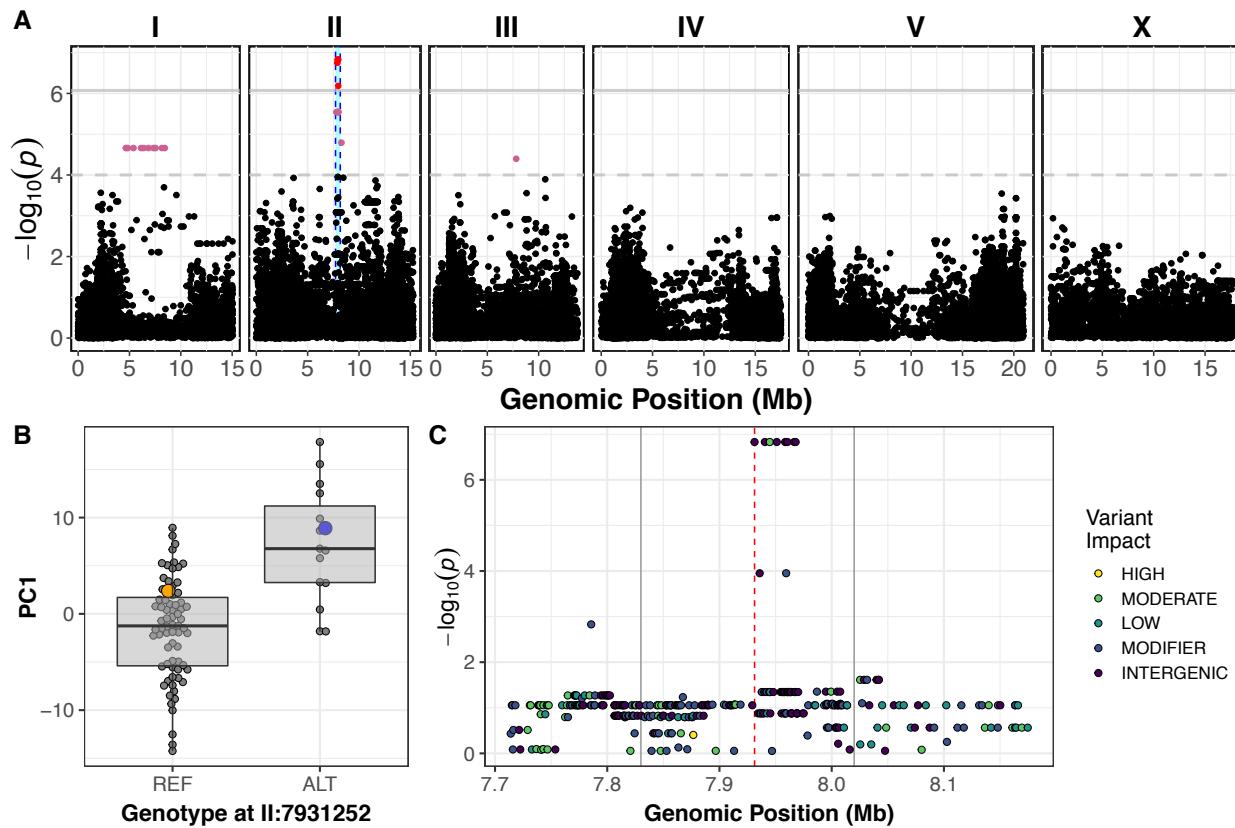
139 broad-sense heritability (H^2) of the first principal component to be 0.12 (Figure 1-source data 2)
140 with an effect size of 0.16 (ω_p^2) (Figure 1-source data 3). It is not surprising that the first principal
141 component explained a large percentage (70%) of the total phenotypic variance because many
142 of the summary statistic traits are highly correlated (Figure 1-figure supplement 2A-D; Figure 1-
143 source data 7). We noted that the first principal component (PC1) was most strongly influenced
144 by traits related to animal length, as indicated by the loadings (Figure 1-figure supplement 2A-D;
145 Figure 1-source data 3 and 6), suggesting that PC1 is a biologically relevant trait (Figure 1-figure
146 supplement 1C). Furthermore, because we observe a large range of effect sizes and broad-sense
147 heritability estimates across measured traits (Figure 1-figure supplement 3), we focused our
148 analyses on the PC1 trait for subsequent experiments.

149 The increased arsenic trioxide resistance of CB4856 compared to N2 motivated us to
150 perform linkage mapping experiments with a panel of recombinant inbred advanced intercross
151 lines (RIAILs) that were previously constructed through ten generations of intercrossing between
152 an N2 derivative (QX1430) and CB4856 [35]. To capture arsenic trioxide-induced phenotypic
153 differences, we exposed a panel of 252 RIAILs to 1 mM arsenic trioxide and corrected for growth
154 differences among RIAILs in control conditions and assay-to-assay variability using linear
155 regression (Figure 1-source data 8; see Materials and Methods). We performed linkage mapping
156 on processed traits and the eigenvector-transformed traits (principal components or PCs)
157 obtained from PCA that explained 90% of the variance in the processed trait set (Materials and
158 Methods). The rationale of this approach was to minimize trait fluctuations that could be caused
159 by only measuring the phenotypes of one replicate per RIAIL strain. In agreement with our
160 observations from the dose-response experiment, we found that PC1 captures 70.9% of the total
161 measured trait variance and is strongly influenced by correlated animal length traits (Figure 1-
162 figure supplement 4; Figure 1-source data 9-10). Linkage mapping analysis of the PC1 trait
163 revealed that arsenic trioxide-induced phenotypic variation is significantly associated with genetic
164 variation on the center of chromosome II (Figure 1A-figure supplement 5; Figure 1-source data
165 11). An additional four quantitative trait loci (QTL) were significantly associated with variation in
166 arsenic responses on chromosomes I, V, and X (Figure 1A-figure supplement 5). Consistent with
167 the loadings of PC1, we determined that PC1 is highly correlated with the both brood size and
168 animal length traits (Figure 1B), suggesting that PC1 captures RIAIL variation in these traits. To
169 further support this relationship to interpretable biological significance, we found that the animal
170 length and brood size traits map to the same region on the center of chromosome II (Figure 1-
171 figure supplement 6; Figure 1-source data 11). The QTL on the center of chromosome II explains
172 32.97% of the total RIAIL phenotypic variation for the PC1 trait, which accounts for 61.7% of the
173 total phenotypic variation that can be explained by genetic factors ($H^2 = 0.53$) (Figure 1-figure
174 supplement 7; Figure 1-source data 12). Taken together, the five QTL identified by mapping the
175 PC1 trait account for 48.4% of the total RIAIL variation, corresponding to 91.3% of the total
176 phenotypic variation that can be explained by genetic factors. However, we did not account for
177 errors in genomic heritability estimates. In addition to the PC1, brood size, and animal length
178 traits, 69 additional measured traits map to the same genomic region (Figure 1-figure supplement
179 8; Figure 1-source data 11). This result was expected given correlation structure of the measured
180 traits (Figure 1-figure supplement 4). The PC1 QTL confidence interval spans from 7.04 to 8.87
181 Mb on chromosome II. This QTL is completely encompassed by the brood size (6.06-9.30 Mb)
182 and animal length (6.82-8.93 Mb) QTL confidence intervals (Figure 1-figure supplement 6).

183 However, each of these QTL confidence intervals span genomic regions greater than 1.5
184 megabases and contain hundreds of genes that vary between the N2 and CB4856 strains.
185 Therefore, we constructed near-isogenic lines (NILs) to isolate and narrow each QTL in a
186 controlled genetic background.

187
188 **Figure 1: A large-effect QTL on the center of chromosome II explains differences in arsenic
189 trioxide response between N2 and CB4856**

190 (A) Linkage mapping plots for the first principal component trait in the presence of 1000 μ M arsenic trioxide
191 is shown. The significance values (logarithm of odds, LOD, ratio) for 1454 markers between the N2 and
192 CB4856 strains are on the y-axis, and the genomic position (Mb) separated by chromosome is plotted on
193 the x-axis. The associated 1.5 LOD-drop confidence intervals are represented by blue boxes. (B) The
194 correlation between brood size (blue; $r^2 = 0.23$, p -value = 2.4E-15) or animal length (pink; $r^2 = 0.72$, p -value
195 = 7E-70) with the first principal component trait. Each dot represents an individual RIAIL's phenotype, with
196 the animal length and brood size phenotype values on the x-axis and the first principal component
197 phenotype on the y-axis. (C) Tukey box plots of near-isogenic line (NIL) phenotype values for the first
198 principal component trait in the presence of 1000 μ M arsenic trioxide is shown. NIL genotypes are indicated
199 below the plot as genomic ranges. The N2 trait is significantly different than the CB4856 and NIL traits
200 (Tukey HSD p -value < 1E-5).


201
202 To split the large QTL confidence intervals in half, we introgressed genomic regions from
203 the CB4856 strain on the left and right halves of the confidence intervals into the N2 genetic
204 background. In the presence of arsenic trioxide, both of these NILs recapitulated the parental
205 CB4856 PC1 phenotype (Figure 1C; Figure 1-source data 13), and had similar brood sizes and
206 progeny of similar length as the CB4856 parental strain (Figure 1-figure supplement 9; Figure 1-
207 source data 13). Furthermore, we show that similar to the RIAIL phenotypes, many of the
208 measured traits were highly correlated (Figure 1-figure supplement 10A; Figure 1-source data 14)
209 and contributed similarly to the PC1 trait (Figure 1-figure supplement 10B; Figure 1-source data
210 15). Importantly, the PC1 trait was highly correlated with the brood size and animal length
211 phenotypes (Figure 1-figure supplement 11). The phenotypic similarity of these NILs to the

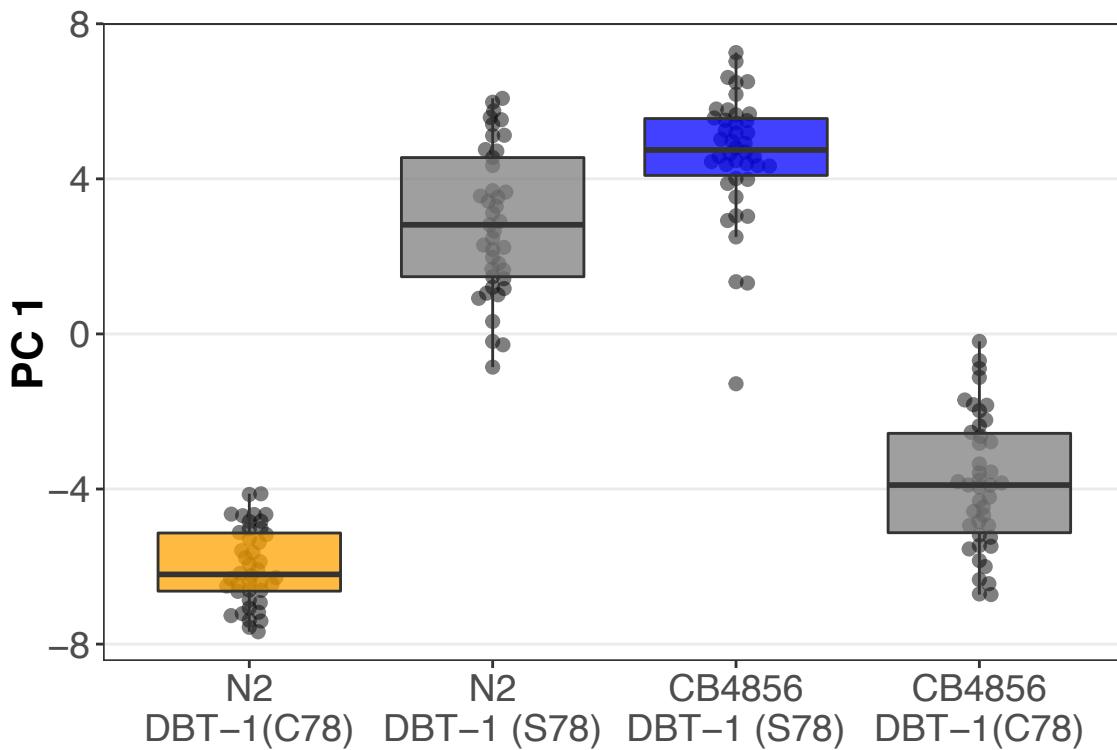
212 CB4856 parental strain suggested that the two NILs might share an introgressed region of the
213 CB4856 genome. To identify this shared introgressed region, we performed low-coverage whole-
214 genome sequencing of the NIL strains and defined the left and right bounds of the CB4856
215 genomic introgression to be from 5.75 to 8.02 Mb and 7.83 to 9.66 Mb in the left and right NILs,
216 respectively (Figure 1-source data 16). The left and right NILs recapitulate 88.6% and 91.6% of
217 the effect size difference between N2 and CB4856 as measured by Cohen's F, respectively [37],
218 which exceeds our observations the linkage mapping results where the QTL on chromosome II
219 explained 61.7% of the total phenotypic variation in the RIAIL population. This discrepancy was
220 observed likely because the NILs are a more homogenous genetic background and the
221 experiment was performed at higher replication than the linkage mapping. Taken together, these
222 results suggested that genetic differences between N2 and CB4856 within 7.83 to 8.02 Mb on
223 chromosome II conferred resistance to arsenic trioxide.

224 In parallel to the linkage-mapping approach described above, we performed a genome-
225 wide association (GWA) mapping experiment by quantifying the responses to arsenic trioxide for
226 86 wild *C. elegans* strains (Figure 2-source data 1) [30]. Consistent with previous experiments,
227 the measured traits that most strongly influence PC1 are representative of animal length, as
228 indicated by the loadings (Figure 2-figure supplement 1; Figure 2-source data 2-3). In agreement
229 with the results from the linkage mapping approach, PC1 differences among the wild isolates
230 mapped to a QTL on the center of chromosome II that spans from 7.71 Mb to 8.18 Mb (Figure
231 2A; Figure 2-source data 4-5). We noted that the brood size trait did not map to a significant QTL
232 with the GWA mapping approach. To address this discrepancy, we estimated genomic broad-
233 and narrow-sense heritability (H^2 ; h^2) for all of the wild isolate measured and principal component
234 traits (Figure 2-figure supplement 2; Figure 2-source data 6). Broad-sense heritability for the
235 brood size trait was approximately 0.05 for the wild isolates tested, which explains why we were
236 unable to detect a significant QTL associated with this trait. By contrast, the PC1 trait H^2 was 0.16
237 when estimated using an additive-only model and 0.25 ($h^2 = 0.11$) when we incorporated the
238 possibility for epistasis (See Materials and Methods; Figure 2-source data 6). The marker found
239 to be most correlated with the PC1 trait from GWA mapping (II:7,931,252), explains 84.6%
240 (epistasis model) of the total heritable phenotypic variation. Of the 64 measured and principal
241 component traits we mapped, 26 were significantly correlated with genetic variation on the center
242 of chromosome II (Figure 2-figure supplement 3; Figure 2-source data 7). Notably, the CB4856
243 strain, which was one of the parents used to construct the RIAIL panel used for linkage mapping,
244 had the non-reference genotype at the marker most correlated with PC1 (Figure 2B), suggesting
245 that the same genetic variant(s) might be contributing to differential arsenic trioxide response
246 among the RIAIL and wild isolate populations.

247 To fine map the PC1 QTL, we focused on variants from the *C. elegans* whole-genome
248 variation dataset [31] that are shared among at least five percent of the 86 wild isolates exposed
249 to arsenic trioxide. Under the assumption that the linkage and GWA mapping QTL are caused by
250 the same genetic variation, we only considered variants present in the CB4856 strain. Eight
251 markers within the QTL region are in complete linkage disequilibrium with each other and are
252 most correlated with the first principal component trait (Figure 2C-figure supplement 4; Figure 2-
253 source data 8). Only one of these markers is located within an annotated gene (*dbt-1*) and is
254 predicted to encode a cysteine-to-serine variant at position 78 (C78S). Although it is possible that
255 the causal variant underlying differential arsenic trioxide response in the *C. elegans* population is

256 an intergenic variant, we focused on the DBT-1(C78S) variant as a candidate to test for an effect
257 on arsenic response.

258 **Figure 2: Variation in *C. elegans* wild isolates responses to arsenic trioxide maps to the**
259 **center of chromosome II**


260 (A) A manhattan plot for the first principal component in the presence of 1000 μM arsenic trioxide is shown.
261 Each dot represents an SNV that is present in at least 5% of the assayed wild population. The genomic
262 position in Mb, separated by chromosome, is plotted on the x-axis and the $-\log_{10}(p)$ for each SNV is plotted
263 on the y-axis. SNVs are colored red if they pass the genome-wide Bonferroni-corrected significance
264 threshold, which is denoted by the gray horizontal line. SNVs are colored pink if they pass the genome-
265 wide eigen-decomposition significance threshold, which is denoted by the dotted gray horizontal line. The
266 genomic region of interest surrounding the QTL is represented by a cyan rectangle. (B) Tukey box plots of
267 phenotypes used for association mapping in (A) are shown. Each dot corresponds to the phenotype of an
268 individual strain, which is plotted on the y-axis. Strains are grouped by their genotype at the peak QTL
269 position (red SNV from panel A, ChrII:7,931,252), where REF corresponds to the allele from the reference
270 N2 strain. The N2 (orange) and CB4856 (blue) strains are highlighted. (C) Fine mapping of the chromosome
271 II region of interest (cyan region from panel A, 7.71 - 8.18 Mb) is shown. Each dot represents an SNV
272 present in the CB4856 strain. The association between the SNV and first principal component is shown on
273 the y-axis and the genomic position of the SNV is shown on the x-axis. Dots are colored by their SnpEff
274 predicted effect.

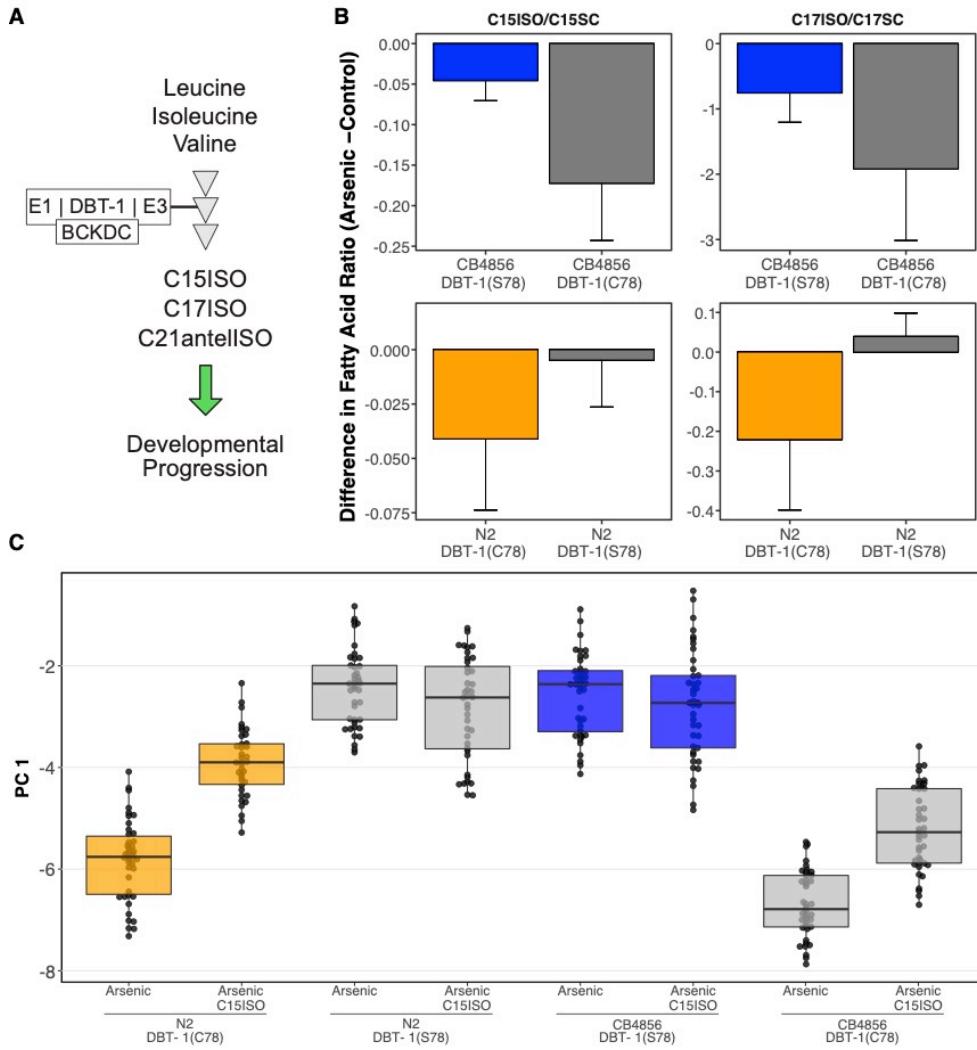
275
276 **A cysteine-to-serine variant in DBT-1 contributes to arsenic response variation**
277 The *C. elegans* *dbt-1* gene encodes the E2 component of the branched-chain α -keto acid
278 dehydrogenase complex (BCKDH) [34]. The BCKDH complex is a core component of branched-
279 chain amino acid (BCAA) catabolism and catalyzes the irreversible oxidative decarboxylation of

280 amino acid-derived branched-chain α -ketoacids [38]. The BCKDH complex belongs to a family of
281 α -ketoacid dehydrogenases that include pyruvate dehydrogenase (PDH) and α -ketoglutarate
282 dehydrogenase (KGDH) [39]. All three of these large enzymatic complexes include a central E2
283 component that is lipoylated at one critical lysine residue (two residues in PDH). The function of
284 these enzymatic complexes depends on the lipoylation of these lysine residues [39,40]. In
285 *C. elegans*, the putative lipoylated lysine residue is located at amino acid position 71 of DBT-1,
286 which is in close proximity to the C78S residue that we found to be highly correlated with arsenic
287 trioxide resistance.

288 To confirm that the C78S variant in DBT-1 contributes to differential arsenic trioxide
289 responses, we used CRISPR/Cas9-mediated genome editing to generate allele-replacement
290 strains by changing the C78 residue in the N2 strain to a serine and the S78 residue in the CB4856
291 strain to a cysteine. When treated with arsenic trioxide, the N2 DBT-1(S78) allele-replacement
292 strain recapitulated 75.5% of the phenotypic difference between the CB4856 and N2 strains as
293 measured with the first principal component, as measured by Cohen's F [37] (Figure 3; Figure 1-
294 source data 13). Similarly, the CB4856 DBT-1(C78) allele-replacement strain recapitulated 63.9%
295 of the total phenotypic difference between the two parental CB4856. The degree to which the
296 allele-replacement strains recapitulated the difference in the first principal component between
297 the N2 and CB4856 strains matched our observations from the linkage mapping experiment,
298 where the chromosome II QTL explained 61.7% of the total phenotypic variation in the RIAIL
299 population. This result suggested that the majority of heritable variation in arsenic trioxide
300 response was explained by the DBT-1(C78S) allele. We obtained similar results for the progeny
301 length trait (Figure 3-figure supplement 1; Figure 1-source data 13), which is likely because of the
302 high level of correlation between the animal length and first principal component trait (Figure 1-
303 figure supplement 10; Figure 3-figure supplement 2; Figure 1-source data 10-11). However, when
304 considering brood size, the N2 DBT-1(C78S) allele-replacement strain produced an intermediate
305 number of progeny in the presence of arsenic trioxide relative to the parental N2 and CB4856
306 strains. And the CB4856 DBT-1(S78C) allele-replacement strain produced fewer offspring than
307 both parental strains (Figure 3-figure supplement 1; Figure 1-source data 13). These results
308 suggested that additional genetic variants between the N2 and CB4856 strains might interact with
309 the DBT-1(C78S) allele to affect different aspects of physiology. Nevertheless, these results
310 functionally validated that the DBT-1 C78S variant underlies differences in physiological
311 responses to arsenic trioxide.

312
313
314
315
316
317
318
319
320

321 **Figure 3: The DBT-1(C78S) variant contributes to arsenic trioxide responses**


322 Tukey box plots of the first principal component generated by PCA on allele-replacement strain phenotypes
323 measured by the COPAS BIOSORT 1000 μ M arsenic trioxide exposure are shown (N2, orange; CB4856,
324 blue; allele replacement strains, gray). Labels correspond to the genetic background and the corresponding
325 residue at position 78 of DBT-1 (C for cysteine, S for serine). All pair-wise comparisons are significantly
326 different (Tukey HSD, p -value $< 1.42E-5$).

327

328 **Arsenic trioxide inhibits the DBT-1 C78 allele**

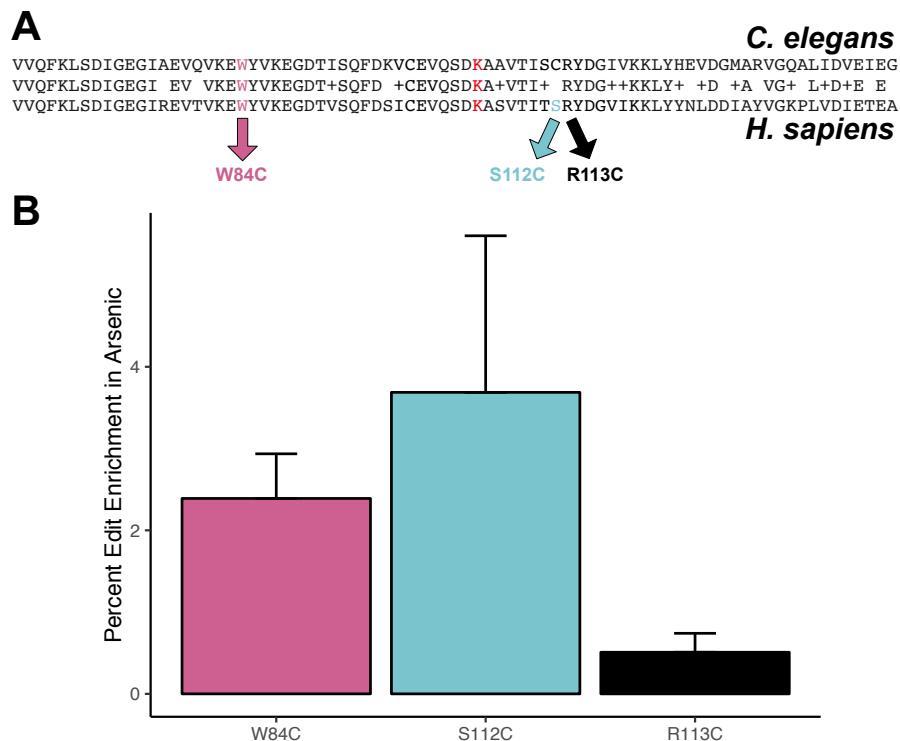
329 Mono-methyl branched chain fatty acids (mmBCFA) are an important class of molecules that are
330 produced via BCAA catabolism [20,34,41,42]. The production of mmBCFA requires the BCKDH,
331 fatty acid synthase (FASN-1), acetyl-CoA carboxylase (POD-2), fatty acyl elongases (ELO-5/6),
332 β -ketoacyl dehydratase (LET-767), and acyl CoA synthetase (ACS-1) [20,34,41,43–45]. Strains
333 that lack functional *elo-5*, *elo-6*, or *dbt-1* produce less C15ISO and C17ISO mmBCFAs, arrest at
334 the L1 larval stage, and can be rescued by supplementing the growth media with C15ISO or
335 C17ISO [20,34,41] (Figure 4A).

336 Because DBT-1 is involved in BCAA catabolism, we hypothesized that the DBT-1(C78S)-
337 dependent difference in progeny length between the N2 and CB4856 strains after arsenic trioxide
338 treatment might be caused by differential larval (L1) arrest through depletion of downstream
339 mmBCFAs. To test this hypothesis, we quantified the abundance of the monomethyl-branched
340 (ISO) and straight-chain (SC) forms of C15 and C17 in the N2, CB4856, and allele-swap genetic
341 backgrounds. We measured the metabolite levels in staged L1 animals and normalized the
342 detected amounts of C15ISO and C17ISO relative to the abundances of C15SC and C17SC,
343 respectively, to mitigate confounding effects of differences in developmental rates that could result
344 from genetic background differences or arsenic trioxide exposure. Generally, the ratios of
345 C15ISO/C15SC and C17ISO/C17SC were reduced in

346 **Figure 4: Differential production of mmBCFA underlies DBT-1(C78)-mediated sensitivity to**
 347 **arsenic trioxide.**

348 (A) A simplified model of BCAA catabolism in *C. elegans*. The BCKDH complex, which consists of DBT-1,
 349 catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids. The products of these
 350 breakdown can then serve as building blocks for the mmBCFA that are required for developmental
 351 progression. (B) The difference in the C15ISO/C15SC (left panel) or C17ISO/C17SC (right panel) ratios
 352 between 100 μ M arsenic trioxide and control conditions is plotted on the y-axis for three independent
 353 replicates of the CB4856 and CB4856 allele swap strains and six independent replicates of the N2 and N2
 354 allele swap strains. The difference between the C15 ratio for the CB4856-CB4856 allele swap comparison
 355 is significant (Tukey HSD p -value = 0.0427733), but the difference between the C17 ratios for these two
 356 strains is not (Tukey HSD p -value = 0.164721). The difference between the C15 and C17 ratios for the N2-
 357 N2 allele swap comparisons are both significant (C15: Tukey HSD p -value = 0.0358; C17: Tukey HSD p -
 358 value = 0.003747). (C) Tukey box plots median animal length after arsenic trioxide or arsenic trioxide and
 359 0.64 μ M C15ISO exposure are shown (N2, orange; CB4856, blue; allele replacement strains, gray). Labels
 360 correspond to the genetic background and the corresponding residue at position 78 of DBT-1 (C for
 361 cysteine, S for serine). Every pair-wise strain comparison is significant except for the N2 DBT-1(S78) -
 362 CB4856 comparisons (Tukey's HSD p -value < 1.43E-6).
 363

364 arsenic-treated animals relative to controls (Figure 4B; Figure 4-source data 1-3). However,
365 arsenic trioxide treatment had a 7.6-fold stronger effect on the C15ISO/C15SC ratio in N2, which
366 naturally has the C78 allele, than on the N2 DBT-1(S78) allele swap strain. This difference
367 suggests that the DBT-1(C78) allele is more strongly inhibited by arsenic trioxide (0.04 to 0.004,
368 Tukey HSD *p*-value = 0.0358, *n* = 6). Similarly, we observed a 6.6-fold arsenic-induced reduction
369 in the C17ISO/C17SC ratio when comparing the N2 DBT-1(C78) and N2 DBT-1(S78) strains
370 (Tukey HSD *p*-value = 0.003747, *n* = 6). When comparing the CB4856 DBT-1(S78) and CB4856
371 DBT-1(C78) strains, we observed a 2.8-fold lower C15ISO/C15SC ratio (Tukey HSD *p*-value =
372 0.0427733, *n* = 3) and 1.5-fold lower C17ISO/C17SC ratio (Tukey HSD *p*-value = 0.164721, *n* =
373 3) in the CB4856 DBT-1(C78) strain. We noted that the C17ISO/straight-chain ratio
374 difference was not significantly different between the two CB4856 genetic background strains.
375 However, we observed a significant arsenic-induced decrease in raw C17ISO production in the
376 CB4856 DBT-1(C78) strain (Tukey HSD *p*-value = 0.029) and no significant difference in the
377 CB4856 DBT-1(S78) strain (Tukey HSD *p*-value = 0.1) (Figure 4-figure supplement 1).
378 Importantly, these DBT-1(C78S) allele-specific reductions in ISO/straight-chain ratios were not
379 driven by arsenic-induced differences in straight-chain fatty acids (Figure 4-figure supplement 2).
380 These results explained the majority of the physiological differences between the N2 and CB4856
381 strains in the presence of arsenic trioxide (Figure 3) and suggested that the DBT-1(C78) allele
382 was inhibited by arsenic trioxide more strongly than DBT-1(S78). Taken together, the differential
383 reduction in branched-chain fatty acids likely underlies the majority of physiological differences
384 between the sensitive and resistant *C. elegans* strains.


385 In addition to arsenic-induced differences in branched chain fatty acid production, we
386 observed significant differences in branched/straight-chain ratios between the parental and allele
387 swap strains when L1 larval animals were grown in control conditions (Figure 4-figure supplement
388 3; Figure 4-source data 1-3). Strains with the DBT-1(C78) had higher ISO/SC ratios relative to
389 strains with the DBT-1(S78) for the C17 (CB4856 DBT-1(C78): Tukey HSD *p*-value = 0.0342525,
390 *n* = 3; N2 DBT-1(C78): Tukey HSD *p*-value = 0.0342525, *n* = 6) and C15 ratios (CB4856: Tukey
391 HSD *p*-value = 0.0168749, *n* = 3; N2: Tukey HSD *p*-value = 0.1239674, *n* = 6) (Figure 4-figure
392 supplement 3; Figure 4-source data 1-3). We noted that the C15ISO/straight-chain ratio was not
393 significantly different when comparing the N2 and N2 allele swap strain, but the direction of effect
394 matched our other observations and we saw significant differences in C15ISO levels (N2-C15ISO
395 DBT-1(C78): Tukey HSD *p*-value = 0.0265059, *n* = 6, Figure 4-figure supplement 4; Figure 4-
396 source data 1-3). Importantly, the DBT-1 allele-specific differences in the fatty acid ratio and ISO
397 measurements were not driven by differences in straight-chain fatty acids (Figure 4-figure
398 supplement 4). However, we did not observe the same effect of the DBT-1(C78S) allele at the
399 young adult life stage (Figure 4-figure supplement 5; Figure 4-source data 4). Taken together,
400 these results suggest that the DBT-1(C78) allele produces more branched chain fatty acids than
401 the DBT-1(S78) allele, but this effect was dependent on the developmental stage of the animals.

402 To test the hypothesis that differential arsenic-induced depletion of branched-chain fatty
403 acids in strains with the DBT-1(C78S) causes physiological differences in growth, we tested if
404 mmBCFA supplementation could rescue the effects of arsenic trioxide-induced toxicity. We
405 exposed the parental and the DBT-1 allele-replacement strains to media containing arsenic
406 trioxide alone, C15ISO alone, or a combination of arsenic trioxide and C15ISO. In agreement with
407 previous experiments, the PC1 trait was highly correlated with animal length traits (Supplementary

408 Figure 4-figure supplement 6-7; Figure 4-source data 5-7). When grown in arsenic-trioxide alone
409 the average phenotypic difference between N2 DBT-1(C78) and N2 DBT-1(S78) allele was 3.39
410 units for the PC1 trait. C15ISO supplementation of the arsenic growth media caused a 56.3%
411 rescue of the allele-specific effect in the N2 genetic background (Figure 4C-figure supplement 8).
412 Similarly, when CB4856 DBT-1(C78) animals were supplemented with C15ISO, the allele-specific
413 PC1 phenotypic difference was reduced by 35.9% when compared to the difference between the
414 CB4856 DBT-1(C78) and CB4856 DBT-1(S78) strains in arsenic trioxide alone (Figure 4C-figure
415 supplement 8). By contrast, CB4856 DBT-1(S78) and N2 DBT-1(S78) phenotypes were
416 unaffected by C15ISO supplementation in arsenic trioxide media. Collectively, these data support
417 the hypothesis that the cysteine/serine variant in DBT-1 contributes to arsenic sensitivity in
418 *C. elegans* by reducing ISO fatty acid biosynthesis, and the DBT-1(C78) variant can be partially
419 rescued by supplementation with mmBCFAs.
420

421 **Arsenic exposure increases mmBCFA production and favors a cysteine allele in human 422 DBT1**

423 To test whether our results from *C. elegans* translate to human variation in arsenic sensitivity, we
424 tested the role of DBT1 variation on arsenic trioxide responses and mmBCFA biosynthesis in
425 human cells. The human DBT1 enzyme contains a serine at position 112 that corresponds to the
426 C78 residue in *C. elegans* DBT-1 (Figure 5A-figure supplement 1). Using CRISPR/Cas9, we
427 edited batch cultures of 293T cells to generate a subset of cells with DBT1(S112C). These cells
428 were exposed to arsenic trioxide or control conditions and we monitored changes in the fraction
429 of cells carrying the DBT1(C112) allele. We found that arsenic exposure caused a 4% increase
430 in the fraction of cells that contained the DBT1(C112) allele (Figure 5B, Fisher's exact test, *p*-
431 value < 1.9E-16; Figure 5-source data 1-2). Though the human DBT1 does not vary within the
432 human population at S112, two residues in close spatial proximity to S112 do vary among
433 individuals in the population (R113C and W84C) (Figure 5A) [46]. To test the effects of these
434 residues on arsenic trioxide sensitivity, we performed the same editing and arsenic selection
435 procedure described above. Over the course of the selection experiment, cells with DBT1(W84C)
436 and DBT1(R113C) increased by 2% and 1%, respectively (Figure 5B). Therefore, it appears that
437 all three missense variants caused a slight increase in fitness in batch-edited human cell cultures
438 exposed to arsenic. To determine if branched-chain fatty acid production was altered by arsenic
439 exposure, as we found in *C. elegans*, we measured mmBCFA production in unedited 293T cells
440 in arsenic and mock-treated cultures. We found that overall fatty acid production was markedly
441 reduced in arsenic-treated cultures. In contrast to our observations in *C. elegans*, straight-chain
442 fatty acids were more drastically reduced than ISO fatty acids (Figure 5-source data 3). These
443 results are consistent with our observations that arsenic does not have as strong of an effect on
444 *C. elegans* strains with the DBT-1 S78 allele. Additionally, the DBT1(C112) allele, similar to the
445 *C. elegans* DBT-1(C78) allele, was associated with higher production of mmBCFAs.
446
447
448
449
450

451

452

Figure 5: Protective effect of cysteine residues in human DBT1.

453
454
455
456
457
458

(A) Alignment of *C. elegans* DBT-1 and *H. sapiens* DBT1. The residues tested for an arsenic-specific effect are indicated with arrows - W84C (pink), S112C (blue), and R113C (black). The lysine that is post-translationally modified with a lipid acid is highlighted in red. (B) The percent increase of edited human cells that contain the W84C, S112C, or R113C amino acid change in DBT1 in the presence 5 μ M arsenic trioxide relative to control conditions are shown. The number of reads in 5 μ M arsenic trioxide for all replicates are significantly different from control conditions (Fisher's exact test, p -value < 0.011).

459

460

Discussion

461

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

In this study, we characterized the effects of *C. elegans* natural genetic variation on physiological responses to the pervasive environmental toxin arsenic trioxide. Though the effects of this toxin have been extensively studied in a variety of systems [2,3,39,47,48], recent evidence from human population studies have revealed local adaptations within region-specific subpopulations [6,8,9,49]. Our investigation into the natural variation in *C. elegans* responses to arsenic trioxide led to the discovery of a novel mechanism by which this compound could elicit toxicity. We show that arsenic trioxide differentially inhibits two natural alleles of the E2 domain of the BCKDH complex, which is encoded by the *dbt-1* gene. Specifically, strains with the DBT-1(C78) allele are more sensitive to arsenic trioxide than strains carrying the DBT-1(S78). Furthermore, we show that the increased sensitivity of the DBT-1(C78) allele is largely explained by differences in the production of mmBCFAs (Figure 4B-C), which are critical molecules for developmental progression beyond the first larval stage. Arsenic is thought to inhibit the activity of both the pyruvate dehydrogenase (PDH) and the α -ketoglutarate (KGDH) dehydrogenase complexes through interactions with the reduced form of lipoate [39], which is the cofactor for the E2 domain of these complexes. Like the PDH and KGDH complexes, the E2 domain of BCKDH complex

477 requires the cofactor lipoate to perform its enzymatic function [50–52]. The inhibition of DBT-1 by
478 arsenic trioxide could involve three-point coordination of arsenic by the C78 thiol and the reduced
479 thiol groups of the nearby lipoate. However, based on the crystal structure (PDB:1Y8N), the
480 atomic distance between the C78 thiol group and the thiol groups from the lipoylated lysine is ~32
481 Å, which might be too large a distance for coordinating arsenic (Figure 5A-figure supplement 1)
482 [53]. Alternatively, arsenic trioxide could inhibit DBT-1(C78) through coordination between the
483 thiol groups of C78 and C65 (~8.5 Å) (Figure 5A-figure supplement 1). Analogous thiol-dependent
484 mechanisms have been proposed for the inhibition of other enzymes by arsenic [48]. Despite
485 structural similarities and a shared cofactor, no evidence in the literature indicates that BCKDH is
486 inhibited by arsenic trioxide, so these results demonstrate the first connection of arsenic toxicity
487 to BCKDH E2 subunit inhibition.

488 Multiple sequence alignments show that cysteine residues C65 and C78 of *C. elegans*
489 DBT-1 correspond to residues S112 and C99 of human DBT1 (Figure 5A). Though DBT1 does
490 not vary at position 112 within the human population, two residues (R113C and W84C) in close
491 spatial proximity do [46]. We hypothesized that cysteine variants in DBT1 would sensitize human
492 cells to arsenic trioxide. However, we found that the cysteine variants (W84C, S112C, and
493 R113C) proliferated slightly more rapidly than the parental cells in the presence of arsenic.
494 Notably, a growing body of evidence suggests that certain cancer cells upregulate components
495 involved in BCAA metabolism, and this upregulation promotes tumor growth [54,55]. Perhaps the
496 increased proliferation of human cell lines that contain the DBT1 C112 allele (Figure 5) is caused
497 by increased activity of the BCKDH complex. It is worth noting that human cell lines grown in
498 culture do not have the same strict requirements for mmBCFA, and the requirements for different
499 fatty acids are variable among diverse immortalized cell lines [56,57]. Furthermore, in *C. elegans*,
500 the developmental defects associated with *dbt-1* loss-of-function can be rescued by neuronal-
501 specific expression of *dbt-1* [34], suggesting that the physiological requirements of mmBCFA in
502 *C. elegans* depend on the coordination of multiple tissues that cannot be recapitulated with cell-
503 culture experiments. These results further highlight the complexity of arsenic toxicity, as well as
504 the physiological requirements for BCAA within and across species and could explain the
505 discrepancy between the physiological effects we observed in *C. elegans* and human cell-line
506 experiments. Given that arsenic trioxide has become the standard-of-care for treating APL [58]
507 and is gaining traction in treating other leukemias, it will be important to further explore the effects
508 of arsenic on BCAA metabolism and cancer growth.

509 The C78 allele of DBT-1 is likely the derived allele in the *C. elegans* population because
510 all other organisms have a serine at the corresponding position. The loss of the serine allele in
511 the *C. elegans* population might have been caused by relaxed selection at this locus, though this
512 hypothesis is difficult to test because of the effects of linked selection and decreased
513 recombination in chromosome centers. It is hypothesized that the *C. elegans* species originated
514 from the Pacific Rim and that the ancestral state more closely resembles the CB5846 strain than
515 the N2 strain [30,59]. The CB4856 strain was isolated from the Hawaiian island of O’ahu [60],
516 where environments could have elevated levels of arsenic in the soil from volcanic activity, the
517 farming of cane sugar, former construction material (canec) production facilities, or wood
518 treatment plants (Hawaii.gov). It is possible that as the *C. elegans* species spread across the
519 globe into areas with lower levels of arsenic in the soil and water, the selective pressure to
520 maintain high arsenic tolerance was relaxed and the cysteine allele appeared. Alternatively,

521 higher mmBCFA levels at the L1 larval stage in strains with the DBT-1(C78) allele (Figure 4-figure
522 supplement 3-4) might cause faster development in certain conditions, although we did not
523 observe allele-specific growth differences in laboratory conditions. Despite these clues
524 suggesting selection in local environments, the genomic region surrounding the *dbt-1* locus does
525 not show a signature of selection as measured by Tajima's D [61] (Figure 2-figure supplement 5;
526 Figure 2-source data 9), and the strains with the DBT-1 S78 allele show no signs of geographic
527 clustering (Figure 2-figure supplement 6; Figure 2-source data 10). Our study suggests that
528 *C. elegans* is a powerful model to investigate the molecular mechanisms for how populations
529 respond to environmental toxins.

530

531 Materials and methods

532

533 Key Resources Table:

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
gene (<i>Caenorhabditis elegans</i>)	<i>dbt-1</i>	NA	Wormbase:WB Gene00014054	
strain, strain background (N2)	N2 DBT- 1(S78)	This paper	Andersen_Lab: ECA581	N2::dbt-1(ean15[C78S])
strain, strain background (CB4856)	CB4856 DBT-1(C78)	This paper	Andersen_Lab: ECA590	CB4856::dbt-1(ean34[S78C])
strain, strain background (N2)	Left NIL; CB4856>N2 (II:5.75-8.02 Mb)	This paper	Andersen_Lab: ECA414	eanIR188[ChrII:5.75 - 8.02Mb]
strain, strain background (N2)	Right NIL; CB4856>N2 (II:7.83-9.66 Mb)	This paper	Andersen_Lab: ECA434	eanIR208[ChrII:7.83 - 9.66Mb]
sequence- based reagent	NIL Fd primer	This paper	Andersen_Lab: oECA609	tttcacacaaaccatgcgt
sequence- based reagent	NIL Rv primer	This paper	Andersen_Lab: oECA610	actcgctgcgtggattct
sequence- based reagent	NIL Fd primer	This paper	Andersen_Lab: oECA611	tgtcttcgcaccttactcg
sequence- based reagent	NIL Rv primer	This paper	Andersen_Lab: oECA612	cattcaagtccgggtatcc
sequence- based reagent	Genotype C78S Edit	This paper	Andersen_Lab: oECA1163	GAAGGAATTGCCGAAGTCAGGTTAAG
sequence- based reagent	Genotype C78S Edit	This paper	Andersen_Lab: oECA1165	CCGTCATCTCCACAAAAAGCTTATCTCTC
sequence- based reagent	<i>dbt-1</i> gRNA	This paper	Andersen_Lab: crECA97	CCATCTCCTGTAGATACGAC
sequence- based reagent	N2 <i>dbt-1</i> repair oligo	This paper	Andersen_Lab: oECA1542	CTTCCAGGTACGTGAAAAGAAGGAGATACTTTCGCAGTTGATAAAGTCT GTGAAGTGCAGGTGATAAAGCAGCAGTAACCATCTCAGTAGATACGACG GAATTGTCAAAAATTGTAAGTTCTTCTCAA
sequence- based reagent	CB4856 <i>dbt-1</i> repair oligo	This paper	Andersen_Lab: oECA1543	TTAGGAAGAAACTTACAATTGGACAACTCCGTCGTATCTACAGGAGATG GTTACTGCTGCTTATCGCTTGCACTTCACAGACTTATCGAACTGCGAAAT CGTATCTCTTCTTCACGTACCTGGAAG
sequence- based reagent	<i>dpy-10</i> repair oligo	10.1534/g enetics.11 4.166389	Andersen_Lab: crECA37	CACTTGAACCTCAATACGGCAAGATGAGAATGACTGGAAACCGTACCGCAT GCGGTGCCATGGTAGCGGAGCTTCACATGGCTTCAGACCAACAGCCTAT
sequence- based reagent	<i>dpy-10</i> gRNA	10.1534/g enetics.11 4.166389	Andersen_Lab: crECA36	GCTACCATAGGCACCACGAG

sequence-based reagent	Human gRNA S112C and R113C	This paper	Guide_1 used in RDA_74	TCCATCATAACGACTAGTGA
sequence-based reagent	S112C repair template	This paper	1192 DBT1-repair-S112C	ATAGCATCTGTGAAGTCAAAGTGATAAAAGCTCTGTTAC A ATCACT T GTCG TTATGATGGAGTCATTA AAA ACTCTATT
sequence-based reagent	R113C repair template	This paper	1193 DBT1-repair-R113C	ATAGCATCTGTGAAGTCAAAGTGATAAAAGCTCTGTTAC A ATCACTAG T G TTATGATGGAGTCATTA AAA ACTCTATT
sequence-based reagent	Fwd PCR C	This paper	1188 DBT1-PCR-C	TtgtgaaaggacaaacaccgAGAAGGAGATA C AGTGTCTCAGT
sequence-based reagent	Fwd PCR D	This paper	1189 DBT1-PCR-D	TtgtgaaaggacaaacaccgTGTCTCAGTTGATAGCATCTGTG
sequence-based reagent	Human gRNA W84C	This paper	Guide_2 used in RDA_75	TCTTTAGGTATGAAAGA
sequence-based reagent	W84C repair template	This paper	1195 DBT1-repair-W84C-v2	GA C CTGTTCCATAAAAGTGTCTCATTCTTTCTTTAG T TATGTGA G GA GGAGATACAGTGTCTCAGTTGATAGCAT
sequence-based reagent	Fwd PCR A	This paper	1186 DBT1-PCR-A	TtgtgaaaggacaaacaccgGCATGGCATTACATCCTTAATATGAT
sequence-based reagent	Fwd PCR B	This paper	1187 DBT1-PCR-B	TtgtgaaaggacaaacaccgCCTTAATATGATCTGACTTATGACTGTTT
sequence-based reagent	Rev PCR 1	This paper	1190 DBT1-PCR-Rev1	TctactattttccctgcactgtCTACTAATGGCTCCCCACAT
sequence-based reagent	Rev PCR 2	This paper	1191 DBT1-PCR-Rev2	TctactattttccctgcactgtCAATACTTAAAGCTCCGTTCTAT
transfected construct (<i>Homo Sapiens</i>)	S112C and R113C Cas9-sgRNA plasmid	This paper	p1054	
transfected construct (<i>Homo Sapiens</i>)	W84C Cas9-sgRNA plasmid	This paper	p1052	

534

535 Strains

536 Animals were fed the bacterial strain OP50 and grown at 20°C on modified nematode growth
537 medium (NGM), containing 1% agar and 0.7% agarose to prevent burrowing of the wild isolates
538 [62]. For each assay, strains were grown for five generations with no strain entering starvation or
539 encountering dauer-inducing conditions [63]. Wild *C. elegans* isolates used for genome-wide
540 association and recombinant inbred advanced intercross lines (RIAILs) used for linkage mapping
541 have been described previously [31,32,35]. Strains constructed for this manuscript are listed
542 above in the Key Resources Table.

543

544 High-throughput fitness assay

545 We used the high-throughput fitness assay (HTA) described previously [35]. In short, strains are
546 passaged for four generations before bleach-synchronization and aliquoted to 96-well microtiter
547 plates at approximately one embryo per microliter in K medium [62]. The final concentration of
548 NaCl in the K medium for the genome-wide association (GWA) and linkage mapping assays was
549 51 mM. For all subsequent experiments the final NaCl concentration was 10.2 mM. The following
550 day, hatched and synchronized L1 animals were fed HB101 bacterial lysate (Pennsylvania State
551 University Shared Fermentation Facility, State College, PA, [64]) at a final concentration of 5
552 mg/ml and grown for two days at 20°C. Next, three L4 larvae were sorted using a large-particle
553 flow cytometer (COPAS BIOSORT, Union Biometrica, Holliston, MA) into microtiter plates that
554 contain HB101 lysate at 10 mg/ml, K medium, 31.25 µM kanamycin, and either arsenic trioxide
555 dissolved in 1% water or 1% water alone. The animals were then grown for four days at 20°C.
556 The resulting populations were treated with sodium azide (50 mM) prior to being measured with

557 the BIOSORT. All raw experimental data can be found on FigShare
558 (https://figshare.com/articles/Raw_experimental_files_used_for_manuscript/7458980).
559

560 **Calculation of fitness traits for genetic mappings**

561 Phenotype data generated using the BIOSORT were processed using the R package *easysorter*,
562 which was specifically developed for processing this type of data [65]. Briefly, the function
563 *read_data*, reads in raw phenotype data and runs a support vector machine to identify and
564 eliminate bubbles. Next, the *remove_contamination* function eliminates any wells that were
565 identified as contaminated prior to scoring population parameters. This analysis results in
566 processed BIOSORT data where each observation is for a given strain corresponds to the
567 measurements for an individual animal. However, the phenotypes we used for mapping and
568 follow-up experiments are summarized statistics of populations of animals in each well of a 96-
569 well plate. The *sumplate* function was used to generate summary statistics of the measured
570 parameters for each animal in each well. These summary statistics include the 10th, 25th, 50th,
571 75th, and 90th quantiles for time of flight (TOF), animal extinction (EXT), and three fluorescence
572 channels (Green, Yellow, and Red), which correspond to animal length, optical density, and ability
573 to pump fluorescent beads, respectively. Measured brood sizes (n) are normalized by the number
574 of animals that were originally sorted into each well (norm.n). For mapping experiments, a single
575 well replicate for each strain is summarized using the *sumplate* function. For follow-up
576 experiments, multiple replicates for each strain indicated by a unique plate, well, and column were
577 used. After summary statistics for each well are calculated, we accounted for differences between
578 assays using the *regress(assay=TRUE)* function in the *easysorter* package. Outliers in the GWA
579 and linkage mapping experiments were identified and eliminated using the *bamf_prune* function
580 in *easysorter*. For follow-up experiments that contained multiple replicates for each strain, we
581 eliminated strain replicates that were more than two standard deviations from the strain mean for
582 each condition tested. Finally, arsenic-specific effects were calculated using the
583 *regress(assay=FALSE)* function from *easysorter*, which accounts for strain-specific differences in
584 growth parameters present in control conditions.
585

586 **Principal component analysis of processed BIOSORT measured traits**

587 The COPAS BIOSORT measures individual animal length (TOF), optical density (EXT),
588 fluorescence (green, yellow, and red). We use these data to calculate the total number of animals
589 in a well and then normalize by the number of animals initially sorted into the well (brood size). All
590 of these measurements were then summarized using the *easysorter* package to generate various
591 summary statistics of each measured parameter, including five distribution quantiles and
592 measures of dispersion [35]. Because fluorescent beads were only used for linkage and GWA
593 mapping experiments, we eliminated all of these traits prior to PCA analysis for all non-mapping
594 experiments. Additionally, we removed all summary statistic traits related to data dispersion (IQR,
595 variance, and coefficient of variation) for all experiments. Prior to principal component analysis
596 (PCA), HTA phenotypes were scaled to have a mean of zero and a standard deviation of one
597 using the *scale* function in R. PCA was performed using the *prcomp* function in R [66].
598 Eigenvectors were subsequently extracted from the object returned by the *prcomp* function.
599

600 **Arsenic trioxide dose-response assays**

601 All dose-response experiments were performed on four genetically diverged strains (N2, CB4856,
602 DL238, and JU775) in technical quadruplicates prior to performing GWA and linkage mapping
603 experiments (Figure 1-source data 1). Animals were assayed using the HTA, and phenotypic
604 analyses were performed as described above. The arsenic trioxide concentration for GWA and
605 linkage mapping experiments was chosen based on an observable effect for animal length and
606 brood size phenotypes in the presence of arsenic.

607

608 **Heritability calculations**

609 For dose response experiments, broad-sense heritability (H^2) estimates were calculated using
610 the *lmer* function in the *lme4* package with the following linear mixed model (phenotype $\sim 1 +$
611 $(1|strain)$) [67]. H^2 was then calculated as the fraction of the total variance that can be explained
612 by the random component (strain) of the mixed model. Prior to estimating H^2 , we removed outlier
613 replicates that we defined as replicates with values greater than two standard deviations away
614 from the mean phenotype. Outliers were defined on a per-trait and per-strain basis. Heritability
615 estimates for dose response experiments are in Figure 1-source data 2.

616 Heritability estimates for the linkage mapping experiment were calculated using two
617 approaches. In both approaches, we used the previously described RIAIL genotype matrix to
618 compute relatedness matrices [35]. In the first approach, a variance component model using the
619 R package *regress* was used to estimate the fraction of phenotypic variation explained by additive
620 and epistatic genetic factors, H^2 , or just additive genetic factors, h^2 [68,69], using the formula (y
621 $\sim 1, \sim ZA+ZAA$), where y is a vector of RIAIL phenotypes, ZA is the additive relatedness matrix,
622 and ZAA is the pairwise-interaction relatedness matrix. The additive relatedness matrix was
623 calculated as the correlation of marker genotypes between each pair of strains. In addition, a two-
624 component variance model was calculated with both an additive and pairwise-interaction effect.
625 The pairwise-interaction relatedness matrix was calculated as the Hadamard product of the
626 additive relatedness matrix.

627 The second approach utilized a linear mixed model and the realized additive and epistatic
628 relatedness matrices [70–73]. We used the *mmmer* function in the *sommer* package with the
629 formula ($y \sim A+E$) to estimate variance components, where y is a vector of RIAIL phenotypes, A
630 is the realized additive relatedness matrix, and E is the epistatic relatedness matrix. This same
631 approach was used to estimate heritability for the GWA mapping phenotype data, with the only
632 difference being that we used the wild isolate genotype matrix described below. Heritability
633 estimates for RIAIL and wild isolate data are in Figure 1-source data 12 and Figure 2-source data
634 6, respectively.

635

636 **Effect size calculations for dose response assay**

637 We first fit a linear model with the formula (phenotype \sim strain) for all measured and principal
638 component traits for each concentration of arsenic trioxide using the *lm* R function. Next, we
639 extracted effect sizes using the *anova_stats* function from the *sjstats* R package [74]. Effect sizes
640 for dose responses are in Figure 1-source data 3.

641

642 **Linkage mapping**

643 A total of 262 RIAILs were phenotyped in the HTA described previously for control and arsenic
644 trioxide conditions [35,36]. The phenotype and genotype data were entered into R and scaled to

645 have a mean of zero and a variance of one for linkage analysis (Figure 1-source data 8).
646 Quantitative trait loci (QTL) were detected by calculating logarithm of odds (LOD) scores for each
647 marker and each trait as $-n(\ln(1 - r^2)/2\ln(10))$, where r is the Pearson correlation coefficient
648 between RIAIL genotypes at the marker and phenotype trait values [75]. The maximum LOD
649 score for each chromosome for each trait was retained from three iterations of linkage mappings
650 (Figure 1-source data 11). We randomly permuted the phenotype values of each RIAIL while
651 maintaining correlation structure among phenotypes 1000 times to estimate the significance
652 threshold empirically. The significance threshold was set using a genome-wide error rate of 5%.
653 Confidence intervals were defined as the regions contained within a 1.5 LOD drop from the
654 maximum LOD score [76].
655

656 **Near-isogenic line (NIL) generation**

657 NILs were generated by crossing N2xCB4856 RIAILs to each parental genotype. For each NIL,
658 eight crosses were performed followed by six generations of selfing to homozygose the genome.
659 Reagents used to generate NILs are detailed in the Key Resources Table. The NILs responses
660 to 1000 μ M arsenic trioxide were quantified using the HTA described above (Figure 1-source data
661 13). NIL whole-genome sequencing and analysis was performed as described previously [77]
662 (Figure 1-source data 16).
663

664 **Genome-wide association mapping**

665 Genome-wide association (GWA) mapping was performed using phenotype data from 86
666 *C. elegans* isotypes (Figure 2-source data 1). Genotype data were acquired from the latest VCF
667 release (Release 20180527) from CeNDR that was imputed as described previously [32]. We
668 used BCFtools [78] to filter variants that had any missing genotype calls and variants that were
669 below 5% minor allele frequency. We used PLINK v1.9 [79,80] to LD-prune the genotypes at a
670 threshold of $r^2 < 0.8$, using `--indep-pairwise 50 10 0.8`. This resulting genotype set consisted of
671 59,241 markers that were used to generate the realized additive kinship matrix using the *A.mat*
672 function in the *rrBLUP* R package [70] (Figure 2-source data 5). These markers were also used
673 for genome-wide mapping. However, because these markers still have substantial LD within this
674 genotype set, we performed eigen decomposition of the correlation matrix of the genotype matrix
675 using *eigs_sym* function in *Rspectra* package [81]. The correlation matrix was generated using
676 the *cor* function in the *correlateR* R package [82]. We set any eigenvalue greater than one from
677 this analysis to one and summed all of the resulting eigenvalues [83]. This number was 500.761,
678 which corresponds to the number of independent tests within the genotype matrix. We used the
679 *GWAS* function in the *rrBLUP* package to perform genome-wide mapping with the following
680 command: `rrBLUP::GWAS(pheno = PC1, geno = Pruned_Markers, K = KINSHIP, min.MAF =`
681 `0.05, n.core = 1, P3D = FALSE, plot = FALSE)`. To perform fine-mapping, we defined confidence
682 intervals from the genome-wide mapping as +/- 100 SNVs from the rightmost and leftmost
683 markers above the Bonferroni significance threshold. We then generated a QTL region of interest
684 genotype matrix that was filtered as described above, with the one exception that we did not
685 perform LD pruning. We used PLINK v1.9 to extract the LD between the markers used for fine
686 mapping and the peak QTL marker identified from the genome-wide scan. We used the same
687 command as above to perform fine mapping, but with the reduced variant set. The workflow for
688 performing GWA mapping can be found on <https://github.com/AndersenLab/cegwas2-nf>. All trait

689 mapping results can be found on FigShare
690 (https://figshare.com/articles/GWA_results_for_all_traits_mapped_in_manuscript/7458932).
691

692 **Generation of *dbt-1* allele replacement strains**

693 Allele replacement strains were generated using CRISPR/Cas9-mediated genome editing, using
694 the co-CRISPR approach [84] with Cas9 ribonucleoprotein delivery [85]. Alt-R™ crRNA and
695 tracrRNA were purchased from IDT (Skokie, IL). tracrRNA (IDT, 1072532) was injected at a
696 concentration of 13.6 μ M. The *dpn-10* and the *dbt-1* crRNAs were injected at 4 μ M and 9.6 μ M,
697 respectively. The *dpn-10* and the *dbt-1* single-stranded oligodeoxynucleotides (ssODN) repair
698 templates were injected at 1.34 μ M and 4 μ M, respectively. Cas9 protein (IDT, 1074182) was
699 injected at 23 μ M. To generate injection mixes, the tracrRNA and crRNAs were incubated at 95°C
700 for five minutes and 10°C for 10 minutes. Next, Cas9 protein was added and incubated for five
701 minutes at room temperature. Finally, repair templates and nuclease-free water were added to
702 the mixtures and loaded into pulled injection needles (1B100F-4, World Precision Instruments,
703 Sarasota, FL). Individual injected *P₀* animals were transferred to new 6 cm NGM plates
704 approximately 18 hours after injections. Individual *F₁* rollers were then transferred to new 6 cm
705 plates to generate self-progeny. The region surrounding the desired S78C (or C78S) edit was
706 then amplified from *F₁* rollers using primers oECA1163 and oECA1165. The PCR products were
707 digested using the *Sfcl* restriction enzyme (R0561S, New England Biolabs, Ipswich, MA).
708 Differential band patterns signified successfully edited strains because the N2 S78C, which is
709 encoded by the CAG codon, creates an additional *Sfcl* cut site. Non-Dpy, non-Rol progeny from
710 homozygous edited *F₁* animals were propagated. If no homozygous edits were obtained,
711 heterozygous *F₁* progeny were propagated and screened for the presence of the homozygous
712 edits. *F₁* and *F₂* progeny were then Sanger sequenced to verify the presence of the proper edited
713 sequence. The phenotypes of allele swap strains in control and arsenic trioxide conditions were
714 measured using the HTA described above (Figure 1-source data 13). PCA phenotypes for allele-
715 swap strains were generated the same way as described above for GWA mapping traits and are
716 located in Figure 1-source data 13.
717

718 **Rescue with 13-methyltetradecanoic acid**

719 Strains were grown as described for a standard HTA experiment. In addition to adding arsenic
720 trioxide to experimental wells, we also added a range of C15iso (13-methyltetradecanoic acid,
721 Matreya Catalog # 1605) concentrations to assay rescue of arsenic effects (Figure 4-source data
722 5).
723

724 **Growth conditions for metabolite profiling**

725 For L1 larval stage assays, chunks (~1 cm) were taken from starved plates and placed on multiple
726 fresh 10 cm plates. Prior to starvation, animals were washed off of the plates using M9, and
727 embryos were prepared by bleach synchronization. Approximately 40,000 embryos were
728 resuspended in 25 ml of K medium and allowed to hatch overnight at 20°C. L1 larvae were fed
729 15 mg/ml of HB101 lysate the following morning and allowed to grow at 20°C for 72 hours. We
730 harvested 100,000 embryos from gravid adults by bleaching. These embryos were hatched
731 overnight in 50 ml of K medium in a 125 ml flask. The following day, we added arsenic trioxide to
732 a final concentration of 100 μ M and incubated the cultures for 24 hours. After 24 hours, we added

733 HB101 bacterial lysate (2 mg/ml) to each culture. Finally, we transferred the cultures to 50 ml
734 conical tubes, centrifuged the cultures at 3000 RPM for three minutes to separate the pellet and
735 supernatant. The supernatant and pellets from the cultures were frozen at -80°C and prepared
736 for analysis. For young adult stage assays, 45,000 animals per culture were prepared as
737 described above but in S medium, at a density of three animals per microliter, and fed HB101
738 lysate (5 mg/mL). These cultures were shaken at 200 RPM, 20°C in 50 mL Erlenmeyer flasks for
739 62 h. For harvesting, we settled 15 mL of cultures for 15 minutes at room temperature and then
740 pipetted the top 12 mL of solution off of the culture. The remaining 3 mL of animal pellet was
741 washed with 10 mL of M9, centrifuged at 1000 g for one minute, and then the supernatant
742 removed. This wash was repeated once more with M9 and again with water. The final nematode
743 pellet was snap frozen in liquid nitrogen.

744

745 **Nematode extraction**

746 Pellets were lyophilized 18-24 hours using a VirTis BenchTop 4K Freeze Dryer until a chalky
747 consistency was achieved. Dried pellets were transferred to 1.5 mL microfuge tubes and dry pellet
748 weight recorded. Pellets were disrupted in a Spex 1600 MiniG tissue grinder after the addition of
749 three stainless steel grinding balls to each sample. Microfuge tubes were placed in a Cryoblock
750 (Model 1660) cooled in liquid nitrogen, and samples were disrupted at 1100 RPM for two cycles
751 of 30 seconds. Each sample was individually dragged across a microfuge tube rack eight times,
752 inverted, and flicked five times to prevent clumping. This process was repeated two additional
753 rounds for a total of six disruptions. Pellets were transferred to 4 mL glass vials in 3 mL 100%
754 ethanol. Samples were sonicated for 20 minutes (on/off pulse cycles of two seconds at power 90
755 A) using a Qsonica Ultrasonic Processor (Model Q700) with a water bath cup horn adaptor (Model
756 431C2). Following sonication, glass vials were centrifuged at 2750 RCF for five minutes in an
757 Eppendorf 5702 Centrifuge using rotor F-35-30-17. The resulting supernatant was transferred to
758 a clean 4 mL glass vial and concentrated to dryness in an SC250EXP Speedvac Concentrator
759 coupled to an RVT5105 Refrigerated Vapor Trap (Thermo Scientific). The resulting powder was
760 suspended in 100% ethanol according to its original dry pellet weight: 0.01 mL 100% ethanol per
761 mg of material. The suspension was sonicated for 10 minutes (pulse cycles of two seconds on
762 and three seconds off at power 90 A) followed by centrifugation at 20,817 RCF in a refrigerated
763 Eppendorf centrifuge 5417R at 4°C. The resulting supernatant was transferred to an HPLC vial
764 containing a Phenomenex insert (cat #AR0-4521-12) and centrifuged at 2750 RCF for five
765 minutes in an Eppendorf 5702 centrifuge. The resulting supernatant was transferred to a clean
766 HPLC vial insert and stored at -20°C or analyzed immediately.

767

768 **Mass spectrometric analysis**

769 Reversed-phase chromatography was performed using a Dionex Ultimate 3000 Series LC system
770 (HPG-3400 RS High Pressure pump, TCC-3000RS column compartment, WPS-3000TRS
771 autosampler, DAD-3000 Diode Array Detector) controlled by Chromeleon Software
772 (ThermoFisher Scientific) and coupled to an Orbitrap Q-Exactive mass spectrometer controlled
773 by Xcalibur software (ThermoFisher Scientific). Metabolites were separated on a Kinetex EVO
774 C18 column, 150 mm x 2.1 mm, particle size 1.7 µm, maintained at 40°C with a flow rate of 0.5
775 mL/min. Solvent A: 0.1% ammonium acetate in water; solvent B: acetonitrile (ACN). A/B gradient
776 started at 5% B for 30 seconds, followed by a linear gradient to 95% B over 13.5 minutes, then a

777 linear gradient to 100% B over three minutes. 100% B was maintained for one minute. Column
778 was washed after each run with 5:1 isopropanol:ACN, flow rate of 0.12 mL/min for five minutes,
779 followed by 100% ACN for 2.9 minutes, a linear gradient to 95:5 water:ACN over 0.1 minutes, and
780 then 95:5 water:ACN for two minutes with a flow rate of 0.5 mL/min. A heated electrospray
781 ionization source (HESI-II) was used for the ionization with the following mass spectrometer
782 parameters: spray voltage: 3 kV; capillary temperature: 320°C; probe heater temperature: 300°C;
783 sheath gas: 70 AU; auxiliary gas flow: 2 AU; resolution: 240,000 FWHM at m/z 200; AGC target:
784 5e6; maximum injection time: 300 ms. Each sample was analyzed in negative and positive modes
785 with m/z range 200-800. Fatty acids and most ascarosides were detected as [M-H]⁻ ions in
786 negative ionization mode. Peaks of known abundant ascarosides and fatty acids were used to
787 monitor mass accuracy, chromatographic peak shape, and instrument sensitivity for each sample.
788 Processed metabolite measures can be found in Figure 4-source data 1-4 [86].
789

790 **Statistical analyses**

791 All *p*-values testing the differences of strain phenotypes in the NIL, allele-replacement, and
792 C15ISO experiments were performed in R using the *TukeyHSD* function with an ANOVA model
793 with the formula (*phenotype* ~ *strain*). *p*-values of individual pairwise strain comparisons are
794 reported in each figure legend.
795

796 **CRISPR-Cas9 gene editing in human cells**

797 Gene-editing experiments were performed in a single parallel culture experiment using human
798 293T cells (ATCC) grown in DMEM with 10% FBS. On day zero, 300,000 cells were seeded per
799 well in a six-well plate format. The following day, two master mixes were prepared: a) LT-1
800 transfection reagent (Mirus) was diluted 1:10 in Opti-MEM and incubated for five minutes; b) a
801 DNA mix of 500 ng Cas9-sgRNA plasmid (Supplementary File 1-2) with 250 pmol repair template
802 oligonucleotide was diluted in Opti-MEM in a final volume of 100 μ L. 250 μ L of the lipid mix was
803 added to each of the DNA mixes and incubated at room temperature for 25 minutes. Following
804 incubation, the full 350 μ L volume of DNA and lipid mix was added dropwise to the cells. These
805 six-well plates were then centrifuged at 1000 x g for 30 minutes. After six hours, the media on the
806 cells was replaced. For the next six days, cells were expanded and passaged as needed. On day
807 seven, one million cells were taken from each set of edited and unedited cells and placed into
808 separate T75s with either media-only or 5 μ M arsenic-containing media. Days seven to fourteen,
809 arsenic and media-only conditions were maintained at healthy cell densities. Days fourteen to
810 eighteen, arsenic exposed cell populations were maintained off arsenic to allow the populations
811 to recover prior to sequencing. Media-only conditions were maintained in parallel. On day
812 eighteen, all arsenic and media-only conditions were pelleted for genomic DNA extraction.
813

814 **Analysis of CRISPR-Cas9 editing in human cells**

815 Genomic DNA was extracted from cell pellets using the QIAGEN (QIAGEN, Hilden, Germany)
816 Midi or Mini Kits based on the size of the cell pellet (51183, 51104) according to the
817 manufacturer's recommendations. DBT1 loci were first amplified with 17 cycles of PCR using a
818 touchdown protocol and the NEBnext 2x master mix (New England Biolabs M0541). The resulting
819 product served as input to a second PCR, using primers that appended a sample-specific barcode
820 and the necessary adaptors for Illumina sequencing. The resulting DNA was pooled, purified with

821 SPRI beads (A63880, Beckman Coulter, Brea, CA), and sequenced on an Illumina MiSeq with a
822 300-nucleotide single-end read with an eight nucleotide index read. For each sample, the number
823 of reads exactly matching the wild-type and edited DBT1 sequence were determined (Figure 5-
824 source data 1).

825

826 **Preparing human cells for Mass Spectroscopy**

827 Mass spectroscopy experiments used human 293T cells (ATCC) grown in DMEM with 10% FBS.
828 On day zero, 150,000 cells were seeded into 15 cm tissue cultures dishes with 15 mL of either
829 2.5 μ M arsenic or no arsenic media. Each condition had five replicates. On day three, the no
830 arsenic cells were approaching confluence and required passaging. Arsenic conditions were at
831 ~30% confluence and received a media change. On day seven, both conditions were near
832 confluence, media was removed, and plates were rinsed with ice cold PBS, remaining liquid
833 removed. Plates were frozen at -80°C before processing for mass spectrometric analysis. Cells
834 were scraped off the plates with PBS and pelleted in microfuge tubes. Cell pellets were lyophilized
835 18-24 hours using a VirTis BenchTop 4K Freeze Dryer and extracted in 100% ethanol using the
836 same sonication program as described for nematode extraction. Following sonication, samples
837 were centrifuged at 20,817 RCF in a refrigerated Eppendorf centrifuge 5417R at 4 °C. Clarified
838 supernatant was aliquoted to a new tube and concentrated to dryness in an SC250EXP Speedvac
839 Concentrator coupled to an RVT5105 Refrigerated Vapor Trap (Thermo Scientific). The resulting
840 material was suspended in .1 mL 100% ethanol and analyzed by LC-MS as described. Metabolite
841 measurements can be found in Figure 5-source data 3.

842

843 **Tajima's D calculation**

844 We used the VCF corresponding to CeNDR release 20160408
845 (<https://elegansvariation.org/data/release/20160408>) to calculate Tajima's D. Tajima's D was
846 calculated using the *tajimas_d* function in the cegwas package using default parameters (window
847 size = 500 SNVs, sliding window distance = 50 SNVs, outgroup = N2) (Figure 2-source data 9).
848 Isolation locations of strains can be found in Figure 2-source data 10.

849

850 **Funding:**

851 This work was supported by a National Institutes of Health R01 subcontract to ECA (GM107227),
852 the Chicago Biomedical Consortium with support from the Searle Funds at the Chicago
853 Community Trust, a Sherman-Fairchild Cancer Innovation Award to ECA, and an American
854 Cancer Society Research Scholar Grant to ECA (127313-RSG-15-135-01-DD), along with
855 support to SZ from the Cell and Molecular Basis of Disease training grant (T32GM008061) and
856 The Bernard and Martha Rappaport Fellowship. JGD is a Merkin Institute Fellow and is supported
857 by the Next Generation Fund at the Broad Institute of MIT and Harvard. FCS, BWF, OP, and FJT
858 were supported by R01 GM088290. The funders had no role in study design, data collection and
859 analysis, decision to publish, or preparation of the manuscript.

860

861 **Acknowledgments:**

862 The authors would like to thank Samuel Rosenberg for assistance on early mappings of drug
863 sensitivities, Mudra Hegde of the Broad Institute for assistance with sequence analysis, and
864 members of the Andersen laboratory for critical reading of this manuscript.

865 **References**

- 866 1. Ravenscroft P, Brammer H, Richards K. Arsenic pollution : a global synthesis [Internet].
867 Chichester, U.K.: Wiley-Blackwell; 2009. Available:
868 <http://www.worldcat.org/oclc/214285927?referer=xid>
- 869 2. Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79: 391–396.
870 doi:10.1136/pmj.79.933.391
- 871 3. Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta. 2002;58: 201–235.
872 doi:10.1016/S0039-9140(02)00268-0
- 873 4. Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H. Metabolism, toxicity and
874 anticancer activities of arsenic compounds. Oncotarget. 2017;8: 23905–23926.
875 doi:10.18632/oncotarget.14733
- 876 5. Stýblo M, Drobná Z, Jaspers I, Lin S, Thomas DJ. The role of biomethylation in toxicity and
877 carcinogenicity of arsenic: a research update. Environ Health Perspect. 2002;110 Suppl 5:
878 767–771. Available: <https://www.ncbi.nlm.nih.gov/pubmed/12426129>
- 879 6. Schlebusch CM, Gattepaille LM, Engström K, Vahter M, Jakobsson M, Broberg K. Human
880 adaptation to arsenic-rich environments. Mol Biol Evol. 2015;32: 1544–1555.
881 doi:10.1093/molbev/msv046
- 882 7. Chung C-J, Hsueh Y-M, Bai C-H, Huang Y-K, Huang Y-L, Yang M-H, et al. Polymorphisms
883 in arsenic metabolism genes, urinary arsenic methylation profile and cancer. Cancer
884 Causes Control. 2009;20: 1653–1661. doi:10.1007/s10552-009-9413-0
- 885 8. Fujihara J, Fujii Y, Agusa T, Kunito T, Yasuda T, Moritani T, et al. Ethnic differences in five
886 intronic polymorphisms associated with arsenic metabolism within human arsenic (+3
887 oxidation state) methyltransferase (AS3MT) gene. Toxicol Appl Pharmacol. 2009;234: 41–
888 46. doi:10.1016/j.taap.2008.09.026
- 889 9. Gomez-Rubio P, Meza-Montenegro MM, Cantu-Soto E, Klimecki WT. Genetic association
890 between intronic variants in AS3MT and arsenic methylation efficiency is focused on a large
891 linkage disequilibrium cluster in chromosome 10. J Appl Toxicol. 2010;30: 260–270.
892 doi:10.1002/jat.1492
- 893 10. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, et al. Use of arsenic trioxide (As2O3)
894 in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent
895 dual effects on APL cells. Blood. 1997;89: 3345–3353. Available:
896 <https://www.ncbi.nlm.nih.gov/pubmed/9129041>
- 897 11. Antman KH. Introduction: the history of arsenic trioxide in cancer therapy. Oncologist.
898 2001;6 Suppl 2: 1–2. doi:10.1634/theoncologist.6-suppl_2-1
- 899 12. Murgo AJ. Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the
900 National Cancer Institute Cooperative Research and Development Studies. Oncologist.
901 2001;6 Suppl 2: 22–28. doi:10.1634/theoncologist.6-suppl_2-22
- 902 13. Emi N. Arsenic Trioxide: Clinical Pharmacology and Therapeutic Results. *Chemotherapy for Leukemia*. Springer, Singapore; 2017. pp. 221–238. doi:10.1007/978-981-10-3332-2_13

904 14. de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15;17) translocation of acute
905 promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed
906 locus. *Nature*. 1990;347: 558–561. doi:10.1038/347558a0

907 15. Grignani F, Valtieri M, Gabbianelli M, Gelmetti V, Botta R, Luchetti L, et al. PML/RAR alpha
908 fusion protein expression in normal human hematopoietic progenitors dictates myeloid
909 commitment and the promyelocytic phenotype. *Blood*. 2000;96: 1531–1537. Available:
910 <https://www.ncbi.nlm.nih.gov/pubmed/10942402>

911 16. Zhang X-W, Yan X-J, Zhou Z-R, Yang F-F, Wu Z-Y, Sun H-B, et al. Arsenic trioxide
912 controls the fate of the PML-RARalpha oncprotein by directly binding PML. *Science*.
913 2010;328: 240–243. doi:10.1126/science.1183424

914 17. Tomita A, Kiyoi H, Naoe T. Mechanisms of action and resistance to all-trans retinoic acid
915 (ATRA) and arsenic trioxide (As₂O₃) in acute promyelocytic leukemia. *Int J Hematol*.
916 2013;97: 717–725. doi:10.1007/s12185-013-1354-4

917 18. Hoonjan M, Jadhav V, Bhatt P. Arsenic trioxide: insights into its evolution to an anticancer
918 agent. *J Biol Inorg Chem*. 2018;23: 313–329. doi:10.1007/s00775-018-1537-9

919 19. Zeidan AM, Gore SD. New strategies in acute promyelocytic leukemia: moving to an
920 entirely oral, chemotherapy-free upfront management approach. *Clin Cancer Res*. 2014;20:
921 4985–4993. doi:10.1158/1078-0432.CCR-13-2725

922 20. Kniazeva M, Crawford QT, Seiber M, Wang C-Y, Han M. Monomethyl branched-chain fatty
923 acids play an essential role in *Caenorhabditis elegans* development. *PLoS Biol*. 2004;2:
924 E257. doi:10.1371/journal.pbio.0020257

925 21. Luz AL, Godebo TR, Smith LL, Leuthner TC, Maurer LL, Meyer JN. Deficiencies in
926 mitochondrial dynamics sensitize *Caenorhabditis elegans* to arsenite and other
927 mitochondrial toxicants by reducing mitochondrial adaptability. *Toxicology*. 2017;387: 81–
928 94. doi:10.1016/j.tox.2017.05.018

929 22. Spracklin G, Fields B, Wan G, Becker D, Wallig A, Shukla A, et al. The RNAi Inheritance
930 Machinery of *Caenorhabditis elegans*. *Genetics*. 2017;206: 1403–1416.
931 doi:10.1534/genetics.116.198812

932 23. Watson E, MacNeil LT, Arda HE, Zhu LJ, Walhout AJM. Integration of Metabolic and Gene
933 Regulatory Networks Modulates the *C. elegans* Dietary Response. *Cell*. Elsevier; 2013;153:
934 253–266. doi:10.1016/j.cell.2013.02.050

935 24. Luz AL, Meyer JN. Effects of reduced mitochondrial DNA content on secondary
936 mitochondrial toxicant exposure in *Caenorhabditis elegans*. *Mitochondrion*. 2016;30: 255–
937 264. doi:10.1016/j.mito.2016.08.014

938 25. Luz AL, Godebo TR, Bhatt DP, Ilkayeva OR, Maurer LL, Hirshey MD, et al. From the
939 Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in
940 *Caenorhabditis elegans*. *Toxicol Sci*. 2016;152: 349–362. doi:10.1093/toxsci/kfw093

941 26. Schmeisser S, Schmeisser K, Weimer S, Groth M, Priebe S, Fazius E, et al. Mitochondrial
942 hormesis links low-dose arsenite exposure to lifespan extension. *Aging Cell*. 2013;12: 508–
943 517. doi:10.1111/ace.12076

944 27. Wyatt LH, Luz AL, Cao X, Maurer LL, Blawas AM, Aballay A, et al. Effects of methyl and
945 inorganic mercury exposure on genome homeostasis and mitochondrial function in
946 *Caenorhabditis elegans*. *DNA Repair* . 2017;52: 31–48. doi:10.1016/j.dnarep.2017.02.005

947 28. Large EE, Xu W, Zhao Y, Brady SC, Long L, Butcher RA, et al. Selection on a Subunit of
948 the NURF Chromatin Remodeler Modifies Life History Traits in a Domesticated Strain of
949 *Caenorhabditis elegans*. *PLoS Genet*. Public Library of Science; 2016;12: e1006219.
950 doi:10.1371/journal.pgen.1006219

951 29. Wang Y, Ezemaduka AN, Li Z, Chen Z, Song C. Joint Toxicity of Arsenic, Copper and
952 Glyphosate on Behavior, Reproduction and Heat Shock Protein Response in
953 *Caenorhabditis elegans*. *Bull Environ Contam Toxicol*. 2017;98: 465–471.
954 doi:10.1007/s00128-017-2042-5

955 30. Andersen EC, Bloom JS, Kruglyak L, Félix M-A, Ghosh R, Gerke JP, et al. Chromosome-
956 scale selective sweeps shape *Caenorhabditis elegans* genomic diversity. *Nat Genet*.
957 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.;
958 2012;44: 285–290. doi:10.1038/ng.1050

959 31. Cook DE, Zdraljevic S, Tanny RE, Seo B, Riccardi DD, Noble LM, et al. The Genetic Basis
960 of Natural Variation in *Caenorhabditis elegans* Telomere Length. *Genetics*. 2016;204: 371–
961 383. doi:10.1534/genetics.116.191148

962 32. Cook DE, Zdraljevic S, Roberts JP, Andersen EC. CeNDR, the *Caenorhabditis elegans*
963 natural diversity resource. *Nucleic Acids Res*. 2016; doi:10.1093/nar/gkw893

964 33. Zdraljevic S, Andersen EC. Natural diversity facilitates the discovery of conserved
965 chemotherapeutic response mechanisms. *Curr Opin Genet Dev*. 2017;47: 41–47.
966 doi:10.1016/j.gde.2017.08.002

967 34. Jia F, Cui M, Than MT, Han M. Developmental Defects of *Caenorhabditis elegans* Lacking
968 Branched-chain α -Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-
969 chain Fatty Acid Deficiency. *J Biol Chem*. 2016;291: 2967–2973.
970 doi:10.1074/jbc.M115.676650

971 35. Andersen EC, Shimko TC, Crissman JR, Ghosh R, Bloom JS, Seidel HS, et al. A Powerful
972 New Quantitative Genetics Platform, Combining *Caenorhabditis elegans* High-Throughput
973 Fitness Assays with a Large Collection of Recombinant Strains. *G3* . Genetics Society of
974 America; 2015;5: g3.115.017178–920. doi:10.1534/g3.115.017178

975 36. Zdraljevic S, Strand C, Seidel HS, Cook DE, Doench JG, Andersen EC. Natural variation in
976 a single amino acid substitution underlies physiological responses to topoisomerase II
977 poisons. *PLoS Genet*. 2017;13: e1006891. doi:10.1371/journal.pgen.1006891

978 37. Cohen J. Statistical Power Analysis for the Behavioral Sciences [Internet]. Routledge; 2013.
979 Available: <https://market.android.com/details?id=book-2v9zDAsLvA0C>

980 38. Adeva-Andany MM, López-Maside L, Donapetry-García C, Fernández-Fernández C, Sixto-
981 Leal C. Enzymes involved in branched-chain amino acid metabolism in humans. *Amino
982 Acids*. 2017;49: 1005–1028. doi:10.1007/s00726-017-2412-7

983 39. Bergquist ER, Fischer RJ, Sugden KD, Martin BD. Inhibition by methylated organo-

984 arsenicals of the respiratory 2-oxo-acid dehydrogenases. *J Organomet Chem.* 2009;694:
985 973–980. doi:10.1016/j.jorganchem.2008.12.028

986 40. Reed LJ, Hackert ML. Structure-function relationships in dihydrolipoamide acyltransferases.
987 *J Biol Chem.* 1990;265: 8971–8974. Available:
988 <https://www.ncbi.nlm.nih.gov/pubmed/2188967>

989 41. Kniazeva M, Euler T, Han M. A branched-chain fatty acid is involved in post-embryonic
990 growth control in parallel to the insulin receptor pathway and its biosynthesis is feedback-
991 regulated in *C. elegans*. *Genes Dev.* 2008;22: 2102–2110. doi:10.1101/gad.1692008

992 42. Baugh LR. To Grow or Not to Grow: Nutritional Control of Development During
993 *Caenorhabditis elegans* L1 Arrest. *Genetics.* 2013;194: 539–555.
994 doi:10.1534/genetics.113.150847

995 43. Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in *Caenorhabditis elegans*.
996 *Genetics.* 2017;207: 413–446. doi:10.1534/genetics.117.300106

997 44. Entchev EV, Schwudke D, Zagoriy V, Matyash V, Bogdanova A, Habermann B, et al. LET-
998 767 is required for the production of branched chain and long chain fatty acids in
999 *Caenorhabditis elegans*. *J Biol Chem.* 2008;283: 17550–17560.
1000 doi:10.1074/jbc.M800965200

1001 45. Zhu H, Shen H, Sewell AK, Kniazeva M, Han M. A novel sphingolipid-TORC1 pathway
1002 critically promotes postembryonic development in *Caenorhabditis elegans*. *Elife.* 2013;2:
1003 e00429. doi:10.7554/elife.00429

1004 46. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al. The Catalogue of
1005 Somatic Mutations in Cancer (COSMIC). *Curr Protoc Hum Genet.* 2008;Chapter 10: Unit
1006 10.11. doi:10.1002/0471142905.hg1011s57

1007 47. Paul S, Banerjee N, Chatterjee A, Sau TJ, Das JK, Mishra PK, et al. Arsenic-induced
1008 promoter hypomethylation and over-expression of ERCC2 reduces DNA repair capacity in
1009 humans by non-disjunction of the ERCC2-Cdk7 complex. *Metalomics.* 2014;6: 864–873.
1010 doi:10.1039/c3mt00328k

1011 48. Shen S, Li X-F, Cullen WR, Weinfeld M, Le XC. Arsenic binding to proteins. *Chem Rev.*
1012 2013;113: 7769–7792. doi:10.1021/cr300015c

1013 49. Li J, Packianathan C, Rossman TG, Rosen BP. Nonsynonymous Polymorphisms in the
1014 Human AS3MT Arsenic Methylation Gene: Implications for Arsenic Toxicity. *Chem Res
1015 Toxicol.* 2017;30: 1481–1491. doi:10.1021/acs.chemrestox.7b00113

1016 50. Pettit FH, Yeaman SJ, Reed LJ. Purification and characterization of branched chain alpha-
1017 keto acid dehydrogenase complex of bovine kidney. *Proc Natl Acad Sci U S A.* 1978;75:
1018 4881–4885. Available: <https://www.ncbi.nlm.nih.gov/pubmed/283398>

1019 51. Heffelfinger SC, Sewell ET, Danner DJ. Identification of specific subunits of highly purified
1020 bovine liver branched-chain ketoacid dehydrogenase. *Biochemistry.* 1983;22: 5519–5522.
1021 doi:10.1021/bi00293a011

1022 52. Yeaman SJ. The 2-oxo acid dehydrogenase complexes: recent advances. *Biochem J.*

1023 1989;257: 625–632. Available: <https://www.ncbi.nlm.nih.gov/pubmed/2649080>

1024 53. Kato M, Chuang JL, Tso S-C, Wynn RM, Chuang DT. Crystal structure of pyruvate
1025 dehydrogenase kinase 3 bound to lipoyl domain 2 of human pyruvate dehydrogenase
1026 complex. *EMBO J.* 2005;24: 1763–1774. doi:10.1038/sj.emboj.7600663

1027 54. Burrage LC, Nagamani SCS, Campeau PM, Lee BH. Branched-chain amino acid
1028 metabolism: from rare Mendelian diseases to more common disorders. *Hum Mol Genet.*
1029 2014;23: R1–8. doi:10.1093/hmg/ddu123

1030 55. Tönjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM, et al. BCAT1 promotes
1031 cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. *Nat
1032 Med.* 2013;19: 901–908. doi:10.1038/nm.3217

1033 56. Hughes-Fulford M, Chen Y, Tjandrawinata RR. Fatty acid regulates gene expression and
1034 growth of human prostate cancer PC-3 cells. *Carcinogenesis.* 2001;22: 701–707.
1035 doi:10.1093/carcin/22.5.701

1036 57. Agostini M, Silva SD, Zecchin KG, Coletta RD, Jorge J, Loda M, et al. Fatty acid synthase
1037 is required for the proliferation of human oral squamous carcinoma cells. *Oral Oncol.*
1038 2004;40: 728–735. doi:10.1016/j.oraloncology.2004.01.011

1039 58. Coombs CC, Tavakkoli M, Tallman MS. Acute promyelocytic leukemia: where did we start,
1040 where are we now, and the future. *Blood Cancer J.* 2015;5: e304. doi:10.1038/bcj.2015.25

1041 59. Thompson OA, Snoek LB, Nijveen H, Sterken MG, Volkers RJM, Brenchley R, et al.
1042 Remarkably Divergent Regions Punctuate the Genome Assembly of the *Caenorhabditis*
1043 *elegans* Hawaiian Strain CB4856. *Genetics.* 2015;200: 975–989.
1044 doi:10.1534/genetics.115.175950

1045 60. Hodgkin J, Doniach T. Natural variation and copulatory plug formation in *Caenorhabditis*
1046 *elegans*. *Genetics.* 1997;146: 149–164. Available:
1047 <https://www.ncbi.nlm.nih.gov/pubmed/9136008>

1048 61. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA
1049 polymorphism. *Genetics.* 1989;123: 585–595. Available:
1050 <https://www.ncbi.nlm.nih.gov/pubmed/2513255>

1051 62. Boyd WA, Smith MV, Freedman JH. *Caenorhabditis elegans* as a model in developmental
1052 toxicology. *Methods Mol Biol.* Totowa, NJ: Humana Press; 2012;889: 15–24.
1053 doi:10.1007/978-1-61779-867-2_3

1054 63. Andersen EC, Bloom JS, Gerke JP, Kruglyak L. A variant in the neuropeptide receptor npr-
1055 1 is a major determinant of *Caenorhabditis elegans* growth and physiology. 2014;10:
1056 e1004156. doi:10.1371/journal.pgen.1004156

1057 64. García-González AP, Ritter AD, Shrestha S, Andersen EC, Yilmaz LS, Walhout AJM.
1058 Bacterial Metabolism Affects the *C. elegans* Response to Cancer Chemotherapeutics. *Cell.*
1059 2017;169: 431–441.e8. doi:10.1016/j.cell.2017.03.046

1060 65. Shimko TC, Andersen EC. COPASutils: an R package for reading, processing, and
1061 visualizing data from COPAS large-particle flow cytometers. *PLoS One.* Public Library of

1062 Science; 2014;9: e111090. doi:10.1371/journal.pone.0111090

1063 66. Team RC. R: A language and environment for statistical computing [Internet]. Vienna,
1064 Austria; 2014. 2017.

1065 67. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models using lme4
1066 [Internet]. arXiv [stat.CO]. 2014. Available: <http://arxiv.org/abs/1406.5823>

1067 68. Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L. Genetic interactions
1068 contribute less than additive effects to quantitative trait variation in yeast. Nat Commun.
1069 2015;6: 8712. doi:10.1038/ncomms9712

1070 69. David Clifford PM. The regress function. R News. 2006: 6–10. Available: <https://cran.r-project.org/web/packages/regress/regress.pdf>

1071 70. Endelman JB. Ridge Regression and Other Kernels for Genomic Selection with R Package
1072 rrBLUP. The Plant Genome Journal. Crop Science Society of America; 2011;4: 250–256.
1073 doi:10.3835/plantgenome2011.08.0024

1074 71. Covarrubias-Pazaran G. Genome-Assisted Prediction of Quantitative Traits Using the R
1075 Package sommer. PLoS One. 2016;11: e0156744. doi:10.1371/journal.pone.0156744

1076 72. Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. Estimating additive and non-
1077 additive genetic variances and predicting genetic merits using genome-wide dense single
1078 nucleotide polymorphism markers. PLoS One. 2012;7: e45293.
1079 doi:10.1371/journal.pone.0045293

1080 73. Endelman JB, Jannink J-L. Shrinkage estimation of the realized relationship matrix. G3 .
1081 2012;2: 1405–1413. doi:10.1534/g3.112.004259

1082 74. Lüdecke D. sjstats: Statistical Functions for Regression Models [Internet]. 2018.
1083 doi:10.5281/zenodo.1442812

1084 75. Bloom JS, Ehrenreich IM, Loo WT, Lite T-LV, Kruglyak L. Finding the sources of missing
1085 heritability in a yeast cross. Nature. Nature Publishing Group; 2013;494: 1–6.
1086 doi:10.1038/nature11867

1087 76. Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses.
1088 Bioinformatics. 2003;19: 889–890. Available:
1089 <http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=12724300&retmod>
1090 e=ref&cmd=prlinks

1091 77. Brady S, Evans K, Bloom J, Tanny R, Cook D, Giuliani S, et al. Common loci underlie
1092 natural variation in diverse toxin responses [Internet]. bioRxiv. 2018. p. 325399.
1093 doi:10.1101/325399

1094 78. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and
1095 population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:
1096 2987–2993. doi:10.1093/bioinformatics/btr509

1097 79. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool
1098 set for whole-genome association and population-based linkage analyses. Am J Hum
1099 Genet. 2007;81: 559–575. doi:10.1086/519795

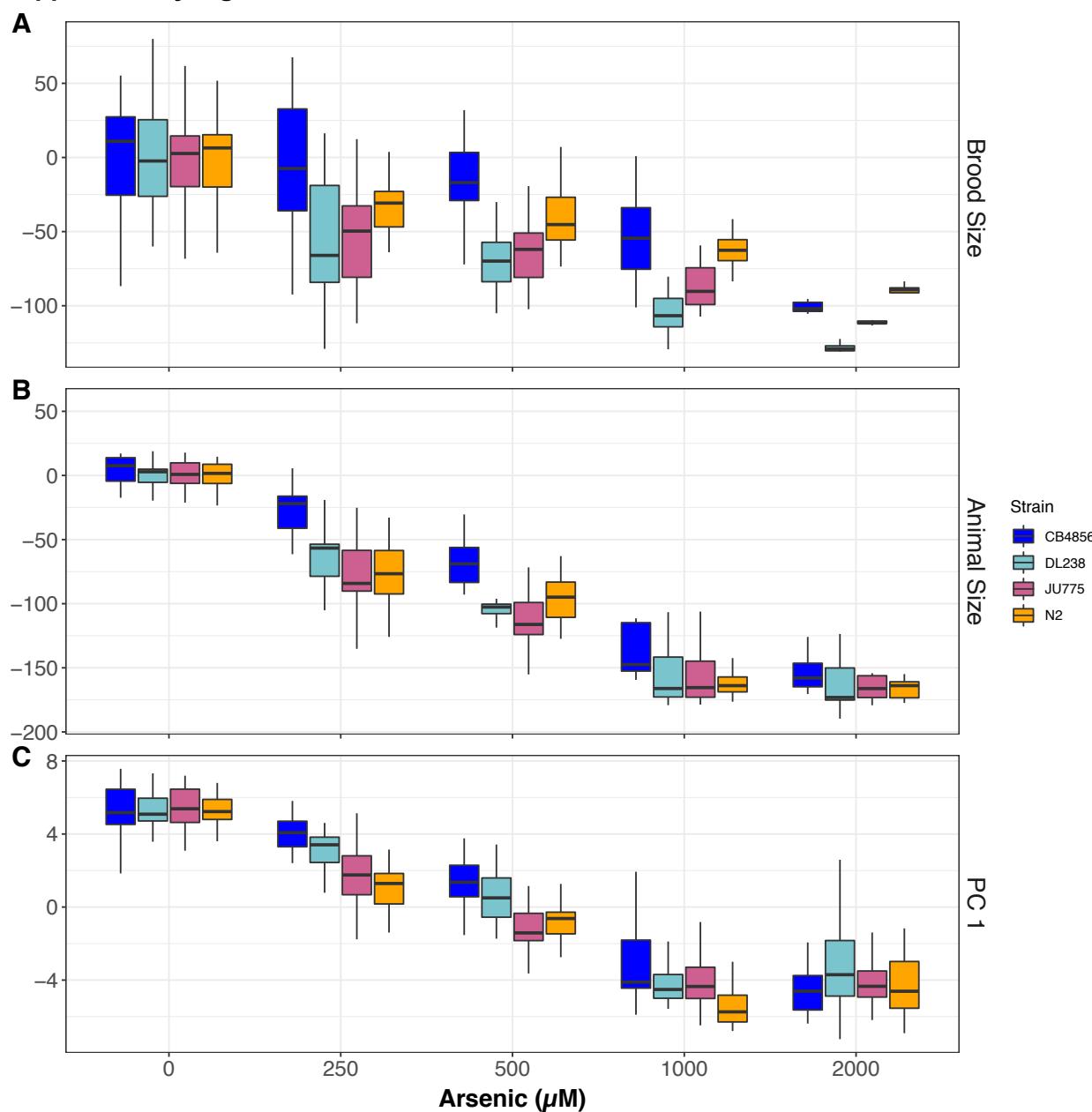
1100

1101 80. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation
1102 PLINK: rising to the challenge of larger and richer datasets. *Gigascience*. 2015;4: 7.
1103 doi:10.1186/s13742-015-0047-8

1104 81. Qiu Y. RSpectra [Internet]. Github; Available: <https://github.com/yixuan/RSpectra>

1105 82. Bilgrau AE. correlateR [Internet]. Github; 2018. Available:
1106 <https://github.com/AEBilgrau/correlateR>

1107 83. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a
1108 correlation matrix. *Heredity* . 2005;95: 221–227. doi:10.1038/sj.hdy.6800717


1109 84. Kim H, Ishidate T, Ghanta KS, Seth M, Conte D, Shirayama M, et al. A co-CRISPR strategy
1110 for efficient genome editing in *Caenorhabditis elegans*. *Genetics*. 2014;197: 1069–1080.
1111 doi:10.1534/genetics.114.166389

1112 85. Paix A, Folkmann A, Rasoloson D, Seydoux G. High Efficiency, Homology-Directed
1113 Genome Editing in *Caenorhabditis elegans* Using CRISPR-Cas9 Ribonucleoprotein
1114 Complexes. *Genetics*. 2015;201: 47–54. doi:10.1534/genetics.115.179382

1115 86. Artyukhin AB, Zhang YK, Akagi AE, Panda O, Sternberg PW, Schroeder FC. Metabolomic
1116 “Dark Matter” Dependent on Peroxisomal β -Oxidation in *Caenorhabditis elegans*. *J Am*
1117 *Chem Soc*. 2018;140: 2841–2852. doi:10.1021/jacs.7b11811

1118

1119 **Supplementary Figures:**

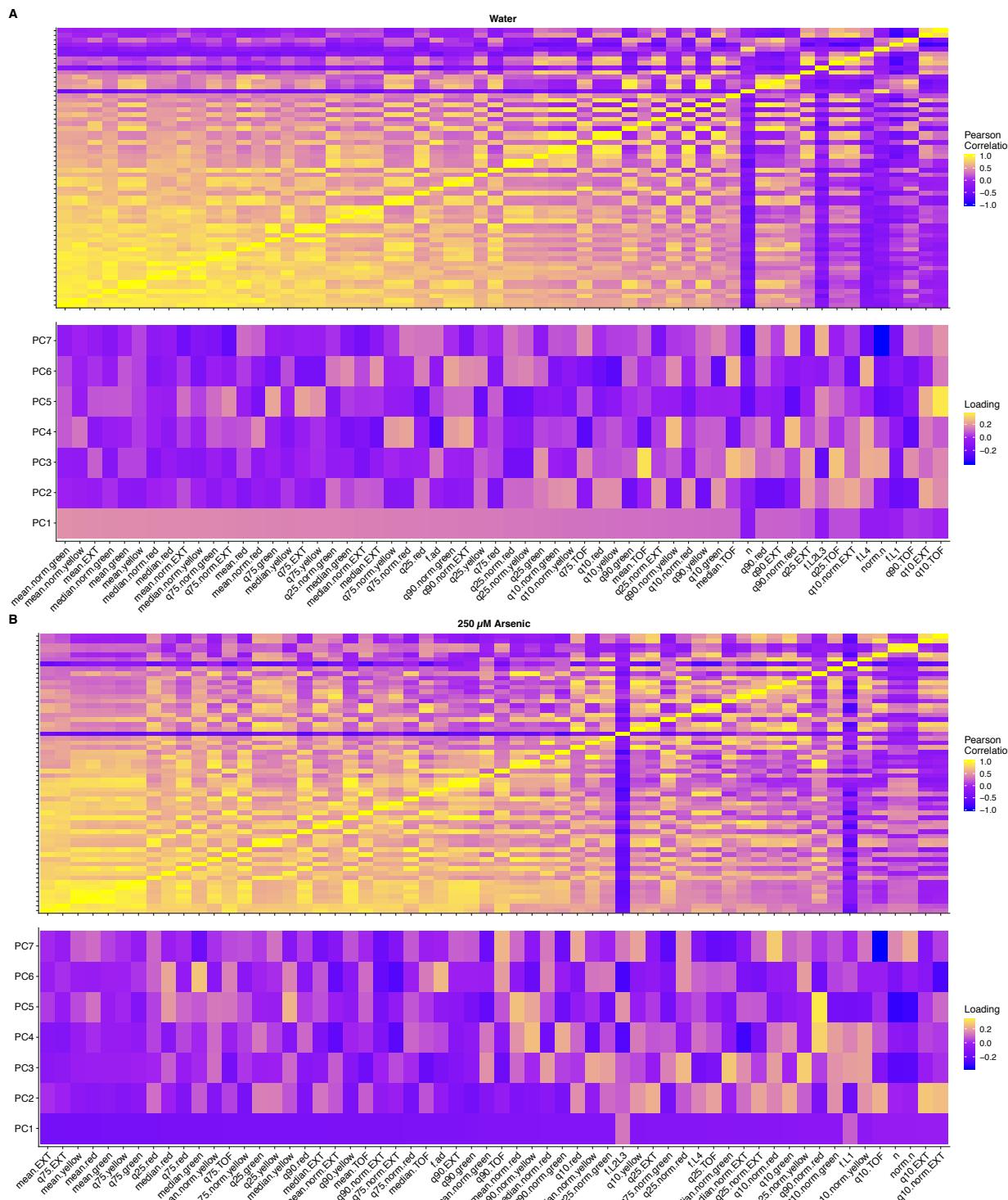
1120

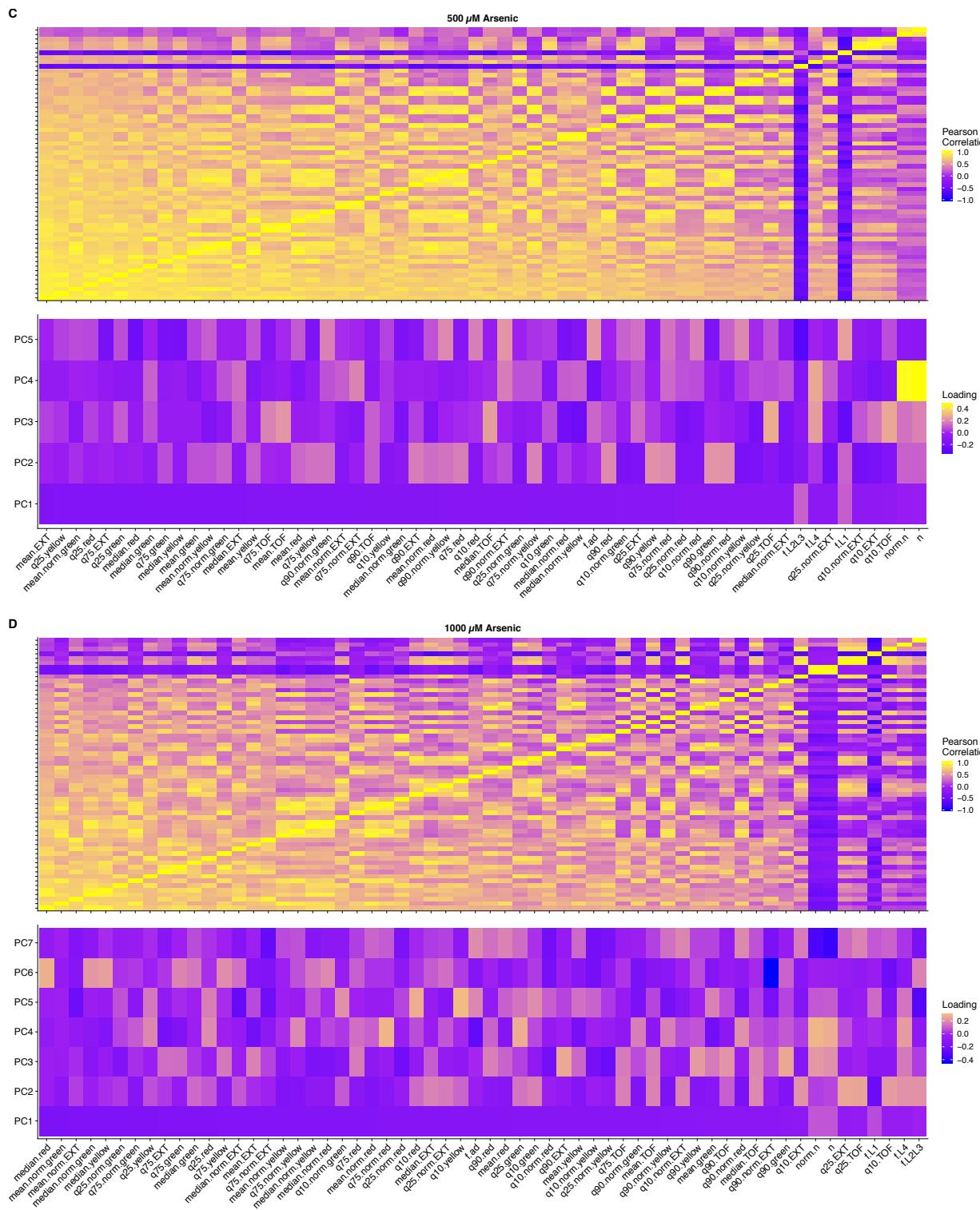
1121

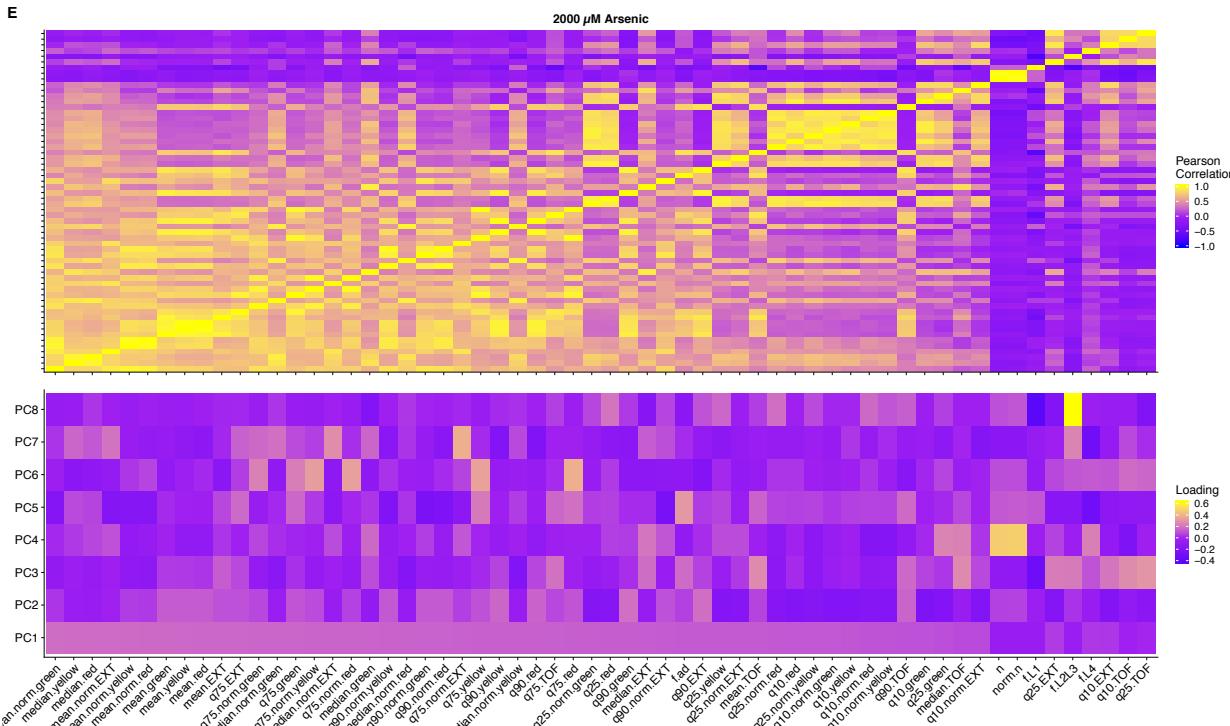
1122 **Figure 1-figure supplement 1: Arsenic trioxide dose response of four diverged *C. elegans* strains**

1123 Arsenic trioxide concentration in μM is plotted on the x-axis and the (A) normalized brood size, (B) median progeny length, or (C) the first principal component are plotted on the y-axis. For panels A-B, the y-axis values represent individual phenotypic measurements subtracted from the mean value in 0 μM arsenic trioxide. At least 15 replicates for each strain and condition are represented by Tukey box plots. Box plots are colored by strain (CB4856:blue, DL238:teal, JU775:pink, and N2:orange).

1124

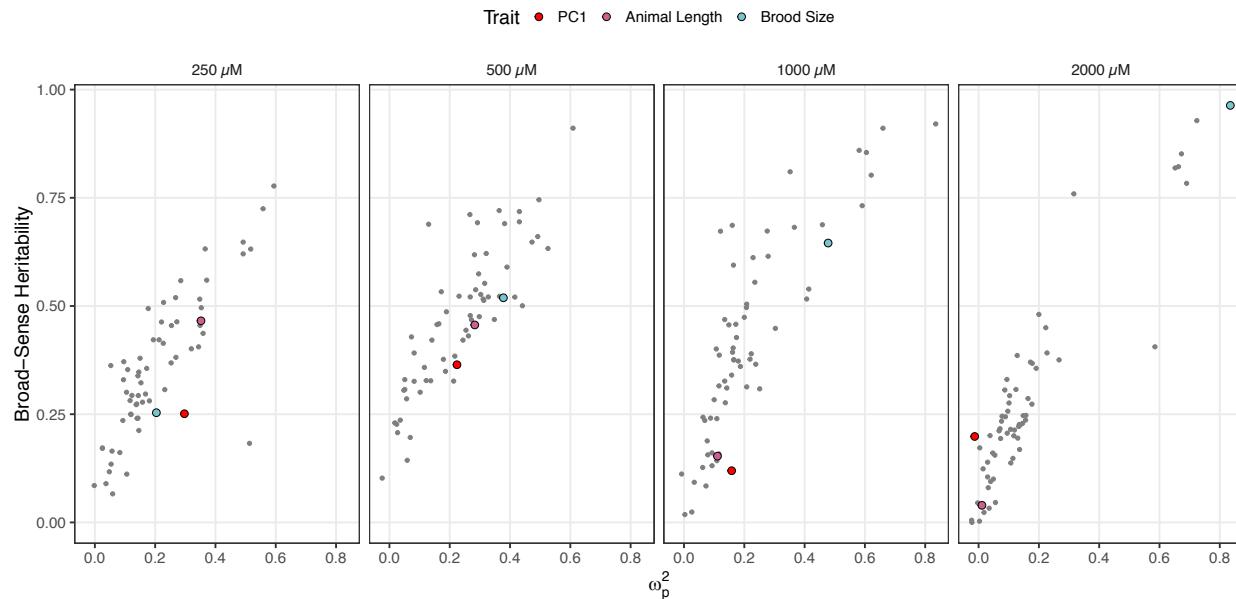

1125

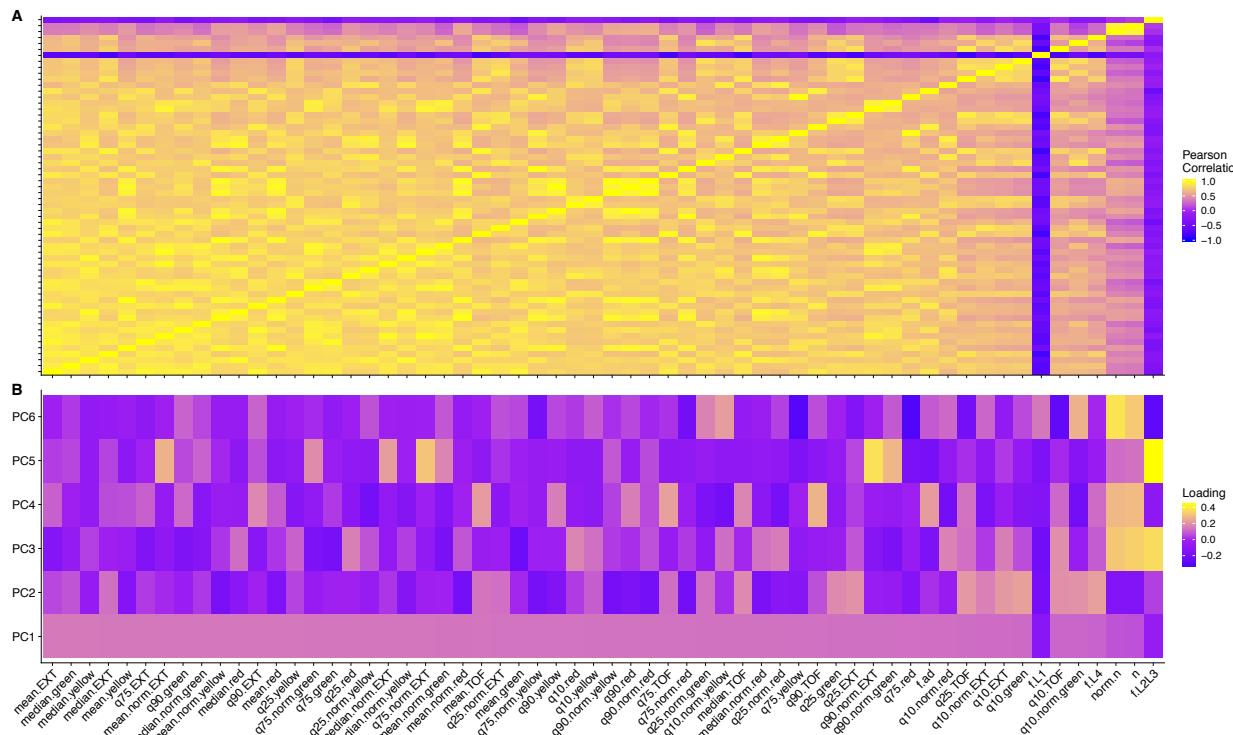

1126


1127

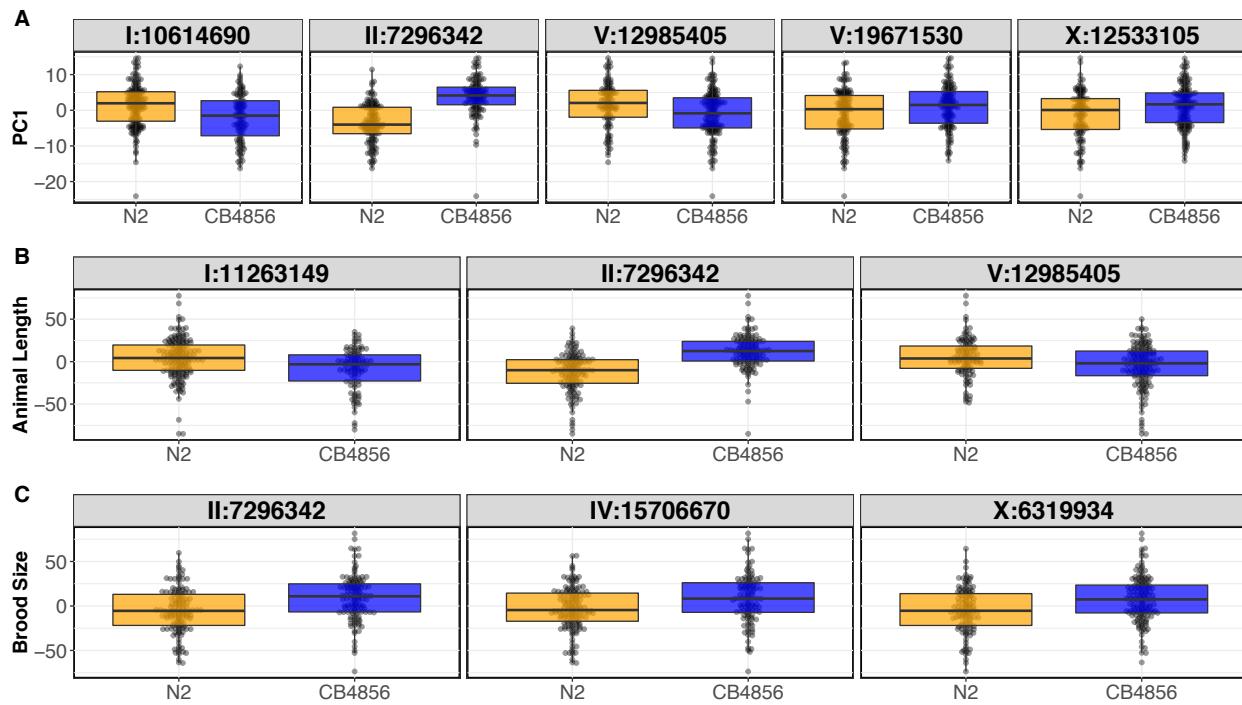
1128

1129



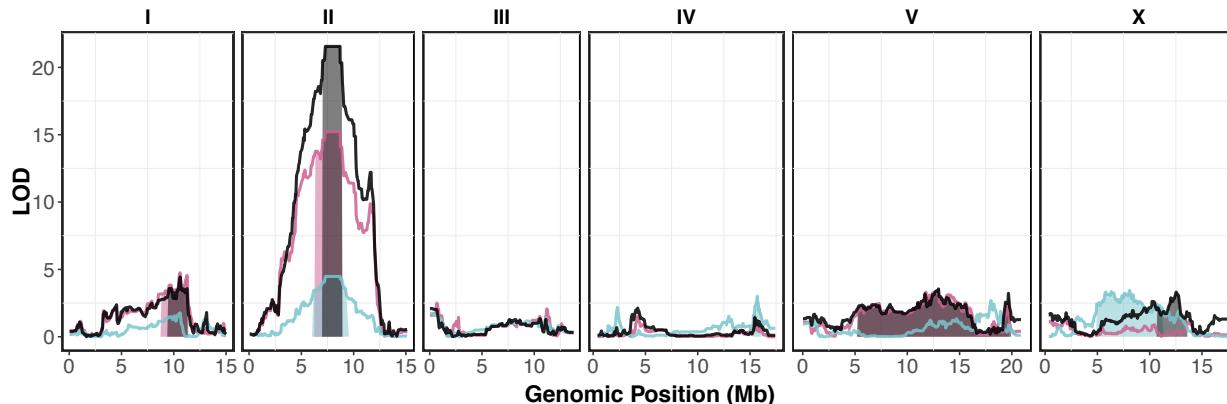

1132 **Figure 1-figure supplement 2: Trait correlations and principal component loadings of**
1133 **arsenic trioxide dose response**

1134 The top panels for A-E represent the trait correlations of the measured traits. The bottom panels for A-E represent
 1135 the contribution of each trait to the principal components that explain 90% of the total variance in the experiment for
 1136 each condition: (A) Water, (B) 250 μ M, (C) 500 μ M, (D) 1000 μ M, and (E) 2000 μ M of arsenic trioxide. For each
 1137 plot, the tile color corresponds to the value corresponding to trait Pearson's correlation coefficient for the top panels
 1138 and principal component loading value for the bottom panels, where yellow colors represent higher values.

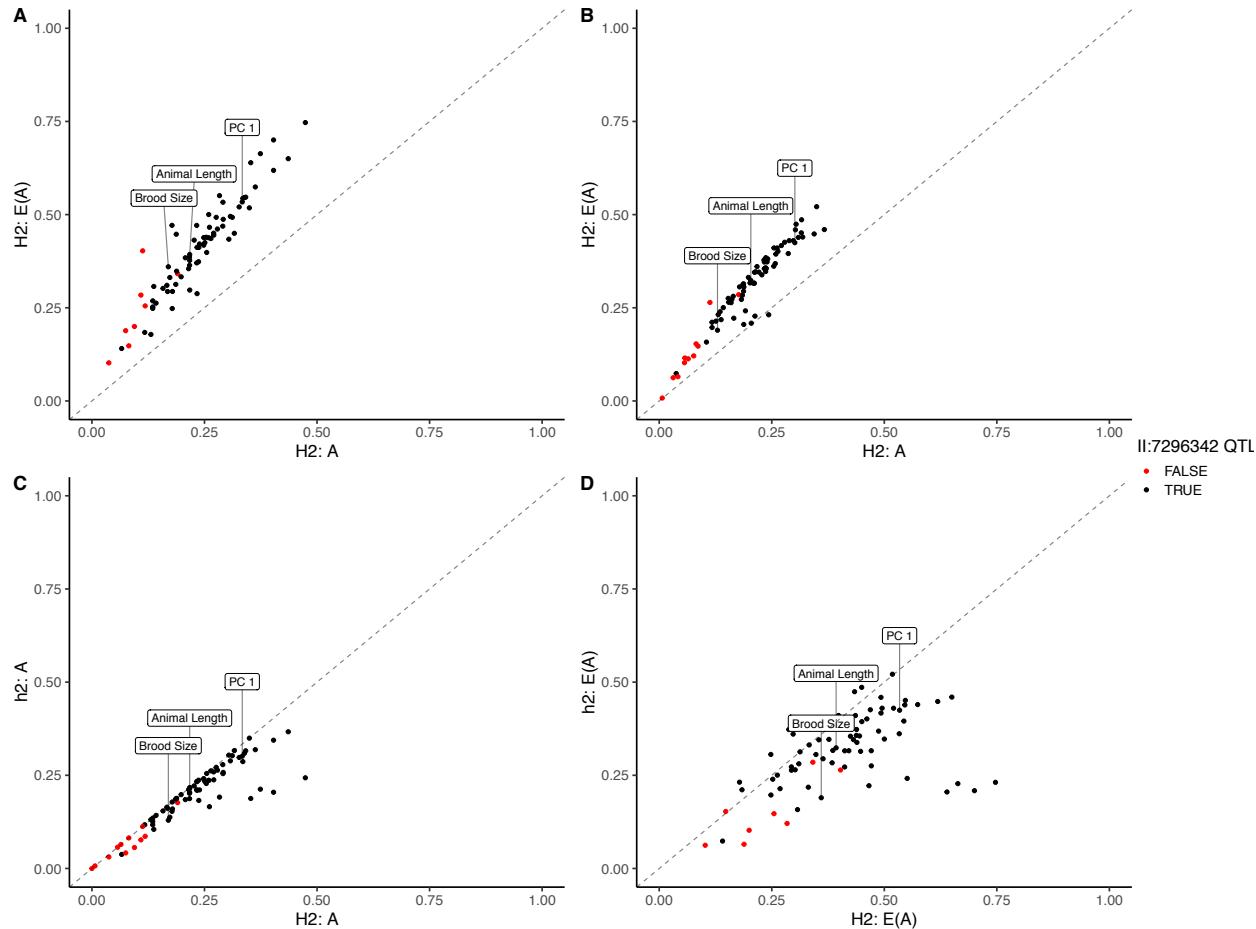

1139 **Figure 1-figure supplement 3: Effect size and broad-sense heritability estimates for the**
1140 **arsenic trioxide dose response**

1141 Each panel corresponds to a concentration of arsenic trioxide concentration, which is indicated above the plot panel.
1142 The x-axis represents the partial omega squared (ω_p^2) effect-size estimate and the y-axis represent the broad-sense
1143 heritability estimate (H^2). Each dot represents a different measured or principal component trait. The three traits
1144 discussed throughout the manuscript are highlighted — red: first principal component, pink: animal length, and blue:
1145 brood size.

1146 **Figure 1-figure supplement 4: Trait correlations and principal component loadings of**
1147 **linkage mapping experiment**

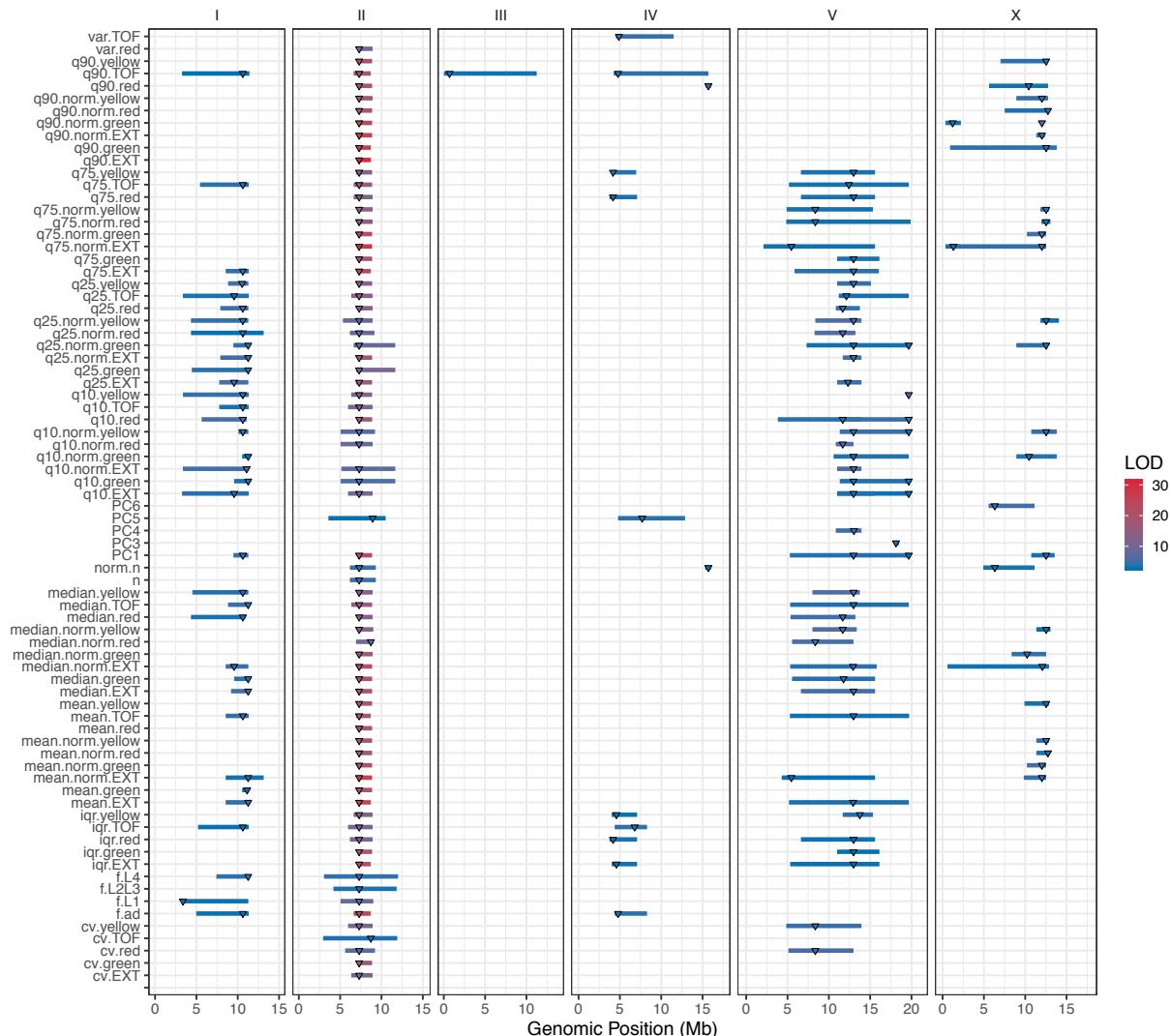

1148 (A) The trait Pearson's correlation coefficient of the assay- and control-regressed measured traits. (B) The
1149 contribution of each measured trait to the principal components that explain 90% of the total variance in the linkage
1150 mapping experiment, which was performed at 1000 μ M. For each plot, the tile color corresponds to the value, where
1151 yellow colors represent higher values.

1152
1153
1154
1155
1156
1157


Figure 1-figure supplement 5: RIAIL phenotypes from the linkage mapping experiment

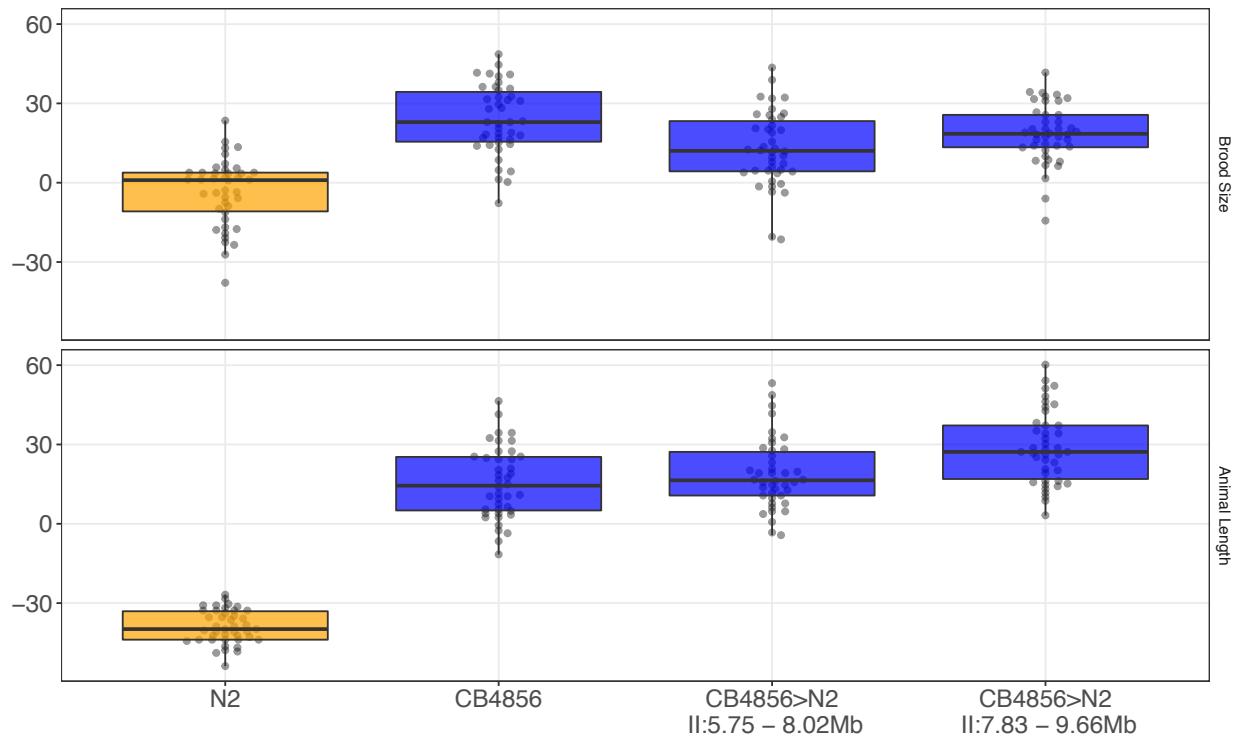
Tukey box plots of the first principal component (A), assay- and control-regressed brood sizes and (B) median animal lengths of the N2 and CB4856 RIAIL panel after exposure to arsenic trioxide. Each dot corresponds to the phenotype for a single RIAIL. The RIAILs are separated by the N2 (orange) or CB4856 (blue) genotype at each QTL detected by linkage mapping.

1158 **Figure 1-figure supplement 6: Linkage mapping results for brood size, animal length, and**
1159 **the first principal component**


1160 Linkage mapping plots for regressed brood size (teal), median animal length (pink), and the first principal
1161 component (black) in the presence of 1000 μ M arsenic trioxide are shown. The significance values (logarithm of
1162 odds, LOD, ratio) for 1454 markers between the N2 and CB4856 strains are on the y-axis, and the genomic position
1163 (Mb) separated by chromosome is plotted on the x-axis. The associated 1.5 LOD-drop confidence intervals are
1164 represented by teal, pink, and boxes for brood size, median animal length, and the first principal component
1165 respectively.

1166
1167
1168
1169
1170
1171

Figure 1-figure supplement 7: Genomic-heritability estimates of linkage mapping traits


The genomic broad (H^2)- and narrow (h^2)-sense heritability estimates calculated using the expectation (E(A)) of the realized relatedness matrix or the realized relatedness matrix (A). Each dot represents a measured or principal component trait. Dots are colored black if that trait mapped to the center of chromosome II and red if no QTL was detected on the center of chromosome II. The brood size, animal length, and first principal component traits are marked for clarity.

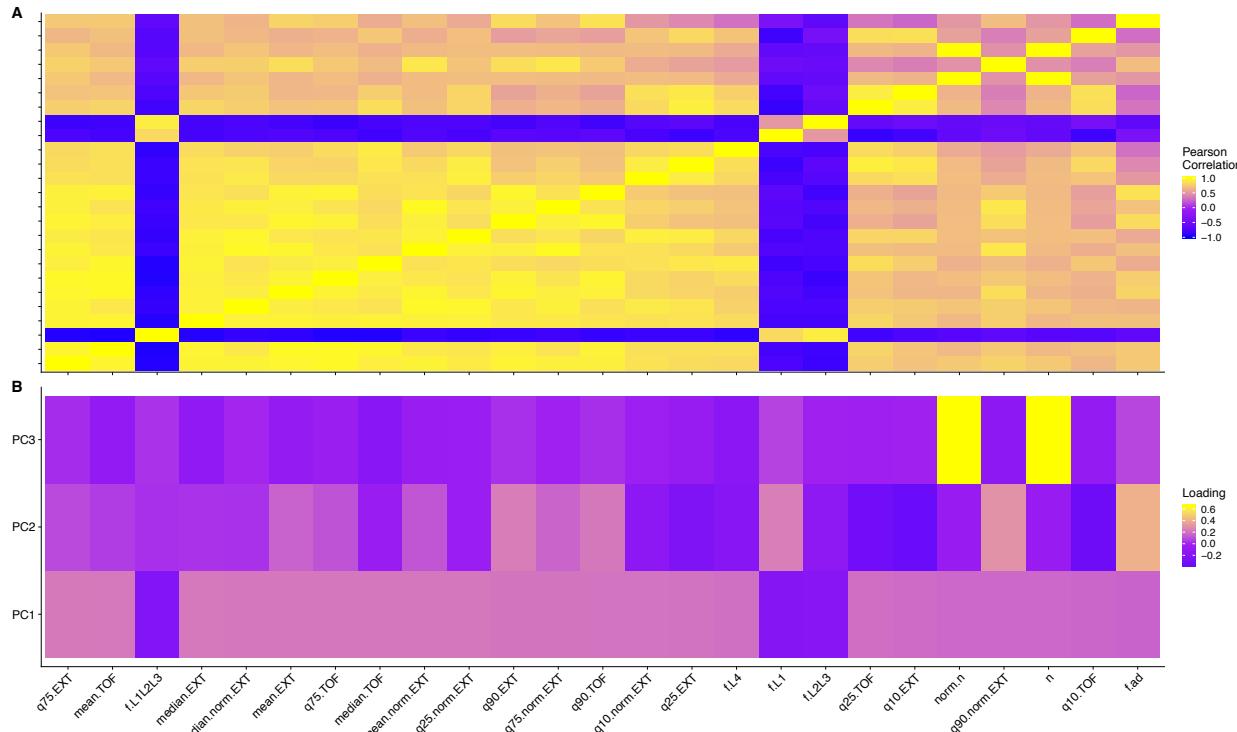
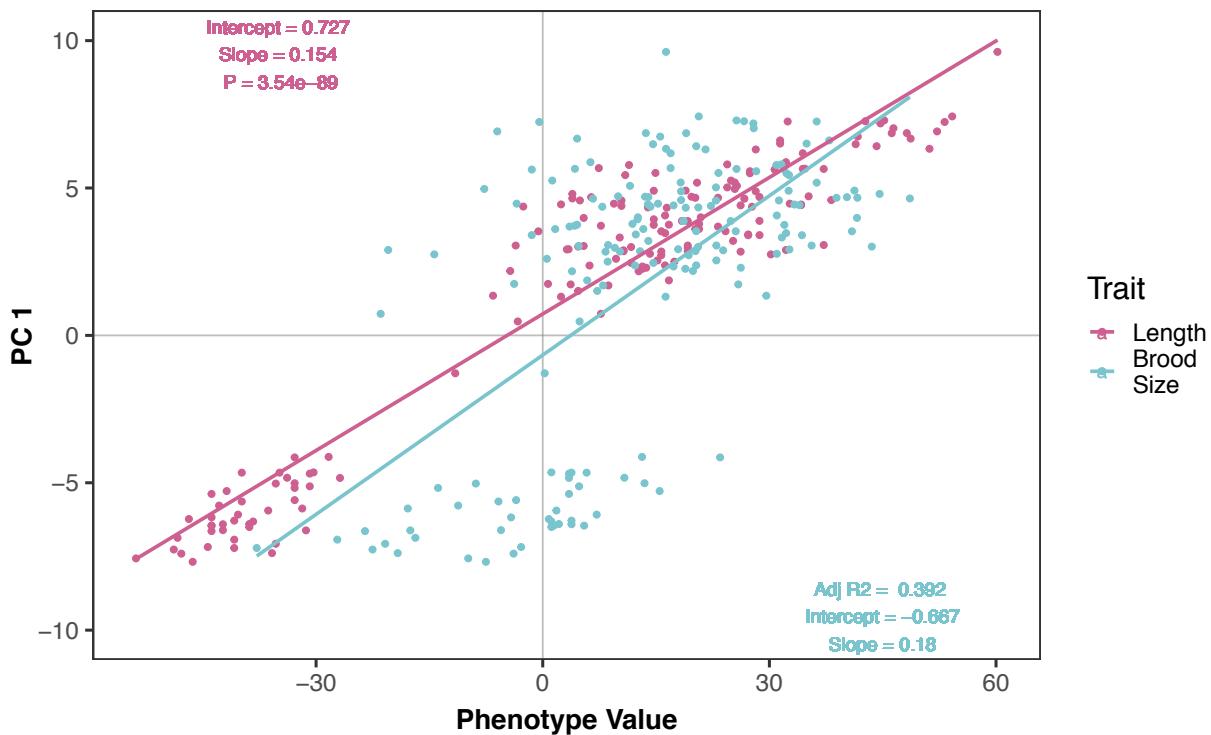
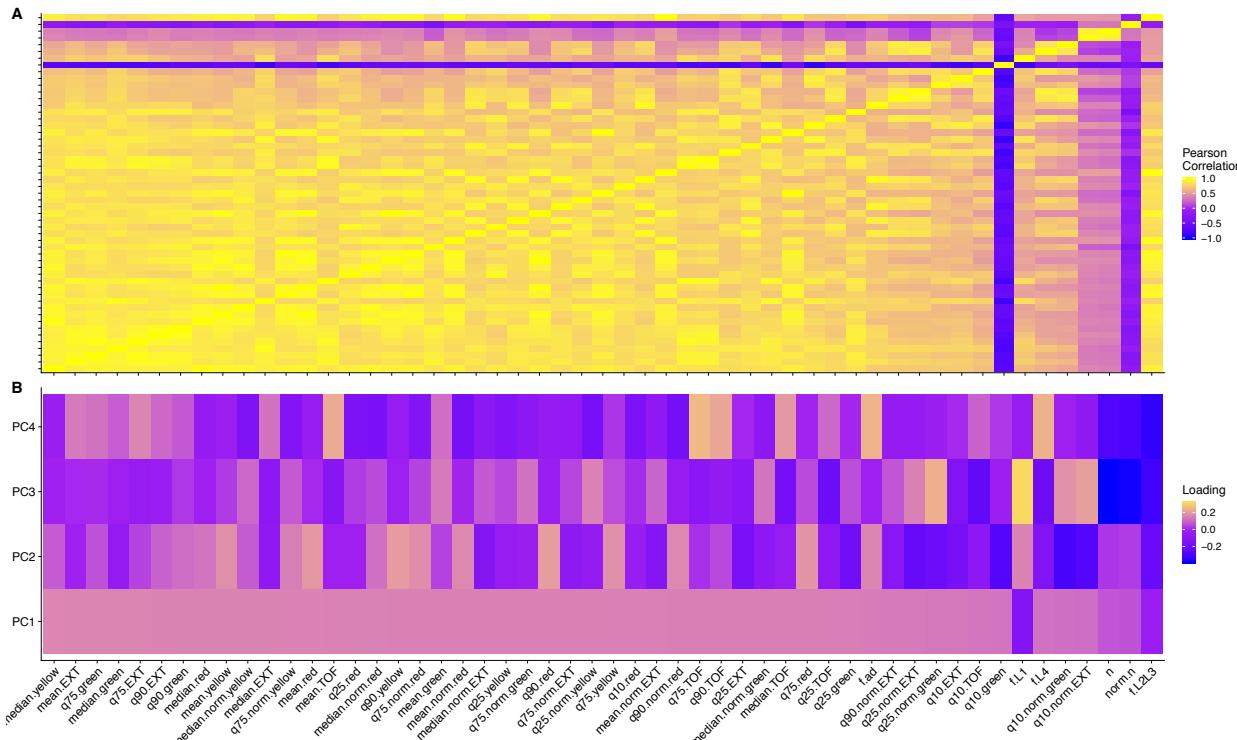
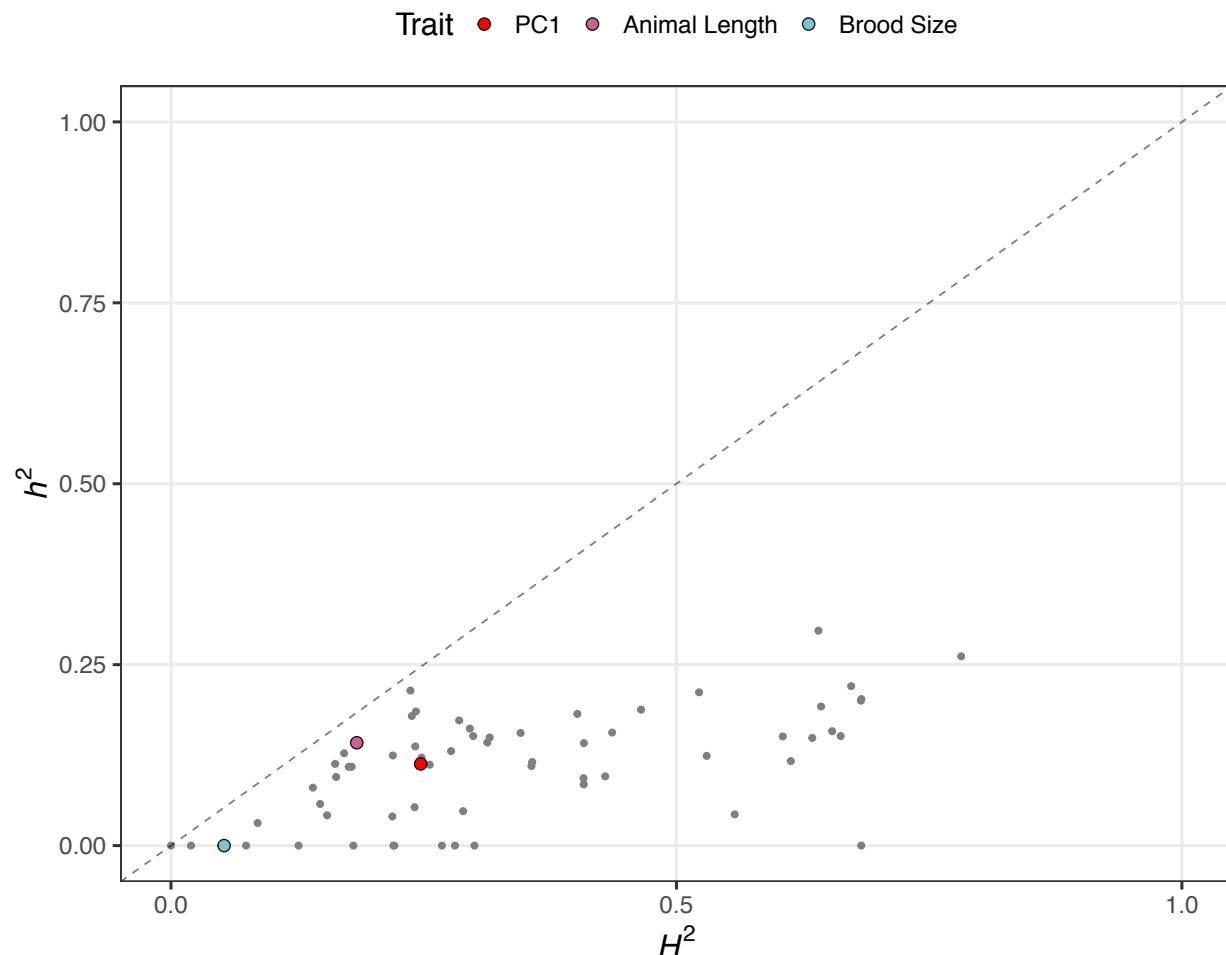

1172
1173
1174
1175
1176
1177

Figure 1-figure supplement 8: Linkage mapping QTL summary

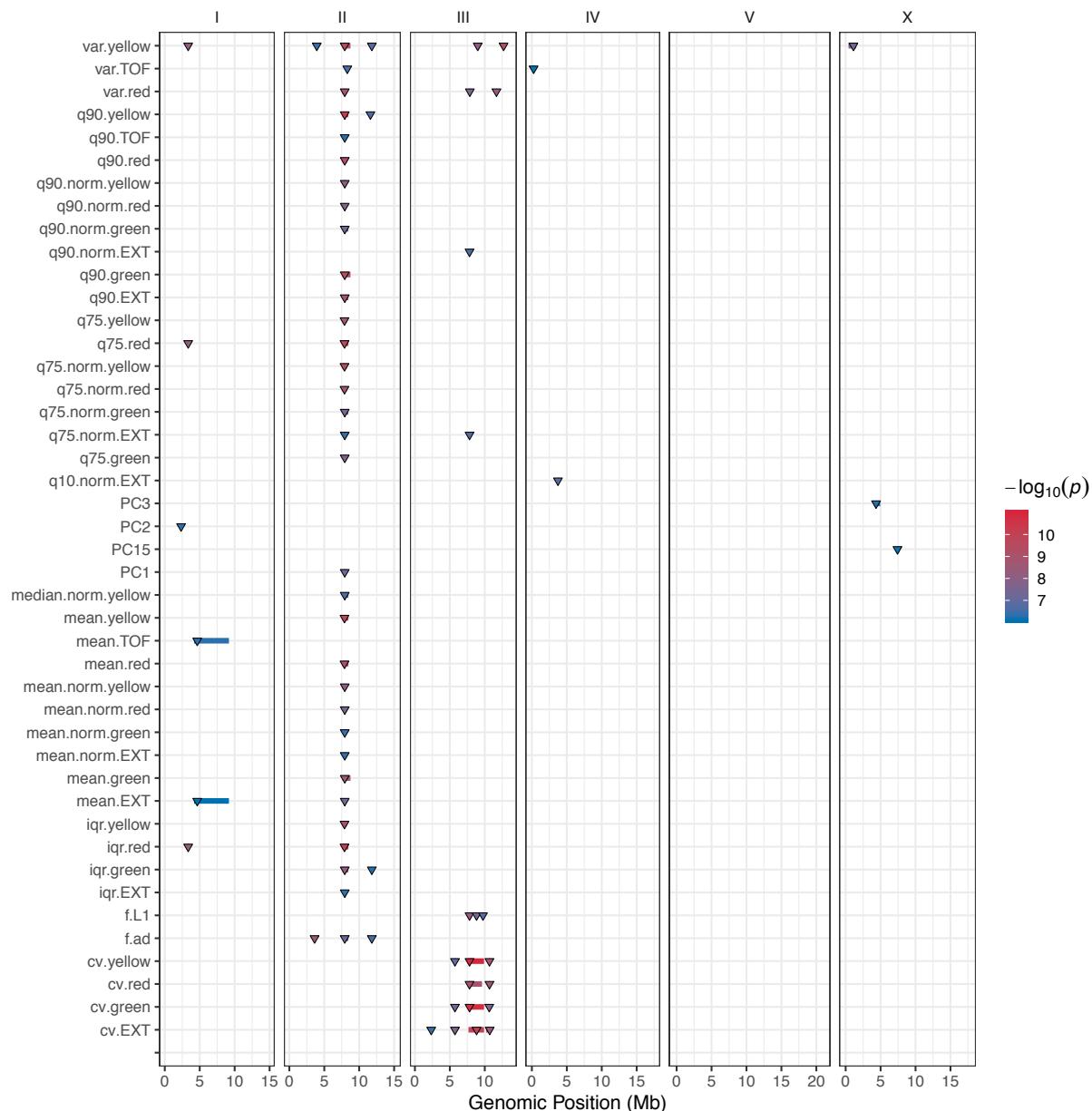

All QTL identified by linkage mapping are shown. Traits are labeled on the y-axis and the genomic position in Mb is plotted on the x-axis. Triangles represent the peak QTL position and bars represent the associated 1.5-LOD drop QTL confidence interval. Triangles and bars are colored based on the associated LOD score, where red colors correspond to higher LOD values.


1178 **Figure 1-figure supplement 9: NIL recapitulation of chromosome II QTL**
1179 Tukey box plots of near-isogenic line (NIL) phenotype values for the brood size (top panel) and animal length
1180 (bottom panel) traits in the presence of 1000 μ M arsenic trioxide are shown. NIL genotypes are indicated below the
1181 plot as genomic ranges. The N2 brood sizes and progeny lengths are significantly different from all other strains
1182 (Brood size: Tukey HSD p -value < 1.56E-7; Animal Length: Tukey HSD p -value < 3.0E-14).

1183 **Figure 1-figure supplement 10: Trait correlations and principal component loadings of NIL**
1184 **and allele-swap recapitulation experiment**
1185 (A) The trait Pearson's correlation coefficient of the assay- and control-regressed measured traits. (B) The
1186 contribution of each measured trait to the principal components that explain 90% of the total variance in the NIL and
1187 allele swap-recapitulation experiment, which was performed at 1000 μ M. For each plot, the tile color corresponds to
1188 the value, where yellow colors represent higher values.

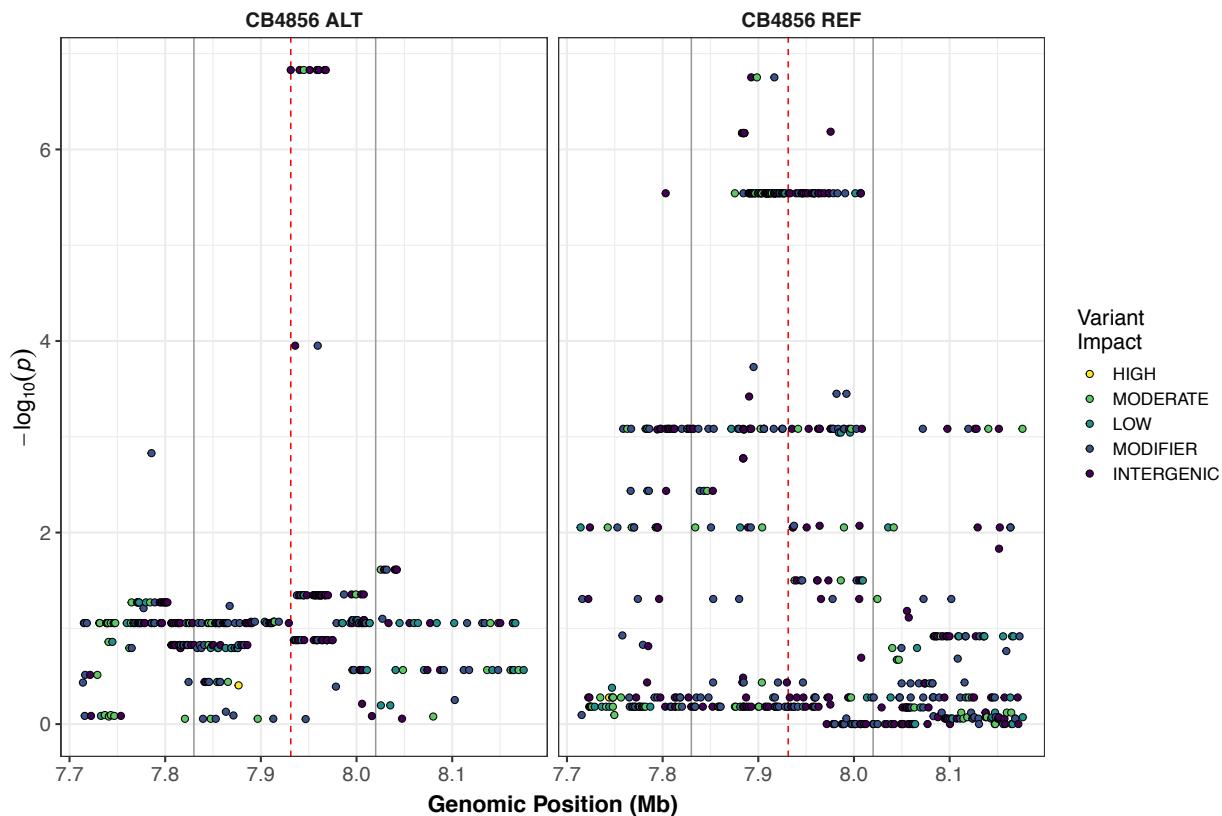


1189 **Figure 1-figure supplement 11: Brood size and animal length are correlated with the first**
1190 **principal component for the NIL recapitulation experiment**
1191 The correlation between brood size (blue) or animal length (pink) with the first principal component trait for the NIL
1192 recapitulation experiment. Each dot represents an individual NIL or parental strain replicate phenotype, with the
1193 animal length and brood size phenotype values on the x-axis and the first principal component phenotype on the y-
1194 axis.

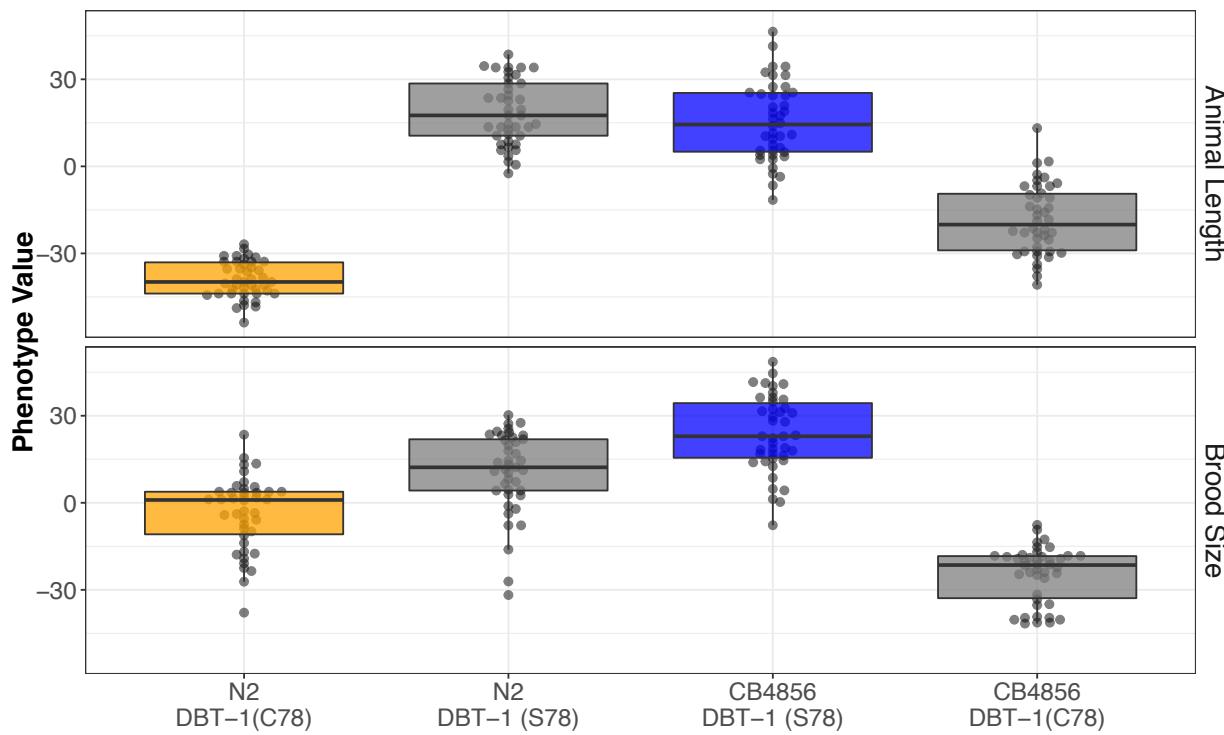


1195 **Figure 2-figure supplement 1: Trait correlations and principal component loadings of GWA**
1196 **mapping experiment**

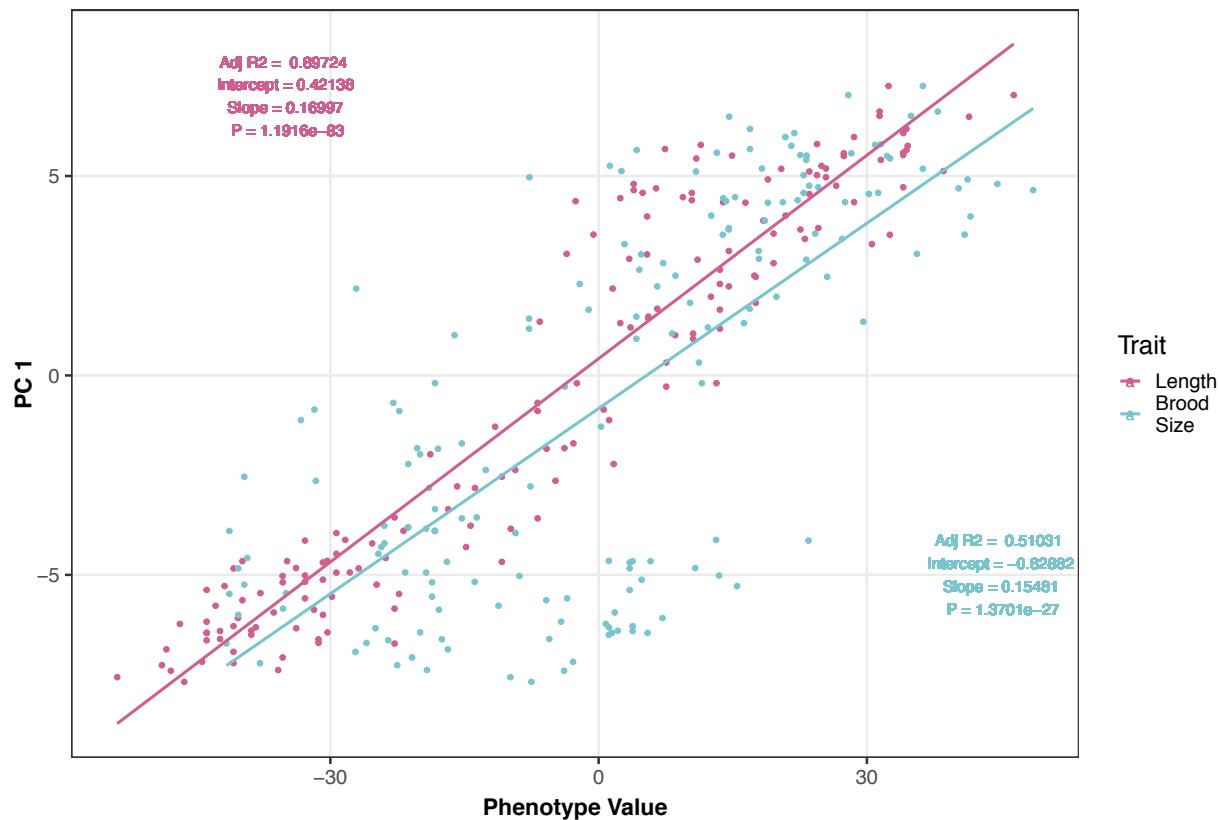
1197 (A) The trait Pearson's correlation coefficient of the assay- and control-regressed Measured traits. (B) The
1198 contribution of each measured traits to the principal components that explain 90% of the total variance in the GWA
1199 mapping experiment, which was performed at 1000 μ M. For each plot, the tile color corresponds to the value, where
1200 yellow colors represent higher values.


1201 **Figure 2-figure supplement 2: Genomic-heritability estimates of GWA mapping traits**
1202 The genomic broad (H^2)- and narrow (h^2)-sense heritability estimates calculated using the the realized relatedness
1203 matrix. Each dot represents a measured or principal component trait. The three traits discussed throughout the
1204 manuscript are highlighted — red: first principal component, pink: animal length, and blue: brood size.

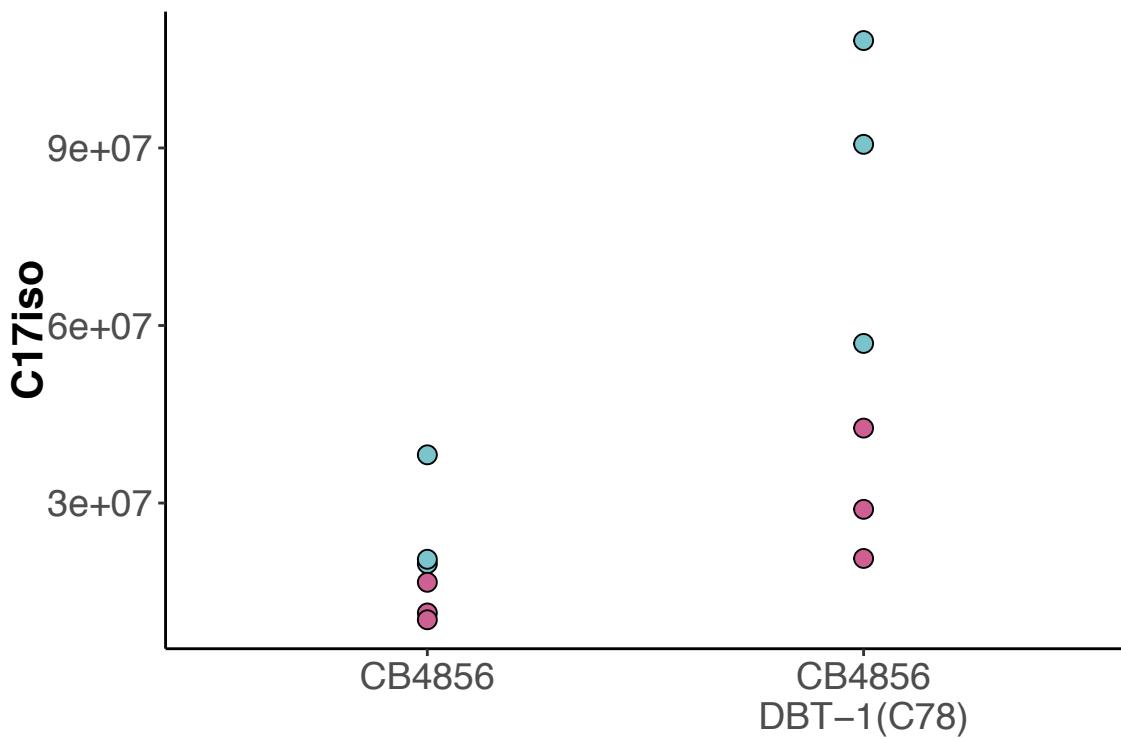
1205
1206
1207
1208
1209


Figure 2-figure supplement 3: GWA mapping QTL summary

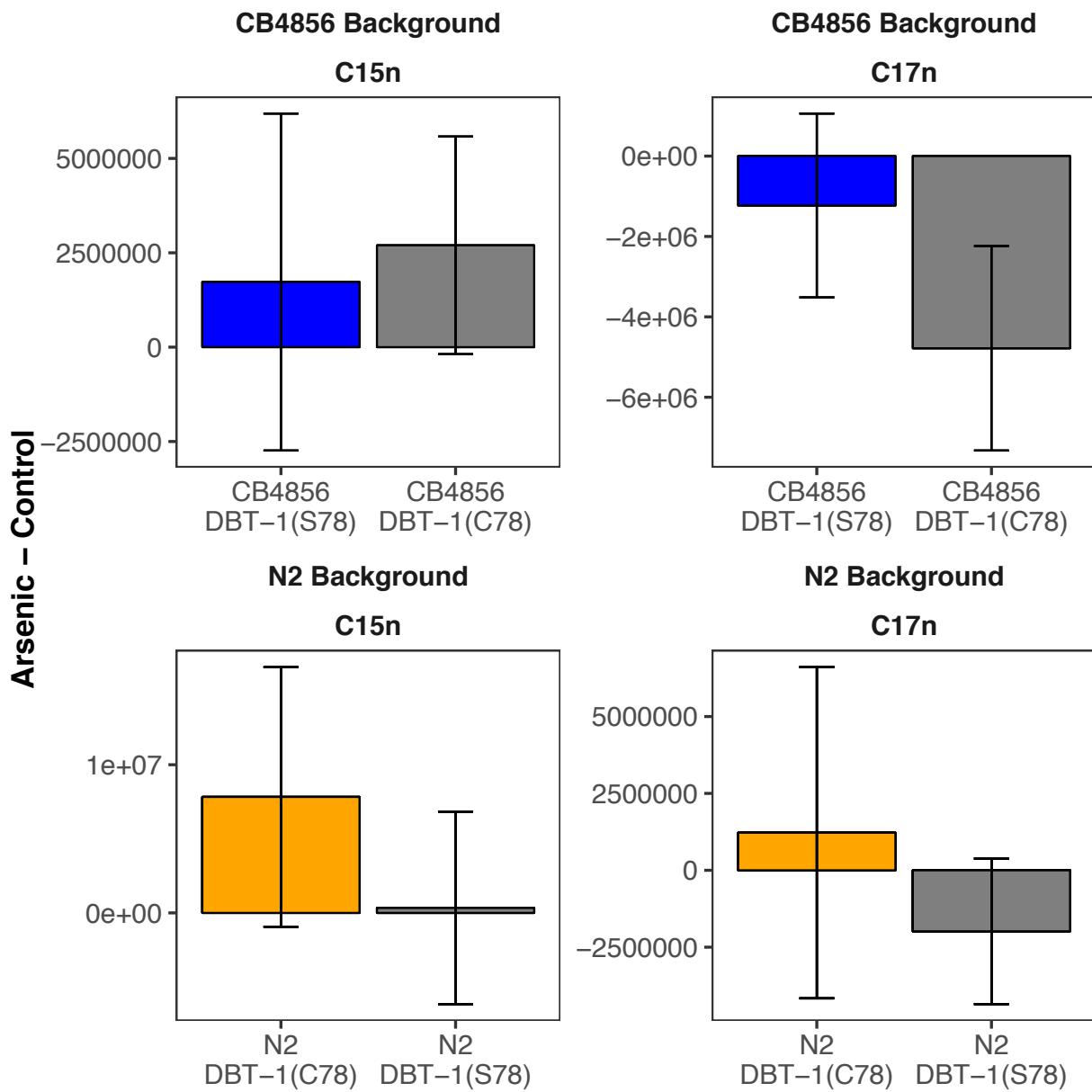
All QTL identified by GWA mapping are shown. Traits are labeled on the y-axis and the genomic position in Mb is plotted on the x-axis. Triangles represent the peak QTL position and bars represent the associated QTL region of interest. Triangles and bars are colored based on the associated significance value, where red colors correspond to higher significance values.


1210 **Figure 2-figure supplement 4: Fine-mapping of the chromosome II QTL identified by GWA**
1211 **mapping**

1212 Fine mapping of the chromosome II region of interest (cyan region from panel A, 7.71 - 8.18 Mb) is shown. Each
1213 dot represents an SNV present in the phenotyped population. SNVs present in the CB4856 strain are shown in the
1214 left panel and SNVs present in other phenotyped strains, but REF in CB4856, are shown in the right panel. The
1215 association between the SNV and first principal component is shown on the y-axis and the genomic position of the
1216 SNV is shown on the x-axis. Dots are colored by their SnpEff predicted effect.

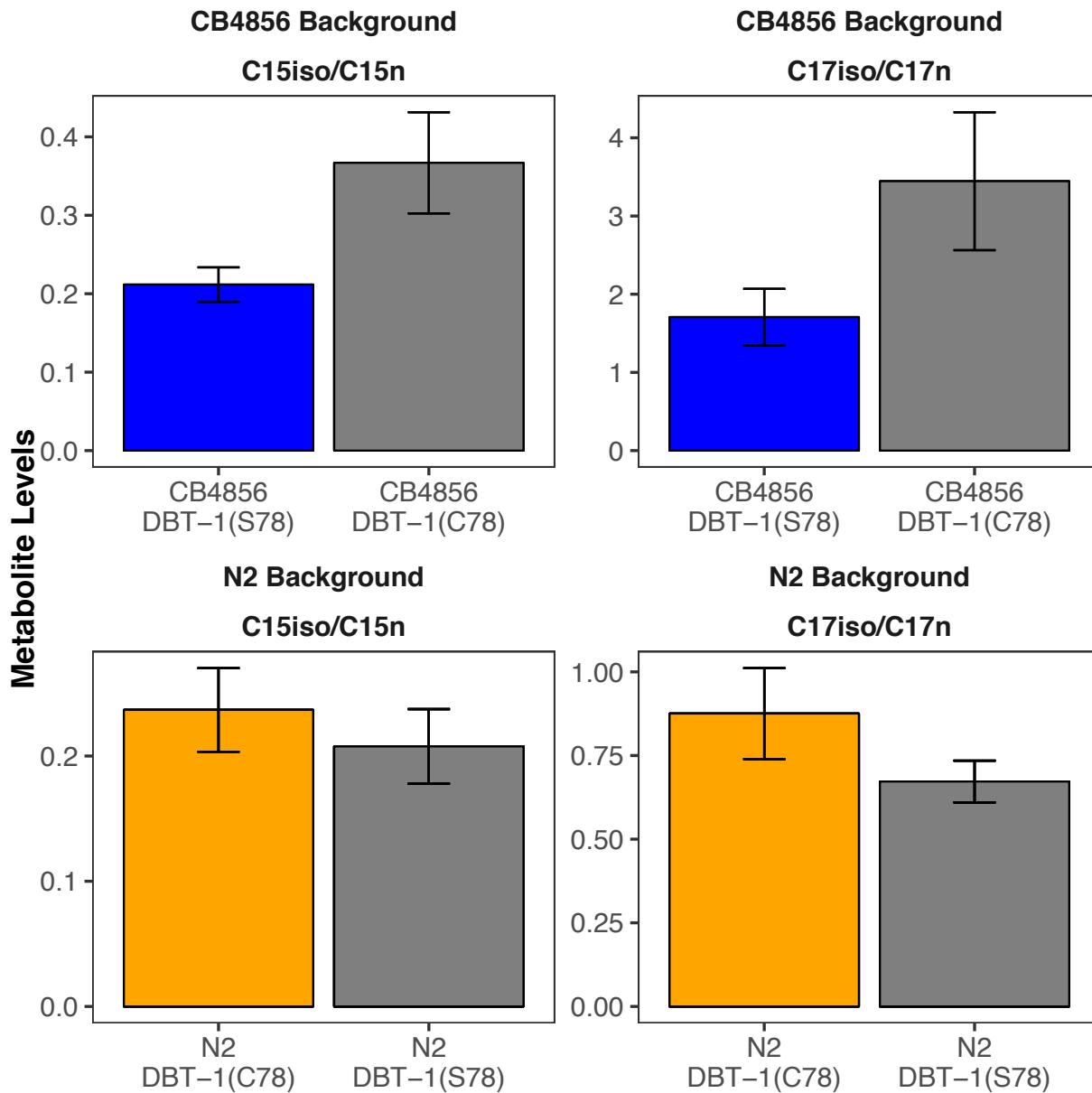

1217 **Figure 3-figure supplement 1: The DBT-1 C78S variant underlies arsenic trioxide sensitivity**
1218 **in *C. elegans*.**

1219 Tukey box plots of residual animal length (top panel) and median animal length (bottom panel) after exposure to
1220 1000 μ M arsenic trioxide are shown (N2, orange; CB4856, blue; allele replacement strains, gray). Labels correspond
1221 to the genetic background and the corresponding residue at position 78 of DBT-1 (C for cysteine, S for serine).
1222 Every pair-wise strain comparison is significant except for the N2 DBT-1(S78) - CB4856 comparison from animal
1223 length (Brood size: Tukey's HSD p -value < 1.55E-5; Animal length: p -value << 1E-7).



1224 **Figure 3-figure supplement 2: Brood size and animal length are correlated with the first**
1225 **principal component for the allele-swap recapitulation experiment**

1226 The correlation between brood size (blue) or animal length (pink) with the first principal component trait for the
1227 allele-swap recapitulation experiment. Each dot represents an individual allele-swap or parental strain replicate
1228 phenotype, with the animal length and brood size phenotype values on the x-axis and the first principal component
1229 phenotype on the y-axis.



1230 **Figure 4-figure supplement 1: Raw abundance of C17ISO for CB4856 and CB4856 allele
1231 swap.**
1232 The raw abundance of C17ISO is plotted on the y-axis for three independent replicates of the CB4856 and
1233 CB4856 allele swap strains exposed to control (teal) or 100 μ M arsenic trioxide (pink) conditions. The
1234 difference between CB4856 swap mock and arsenic conditions is significant (Tukey HSD p -value = 0.029),
1235 but the difference between CB4856 mock and arsenic conditions is not (Tukey HSD p -value = 0.10).
1236

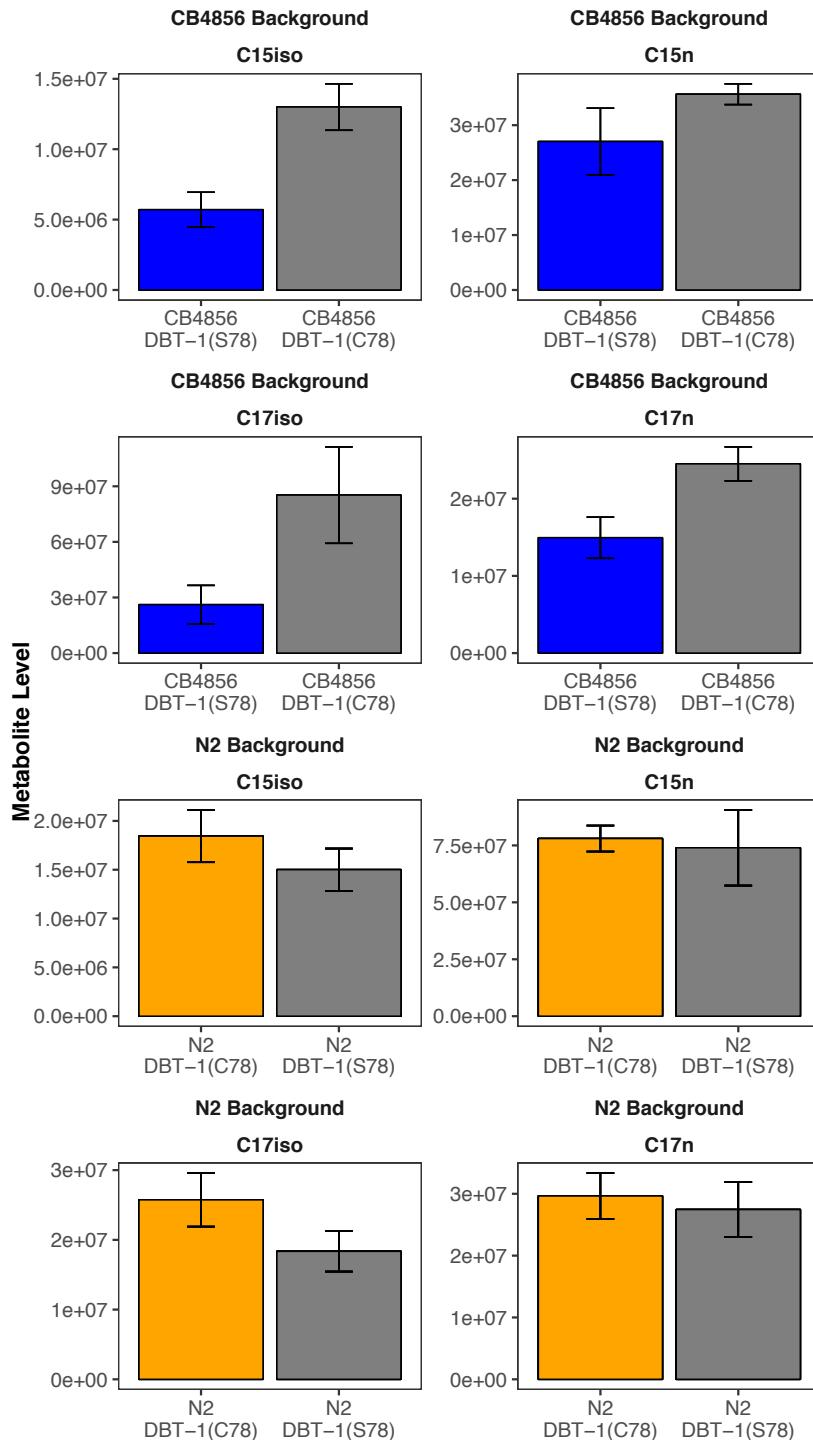
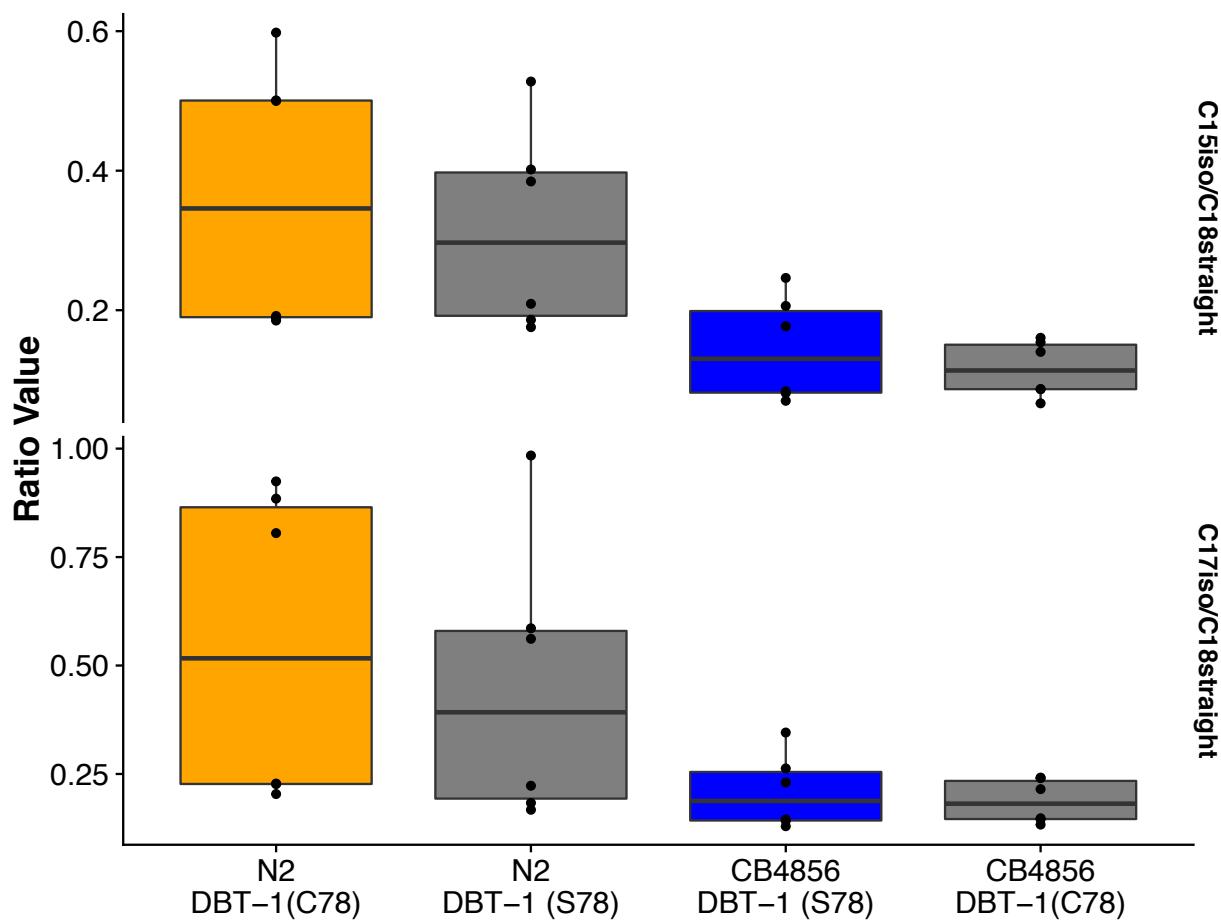
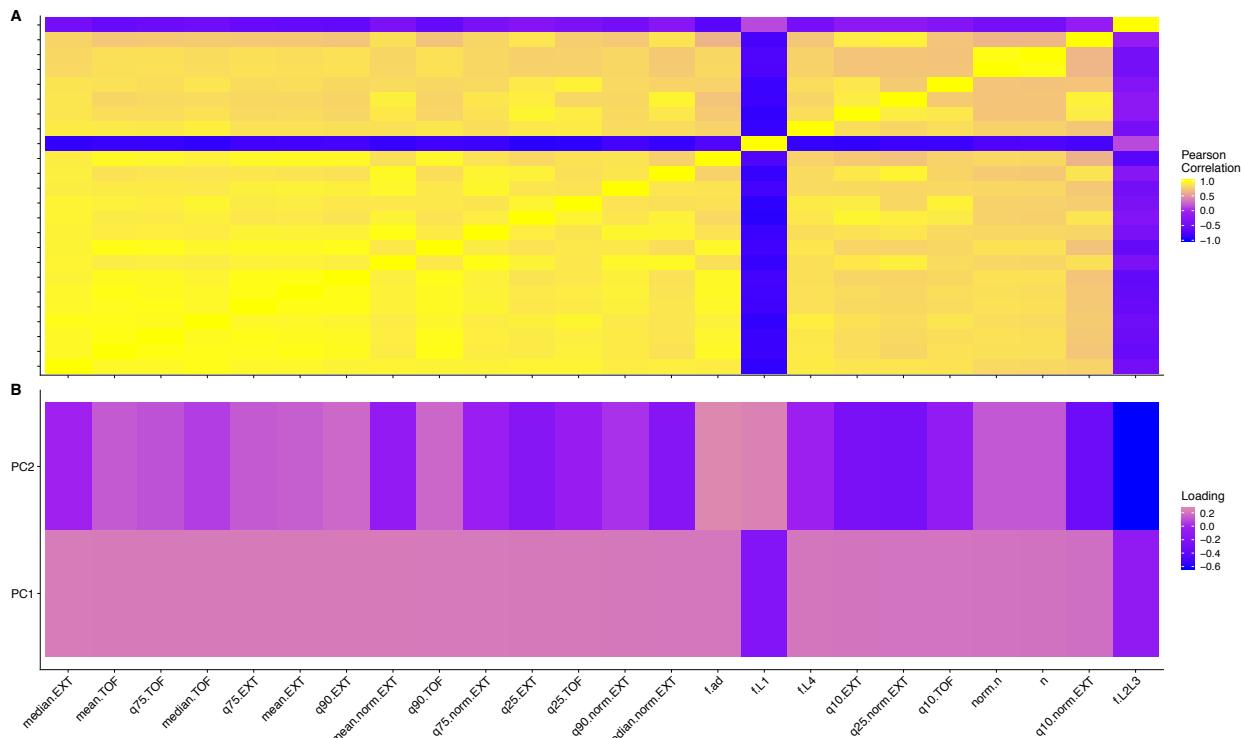

1237
1238
1239
1240
1241

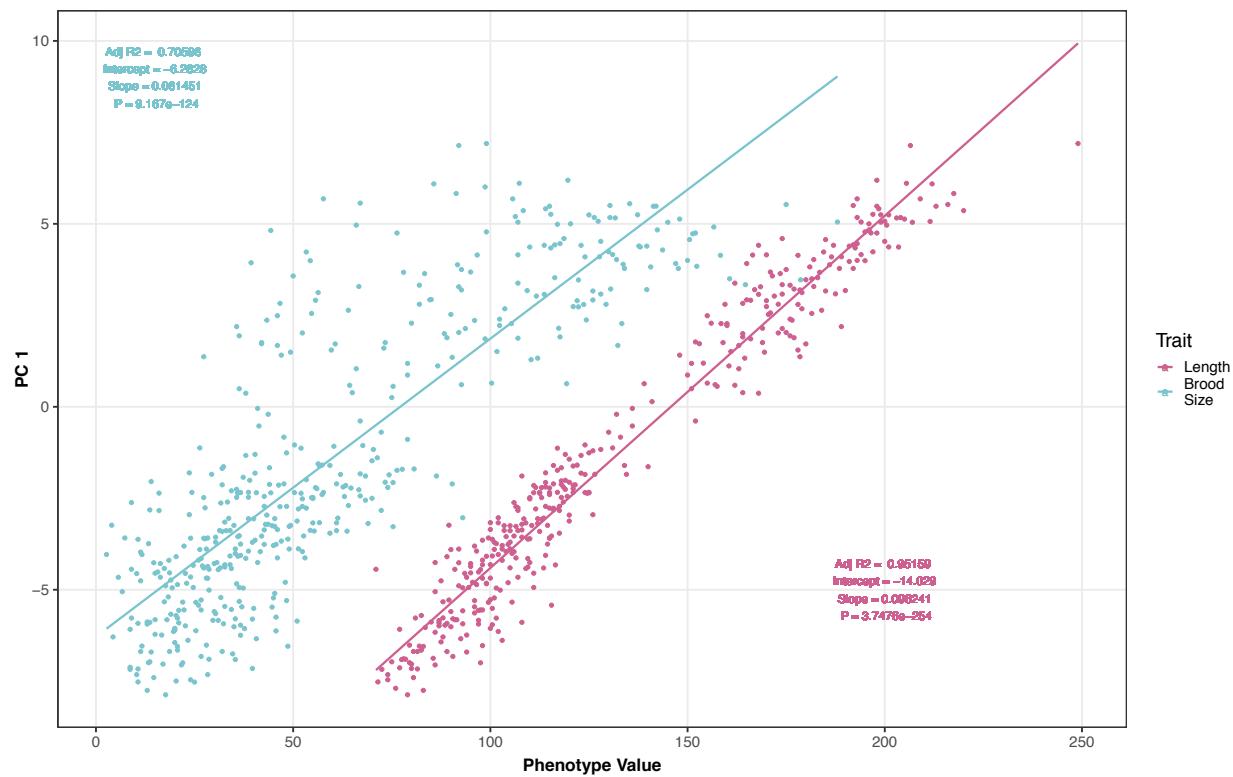
Figure 4-figure supplement 2: Straight-chain fatty acids are not affected by arsenic trioxide
The difference in raw C15SC (left panel) or C17SC (right panel) abundances between 100 μ M arsenic trioxide and control conditions is plotted on the y-axis for three independent replicates of the CB4856 and CB4856 allele swap strains and six independent replicates of the N2 and N2 allele swap strains. There are no significant differences when comparing the abundances between parental and allele-swap strains.

1242 **Figure 4-figure supplement 3: C15ISO and C17ISO to strait-chain ratios in control**
1243 **conditions**

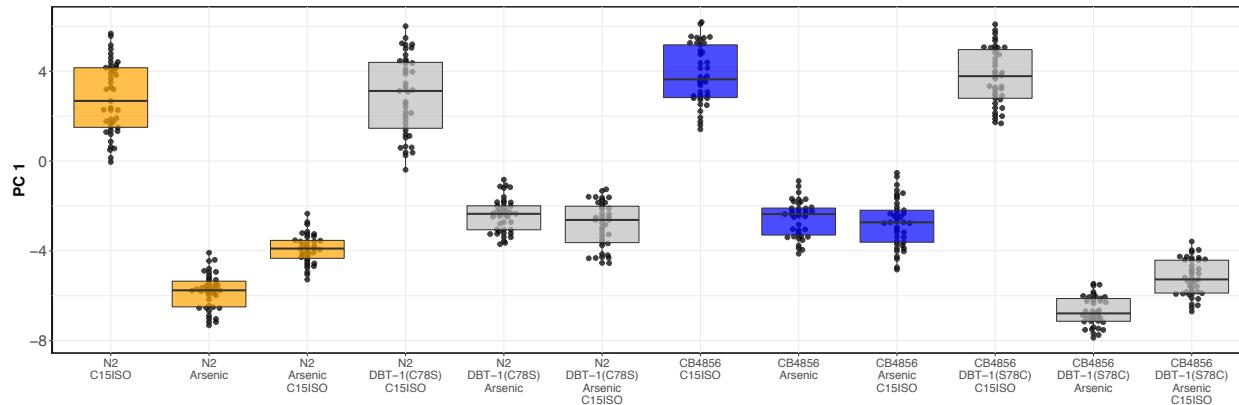

1244 The C15ISO/C15SC (left panel) or C17ISO/C17SC (right panel) ratios in control conditions are plotted on the y-
1245 axis for three independent replicates of the CB4856 and CB4856 allele swap strains and six independent replicates
1246 of the N2 and N2 allele swap strains. The C15 and C17 ratios for the CB4856-CB4856 allele swap comparison are
1247 significant (C15: Tukey HSD p -value = 0.0168749; C17: Tukey HSD p -value = 0.0342525). The difference between
1248 the C17 ratio for the N2-N2 allele swap comparison is significant (Tukey HSD p -value = 0.0044667), but the
1249 difference in the C15 ratio is not significant (Tukey HSD p -value = 0.1239674).


1250
1251 **Figure 4-figure supplement 4: Strains with the DBT-1(C78) allele produce more branched**
1252 **chain fatty acids in the L1 larval stage in control conditions.**

1253 Branched chain (left panel) and straight chain (right panel) fatty acid measurements in L1 animals are represented on
1254 the y-axis. There are significant differences in abundances when comparing all parental and allele-swap strains for
1255 C15ISO and C17ISO chain fatty acids (CB4856-C15ISO DBT-1(C78): Tukey HSD *p*-value = 0.0036201, *n*=3; N2-
1256 C15ISO DBT-1(C78): Tukey HSD *p*-value = 0.0265059, *n*=6; CB4856-C17ISO DBT-1(C78): Tukey HSD *p*-value
= 0.0086572, *n*=3; N2-C17ISO DBT-1(C78): Tukey HSD *p*-value = 0.0022501, *n*=6). Conversely, we observe no


1257 significant differences in straight chain fatty production except for C17n production in the CB4856 background
1258 (CB4856-C15n DBT-1(C78): Tukey HSD *p*-value = 0.0787388, n=3; N2-C15n DBT-1(C78): Tukey HSD *p*-value =
1259 0.5817993, n=6; CB4856-C17n DBT-1(C78): Tukey HSD *p*-value = 0.0086572, n=3; N2-C17n DBT-1(C78): Tukey
1260 HSD *p*-value = 0.35827, n=6).

1261
1262
1263
1264
1265


1266 **Figure 4-figure supplement 6: Trait correlations and principal component loadings of**
1267 **C15ISO rescue experiment**
1268 (A) The trait Pearson's correlation coefficient of the assay- and control-regressed measured traits. (B) The
1269 contribution of each measured trait to the principal components that explain 90% of the total variance in the GWA
1270 mapping experiment, which was performed at 1000 μ M. For each plot, the tile color corresponds to the value, where
1271 yellow colors represent higher values.

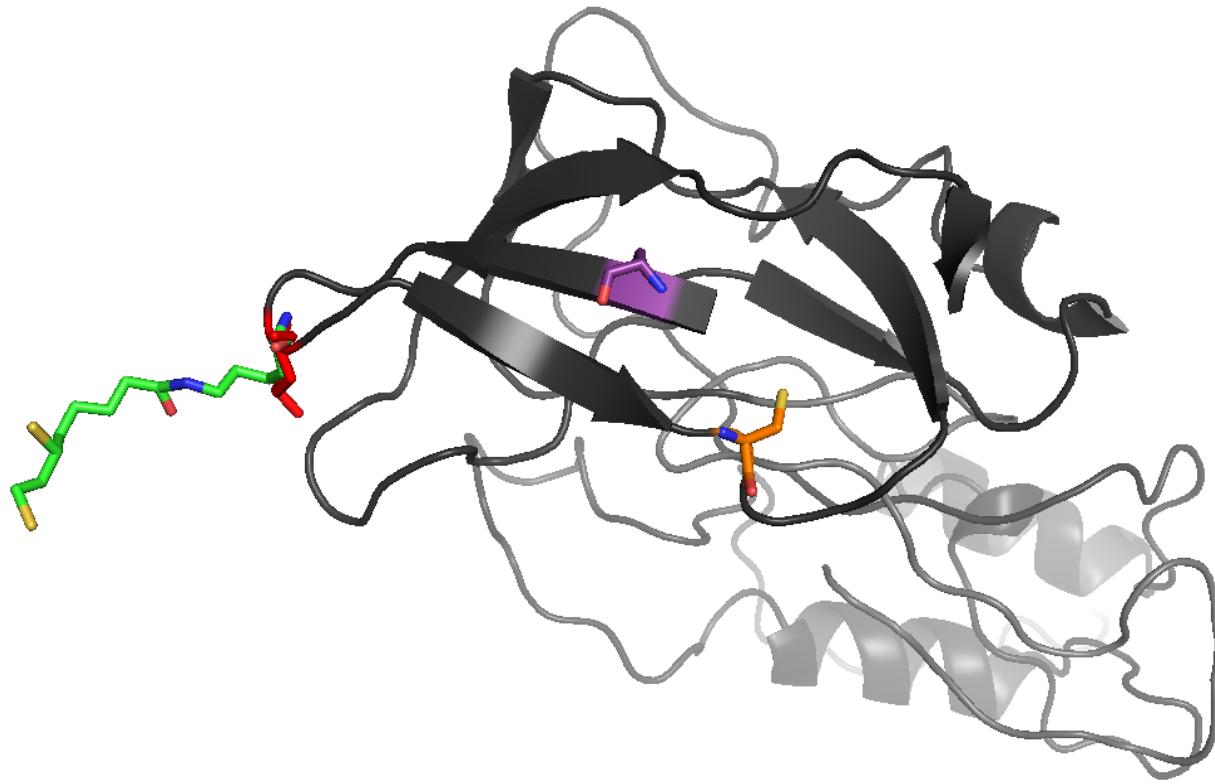
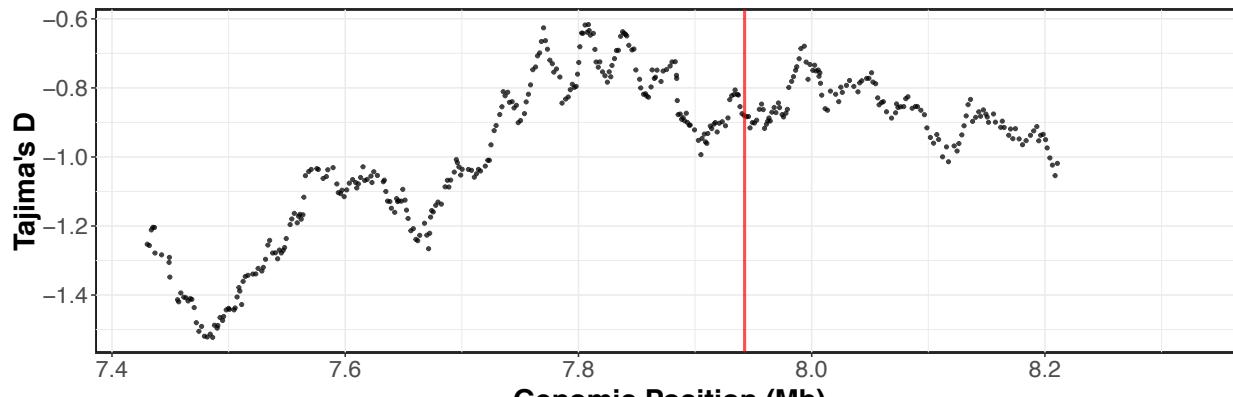
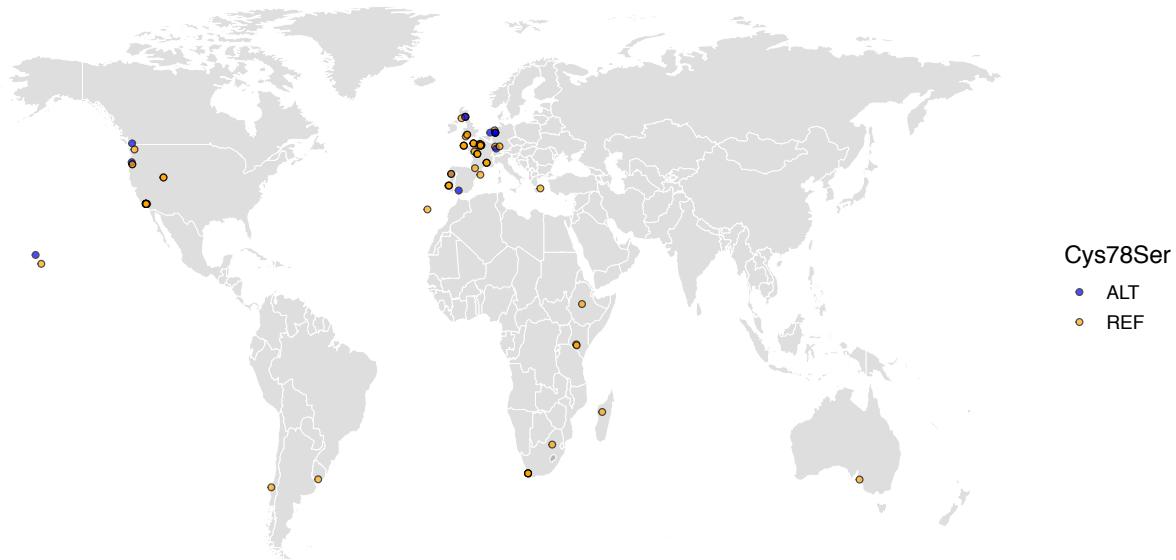

1272
1273
1274
1275
1276
1277

Figure 4-figure supplement 7: Brood size and animal length are correlated with the first principal component trait for the C15ISO rescue experiment


The correlation between brood size (blue) or animal length (pink) with the first principal component trait for the C15ISO rescue experiment. Each dot represents an individual allele-swap or parental strain replicate phenotype, with the animal length and brood size phenotype values on the x-axis and the first principal component phenotype on the y-axis.

1278 **Figure 4-figure supplement 8: Complete results from C15iso rescue experiment**
1279 Tukey box plots median animal length after C15ISO, arsenic trioxide, or arsenic trioxide and 0.64 μ M C15ISO
1280 exposure are shown (N2, orange; CB4856, blue; allele replacement strains, gray). Labels correspond to the genetic
1281 background and the corresponding residue at position 78 of DBT-1 (C for cysteine, S for serine). Every pairwise
1282 strain comparison is significant except for the N2 DBT-1(S78) - CB4856 comparisons (Tukey's HSD p -value <
1283 1.43E-6).



1284 **Figure 5-figure supplement 1: Three-dimensional homology model of *C. elegans* DBT-1**
1285 A three-dimensional homology model of *C. elegans* DBT-1 (black) aligned to human pyruvate
1286 dehydrogenase lipoyl domain (PDB:1Y8N) is shown. The C78 residue that confers resistance to arsenic
1287 trioxide is highlighted in orange, and the C65 residue is highlighted in purple. The *C. elegans* K71 residue
1288 is highlighted in red, and the human lipoylated lysine is highlighted in green.
1289

1290 **Figure 2-figure supplement 5: Tajima's D across the arsenic trioxide QTL confidence**
1291 **interval**

1292 Divergence, as measured by Tajima's D, is shown across the arsenic trioxide QTL confidence interval (II:7,430,000-
1293 8,330,000). The whole-genome SNV data set [24,49] was used for Tajima's D calculations. Window size for the
1294 calculations was 500 SNVs with a 10 SNV sliding window size. The vertical red line marks the position of the *dbt-1*
1295 locus.

1296 **Figure 2-figure supplement 6: The worldwide distribution of the DBT-1(C78S) allele**
1297 Cysteine (REF) is shown in orange and serine (ALT) is shown in blue. Latitude and longitude coordinates
1298 of sampling locations were used to plot individual strains on the map.

1299 **Supplementary Files:**
1300
1301 **Figure 1-source data 1:** Arsenic dose response trait data for four strains in 0, 250, 500, 1000, or
1302 2000 μ M arsenic, labelled as water, arsenic1, arsenic2, arsenic3, arsenic4 in the Condition
1303 column. (Used to generate Supplementary Figure 1A-B)
1304
1305 **Figure 1-source data 2:** Broad-sense heritability estimates from arsenic dose response data.
1306 Estimates were calculated using the lmer function of the lme4 R package by fitting the mixed
1307 effect model equation $\text{lmer}(\text{value} \sim (1|\text{strain}))$, where value is the trait value and strain is the strain
1308 name. (Used to generate Supplementary Figure 3)
1309
1310 **Figure 1-source data 3:** Arsenic dose response estimates of effect sizes estimated by fitting the
1311 linear model: trait value \sim strain. (Used to generate Supplementary Figure 3)
1312
1313 **Figure 1-source data 4:** Arsenic dose response loadings of principal components (PCs) for the
1314 PCs that explain up to 90% of the total variance in the trait data. Condition names correspond to
1315 those in Supplementary File 1. (Used to generate Supplementary Figure 2A-D)
1316
1317 **Figure 1-source data 5:** Arsenic dose response principal component (PC) eigenvectors for the
1318 PCs that explain up to 90% of the total variance in the data set. PCA was performed all arsenic
1319 concentrations together in order to look at the relative PC value for each concentration. Condition
1320 names correspond to those in Supplementary File 1. (Used to generate Supplementary Figure
1321 1C)
1322
1323 **Figure 1-source data 6:** Arsenic dose response loadings of principal components (PCs) for the
1324 PCs that explain up to 90% of the total variance in the trait data. PCA was performed all arsenic
1325 concentrations together in order to look at the relative PC value for each concentration.
1326
1327 **Figure 1-source data 7:** Arsenic dose response trait correlations where each row corresponds
1328 to the Pearson correlation coefficient for two traits. Condition names correspond to those in
1329 Supplementary File 1. (Used to generate Supplementary Figure 1A-D)
1330
1331 **Figure 1-source data 8:** RIAIL phenotype data used for linkage mapping. (Used to generate
1332 Figure 1B and Supplementary Figure 5)
1333
1334 **Figure 1-source data 9:** RIAIL trait correlations where each row corresponds to the Pearson
1335 correlation coefficient for two traits. (Used to generate Supplementary Figure 4A)
1336
1337 **Figure 1-source data 10:** RIAIL loadings of principal components (PCs) for the PCs that explain
1338 up to 90% of the total variance in the trait data. (Used to generate Supplementary Figure 4B)
1339
1340 **Figure 1-source data 11:** Results from linkage mapping experiment. (Used to generate Figure
1341 1A, Supplementary Figure 6, and Supplementary Figure 8)
1342

1343 **Figure 1-source data 12:** Genomic heritability estimates from RIAIL phenotype data. (Used to
1344 generate Supplementary Figure 7)

1345
1346 **Figure 1-source data 13:** Phenotypes of NILs and CRISPR allele swap strains in the presence
1347 of 1000 μ M arsenic trioxide after correcting for strain differences in control conditions. (Used to
1348 generate Figure 1C, Figure 3, Supplementary Figure 9, and Supplementary Figure 16)

1349
1350 **Figure 1-source data 14:** NIL and CRISPR allele swap trait correlations. (Used to generate
1351 Supplementary Figure 10A)

1352
1353 **Figure 1-source data 15:** NIL and CRISPR allele swap trait loadings of principal components
1354 (PCs) for the PCs that explain up to 90% of the total variance in the trait data. (Used to generate
1355 Supplementary Figure 10B)

1356
1357 **Figure 1-source data 16:** NIL genotypes generated from whole-genome sequencing.

1358
1359 **Figure 2-source data 1:** All wild-isolate traits used for genome-wide association mapping.

1360
1361 **Figure 2-source data 2:** Wild isolate trait loadings of principal components (PCs) for the PCs that
1362 explain up to 90% of the total variance in the trait data. (Used to generate Supplementary Figure
1363 12B)

1364
1365 **Figure 2-source data 3:** Wild isolate trait correlations. (Used to generate Supplementary Figure
1366 12A).

1367
1368 **Figure 2-source data 4:** GWA mapping results for PC1. (Used to generate Figure 1A-B)

1369
1370 **Figure 2-source data 5:** Genotype matrix used for genome-wide mapping.

1371
1372 **Figure 2-source data 6:** Genomic heritability estimates of wild isolate traits. (Used to generate
1373 Supplementary Figure 13)

1374
1375 **Figure 2-source data 7:** All QTL identified by GWA mapping (Used to generate Supplementary
1376 Figure 14).

1377
1378 **Figure 2-source data 8:** Fine-mapping results for PC1. (Used to generate Figure 1C and
1379 Supplementary Figure 15)

1380
1381 **Figure 4-source data 1:** Metabolite measurements for the CB4856 and CB4856 allele swap
1382 strains (Used for Figure 4B and Supplementary Figures 18-20)

1383
1384 **Figure 4-source data 2:** Processed metabolite measurements for the CB4856 and CB4856 allele
1385 swap strains (Used for Figure 4B and Supplementary Figures 18-20)

1387 **Figure 4-source data 3:** Metabolite measurements for the N2 and N2 allele swap strains (Used
1388 for Figure 4B and Supplementary Figures 18-20)

1389

1390 **Figure 4-source data 4:** Metabolite measurements for N2, CB4856, and both allele-swap strains
1391 at the L4 larval stage. (Used to generate Supplementary Figure 21)

1392

1393 **Figure 4-source data 5:** Processed phenotype data for the C15ISO rescue experiment (Used to
1394 generate Figure 4C)

1395

1396 **Figure 4-source data 6:** Trait correlations for the for the C15ISO rescue experiment (Used to
1397 generate Supplementary Figure 22A)

1398

1399 **Figure 4-source data 7:** C15ISO rescue trait loadings of principal components (PCs) for the PCs
1400 that explain up to 90% of the total variance in the trait data. (Used to generate Supplementary
1401 Figure 2B)

1402

1403 **Figure 5-source data 1:** Human cell line read data for CRISPR swap experiment in 293T
1404 cells.(Used to generate Figure 5B)

1405

1406 **Figure 5-source data 2:** Results from Fisher's exact test of human cell line read data for CRISPR
1407 swap experiment in 293T cells.

1408

1409 **Figure 5-source data 3:** Metabolite measurements from human cell line experiments.

1410

1411 **Figure 2-source data 9:** Tajima's D of GWA mapping confidence interval. (Used to generate
1412 Supplementary Figure 26)

1413

1414 **Figure 2-source data 10:** Isolation locations of strains used in GWA mapping. (Used to generate
1415 Supplementary Figure 27)

1416

1417 **Supplementary File 1:** Plasmid used for editing human cells with the S112C and R113C edits.

1418

1419 **Supplementary File 2:** Plasmid used for editing human cells with the W84C edit.

1420 **Format of Supplementary Files:**

1421
1422 **Figure 1-source data 1:** Arsenic dose response trait data for four strains in 0, 250, 500, 1000,
1423 or 2000 μ M arsenic, labelled as water, arsenic1, arsenic2, arsenic3, arsenic4 in the Condition
1424 column.
1425

Column	Description
Strain	Strain name
Condition	Arsenic concentration
Trait	Trait name
Value	Trait value

1426
1427 **Figure 1-source data 2:** Broad-sense heritability estimates from arsenic dose response data.
1428 Estimates were calculated using the lmer function of the lme4 R package by fitting the mixed
1429 effect model equation lmer(value ~ (1|strain)), where value is the trait value and strain is the
1430 strain name.

Column	Description
DR_H2	Broad-sense heritability estimate
Strain_Effect	Variance of random effect (strain)
Residual_Var	Residual variance from mixed model
Coef_Gv	Coefficient of genetic variation - $100 * (\text{sqrt}(\text{genetic variance component}) / \text{response mean})$
Coef_Rv	Coefficient of environmental variation - $100 * (\text{sqrt}(\text{environmental variance component}) / \text{response mean})$
condition	Arsenic Concentration
trait	Trait name

1431
1432 **Figure 1-source data 3:** Arsenic dose response estimates of effect sizes estimated by fitting
1433 the linear model: trait value ~ strain. Estimates were performed for pairs of strains and for all
1434 strains. When all strains were used for the estimates, the strain1 and strain2 column values are
1435 "ALL". Condition names correspond to those in SuppData1.

Column	Description
term	ANOVA model term - only Strain effect is shown
power	Power to detect the effect at 0.05 significance threshold, based off the

	Cohen's F effect size
sumsq	Sum of squares from ANOVA
meansq	Mean squares (sumsq/df)
df	Degrees of freedom in ANOVA model
statistic	F statistic
p.value	P-value from ANOVA model
etasq	η^2 estimate of effect size
partial.etasq	Partial η^2 estimate of effect size
omegasq	ω^2 estimate of effect size
partial.omegasq	Partial ω^2 estimate of effect size
cohens.f	Cohen's F estimate of effect size
condition	Arsenic concentration
trait	Trait name
strain1	Strain name
strain2	Strain name

1436

1437

Figure 1-source data 4: Arsenic dose response loadings of principal components (PCs) for the

1438

1439

PCs that explain up to 90% of the total variance in the trait data. Condition names correspond to

those in SuppData1

Column	Description
Trait	Trait name
PC	Principal component
loading	Loading value
Condition	Arsenic concentration

1440

1441

Figure 1-source data 5: Arsenic dose response principal component (PC) eigenvectors for the

1442

1443

PCs that explain up to 90% of the total variance in the data set. Condition names correspond to

those in SuppData1.

Column	Description

Strain	Strain name
Condition	Arsenic Concentration
Trait	Principal component trait name
Value	Principal component eigenvectors

1444

1445 **Figure 1-source data 6:** Arsenic dose response loadings of principal components (PCs) for the
1446 PCs that explain up to 90% of the total variance in the trait data. PCA was performed all arsenic
1447 concentrations together in order to look at the relative PC value for each concentration

Column	Description
Trait	Trait name
PC	Principal component
loading	Loading value

1448

1449 **Figure 1-source data 7:** Arsenic dose response trait correlations where each row corresponds
1450 to the Pearson correlation coefficient for two traits. Condition names correspond to those in
1451 SuppData1.

Column	Description
trait_b	Trait name
Condition	Arsenic concentration
trait_a	Trait name
trait_cor	Pearson correlation coefficient between trait_a and trait_b

1452

1453 **Figure 1-source data 8:** RIAIL phenotype data used for linkage mapping

Column	Description
Condition	Condition name - all correspond to 1000 μ M arsenic trioxide
Strain	Strain name
Trait	Trait name
Value	Trait value

1454

1455 **Figure 1-source data 9:** RIAIL trait correlations where each row corresponds to the Pearson
1456 correlation coefficient for two traits.

Column	Description

trait_b	Trait name
trait_a	Trait name
trait_cor	Pearson correlation coefficient between trait_a and trait_b

1457

1458 **Figure 1-source data 10:** RIAIL loadings of principal components (PCs) for the PCs that
1459 explain up to 90% of the total variance in the trait data.

Column	Description
Trait	Trait name
PC	Principal Component
loading	Principal Component loading value

1460

1461 **Figure 1-source data 11:** Results from linkage mapping experiment.

Column	Description
marker	Genotypic marker name
chr	Chromosome on which the marker is located
pos	Genomic position at which the marker is located, in bp (WS245)
trait	Toxin response measured by the BIOSORT in toxin.trait format
lod	LOD score indicating the strength of correlation between genotype at the marker and phenotype of RIAILs
threshold	GWER-derived LOD score above which a LOD score is considered significant
iteration	Numerical value indicating the number of fsearch() iterations at which the given LOD score was identified, where each iteration takes the highest LOD score of the previous iteration as a cofactor before performing the mapping
var_exp	For the highest significant LOD score per iteration, the amount of RIAIL phenotypic variation that can be explained by genotype at the peak marker
eff_size	Coefficient of a linear model between genotype and phenotype indicating the effect size of a QTL
ci_l_marker	Genotypic marker indicating the left boundary of a 95% confidence interval around a QTL peak marker
ci_l_pos	Position, in bp, across the chromosome indicating the left boundary of

	a 95% confidence interval around a QTL peak marker
ci_r_marker	Genotypic marker indicating the right boundary of a 95% confidence interval around a QTL peak marker
ci_r_pos	Position, in bp, across the chromosome indicating the right boundary of a 95% confidence interval around a QTL peak marker

1462
1463
1464
1465
1466
1467
1468

Figure 1-source data 12: Genomic heritability estimates from RIAIL phenotype data. Two estimates are provided that both utilize a linear mixed effect model with the equation $y = X\beta + Zu + \epsilon$ to estimate heritability. The estimates differ in their formulation for the strain additive relatedness matrix, realized relatedness matrices correct for allele frequencies and the expectation matrix does not. For both estimates, the Hadamard product of the additive relatedness matrix was used to calculate the epistatic relatedness matrix.

Column	Description
trait	Trait name
H2_realized	Broad-sense heritability estimate using the realized kinship matrix (K), where $K = ZZ'/2\sum p_i(1 - p_i)$. Where p_i corresponds to allele frequency.
h2_realized	Narrow-sense heritability estimate using the realized kinship matrix (K), where $K = ZZ'/2\sum p_i(1 - p_i)$. Where p_i corresponds to allele frequency.
H2_expecation	Broad-sense heritability estimate using the non-realized kinship matrix (K), where K is the correlation of marker genotypes
h2_expecation	Narrow-sense heritability estimate using the non-realized kinship matrix (K), where K is the correlation of marker genotypes
QTL_VE	Sum of variance explained by all QTL for the given trait
QTL_II	TRUE/FALSE if the QTL corresponding to II:7296342 was identified
QTL_II_VE	Variance explained by the chromosome II:7296342 QTL, if detected

1469
1470
1471

Figure 1-source data 13: Phenotypes of NILs and CRISPR allele swap strains in the presence of 1000 μ M arsenic trioxide after correcting for strain differences in control conditions.

Column	Description
Strain	Strain name
Condition	Condition - all correspond to 1000 μ M arsenictrioxide
u_id	Unique strain replicate id
Trait	Trait name

Value	Trait value
-------	-------------

1472

1473 **Figure 1-source data 14:** NIL and CRISPR allele swap trait correlations, where each row
1474 corresponds to the Pearson correlation coefficient for two traits. All traits correspond to those in
1475 1000 μ M arsenic after correcting for strain differences in control conditions

Column	Description
trait_b	Trait name
trait_a	Trait name
trait_cor	Pearson correlation coefficient

1476

1477 **Figure 1-source data 15:** NIL and CRISPR allele swap trait loadings of principal components
1478 (PCs) for the PCs that explain up to 90% of the total variance in the trait data. All traits
1479 correspond to those in 1000 μ M arsenic after correcting for strain differences in control
1480 conditions

Column	Description
Trait	Trait name
PC	Principal component
loading	Loading value

1481

1482 **Figure 1-source data 16:** NIL genotypes generated from whole-genome sequencing.

Column	Description
chrom	Chromosome
start	Start of region
end	End of region
sample	Strain name
gt	Genotype: 1=N2, 2=CB4856
supporting_sites	Number of sites supporting genotype call

sites	Total sites in region
DP	Average depth for all sites
switches	Number of genotype changes between sites
CIGAR	The run-length encoding of the genotypes called. B3A1B8 represents 3 B-parent calls, 1A-parent call, and 8 B-parent calls

1483

1484 **Figure 2-source data 1:** Wild isolate phenotype data in the presence of 1000 μ M arsenic
1485 trioxide after correcting for growth in control conditions. There is a column for each trait.

Column	Description
Strain	Strain name
trait..1	Trait values
trait..n	Trait values

1486

1487 **Figure 2-source data 2:** Wild isolates loadings of principal components (PCs) for the PCs that
1488 explain up to 90% of the total variance in the trait data. All traits correspond to those in 1000 μ M
1489 arsenic after correcting for strain differences in control conditions

Column	Description
Trait	Trait name
PC	Principal component
loading	Loading value

1490

1491 **Figure 2-source data 3:** Wild isolate trait correlations where each row corresponds to the
1492 Pearson correlation coefficient for two traits. All traits correspond to those in 1000 μ M arsenic
1493 after correcting for strain differences in control conditions

Column	Description
trait_b	Trait name
trait_a	Trait name
trait_cor	Pearson correlation coefficient

1494

1495 **Figure 2-source data 4:** GWA mapping results of PC 1 trait in the presence of 1000 μ M arsenic
1496 trioxide. Mapping was performed using the EMMA algorithm.

Column	Description
marker	Marker name - (chromosome_position)
chr	Chromosome on which the marker is located
pos	Marker position (bp)
log10p	-log10 of the p-value for a given marker
trait	Trait name
BF	-log10 of the Bonferroni-corrected p-value
aboveBF	1/0 - 1 if marker is above the -log10 of Bonferroni-corrected p-value
strain	Strain name
value	Strain trait value
allele	Strain genotype at QTL peak position
var.exp	Variance explained by QTL, Spearman's rank correlation coefficient squared
startPOS	Start position (bp) of QTL region of interest
endPOS	End position (bp) of QTL region of interest
peak_id	If multiple QTL were identified, this corresponds to the unique QTL ID
interval_size	Size, in bp, of QTL region of interest

1497
1498 **Figure 2-source data 5:** Genotype matrix used for genome-wide mapping. Each row
1499 corresponds to a single-nucleotide variant.

Column	Description
CHROM	Chromosome of variant
POS	Position of variant
REF	Reference allele of variant
ALT	Alternate allele of variant
Strain1	Genotype of strain 1 (-1 = REF, 1 = ALT)
Strain2	Genotype of strain 2 (-1 = REF, 1 = ALT)

...StrainN	Genotype of strain N (-1 = REF, 1 = ALT)
------------	--

1500
1501
1502
1503
1504
1505

Figure 2-source data 6: Genomic heritability estimates from wild isolate phenotype data. Estimates were calculated by fitting a linear mixed effect model with the equation $y = X\beta + Zu + \epsilon$. Two models were fitted, one using only additive random effects and one using an additive and epistatic random effects. The Hadamard product of the additive relatedness matrix was used to calculate the epistatic relatedness matrix.

Column	Description
Broad_H2_add_model	Broad-sense heritability estimate using the realized kinship matrix (K), where $K = ZZ'/2\sum p_i(1 - p_i)$. Where p_i corresponds to allele frequency.
narrow	Narrow-sense heritability estimate using the realized kinship matrix (K), where $K = ZZ'/2\sum p_i(1 - p_i)$. Where p_i corresponds to allele frequency.
Broad_H2_add_epp_model	Broad-sense heritability estimate using the realized kinship matrix (K), where $K = ZZ'/2\sum p_i(1 - p_i)$. Where p_i corresponds to allele frequency.
trait	Trait name

1506
1507

Figure 2-source data 7: All QTL detected by GWA mapping

Column	Description
Trait	Trait used for mapping
Chrom	Chromosome on which the marker is located
Start_interval	Start position of QTL
Peak_Position	Peak position of QTL
End_interval	End position of QTL

1508
1509
1510
1511

Figure 2-source data 8: Fine mapping of QTL identified from mapping the first principal component of wild-isolate phenotype data. Each row corresponds to a variant within the QTL region of interest identified from the genome-wide scan.

Column	Description
MARKER	Marker name - (chromosome_position)
CHROM	Chromosome on which the marker is located
POS	Marker position (bp)
REF	Reference allele

ALT	Alternate allele
MAF_variant	Minor allele frequency of variant
GENE_NAME	WormBase gene name
WBGenID	WormBase gene ID
WBFeature_TYPE	WormBase feature type
WBFeature_ID	WormBase feature ID
TRANSCRIPT_BIOTYPE	Transcript biotype
VARIANT_IMPACT	SnpEff predicted effect of variant
NUCLEOTIDE_CHANGE	Nucleotide change
AMINO_ACID_CHANGE	Amino acid change that results from variant
STRAND	Strand that gene is located on
TRANSCRIPTION_START_POS	Start position (bp) of transcript
TRANSCRIPTION_END_POS	End position (bp) of transcript
PEAK_MARKER	Most significant marker identified from genome-wide scan
PEAK_MAF	Minor allele frequency of the peak marker
TRAIT	Trait name
QTL_INTERVAL_START	Start position (bp) of QTL region of interest
QTL_INTERVAL_END	End position (bp) of QTL region of interest
VARIANT_LD_WITH_PEAK_MARKER	LD (r^2) of variant with peak marker
VARIANT_LOG10p	-log10 of p-value for a given variant
STRAIN	Strain
STRAIN_GENOTYPE	Strain genotype
Phenotype_Value	Strain trait value

1512

1513 **Figure 4-source data 1:** Metabolite measurements of L1 animals exposed to 100 μ M arsenic

1514 trioxide or control conditions

Column	Description
Sample	Strain name
C15iso	C15iso abundance
C15n	C15 straight-chain abundance
C17iso	C17iso abundance
C17n	C17 straight-chain abundance

1515
1516
1517
1518

Figure 4-source data 2: Processed metabolite measurements of L1 animals exposed to 100 μ M arsenic trioxide or control conditions. Only data for CB4856 and ECA590 were used from this data set.

Column	Description
strain	Strain name
replicate	Replicate name
concentration	Concentration of arsenic trioxide (100 μ M or Mock)
compound	Name of metabolite or branched/straight ratio
value	Abundance or ratio of indicated metabolites

1519
1520
1521
1522

Figure 4-source data 3: Processed metabolite measurements of N2 and ECA581 L1 animals exposed to 100 μ M arsenic trioxide or control conditions.

Strain,Condition,Replicate,C15_branched,C15n,15_ratio,C17iso,C17n,17_ratio

Column	Description
Strain	Strain name
Condition	Condition tested (100 μ M arsenic or Water)
Replicate	Replicate name
C15_branched	C15 branched chain fatty acid abundance
C15n	C15 straight-chain acid abundance
15_ratio	Ratio of C15_branched/C15n
C17iso	C17 branched chain fatty acid abundance

C17n	C17 straight-chain acid abundance
17_ratio	Ratio of C17_branched/C17n

1523

1524 **Figure 4-source data 4:** Processed metabolite measurements of CB4856, N2, ECA590, and
1525 ECA581 young adult animals in control conditions.

1526 Strain,C20n:5,C15iso,C17iso,C18,C18:1,C14,C15_C20n5,C15_C18

Column	Description
Strain	Strain name
C20n:5	C20n:5 abundance
C15iso	C15iso abundance
C17iso	C17iso abundance
C15n	C15 straight-chain acid abundance
C18	C18 straight-chain acid abundance
C18:1	C18:1 straight-chain acid abundance
C15_C20n5	Ratio of C15iso to C20n5 abundance
C15_C18	Ratio of C15iso to C18 abundance

1527

1528 **Figure 4-source data 5:** C15ISO rescue experiment phenotypes of parental and CRISPR allele
1529 swap strains in the presence of 1000 μ M arsenic trioxide after correcting for strain differences in
1530 control conditions.

Column	Description
Strain	Strain name
Condition	Condition - all correspond to 1000 μ M arsenictrioxide
u_id	Unique strain replicate id
Trait	Trait name
Value	Trait value

1531

1532 **Figure 4-source data 6:** C15ISO rescue experiment trait correlations, where each row
1533 corresponds to the Pearson correlation coefficient for two traits. All traits correspond to those in
1534 1000 μ M arsenic after correcting for strain differences in control conditions

Column	Description
trait_b	Trait name
trait_a	Trait name
trait_cor	Pearson correlation coefficient

1535

1536 **Figure 4-source data 7:** C15ISO rescue experiment trait loadings of principal components
1537 (PCs) for the PCs that explain up to 90% of the total variance in the trait data. All traits
1538 correspond to those in 1000 μ M arsenic after correcting for strain differences in control
1539 conditions

Column	Description
Trait	Trait name
PC	Principal component
loading	Loading value

1540

1541 **Figure 5-source data 1:** Results from human cell editing experiment.

Column	Description
Guides	CRISPR guide and repair oligos used for swap
Edit	Amino acid edit that the guides generate
Well	Experimental well of replicate
Replicate	Replicate letter
Primers	Primers used to genotype the edit
Arsenic_Concentration	Arsenic concentration in well
Guide1_wt	WT read counts
Guide1_edit	Edited read counts
Guide1_total	Total read counts

1542

1543 **Figure 5-source data 2:** Fisher's exact test p -values for human cell editing experiment

Column	Description

p_val	p-value from Fisher's exact test of read data
Edit	Amino acid edit
Conc	Arsenic trioxide concentration
Rep	Replicate

1544

1545

Figure 5-source data 3: Metabolite measurements for human cell line experiments.

Column	Description
Sample	Treatment condition of cells, mock or arsenic (2.5 μ M)
Replicate	Replicate name
C15iso	Abundance of C15iso
C15n	Abundance of C15SC
C15_ratio	Ratio or C15iso/C15SC
C17iso	Abundance of C17iso
C17n	Abundance of C17SC
C17_ratio	Ratio or C17iso/C17SC

1546

1547

Figure 2-source data 9: Tajima's D calculation of GWA QTL

Column	Description
snps	SNP index of first SNP in window
position	Genomic coordinate of window start position
window	Window Index
Td	Tajima's D calculation
swindow	Genomic coordinate of window start position
ewindow	Genomic coordinate of window end position
midwindow	Genomic coordinate middle position of window

1548

1549

Figure 2-source data 10: Strain isolation locations

Column	Description

strain	Strain name
GT	Allele status of DBT-1(C78S) (REF = C, ALT = S)
long	Longitude coordinate of isolation location
lat	Latitude coordinate of isolation location

1550