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5-HAYED peptide can protect AD brain by scavenging the redundant iron
ions and the catalyzed radicals
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Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by
memory and cognitive decline. It is incurable currently and places a great burden on the caregivers of
patients. Iron is rich in the brain of AD suffers. It catalyzes radicals which impairs neurons. Therefore,
reducing the redundant brain iron is pressing to ease AD. To scavenge the excessive brain iron catalyzed
radical, thus protect the brain and decrease the incidence of AD. We synthesized a soluble iron-pro
5-HAYED peptide. By injecting 5-HAYED to the cerebrospinal fluid (CSF) of the AD mouse, we
observed that the 5-HAYED is able to decrease the brain iron and radical level, which behaving neurons
protection, and can ameliorate the cognition status for AD mouse. Further, 5-HAYED can decreased the
AD incidence and can reverse the AD associated anemia and inflammation without hurt kidney and liver.

Keywords: Alzheimer’s Disease; 5-HAYED Oligomer; Iron; fMRI; Transgenic Mouse; Radicals.

Abbreviation: AD: Alzheimer’s disease; AB: Amyloid beta; KM mouse: Kunming mouse; NM: Normal;
fNMRI: functional nuclear magnetic resonance.

Running Title: 5-HAYED peptide relives AD.

Financial Disclosure Statement: This study has been supported by the Public Welfare Technology
Research Grant for Zhejiang Social Development [2015C33248], Natural Science Foundation of
Zhejiang Province [Y17H160027], Open object of the Key Laboratory of Shanghai Forensic Medicine
[KF1606], Taizhou Science and Technology Program [1501KY32], Taizhou University Talent Fostering
Fund [2015PY028].

Conflict of Interest declaration: The authors have no conflicts of interest regarding the article.

Word counts
Abstract: 215 words; Text: 6000 words.

Number of figures and tables: 5 figures and 1 table

* These authors contributed equally to the work;
{l: Correspondence: Zhenyou Zou, E-mail addresses: sokuren@163.com, College of Medicine, Taizhou University,
1139 Shifu Road, Taizhou, Zhejiang 318000, China.



http://www.google.com.hk/url?sa=t&rct=j&q=%E7%A5%9E%E7%BB%8F%E9%80%80%E8%A1%8C%E6%80%A7%E7%96%BE%E7%97%85+%E7%BF%BB%E8%AF%91&source=web&cd=1&cad=rja&ved=0CDEQFjAA&url=http%3A%2F%2Fwww.dictall.com%2Findu%2F066%2F0659089B625.htm&ei=K8rPUKmXKOay0AHJ_YBQ&usg=AFQjCNGDOJmntPHwRfcLsRai_lwtW7YZgA&bvm=bv.1355325884,d.dmQ
http://en.wikipedia.org/wiki/Caregiving_and_dementia
mailto:sokuren@163.com
https://doi.org/10.1101/373639
http://creativecommons.org/licenses/by-nd/4.0/

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

bioRxiv preprint doi: https://doi.org/10.1101/373639; this version posted July 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

1. Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory and
cognitive decline [1]. It is incurable currently and places a great burden on the caregivers of patients [2].

The cause of AD is not well understood. Many articles have demonstrated that increased oxidative
stress in AD brains may have a pathogenic role in neuronal degeneration; they impair membrane lipids
and proteins and ultimately result in neuronal death [3, 4].

Iron is a transitional metal. It can catalyze free oxidative radical generation by deoxidizing oxygen
to oxyradicals or by donating electron to hydrogen peroxide, forming hydroxyl radicals [5]. Our previous
study revealed that AD brains have higher levels of iron than the normal brains, and the iron distribution
determines the regional density of radicals [6]. Therefore, reducing redundant iron in the brain may be an
option to ease AD.

Metal-chelators, such as desferrioxamine (DFO) and deferiprone (DFP), have been used as AD
treatments in clinical trials [7]. These agents have slowed the progression of AD in certain cases [8, 9];
however, the fundamental aspects of their biochemistry have severely limited their effectiveness. For
example, the hexadentate iron chelator DFO can cause fever, hearing loss and severe allergic reactions
[10]; the lipid-soluble iron chelator DFP can lower neutrophils and white blood cell count which causing
life-threatening infections [11, 12]. Therefore, designing or identifying a nontoxic iron chelator that
removes excessive iron from the brain is pressing.

Amyloid beta (AB) peptide consists of 36-43 amino acids and is cleaved by beta secretase from
amyloid precursor protein (APP) [13]. This peptide possesses high affinity Cu** and Fe** binding sites at
Asp (D) 1, Glu(E)s, and His(H)s,13,14 [14]. By binding metal ions, AB aggregates to form amyloid plaques
in AD brains [15] and reduces Cu** to Cu™* and Fe® to Fe?*, catalyzing the O,-dependent production of
H,O, [16]. Based on the iron-binding characteristic of Ap, we combined the metal-pro amino acids
histidine (H), glutamic acid (E) and aspartic acid (D) to an oligomer. In addition, to enhance the
solubility of the peptide, we added the polar amino acid tyrosine (Y) and the smallest nonpolar amino
acid alanine (A). And at last, we synthesized a 5-repeat HAYED dissoluble oligomer.

To examine the iron chelating and radical purging efficiency, we administrated it to the iron-rich
medium cultured SH-SY5Y neuroblastoma cells and then treated it to the wild aged Kunming (KM)
mice, which display symptoms similar to those human patients with AD, such as memory deterioration,
neurofibrillary tangles, gliocyte hyperplasia and inflammation, and in particular, the brain iron level in

these mice was higher than that of the normal level [17], which is highly suitable for examining the brain
2
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radical level and damage and performing the cognitive assays.
2. Results

AD mouse has higher level of iron and hydroxyl radicals and observed neuron necrosis in brain

AD model mouse brain has more iron than that of the normal. To be specific, AD samples have 0.68
ug iron per gram of brain tissue in average, whereas, the normal samples have only 0.32 ug per gram
brain (Fig. 1-A). The topography (Fig. 1-A) reveals that iron is richer in the corpus columella, cortex,
hippocampus and cingulate cortex of AD brain, but relatively scarce in the amygdala and ventricles. By
contrast, in most areas of the normal brain, except for sporadic abundance in the ventricles, columella,
cortex and CAL, iron is relatively lower; the hippocampus is the rarest zone.

Accordingly, hydroxyl radical levels in the AD brain were 70% higher than those of the normal (Fig.
1-B). Neuron necrosis is widespread, indicating by the Tunnel stained brown area in Fig. 1-C.
5-HAYED can bind iron

A mass spectrometer (Fig. 2-A) shows that the particles with 5 hydrions appear at the peak 715.85,
4 hydrions particles and 3 hydrion participles locate at 894 and 1192 respectively. With the regularity,
the molecular weight of the whole synthesized oligomer is 3574.5, which is appropriate for the
5-HAYED repeats peptide. Using a protein sequencer (PPSQ-21A/23A, Shimatsu Corp., Japan), the
peptide oligomer was sequenced as “HAYED HAYED HAYED HAYED HAYED”, which is
approximately 300 nm in length (Fig. 2-B-c) and completely conformed to our design.

Pure 5-HAYED oligomers display liner-like fibrils (Fig. 2-B-c). But after incubated with FeCls, the
oligomers were observed curled and conglomerated (Fig. 2-B-d), and the iron was detected iso-directed
along the 5-HAYED fibrils (the bright spots in the right panel of Fig. 2-B-d representing the Fe
positions), which strongly suggesting the junctions exist between the iron atoms and the amino acid
oligomers.

Isothermal titration calorimetry revealed that 5-HAYED is high affinity to iron. Shown by Fig.
2-C-b, after the FeCls titration, the 5-HAYED lost 93011 kCal/mole in enthalpy and 9112.6 kCal/mole in
Gibbs energy. No binding occurs to 5-HAYED if only titrated with ITC buffer (Fig. 2-C-a). Specifically,
5-HAYED oligomer bind irons at the residues His, Tyr, Asp, and Glu, for the peaks in the band of
1600~1300 cm™ in infrared chromatography, which representing the C=0 group vibrations in the
carboxyl of Glu and Asp, changed after the 5-HAYED incubated with the FeCls; and the peak 720 cm™,
which representing the weakening of the phenyl hydroxide of Tyr (Fig. 2-D-b); the absorption apex at

2375 cm’™, which representing the stretching of the C-N bond, and the peaks in the 1700~1615 cm™ band,
3
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which displaying the stretching of the C=N bond in the imidazole ring of the histidine residue, were all
weakened (Fig. 2-D-b), committed by the chelating of iron atoms.
5-HAYED can protect cells by reducing iron catalyzed radicals

The SH-SY5Y cells, if incubated in iron-rich medium (containing 0.016 M FeCls-6H,0, imitating
AD CSF) for 36 hours, they atrophied, with the axons and dendrites shrunk, and dendritic spines
decreased (Fig. 3-A-a). However, if 100 pM 5-HAYED was pre-added in the medium, the cells survived
with axons and dendrites extending and spines rich on dendrites (Fig. 3-A-b). Furthermore, the cells
exhibit active cytoplasmic transport, for transport cysts can be seen along the dendrites (pointed by the
arrow in Fig. 3-A-b). By contrast, in the iron-stressed cells, no transporting cysts can be found. It is
obviously that the iron-stress damaged the cell physiological activities.

Spectrophotometry and ICP assays revealed that 5-HAYED peptide has the ability to clear hydroxyl
radicals and to chelate the redundant iron (Fig. 3-C). The hydroxyl radicals decreased from 0.886 to
0.766, and free iron ions in the medium decreased by one third. As a result, more cells survived in the
medium, shown by Fig. 3-B.
5-HAYED behaves neuron protection and can ameliorate cognitive statue for AD suffers

The wild aged KM mice, which were used as the Alzheimer’s disease model, many neurons in the
cortex and hippocampus could be observed injured by Tunnel assay (indicating by the green spots in Fig.
4-A). The iron and hydroxy radical in the brain were 17 mM and 0.14 OD respectively, more than 70%
and 180% higher than that of the normal (Fig. 4-B). However, when 5-HAYED was injected into the CSF,
the free iron and the hydroxy radical decreased to 12 mM and 0.07 OD respectively (Fig.4-B), 30% and
1 times lower than that of the AD ones. And after the 5-HAYED treatment, the nerves in the AD brain
appeared more organized and less necrosis (Fig. 4-A). It is obviously that 5-HAYED taken effect in
neuron protection by reducing iron catalyzing radicals.

Even more, after the 5-HAYED treated, we found that the blood oxygen metabolism level increased
by 152% compared with the untreated AD suffers (bright areas in the brain shown of Fig. 4-C and D).
The Morris water maze assay further revealed that after 4 days of learning, the 1 month 5-HAYED
treated mice behave less clumsy than the untreated wild aged ones. They spend 59 s on average to return
to the platform, nearly 23 s saved than that of the untreated ones (Fig. 4-E and F), that is, the synthesized
5-HAYED obviously ameliorated the cognition status for the AD suffers.
5-HAYED transgenic mouse has low AD incidence

When 5-HAYED encoding oligonucleotide sequence was combined to the mouse genome (Fig. 5-B
4
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show the southern blot of 5-HAYED DNA) and expressed the 5-HAYED peptide (the brown spots in Fig.
5-C), AD rarely attacks the mouse (Fig. 5-D).
5-HAYED has no observed side effect on liver, kidney and blood

A good medicament should not only be high effective but should also be non-toxic to the human
body. The clinic chemistry and blood test demonstrate that no obvious side effects attacked to the liver,
kidney and blood of the 5-HAYED treated mouse. As shown by Tab.1, although AD brought about two
folds ALT and AST increase to the mouse, 5-HAYED did not changed the odds, nor exerted the
significant influences to sCR and BUN, because the indexes of SCR and BUN in the 5-HAYED-treated
mouse were nearly the same as the control (Tab. 1).

The AD attack and the introduction of 5-HAYED did not influence the mean corpuscular volume
(MCV) or the percentage of neutrophils (NE). Although 5-HAYED did not ameliorate the AD-caused
increases in red cell distribution width (RDW), monocyte percentage (MO) and white blood cell count
(WBC), the indexes, including red blood cell count (RBC), hematocrit (HCT), eosinophil percentage
(EO), basophile percentage (BA), platelet count (PLT), and mean corpuscular hemoglobin concentration
(MCHC), which were decreased in the AD suffers, were recovered, and the high level of lymphocyte
percentage (LY) and the mean platelet volume (MPV) in the AD mice were reversed after the 5-HAYED
administration (Tab. 1), suggesting that 5-HAYED has an anti-inflammatory effect and can alleviate AD

associated anemia to a extent.

3. Discussion

Alzheimer’s disease has a profound impact on patients, as well as their families and friends.
However, the pathogeny is not yet fully understood. Gene mutations on PS1, PS2, APP and APOE have
been associated with inherited Alzheimer’s disease [18, 19, 20]. In addition, environmental or lifestyle
factors, such as heart disease, high blood pressure, and diabetes, may also play roles in the development
of Alzheimer’s disease [21, 22, 23].

Free radicals corrupt the cell membrane, vessel wall, proteins, lipids or even DNA in cell nuclei
[24]. In brain, iron is a fundamental catalyzer for free radical generation. The bivalent form of iron Fe*
is capable of transferring one electron to O, producing the superoxide radical «O;". The reaction of Fe®*
with H,O, produces the highly reactive hydroxyl radical (*OH). These oxygen free radicals, plus H2O;
and singlet oxygen, may imperil neurons in iron-rich regions [25]. Therefore, iron can be regarded as an

important pathophysiologic element for AD.
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The distribution and homeostasis of iron in brain may be regulated by transferrin, lactoferrin, iron
responsive protein, ceruloplasmin, and ferritin. Among these regulators, transferrin is homogenously
distributed around senile plaques and also found in astrocytes in the cerebral cortex of Alzheimer's brain
tissue. Most ferritin-containing cells are microglia associated with blood vessels in Alzheimer's brain [26,
27]. Further, the permeability of veins in the choroid plexus hypothalamus (the blood brain barrier, BBB)
also contains iron [28]. There, which are rich in iron-carrying proteins, iron is rich and radical is
abundant and the oxidation of protein, nuclear DNA and lipids in neurons increase is understandable [29,
30, 31].

An agent capable of clearing radicals and redundant iron might be a potential AD treatment.
Scavenging iron with DFO, DFP, M30 (5-[N-methyl-N-propargyaminomethyl]-8-hydroxyquinoline) or
HLA20 (5-[4-propargylpiperazin- 1-ylmethyl]-8-hydroxyquinoline) reportedly relives the symptoms of
AD patients [32]. A NMDA (neuronal N-methyl-D-aspartate)-receptor antagonist was reported
suppressed superoxide and peroxynitrite radicals in AD brains [33]. However, for the aspects of
biochemistry, their effectiveness was severely limited. For example, DFO can tightly bind iron (111), but
it failed to impede the progression of AD in clinical trials [34, 35]. DFP can cause infections by lowering
neutrophils and white blood cell count [11, 12].

AP peptide is affinity to iron, it can bind iron ions at the sites Dy, Es, and Hg, 13, 14 [14], which
chelating the excessive iron ions and lower the catalyzed free radicals in CSF. But for the scarce of
iron-pro residues and low solubility, Ap peptide is insufficient to purge the iron in AD brain. Even, ABi.42
peptide was presumed to spontaneously generate peptidyl radicals or hydrogen peroxide, which injuring
neurons [36, 37].

The 5-HAYED peptide combined 5 times metal-pro amino residues histidine, glutamic acid and
aspartic acid, moreover, it is high soluble for containing the polar amino acid tyrosine and the smallest
nonpolar amino acid alanine. It is more effective in the iron scavenging and radical removal. By using it,
we protected the neurons in the brain of AD mice, which brought about the cognition status amelioration
and reverse AD associated anemia and inflammation. And by transferring 5-HAYED to KM mice, AD

incidence lowered. Therefore, 5-HAYED peptide is a delightful iron scavenger to ease AD.

4. Conclusion

5-HAYED peptide can protect brain and decrease the incidence of AD by reducing the

iron-catalyzed radicals via precipitating redundant free ions.
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5. Materials and methods

Materials

5-HAYED amino acid oligomers and the oligonucleotide encoding 5-HAYED amino acid oligomer
were synthesized by GL Biochem Ltd. (Shanghai, China); pCEP4 and psisCAT6a Plasmids were
constructed by Research Science Biotech Corp. (Shanghai, China); The SH-SY5Y cell line was obtained
from American Type Culture Collection (ATCC, Manassas, VA, USA).

Brain iron content topography scanning and measurement

The mouse brains were frozen coronal sectioned (100 pum thick) as reference [38]-figure.30 indexed.
After weighing, the sections were placed on polycarbonate membranes and scanned by an
X-fluorescence work station (Institute of High Energy Physics of China) for iron-topography.

The whole iron levels in brain, cell and medium were measured by an ICP (inductively coupled
plasma emission spectrometer, Perkin Elmer Elan600, Fremont, CA, USA). Before it, they were
individually freeze-dried, weighed and the nitrified. Gradient concentration FeCls solutions were used as
standard samples. The experimental animals were treated under the Guidance for the Care and Use of
Laboratory Animals of the National Institutes of Health and the protocol was approved by the Committee
on the Ethics of Animal Experiments of Taizhou University (Permit Number: 13-1368).
5-HAYED oligomers observation by TEM

The synthesized 5-HAYED powder was dissolved in distilled water (4 mg/ml) and divided to two
shares. The first was used as a control, without iron adding in. In the second, 5 ul 0.05 M FeCl3-6H,0
solution was added into 20 ul 5-HAYED lyosol and then undergone a 24-hour incubation at 37°C. Then
each sample was placed on a carbon film-coated copper mesh and with 2 min of 1% (m/v)
phosphotungstic acid staining. After an air-dried, the samples were observed under a transmission
electron microscope (TEM, H7650, Hitachi, Kyoto).

Isothermal titration calorimetry (ITC)

To confirm the affinity between the iron atoms and 5-HAYED, purified 5-HAYED oligomers were
exhaustively dialyzed against the ITC buffer. Following the dialysis, 5-HAYED oligomers were diluted
to 200 uM, and FeClz-6H,0 was diluted to 1000 uM. The binding between iron and the 5-HAYED
oligomers was measured using a VP-ITC Microcalorimeter (MicroCal, GE Healthcare). The heat of the
ligand dilution was subtracted from the heat of the binding to generate a binding isotherm that was fit
with a one-site binding model using Origin, allowing for the association constant (Ka), enthalpy (AH),

and entropy (AS) of the interaction to be determined. Ka was used to calculate Kd (Kd=1/Ka).
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Infrared spectrum analysis
To determine how 5-HAYED binds iron ions, dried 5-HAYED-FeCl; reactant was blended with
K.Br powder; the IR spectra of the samples were measured by an infrared spectrometer (NEXUS870,
NICOLET, USA). Pure 5-HAYED and K,Br blender were used as the controls.
Cell culture
SH-SY5Y cells were cultured for determining how 5-HAYED protects cells from iron-induced
cytotoxicity. They were cultured in RMPI DMEM medium at 37°C under 5% CO, for 12 hours. And
then divided to iron-stress (0.01 M FeCl3-6H,0) or iron-5-HAYED (containing 0.01 M FeCl;-6H,0 and
100 pM 5-HAYED in the medium) group. The iron content is imitated the iron concentration in AD
brain SCF, and the 5-HAYED content was optimized by previous tests. The with/without 5-HAYED
(100 pM) group were set as the control. All plates of cells were cultured for 12 hours. Then, the cells in
each dish were partially fixed with 2.5% glutaraldehyde for SEM; the remnants were submitted to flow
cytometry for an apoptosis assay (BD FACSCalibur, Franklin Lake, USA).
Cell apoptosis assay
Cells in each dish were collected individually and stained with Annexin-V-FITC and propidium
iodide (PI) for 10 min in the dark at room temperature. A FACScan flow cytometer (Becton-Dickinson
and company) was used to analyze cell apoptosis. The results were calculated using CellQuest Pro
software (Becton, Dickinson and Company) to obtain the percentage of apoptotic cells from the total
cells.
Hydroxyl radical measurement
The whole brain of each mouse was ground on ice. Then the thoroughly ground samples were
centrifuged at 10000 rpm for 15 min. The supernatants, along with culture medium (200 ul), were
separately placed in 50 ul 1% salicylic acid solution (m/v). After the samples were incubated on a shaker
at 37°C for 15 min, they were submitted to an enzyme-labeled meter (SpectraMax M5, Molecular
Devices, USA) for transmittance value measurement at 510 nm. The OD value was set to index the
hydroxyl radical level in each sample.
Anti 5-HAYED immune serum preparing
Before the immunohistochemical test, 100 ul of 5-HAYED-physiological saline (0.5mg/ml) was
mixed with 100ul incomplete Freund adjuvant, and then subcutaneous or intraperitoneal injected to each
mouse every week. After two months, the whole blood of each mouse was extracted and the serum was

isolated and frozen under -20°C for the later utility.
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5-HAYED transgenic mouse building

5-HAYED amino acid oligomer coding DNA sequence (list in Fig.4-G) was constructed into pCEP4
plasmid. The PDGF promoter was combined upstream to initiate the 5-HAYED transcription. Then the
plasmids (2pg/ml) were microinjected to the male prokaryotic of fertilized eggs derived from the donor
mouse caged with the male. The well-growing eggs were in-transplanted to the fallopian tube of the
pseudopregnant mouse. For the first 5-HAYED positive generation, the male and female mice were
caged to mate reciprocally. The homozygotes of the second generation were used to statistic the AD
incidence.

PCR

To confirm the 5-HAYED transgenic mouse, the whole DNA was extracted from the mouse tail.
Wherein, the PCR primers used for amplifying the 5-HAYED oligonucleotide are: the Forward: ATG
CAT GCC TAC CAG GAT; and the Backward: ACT CTG GTA GGC ATG ATC.

PCR was performed in triplicate using a TagMan PCR kit (TagMan: CAS: N8080228) on an
Applied Biosystems 7500 Sequence Detection System (Applied Biosystems, Foster City, CA, USA)
under the following conditions: 10 min at 95°C, followed by 42 cycles of 15 sec at 95°C and 1 min at
60°C.

Southern blot

The PCR products were electrophoresed on an agarose gel for separating by size. The DNA
fragments in the gel were then transferred to a sheet of nitrocellulose membrane and the membrane was
then exposed to a 5-HAYED hybridization probe (synthesized by Genepharm Ltd., Shanghai, China).
After that, the membrane was washed for the excess probes removal and the pattern of hybridization is
visualized on X-ray film.
5-HAYED immunohistochemical staining

Frozen brain slices were fixed for with 4% formaldehyde (v/v). After 3 washes with 0.1 M PBS, the
sections were blocked with 0.1% BSA/PBS (m/v). After 1 hour, an anti-5-HAYED serum (diluted 1:1000
in PBS) was added to the sections. Incubated at 4°C overnight, the slices were washed and then covered
with HRP labeled goat-anti-mouse 1gG (diluted 1:300 in PBS). After 2 hours, the samples were washed
again, and the substrate was bound by the enzyme DAB. After 30 min, the sections on the slides were
stained with hematin. Washed for 3 times with PBS again, the samples were observed under a
microscope. The sections contained scattered brown spots were 5-HAYED positive, indicating the

introduction of 5-HAYED transgene.
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TUNEL assay

High iron-induced cell necrosis in brain tissue was assessed using a TUNEL kit (Order NO.
E607172, Sangon Biotech Inc. Shanghai, China). In brief, the mouse brain was frozen sectioned (10 um
thickness), and then the slices were placed on slides. After incubating in Na-HEPES solution for 1 hour,
they were treated with 10 mM H,0, and 20 mM progesterone. Then they were washed in PBS and then
permeabilized with 0.1% Triton-X100. Incubated in dark at 37°C for 1 hour in TUNEL reaction mixture,
the samples were observed with microscopy. The bright green spots indicate the necrotic cells in the
tissue.
Morris water maze and functional magnetic resonance imaging (fMRI) assays

Morris water maze and fMRI assays were performed to evaluate the cognitive status of the tested
mice. Specifically, the KM mice were divided into normal, wild aged AD model and 5-HAYED-treated
groups. For the 5-HAYED-treated groups, 1.5 uM 5-HAYED oligomer contained saline was injected into
the SCF weekly using stereotaxic coordinates of PA-1.0 mm, lateral-1.5 mm from bregma, and
ventral-2.0 mm relative to dura. After 1 month, all groups of mice underwent a 4-day Morris water maze
assay. The time spent and the distance swum to return the underwater platform was recorded to
determine the individual cognitive status. Brain fNMRi was performed with an NMR spectrometer (E40,
Flir Inc., USA) at 1.5 T for 30 min after the mouse was anaesthetized. The oxygen metabolism level in
the brain was determined by the bright area in the encephalica.
Hematological analyses

To evaluate the side effects of HAYED (5), mouse blood was collected according to the
IFCC/C-RIDL protocol [31]. For the complete blood count, 1 ml of venous blood was drawn into a
vacuum tube containing potassium 2 ethylene-diamine-tetraacetic acid (K, EDTA). Hematological
analyses were performed to evaluate the white blood cell count (WBC), neutrophil percentage (NE%),
lymphocyte percentage (LY%), monocyte percentage (MO%), basophil percentage (BA%), eosinophil
percentage (EO%), red blood cell count (RBC), hematocrit (HCT), mean corpuscular volume (MCV),
mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), platelet count
(PLT) and mean platelet volume (MPV).
Clinical chemistry

Clinical chemistry was performed to determine the side effects of 5-HAYED on the kidney or liver.
Concretely, blood urea nitrogen (BUN) was assayed using a SpectraMax microtiter plate reader

(Molecular Devices, LLC) and a MaxDiscovery Blood Urea Nitrogen Enzymatic Kit (Bioo Scientific
10
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Corporation). The Quantichrom Creatinine Assay Kit (BioAssay Systems) was utilized to measure

creatinine in the serum (sCr). The serum activity of AST and ALT were determined using an automated

analyzer (Selectra Junior Spinlab 100, Vital Scientific, Dieren, Netherlands) according to the

manufacturer’s instructions.

Data processing

Data are presented as the means £ SEM of three or more independent experiments, and differences

were considered statistically significant at p< 0.05 using t-tests. The topographies of the iron distribution

in the brains were processed with MATLAB 7.0 software (MathWorks, Natick, MA, USA).
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Figure legends

Fig. 1 AD brain has more iron and hydroxyl radicals and damaged.

A) Iron distribution in the brain. The AD brain has more iron than the normal brain. a) IG-RSGb; b) D3V; c) PtA; d) S1BF; e) CA1,;
f) CA2-CA3; g) Temporal cortex; h) PRh-LEnt; i) Amygdala; j) Thalamus; k) Hypothalamus; B) Overall, hydroxyl radical levels
are high in the AD brain; C) The TUNEL assay shows dark staining in the AD brain, indicating a necrosis.

Fig. 2 5-HAYED is affine to iron ions

A) Mass spectrum of the synthesized 5-HAYED amino acid oligomer. The site m/z=715.85 indicates the particles with 5
hydrions; 894 is the peak of 4 hydrion particles, and 1192 is the site of 3 hydrion particles. The molecular weight of the entire
peptide is 3574.5. B) TEM image of 5-HAYED oligomers with or without FeCls incubation. The FeCls incubation resulted in the
agglomeration of the 5-HAYED oligomer, and X-ray energy spectrum shows iron iso-directed along the amino acid fibril. C)
Isothermal titration calorimetry shows that the enthalpy of the Fe: 5-HAYED compound lost 93011 kCal/mole enthalpy and
9112.6 kCal/mole Gibbs, indicating that 5-HAYED has a higher affinity for iron. D) Infrared spectra of the 5-HAYED before and
after the FeCl; incubation. The signals of phenyl -OH (720 cm'l) in the Tyr residue, -COOH (2925 cm™ and 1600~1300 cm'l) in
the Glu and Asp residues, and C-N (2375 cm'l) and C=N (700~1615 cm'l) in the His residue were weakened, suggesting that
iron binding occurred. Furthermore, the signals representing the backbone acylamide N-H stretching (3500~3100 cm'l), the
C=0 bond shift (1680~1630 cm™), the N-H bending (1655~1590 cm™) and C-N stretching (1420~1400 cm™) were transformed,
indicating that a tortuosity occurred in the backbone after the iron incubation.

Fig. 3 5-HAYED can reduce redundant iron ions and hydroxyl radical thus protects cultured cells

A) SH-SY5Y cells shrunk in the iron-rich medium, the dendritic spines (/) decreased, and axonal transportation ()
disappeared; By contrast, in 5-HAYED supplemented high iron medium, the cells survived, the axons and dendrites extended,
the dendritic spines increased, and the cytoplasmic transport was active. Transport cysts were observed along the dendrites. B
and C) 5-HAYED peptide reduced hydroxyl radicals and free iron in the medium, resulting in increased cell survival.
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Fig. 4 5-HAYED behaves neuron protection and cognitive statue amelioration properties and can

lower AD incidence

A) TUNNEL assay shown that the AD brains treated with 5-HAYED display fewer necrotic neurocytes (the bright green spots)
than the untreated AD brains, indicating that 5-HAYED has the function protecting brain. B) The iron and hydroxyl radical levels
in CSFs. 5-HAYED treated brain has lower iron and hydroxyl radical level than that in the untreated AD group. C and D) fMRI
shows that the area of blood oxygen metabolism in the 5-HAYED-treated brain occupied approximately 23% of the whole
section, which is 1.5 times wider than that of the untreated aged wild AD mice and approximately restored half of the normal
mice in area. E and F) Morris water maze assay shows that the distance that the 5-HAYED-treated AD mice swum to find the
platform is obviously shorter than that swum by the untreated AD individual. The time that the 5-HAYED treated AD mice spent
about 59 s in average to swim back to the underwater stage, 23 s saved compared with that of the untreated AD ones. N=6; *: p
<0.05.

Fig. 5 5-HAYED transgenic mouse has a lower AD incidence

A) Gene structure of 5-HAYED. PDGF promoter was combined upstream to initiate the transcription; restriction sequences of
Hind Il and Xba | were inserted for recombination; B) Southern blot of 5-HAYED in the DNA extracted from the transgenic
mouse tail and C) immunohistochemistry of 5-HAYED peptide in the brain section of 5-HAYED transgenic mouse show the
transgenic mouse expressed HAYED. D) 5-HAYED transgenic mouse has low AD incidence compared with the wild aged mice.
N=30; *: p <0.05.
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623 Tables
624
Tab.1 Clinical Chemistry and Blood Index Test

Organ  Index NC 5-HAYED AD AD+5-HAYED RRs [32]

ALT (IU/L) 807 7846 54 ~242
16781 174131

Liver

AST (IU/L) 4545 4945 26 ~70
83181 89151
. sCr (mg/dl) 0.47£0.02 0.49£0.02 0.62+ 0.02 0.52+0.04 0.30~1.00

Kidney BUN (mg/dl) 17.24¢2.51 17.4+2.51 16.81£0.92  18.04+1.64 13.9-~28.3
RBC (10°count/ul)  6.5+0.6 7.120.6 1 4.2+0.7 | 8.2+0.6 1
MCV (fL) 46.3 £2.7 46.5 2.7 47.247.7 47.247.6
RDW (%CV) 24.1+2.9 24.5+2.9 25.2+4.2 26.1+5.4 1
HCT (%) 31.219 36.2+1.9 1 22.3+531  42.7+571
MCHC (g/L) 33.316 33.7£16 30.6£3.6 ¢  34.8£2.3
WBC (10% count/ul)  8.9+1.6 9.0£1.3 9.1+1.51 9.3+2.11

Blood  NE (%) 18.0 £3.0 18.1+3.0 18.2+4.2 17.8 4.5
EO (%) 2.6+0.3 25204 2.8+0.6 1 2.420.7 4
BA (%) 21204 22203 2.3+0.4 2.3+0.6 1
LY (%) 83.343.6 84.8+2.7 96.6£2.21  89.8+0.61
MO (%) 3.62 +0. 35 3.87 £0. 54 7.63x0.61  7.67+0.51 1
PLT (10° count/pl) 750+83.0 742+90.0 571461 | 72052 |
MPV (fL) 6.7+0.7 6.6+1.1 754121 7.420.7 t

Note: AST: Aspartate Aminotransferase, ALT: Glutamic-Pyruvic Transaminase, RRs: Reference Ranges; SCr: Serum
Creatinine, BUN: Blood Urea Nitrogen; RBC: Red blood cell count, MCV: Mean corpuscular volume, RDW: Red cell
distribution width, HCT: Hematocrit, MCH: Mean corpuscular hemoglobin, MCHC: Mean corpuscular hemoglobin
concentration, WBC: White blood cell count, NE: Neutrophil percentage, EO: Eosinophil percentage, BA: Basophile
percentage, LY: Lymphocyte percentage, MO: Monocyte percentage, PLT: Platelet count, MPV: Mean platelet volume.
N=6, p<5%.
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