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Abstract

Decision-making is a complex task and requires adaptive mechanisms that facilitate
efficient behaviour. Here, we consider a neural circuit that guides the behaviour of an
animal in ongoing binary choice tasks. We adopt an inhibition motif from neural
network theory and propose a dynamical system characterized by nonlinear feedback,
which links mechanism (the implementation of the neural circuit) and function
(increasing reproductive value). A central inhibitory unit influences evidence-integrating
excitatory units, which in our terms correspond to motivations competing for selection.
We determine the parameter regime where the animal exhibits improved
decision-making behaviour, and explain different behavioural outcomes by making the
link between bifurcation analysis of the nonlinear neural circuit model and
decision-making performance. We find that the animal performs best if it tunes internal
parameters of the neural circuit in accordance with the underlying bifurcation structure.
In particular, variation of inhibition strength and excitation-over-inhibition ratio have a
crucial effect on the decision outcome, by allowing the animal to break decision
deadlock and to enter an oscillatory phase that describes its internal motivational state.
Our findings indicate that this oscillatory phase may improve the overall performance of
the animal in an ongoing foraging task. Our results underpin the importance of an
integrated functional and mechanistic study of animal activity selection.

Author summary

Organisms frequently select activities, which relate to economic, social and perceptual
decision-making problems. The choices made may have substantial impact on their lives.
In foraging decisions, for example, animals aim at reaching a target intake of nutrients;
it is generally believed that a balanced diet improves reproductive success, yet little is
known about the underlying mechanisms that integrate nutritional needs within the
brain. In our study, we address this coupling between physiological states and a
decision-making circuit in the context of foraging decisions. We consider a model animal
that has the drive to eat or drink. The motivation to select and perform one of these
activities (i.e. eating or drinking), is processed in artificial neuronal units that have
access to information on how hungry and thirsty the animal is at the point it makes the
decision. We show that inhibitory and excitatory mechanisms in the neural circuit
shape ongoing binary decisions, and we reveal under which conditions oscillating
motivations may improve the overall performance of the animal. Our results indicate
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that inefficient or pathological decision-making may originate from suboptimal
modulation of excitation and inhibition in the neurobiological network.

Introduction 1

Modelling complex decision-making problems requires the integration of mechanism and 2

function in a combined modelling framework [1–3]. In binary decision-making, for 3

example, mechanistic neuro-models have been proposed that are based on different 4

inhibitory motifs, such as cross-inhibition [4–10], feed-forward inhibition [11,12], and 5

interneuronal inhibition [13]. Furthermore, linear diffusion-type models which describe 6

the accumulation of noisy evidence are widely applied to study two-alternative choice 7

tasks [14,15]. A specific feature of diffusion models is their ability to resemble 8

statistically optimal processes [15]. However, it has been found that decision-makers do 9

not always behave optimally [2, 8, 16–18]. Suboptimality may arise from the evolution of 10

decision rules in complex environments [2, 16], from limited precision in neural 11

computations [18], or from nonlinearity in the neural network circuitry, as nonlinear 12

models often have several stable stationary states and therefore may integrate evidence 13

by reaching a decision state, which may not correspond to the optimal solution [8]. 14

The aim of the present paper is to study the behaviour of a hypothetical animal 15

performing ongoing activity selection through a nonlinear neural circuit model that 16

implements the interneuronal inhibitory motif. Unlike the cross-inhibition motif, in our 17

model (and in the interneuronal inhibition motif in general [13]) evidence-integrating 18

units do not inhibit each other mutually but receive negative feedback from a separate 19

neural population - the inhibitory unit. Previous studies indicate that the 20

cross-inhibition motif is an approximation of the more realistic interneuronal inhibition 21

motif [7,15] and we emphasise in the present paper that reducing model complexity may 22

lead to the loss of dynamical regimes which show interesting and unexpected 23

phenomena. In particular, we highlight that, compared with the cross-inhibition motif, 24

our implementation of the interneuronal inhibition motif yields an extended subset of 25

dynamical states characterising the decision-maker, including the occurrence of 26

oscillations. In addition to the inhibitory motif, recurrent excitation is taken into 27

account in the same decision-making circuit. The excitation-over-inhibition ratio (E/I 28

ratio) plays a pivotal role in our model analysis and it is considered to be tunable in the 29

decision-making circuit. In general, balancing excitation and inhibition in neural 30

networks is crucial for processing input and executing functions [19–24], and modulating 31

excitation and inhibition can drive the decision-maker through different states 32

characterising the decision-making performance [25, 26]. Specifically, cognitive disorders 33

are related to unbalanced E/I-ratios [27], which may be reflected by impaired 34

decision-making present, for instance, in schizophrenia where deficits in inhibition of 35

behavioural responses can be observed [28]. 36

To examine the utility of our proposed mechanism we embed it in a well-studied 37

nutritional theory, the geometric framework [29]. In this framework animals perform 38

actions (consume resources with different nutrient ratios) to reach a preferred nutrient 39

target. They derive utility according to how close to the target they get, usually 40

determined by Euclidean distance between momentary nutritional state and target 41

state, as in the present study. This framework, while capturing real feeding behaviour of 42

diverse species [29], seems sufficiently general to capture the general problem of ongoing 43

action selection [30]. More specifically, in the scenario considered in the present paper, a 44

model animal makes ongoing foraging decisions and may perform the action chosen until 45

another food choice is made. Our modelling approach is based on the assumption that, 46

influenced by the level of nutrients inside the body, animals have an inner drive (or 47

motivation) to feed and drink [31–34]. This nutritional state changes over time and 48
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therefore animals have to select and perform activities that satisfy and balance their 49

nutritional needs [29]. Furthermore, in real scenarios animals are embedded in an 50

uncertain environment and may be subject to frequent changes [16] and predation 51

risk [35]. To include uncertainties in our model, we assume that during the process of 52

selecting the next activity and whilst performing the action chosen, the ongoing 53

decision-making task may be interrupted. All information available to the 54

decision-maker need to be integrated together with the momentary nutritional 55

requirements in a multi-faceted physiologically- and neurobiologically-wired 56

network [36–40]. Hence, the intake of required nutrients affects the decision-making 57

process by reducing the motivation to feed or drink [33,34,41]. In this regard, the 58

internal nutritional state acts as excitatory input for the underlying neural circuit 59

involved in the decision-making process. In neurobiological networks, excitatory inputs 60

are usually balanced by inhibitory mechanisms [19], and it has been shown in previous 61

theoretical studies of foraging animals that inhibitory mechanisms facilitate improved 62

feeding behaviour [33,41]. 63

Our model-based analysis can be considered as an approach to link nutritional state 64

and behaviour coupled through a decision-making circuit. As a result, we find a 65

mapping between the nutritional deficits of the animal combined with an adaptive 66

tuning of excitation and inhibition and the animal’s foraging behaviour. As the ongoing 67

decision-making of the animal resembles repeated two-alternative choice tasks, we 68

conclude that low-performance decision-making of the animal emerges from unbalanced 69

E/I-ratios, thus indicating potential parallels between neural disorders and ineffective 70

intake of nutrients. 71

Results 72

Temporal evolution of inputs and internal representations 73

The model animal in our study is required to continuously make decisions between two 74

activities. In what follows, we refer to activity 1 as ’eating food’, and to activity 2 as 75

’drinking water’. We take into account a cost for switching between both activities. This 76

cost is given as time constant τ which represents the time necessary to overcome the 77

physical distance between food source and water source. More details are given in the 78

Methods section. Initially, we place the animal exactly midway between food source and 79

water source, as illustrated in Fig 1. First, we assume that deficits in food (d1) and 80

water (d2) are equal, i.e. ∆d = d1 − d2 = 0; below we also consider unequal deficits 81

∆d > 0 in Section ’Dependence of expected penalty on initial deficits’. 82

Fig 1. Depiction of the initial position of the animal. It is located at τ/2, i.e.
exactly between food and water sources. The nutritional deficits in food and water are
d1(t = 0) and d2(t = 0) when the ongoing decision-making process commences.

We start this analysis by presenting the results of a typical simulation. Fig 2 shows 83

the evolution of food and water deficits (inputs) over time and the temporal evolution of 84

the corresponding motivations (internal representations). We make the assumption that 85

the animal decides to perform the activity with the greatest motivation. It feeds or 86

moves towards the food source if ∆x > 0 and drinks or moves towards the water source 87

if ∆x < 0. This assumption has been applied in previous studies of ongoing 88
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decision-making tasks, where internal representations are continuously updated over 89

time (e.g. [41]). By inspecting Fig 2 we can see the interaction of physiological states 90

(deficits) and neuronal variables (motivations). First, we allow the system to reach a 91

stable stationary state (see Figs 2A and 2D) to ensure that we have well-defined initial 92

conditions for the ongoing decision making task. Figs 2A and 2D show symmetric initial 93

conditions, i.e. x1(t = 0) = x2(t = 0), with different absolute values that may be 94

reached by oscillatory behaviour (Fig 2A). The presence of oscillations depends on the 95

choice of the value of the E/I-ratio r. In addition, the E/I-ratio influences the 96

motivations (Figs 2B and 2E) and the reduction of the deficits Figs 2C and 2F during 97

the entire decision-making process. The r = 1 example shows that when the initial 98

motivational state is close to dynamical regimes where oscillatory solutions are obtained 99

(Fig 2A), then oscillations inherent to the nonlinear decision-making model also 100

dominate during the ongoing decision-making task (Fig 2B). These oscillations around 101

∆x 6= 0 are not present in Fig 2E, where the magnitudes |∆x| are generally smaller than 102

in Fig 2B. Further to this, the r = 1 case is more effective than the r = 2 case, which we 103

can see by comparing Figs 2C and 2F. For r = 1, the final state after the maximum 104

bout time (see Methods section for definition of maximum bout time) is characterised by 105

lower deficits compared with the r = 2 simulation. This finding indicates that 106

oscillatory regimes which arise from nonlinearity of the underlying dynamical system 107

may facilitate the continuous decision-making process. 108

Fig 2. Simulation of ongoing decision-making process for different
excitation/inhibition-ratios. A-C: r = 1 and D-F: r = 2. A and D show the
evolution of the initial conditions for the motivations for r = 1 and r = 2, ending in well
defined states. The animal is located at position τ/2 at time t = 0. The nutritional
decision-making task starts at t = 0 and ends at t = 91, the maximum terminal time.
The temporal changes of motivation differences are shown in B and E, with the
corresponding reduction of deficits depicted in C and F, respectively. The values of the
parameters are: dm(t ≤ 0) = 7.5, ∆d(t ≤ 0) = 0, τ = 4, γ = 0.15, q = 0.1, β = 3,
k = 0.8, kinh = 0.8, w = 3, ge = 10 = gi, be = 0.5 = bi, σ = 0 (A and D) and σ = 0.01
(B, C, E and F).
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Performance of the animal under the modulation of inhibition 109

strength and excitation/inhibition-ratio 110

To further underline the results of the previous section, we present Fig 3, where we have 111

simulated the system in Eq (4), introduced below in the Methods section, for inhibition 112

strengths in the range 0 < β ≤ 5 and E/I-ratios varied between 0 < r ≤ 2.5. This graph 113

depicts the performance of the hypothetical animal measured by the expected penalty 114

(see Eq (5)), where lower values of the expected penalty correspond to a better 115

performance. Additionally, we show the bifurcations that occur when varying the values 116

of β and r. An area of improved performance is clearly recognisable (lowest values of 117

expected penalty) in the bottom-left panel of Fig. 3. The shape of this area can be 118

explained using the corresponding bifurcation diagrams. In Fig 3 we show the 119

bifurcation diagram when keeping β = 3 constant and varying r (bottom-right panel), 120

and the bifurcation diagram when keeping r = 1 constant and varying β (top-left panel). 121

Both bifurcation diagrams relate to the initial deficit condition at t = 0. As time 122

progresses, the bifurcation diagrams will be updated, so that at every instant in time 123

the bifurcation diagrams change. However, we believe that the bifurcation diagrams at 124

t = 0 are the most important ones and representative for the whole decision-making 125

process, as the system has been prepared in one of the available stationary states. 126

Furthermore, during the ongoing nutritional decision-making task, the animal goes 127

through several internal changes, where deficits are equal (due to alternating 128

motivations and intake of nutrients). In all these cases, the bifurcation diagrams show 129

similarities. However, for t > 0 it is unlikely that the animal reaches one of the stable 130

steady states available, as the decision-making process is subject to continuous updates 131

of the deficits (whilst the animal feeds or drinks) and therefore frequent internal changes 132

of nutritional deficit levels prevent the animal from reaching these states. This further 133

indicates that the bifurcation diagrams at t = 0 are the most meaningful ones. 134

Inspecting the bifurcation diagram when β is the critical parameter (top-left panel), 135

we can see that for low values of the inhibition strength (β < 0.57) the only stable fixed 136

point is given by a decision deadlock state (∆x = 0). Increasing β to larger values, we 137

observe possible decision deadlock-breaking indicated by the existence of stable 138

equilibria with ∆x ≷ 0. With the occurrence of decision deadlock-breaking the 139

performance of the animal improves (compare bifurcation diagram in top-left panel and 140

performance plot in bottom-left panel). The performance improves even more with the 141

emergence of stable periodic orbits on additional branches ∆x ≷ 0 (see two Hopf 142

bifurcations points for β ≈ 1.9). However, at β ≈ 3.4 we observe another Hopf 143

bifurcation on the ∆x = 0 branch at which point the performance of the animal 144

decreases (compare bifurcation diagram in top-left panel and performance plot in 145

bottom-left panel). 146

Similar qualitative behaviour can be observed in the bifurcation digram with r as 147

the critical parameter (see bottom-right panel). The performance improves as soon as 148

the decision deadlock state is broken (see branch point at r ≈ 0.56), and is even further 149

enhanced with the emergence of stable periodic orbits on the ∆x ≷ 0 branches (see 150

Hopf bifurcations at r ≈ 0.71). However, we observe a clear drop in performance when 151

the periodic orbits collide with saddle points and vanish (via homoclinic bifurcations at 152

r ≈ 1.0; homoclinic bifurcations are further discussed in Section 2 in S1 Text). In 153

addition, at r ≈ 1.1 we observe another Hopf bifurcation on the ∆x = 0 branch, which 154

may contribute to the performance drop. Periodic limit cycles relating to these Hopf 155

bifurcations, however, only exist until r ≈ 1.3, where we observe a limit point of cycles. 156

Here, stable and unstable periodic orbits meet. The unstable orbit vanishes at 157

approximately the same r-value. 158

Our results indicate that the occurrence of periodic orbits on branches characterised 159

by motivation differences ∆x ≷ 0 may enhance decision-making performance. The size 160
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Fig 3. Depiction of the expected penalty with corresponding bifurcation
diagrams. Bifurcation diagrams depending on inhibition strength β (top-left panel)
and excitation/inhibition ratio r (bottom-right panel) correspond to orange dashed lines
in bottom-left panel. Maximum and minimum amplitudes are plotted for the periodic
solutions (top-left and bottom-right). Areas characterised by the lowest penalty values
mirror the best performance of the model animal (bottom-left). The circular markers
(bottom-left) correspond to the examples in Fig 2, i.e. the marker at (β = 3, r = 1)
relates to Figs 2A-2C, and the one at (β = 3, r = 2) to Figs 2D-2F. The values of the
parameters are: dm(t = 0) = 7.5, ∆d(t = 0) = 0, τ = 4, γ = 0.15, q = 0.1, k = 0.8,
kinh = 0.8, w = 3, ge = 10 = gi, be = 0.5 = bi, σ = 0.01 (bottom-left) and σ = 0
(top-left and bottom-right). Abbreviations: LP: limit point, BP: branch point, H: Hopf
bifurcation point. Selected bifurcation points from the top-left and bottom-right panels
are redrawn in the bottom-left panel as diamond markers along the orange dashed lines.

of the area of improved performance is more extended along the β-axis and narrower 161

along the r-axis, which seems to be strongly correlated with the range for which these 162

periodic solutions exist. In contrast, periodic oscillations on the ∆x = 0 branch lead to 163

a drop in performance. If the motivational state is moving along this orbit, then 164

frequent changes in motivation difference may occur due to the presence of noise. The 165

stable orbit, however, prevents the solution from gaining large motivation differences 166

and drives it back to the symmetric state x1 = x2. In contrast, when the motivations 167
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move along the asymmetric orbits with ∆x ≷ 0 (e.g. see Fig 2B) the periodic orbit 168

allows the motivations to achieve sufficiently large motivation differences, so that the 169

animal can effectively perform one of the actions, feeding or drinking. However, within 170

one cycle motivation differences always come close to the switching line ∆x = 0. Due to 171

the reduction of deficits (whilst eating or drinking) and the presence of noise, this allows 172

activity switching in an efficient way. As food and water sources are physically 173

separated, oscillatory solutions seem to be a way to mediate between feeding and 174

drinking behaviour of the animal determined by motivation differences computed in a 175

neural circuit, the cost for switching (the animal has to travel without being able to 176

reduce deficits) and the internal nutritional state. 177

Possible effects of noise on behaviour modulated by excitation and 178

inhibition: Inside the brain, noise is present at all stages of the sensorimotor loop 179

and has immediate behavioural consequences [42]. Varying noise strengths may induce 180

transitions between different dynamical regimes [43–45]. For example, it has been shown 181

that the presence of noise in nonlinear dynamical systems may shift Hopf-bifurcation 182

points [43], and can lead to stochastic resonance-like behaviour even in the absence of 183

external periodic signals, when the system is close to a Hopf-bifurcation point [44]. This 184

seems to be particularly relevant for our study, as we have demonstrated that stable 185

limit cycles born at Hopf-bifurcation points may improve decision-making and feeding 186

behaviour. Considering the noise strength σ as the critical bifurcation parameter in our 187

model (see Eq (4)), it will be interesting to see if the behavioural response of the model 188

animal can be further improved by tuning σ within an appropriate parameter range. 189

This, however, is a subtle issue and deserves to be investigated in a separate study, as 190

noise-induced Hopf-bifurcation-type sequences may also arise in parameter regimes, 191

where noise-free equations do not exhibit periodic solutions [45]. We consider this topic 192

of behavioural resonance as a possible direction for future research. 193

Dependence of expected penalty on initial deficits 194

To investigate the dependence of the expected penalty on the deficit difference at t = 0 195

we refer to Fig 4, where expected penalties are plotted for different E/I-ratios r, 196

alongside examples of the temporal evolution of motivations for selected ∆d(t = 0). To 197

investigate the effect of nonlinearity, we show the results for the nonlinear model in 198

Eq (4) in Figs 4A-4C and for a linearised version of that model in Figs 4D-4F. The 199

mathematical details of the linearisation are given in Section 5 in S1 Text. To simplify 200

the comparison among different ∆d(0), we choose the initial deficits d1(0) and d2(0) 201

such that the value of the initial penalty p0 remains constant for all ∆d(0). Hence, in all 202

cases the animal’s deficit state is characterised by identical initial penalties but different 203

initial deficits. 204

Fig 4 shows the impact of varying the E/I-ratio r on the performance of the animal 205

depending on the initial deficit difference. For instance, the r = 1 curve in Fig 4A shows 206

a lower penalty value compared with both smaller (r = 0.5) and larger (r = 1.5 and 207

r = 2) values of the E/I-ratio for sufficiently small differences in the initial deficits. In 208

contrast, when increasing the initial deficit differences we can see that first the r = 0.5 209

and r = 1.5 curves (at ∆d(t = 0) ≈ 1) and later the r = 2 curve (at ∆d(t = 0) ≈ 2.1) 210

drop below the r = 1 curve. However, the r = 0.5 and r = 1.0 show only small 211

differences in performance in the whole ∆d-interval, except for very small ∆d(t = 0) 212

(Fig 4A). Thus, we find that adjusting the E/I-ratio according to the initial deficit state 213

may help the animal to improve its effectiveness. The drop of expected penalty we 214

observe on the r = 1.5 and r = 2 curves in Fig 4A is a direct consequence of the 215

interplay between switching cost τ and the coexistence of different stable stationary 216
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Fig 4. Plots of expected penalties and motivations depending on the initial
deficit difference. Curves are shown for different E/I-ratios. In all curves the initial
deficit difference was introduced such that the initial penalty was kept constant. This
means that the mean value of the initial deficit was shifted to lower values with
increasing ∆d, i.e. we have a range from dm(t = 0) = 7.50 for ∆d(t = 0) = 0 up to
dm(t = 0) = 7.42 for ∆d(t = 0) = 2.16. A-C: nonlinear model in Eq (4); D-F: linearised
model presented in Eq (S6) in S1 Text. Error bars in A and D represent standard
deviations obtained from 1000 simulations. B: ∆d(0) = 1.04 (nonlin. model), C:
∆d(0) = 1.25 (nonlin. model), E: ∆d(0) = 1.25 (lin. model), F: ∆d(0) = 1.81 (lin.
model). The values of the other parameters are: τ = 4, β = 3, γ = 0.15, q = 0.1,
k = 0.8, kinh = 0.8, w = 3, ge = 10 = gi, be = 0.5 = bi, and σ = 0.01.

motivational states. The existence of these stationary states is characterised in detail in 217

Section 2 in S1 Text and briefly described in the following. For ∆d > 0 there are two 218

different stable fixed points available with ∆x > 0, one characterised by a large 219

difference in motivations and another fixed point characterised by a small motivational 220

difference. In what follows, the value of the initial deficit difference quantifying the 221

switch between small-∆x and large-∆x stable fixed points is denoted ∆dswitch. 222

Consider, for example, the r = 1.5 curves in Fig 4A and 4B. If the initial deficit 223

difference is small (0 ≤ ∆d < ∆dswitch ≈ 1.0, Fig 4A), then motivational differences are 224

small, too (see initial motivations for r = 1.5 at t = 0 in Fig 4B). However, if initial 225

deficit differences are larger than ∆dswitch, the initial motivational states make a 226

transition from the small-∆x fixed point to the large-∆x equilibrium (cf. initial 227

motivations for r = 1.5 at t = 0 in Figs 4B and 4C). If this occurs, then the motivational 228

differences are so far away from the switching condition (∆x = 0) that the animal only 229

consumes one item, either water or food, over the entire course of the ongoing 230

decision-making task. Even when the animal has reduced all deficits of one type to zero, 231

its motivations reach a new steady state which is still too far from the switching 232

condition, as shown in Fig 4C (see curve labelled r = 1.5). The explanation for the drop 233

of the r = 2 curve at ∆d ≈ 2.1 in Fig 4A is equivalent to that for the behaviour of the 234

r = 1.5 curve. Hence, for sufficiently large differences of the initial deficits the animal 235

may consume only one nutritional item, and by doing so, may achieve the lowest penalty 236

value. However, this is only beneficial if the corresponding time frame is sufficiently 237

small. Otherwise, it would be detrimental for the animal to only focus on balancing one 238

of its deficits, and neglecting the other one. We also note that for zero (or sufficiently 239

small) switching costs, the penalty for consuming exclusively one item (here food or 240

water) would be higher compared with switching between the two activities [41, 46]. We 241
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confirm this and present more details about the reduction of deficits for τ = 0.05 and 242

τ = 4 in Section 7 in S1 Text, including the deficit plots corresponding to Fig 4C. 243

Results obtained based on the linearised interneuronal inhibition model are depicted 244

in Figs 4D-4F. Here, we also observe improved performance with increasing initial 245

deficit differences. In particular, we observe a performance boost on the r = 0.5 curve 246

at ∆d ≈ 1.7 (Fig 4D). The reason for the drop in penalty is that the animal enters 247

oscillatory motivational states that are sufficiently far away from the switching line, but 248

allow switching after appropriate deficit reduction and due to noise (compare r = 0.5 249

curves in Figs 4E and 4F). Hence, we observe qualitative similarities between the 250

nonlinear model in Eq (4) and its linearised version (see Eq (S6) in S1 Text). 251

Nevertheless, only in the nonlinear system do we observe the coexistence of several 252

possible equilibria, whereas in the linear system there is only one such state available, 253

which can however change with modulation of the E/I-ratio. 254

In Section 8 in S1 Text we also show that with increasing distance between food and 255

water sources (i.e. switching cost τ), the expected penalty increases as well, making 256

feeding and drinking less efficient for larger physical distances that have to be overcome 257

to take in nutrients. Further to this, we also demonstrate that an equal increase of 258

initial deficits accelerates the reduction of deficits in Section 9 in S1 Text. This is a 259

clear indication that the interneuronal inhibition model employed in the presented 260

paper is sensitive to input magnitudes, which has emerged to be a general feature of 261

both individual [9, 47,48] and collective decision-making [30,49–51]. We present more 262

details on magnitude-sensitivity of our interneuronal inhibition model in Section 1 in S1 263

Text. Finally, we point out that the expected penalty also depends on the deficit decay 264

constant γ, which is discussed in Section 10 in S1 Text. 265

Discussion 266

Using a realistic neural inhibition motif, we demonstrated that modulating inhibition 267

and E/I-ratio may enhance decision-making performance in an ongoing binary 268

decision-making task. The inhibitory motif was implemented in a simple coarse-grained 269

circuit that focuses on mechanism without taking into account synaptic details. This 270

approach has proven to be useful in previous studies, where models have been 271

introduced as low-dimensional right from the start [4–6,15] or have been derived via 272

dimension reduction from more complex network models [7, 26,52]. Critically, we find 273

that the model can be driven through different states by the regulation of parameters of 274

the underlying neural circuit, thereby controlling the efficiency of the decision-making 275

task. This is in qualitative agreement with results obtained from neural network 276

analysis [25], where it was found that independently modulating postsynaptic excitatory 277

and inhibitory conductances may increase decision-making performance and robustness. 278

However, a pathological relationship between excitation and inhibition may diminish 279

neural network stability and hence decrease the signal-to-noise ratio, which, for example, 280

could account for different symptoms in schizophrenia [53], a neural disorder that causes 281

failures in cognitive control [28]. Hence, our model analysis further underlines that 282

modulating excitation and inhibition is of paramount importance in the ability of neural 283

circuits to adapt to change in a controlled way, in accordance with previous studies on 284

the interplay of excitation and inhibition in neuronal activity [19–23]. 285

We find that stable limit cycles, which emerge at Hopf bifurcation points, are 286

accessible states of the decision-making circuit, which have not been reported previously 287

in other low-dimensional decision-making models (cf. [4–7,26], for example). The 288

existence of stable limit cycles is influenced by the magnitude of excitatory inputs 289

(Fig 4), and the adjustment of inhibition strength β and E/I-ratio r in response to the 290

stimulus (Figs 2 and 3). Strikingly, our results show that oscillating internal 291
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representations of the decision variable may have opposite effects — improvement or 292

decline of decision-making performance — which can be explained by the underlying 293

bifurcation structure of the model (Fig 3). Adaptation of internal neural parameters to 294

varying stimuli in our model therefore points to a dual role of oscillatory activity in 295

decision-making circuits. More generally, in the cortex, healthy oscillatory behaviour 296

may be led back to the synchronisation of populations of cortical neurons, where 297

interneurons (as in our study) are thought to play a pivotal role [19, 20]. Particularly in 298

a decision-making context, electrophysiological recordings showed frequency-specific 299

gamma-oscillations in parietal and fronto-polar cortex [54]. However, oscillations in 300

corticobasal ganglia circuits are also related to neuronal disorders like Parkinson’s 301

disease [55]. Moreover, recent findings suggest that intrinsic cortical oscillators are 302

impaired in schizophrenia, which is supposed to originate from a lack of phase locking in 303

brain oscillations; see [19] and references therein. These examples indicate that there 304

are both positive and negative effects of oscillatory activity on cognitive abilities, in line 305

with the findings reported in the present paper (e.g. see Fig 3). 306

Without loss of generality, we applied the nonlinear interneuronal inhibitory circuit 307

to guide a model animal making foraging decisions. Doing so allowed us to link 308

neuronal mechanisms, physiological states and functional foraging behaviour in the 309

context of an ongoing decision-making task. In particular, we have shown that allowing 310

both the inhibition strength β and the E/I-ratio r to vary provides the hypothetical 311

animal with the ability to shape its response according to nutritional deficit levels, 312

which is reflected in the animal’s performance (Fig 4). Interestingly, a study where 313

monkeys performed motion-discrimination tasks, knowing about possible rewards 314

associated with each option [56], indicates that animals can approach optimality in 315

foraging decisions. In the present paper, the behaving model animal was embedded in 316

an uncertain environment (interruption probability, e.g. predators might be present), 317

and motivations were driven by nutritional imbalance (coupling of physiological and 318

cognitive states). In our opinion, these assumptions together with calculating the 319

animal’s performance using the distance from a target intake (geometrical 320

framework [29]), enhance the comparability with foraging behaviour of animals. 321

Experimentally, it has been shown that predatory ground beetles (A. dorsalis), for 322

instance, can regulate their intake of proteins and lipids [57], and that total egg 323

production of female beetles of the same species peaked at the target intake of these two 324

required nutrients [58]. This directly confirms the relationship between an optimal diet 325

and improved reproductive success [58]. Similar results have recently been confirmed in 326

mealworm beetles (Tenebrio molitor L.) [59], which further underline the immediate 327

relationship between lifespan, reproductive value and a balanced diet [29,46]. We note, 328

that the ability to optimally adjust diets to nutritional needs has also been observed in 329

decentralised systems, such as the monomorphic green-headed ants (Rhytidoponera 330

sp.) [60], where social interactions may influence decision-making [61–63]. We believe 331

that the implementation of the neural circuit linked with nutritional needs as 332

investigated in the present paper is based on realistic assumptions, and therefore the 333

model animal’s improved behavioural performance could be understood by balancing 334

excitation and inhibition to enable an optimal diet, which directly relates mechanism 335

with function. However, experimental studies have also revealed that decision-makers do 336

not always act optimally [2, 15–18]. As noted before in [8], nonlinear dynamical systems 337

may explain deviations from optimal behaviour as a result of different accessible states, 338

that capture the decision-maker in suboptimal stable equilibria. Regarding our results, 339

Fig 3 shows a separation between areas of good and bad performances, depending on 340

the choice of inhibition strength β and E/I-ratio r. As underpinned by the 341

corresponding bifurcation analysis, these distinct areas represent parameter regimes 342

which offer different stable attracting motivational states. Therefore, improved (or 343
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optimal) foraging behaviour clearly depends on the optimal modulation of excitation 344

and inhibition in the neural circuit, or in other words: a decline in performance is 345

caused by deficits in the adjustment of excitation and inhibition. 346

In conclusion, our results may have important implications in understanding 347

neuronal regulation in decision-making in general, and in a foraging context in 348

particular. On the one hand, our findings may help elucidate the relationship between 349

decision-making performance in ongoing decision-making tasks and impaired 350

decision-making, and, on the other hand, may improve our understanding of the 351

required adaptation of excitation and inhibition to appropriately modulate behavioural 352

responses according to internal physiological needs and external factors. 353

Methods 354

The decision-making task 355

We consider a hypothetical animal which performs an activity-selection task whilst
interacting with its environment. Driven by nutrional deficits, the task consists of
deciding between two options – feeding or drinking. We take into account that the
animal may be interrupted whilst executing the sequence of feeding and drinking bouts.
This interruption might be due to the presence of a predator or fast changing weather
conditions, for instance. To include the possibility of interruption, here we follow the
modelling approach presented in [41] by assuming that feeding and drinking activities
are geometrically distributed. The geometric distribution is given as

P (tk = T ) = (1− λ)(T−1) λ , (1)

where tk takes integer values, i.e. tk = 1, 2, 3... . With interruption probability λ the 356

distribution P (tk = T ) gives the probability that the ongoing decision-making task 357

comes to an end at the integer time tk = T . In Fig 5 the geometric distribution and its 358

cumulative distribution function (inset) are displayed. The maximum bout time Tmax is 359

chosen such that at least 99% of the distribution is included. 360
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Fig 5. Geometric distribution. Plot of Eq (1) with interruption probability
λ = 0.05. Interruption may happen at each integer time step. The inset depicts the
corresponding cumulative distribution function.

In addition, we assume that food and water sources are physically separated. Thus, 361

there is a cost for the animal to switch between feeding and drinking, as the animal 362

cannot consume nutrients whilst it is moving to the place where it can perform the 363
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alternative activity. In our model (and as in the study in [41]) this cost is represented 364

by a time constant τ quantifying the physical distance between food and water sources. 365

Hereby we implicitly presume that the animal moves with an average speed, such that 366

the linear relationship between position and time holds. 367

Mechanism 368

To guide the behaviour of the animal making foraging decisions we adopt a model
architecture that is based on a cortical network [13]. In particular, we use a nonlinear
version of that model architecture, which has previously been studied as a simplified
linear version [15]. A schematic of the model architecture is shown in Fig 6. The model
relates to a decision between two food options. Evidence in favour of option 1 (option 2)
is integrated by neuronal units x1 (x2). In nutritional decision-making option 1 may be
’eat food’ and option 2 may be ’drink water’. Choosing feeding and drinking is not a
necessary assumption, as both options could represent any two food items that differ in
their nutritional content, e.g. one food item rich in carbohydrates and the other rich in
proteins, or, more generally, any two alternatives the magnitudes of which may vary
over time. The momentary nutritional state of the decision-maker generates a
representation as neural activation. This is the function of the pre-processing units in
Fig 6, which transform the physiological state into inputs I1 and I2 that feed their
respective integrators x1 and x2. Here, we assume a linear relationship between
physiological levels characterising the nutritional state (deficits) and their
representations in the neural circuit, i.e.

Ij(dj) = q dj , (j = 1, 2), (2)

where q denotes the sensitivity of the animal to deficits dj (j = 1, 2) in nutritional items. 369

Fig 6. Schematic of the interneuronal inhibition motif. This is a graphical
representation of the model in Eq (4).

Equation (2) corresponds to the curve labelled g = 2/b in Fig 7. As can be seen in 370

this graphic, this curve, although based on a nonlinear functional dependency (of the 371

same form as Eq (3)), approximately shows a linear relationship over a wide range of 372

input values. We show in more detail in Section 4 in S1 Text under which conditions 373

this assumption holds by approximating the sigmoidal relationship with a linear 374
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function, yielding a direct proportionality between q in Eq (2) and the gain 375

characterising the sigmoidal function. 376
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Fig 7. Plot of nonlinear input-output function. Typical input-output function
that illustrates how neuronal units transform inputs via a nonlinear, sigmoidal function.

Further to this, we assume that inputs Ij (j = 1, 2) are polluted by processing noise
with standard deviation σ, which may arise from currents originating from other circuits
in the brain. Noise is included via Wiener processes W1 and W2. Recurrent excitation is
taken into account in the self-excitatory terms with strength α. If activity levels of x1
and x2 are sufficiently large then the interneuronal inhibitory unit y becomes activated
with strength w and in turn inhibits the evidence-integrating units with strength β.
The functions fe,i(·) appearing in different places in Fig 6 are nonlinear input-output
(I-O) functions with a typical sigmoidal shape, as shown Fig 7. Here, fe denotes the
nonlinear I-O function involved in excitatory processes, whereas fi represents inhibition.
The form of the sigmoidal functions is given as

fe,i(ξ) =
1

1 + exp[−ge,i (ξ − be,i)]
. (3)

Here, ge and gi are the gains, and be and bi are the positions where fe and fi have
inflection points and reach half-level, respectively. In addition, we assume that
information may be lost by including leak-terms in the evidence-integrating units x1
and x2 (rate k), and in the interneuronal inhibitory unit y (rate kinh). This model is
described by the following system of nonlinear stochastic differential equations

dx1 = [−k x1 + α fe(x1)− β fi(y) + I1(d1)] dt+ σ dW1 ,

dx2 = [−k x2 + α fe(x2)− β fi(y) + I2(d2)] dt+ σ dW2 ,

dy = [−kinh y + w (fe(x1) + fe(x2))] dt .

(4)

In addition to the nonlinear functions in Eq (4) we introduce an artificial nonlinearity 377

to prevent x1, x2 and y from taking negative values, i.e. when numerically integrating 378

the stochastic system from time tn to obtain the state variables at the next time step 379

tn+1, we reset Xtn+1 = max(0, Xtn+1), X = x1, x2, y. Otherwise the leak terms (rates k 380

and kinh) would become positive when the state variables change sign. 381

A detailed characterisation of this dynamical system is given in Section 2 in S1 Text. 382

In the following, we identify x1 as the motivation to feed and x2 as the motivation to 383

drink, and hence d1 and d2 represent food deficit and water deficit, respectively. During 384

feeding and drinking, the time-dependent deficits are reduced according to 385
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dj(t) = dj(0)− γ t, where dj(0) are the initial deficits at t = 0 and γ is the deficit decay 386

parameter [34, 41]. This is a valid assumption if feeding and drinking takes place within 387

sufficiently short periods of time [34,41]. 388

Relation with other models of decision-making 389

The model presented in Eq (4) is closely related to previous models of both perceptual 390

and nutritional (value-based) decision-making. Therefore, it may be applied to a variety 391

of decision-making problems, and may be incorporated into a hierarchy of models as 392

follows. Consider the interneuronal inhibition model in Eq (4) detached from the 393

foraging context. Although implemented as a nonlinear model in the present study, our 394

model is a simpler, more tractable, version of the original network model proposed 395

in [13], which included synaptic details and comprised 8000 equations. However, the 396

pooled inhibition model investigated in [13] could be reduced in dimensionality to a 397

model consisting of only two equations [7]. In terms of model complexity, our model can 398

be considered as being in between the original model by [13] and the one which is 399

reduced in dimension [7]. In Section 3 in S1 Text we explain that the model used in our 400

paper offers additional dynamics (e.g. stable limit cycles) not present in the type of 401

model studied by [7], which is based on cross-inhibition as inhibitory motif. The 402

cross-inhibition motif has been applied in a variety of studies of decision-making [4–9] 403

and may generally be considered as an approximation of the more realistic interneuronal 404

inhibition motif [7]. 405

To relate the model of the present paper to previous models of animal foraging 406

behaviour [34,41], we make use of a linearised version of the interneuronal inhibition 407

model in Eq (4), which is derived in Eq (S6) in Section 5 in S1 Text, and derive from 408

this linearised interneuronal inhibition model a model, which is based on the 409

cross-inhibition motif in a linear two-dimensional dynamical system, see Eq (S8) in S1 410

Text. This approximated cross-inhibition model can be cast in equations, which closely 411

resemble the model studied in [41], and under specific assumptions can be made 412

equivalent to it. The mathematical details of this derivation are presented in Section 6 413

in S1 Text. As discussed in [41], the linearised cross-inhibition model can, in turn, be 414

related to other models which describe animals making foraging decisions [34,46] and 415

models of perceptual decision-making [4, 15]. We note, however, that in contrast to 416

previous models of activity selection (e.g. [34, 41]) the inputs in our model in Eq (4) do 417

not contain derivatives ḋj(t), i.e. the rates of change by which deficits are altered over 418

time. Given our model assumption that ḋj = −γ, where γ is a constant, including them 419

could be achieved by substituting dj → dj + c ḋj = dj − c γ, where c is another constant 420

(see also Section 6 in S1 Text). However, this might not hold for more complex 421

physiological models, where the equation of motion describing the time evolution of the 422

deficits dj(t) cannot be expressed in simple terms. 423

Function 424

We adopt the assumption that in order to maximise its reproductive value a foraging 425

animal needs to reach its target intake of nutrients [46]. Being empirically well 426

motivated [29], we can further assume that reproductive value decreases with decline of 427

the foraging performance, that is the distance between actual intake of nutrients and 428

the target consumption increases [46]. A simple measure for performance in a 429

nutritional decision-making task is the square of the Euclidian distance between current 430

state and target state in nutrient space. Considering (super)organisms in nutrient space 431

is known as the geometric framework and was pioneered by Simpson and 432

Raubenheimer [29]. Several experimental studies have successfully confirmed the 433

assumptions of this approach, e.g. see [58–60,64–68]. 434
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In Fig 8 we show an illustration of the geometric framework in deficit space, where 435

we assume that an animal has to decide about the sequence in which to feed or drink. 436

Starting from an initial nutritional state characterised by deficits in water and food 437

(state A), the animal selects the order of possible activities and how long it performs the 438

activity chosen. In this example the animal switches several times between eating and 439

drinking to reach the nutritional state B. The trajectory of the animal in Fig 8 is given 440

as a combination of lines each of which is parallel to either the food or water deficit axis. 441

This means that in our model the animal exclusively drinks or eats but does not 442

perform both actions at the same time. This is further discussed below. 443

Fig 8. Illustration of the geometric framework. Application of the geometric
framework of nutrition to deficit space; horizontal and vertical axes show the deficits of
the animal. The target state is the origin of the diagram (d1 = 0, d2 = 0). Via a
sequence of feeding and drinking bouts, the animal approaches its target state. Here,
deficits can only decrease or remain constant. The performance is proportional to the
Euclidean distance between states in the diagram and the origin, i.e. the target state T.

To characterise the momentary nutritional state and to evaluate behavioural 444

performance, we make use of the penalty function p = d21 + d22, i.e. the square of the 445

distance between points in the deficit space and its origin. For example, the penalty 446

characterising state B is pB = d21B + d22B . This penalty function has been applied in 447

previous studies (e.g. [41]) and is equivalent to the reward function presented in [46]. 448

Denoting the reward function Rew, then the relationship between reward Rew and 449

penalty p is given as p = Kmax −Rew, where Kmax is a constant representing the 450

maximum reward possible. Hence, a penalty of zero corresponds to yielding the 451

maximal reward that relates to maximising reproductive value. 452

Model implementation 453

The implementation of the neural circuit provides the link between the nutritional state 454

of the animal and its foraging objective to come as close as possible to the target intake 455

of nutrients. In every simulation, we place the animal initially exactly midway between 456

food and water source. Initial deficits of food and water are set to either equal or 457

unequal values. To determine the initial motivational state of the animal we use the 458

dynamical system we employ in the decision-making process without noise (i.e. we set 459

σ = 0 in Eq (4)) to obtain well defined initial conditions. This means that based on the 460

interneuronal inhibition motif implemented in the neural circuit in Fig 6 the animal’s 461
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initial neural representation of the decision problem is also based on mechanism. This is 462

different from previous theoretical studies (for example, cf. [41]), where an arbitrary 463

initial motivational state has been assumed. During the execution of the ongoing 464

decision-making task, processing noise is present in the neural circuit, and hence equal 465

deficits will not lead to a decision-deadlock, which is in contrast to [41]. 466

When numerically integrating the deterministic equations (σ = 0) we make use of a 467

fourth-order Runge-Kutta method and when simulating the stochastic differential 468

equations (σ = 0.01) we apply a predictor-corrector method, where the deterministic 469

part is calculated with second order of accuracy in timestep dt [69]. For both methods 470

we used a timestep of dt = 0.005 in the numerical integration. We found that this choice 471

of dt gives a good compromise between computation time and accuracy when 472

integrating the system, particularly with regard to the stochastic equations. 473

We interpret the activities x1 and x2 as motivations. The animal performs the
activity with the greatest motivation, i.e. if x1 > x2 the animal chooses feeding and if
x2 > x1 the animals selects drinking. However, the animal has to move to reach food
source or water source and whilst the animal is moving we allow the motivations to
change but the nutritional state is assumed to remain constant. Given the nonlinearity
of the model, the inclusion of fluctuations and the continuous update of motivations, it
might happen that motivations change while the animal is moving at which point it
reverses direction and moves back to the source of the previous bout. We assume that
the ongoing performance of the animal may be interrupted whilst eating food, drinking
water or moving between food and water sources. The measure that quantifies the
overall performance of the animal is the expectation value of the penalty, calculated
based on the geometric distribution introduced in Eq. (1). The expected penalty is
given as [41]

E(p) =

Tmax∑
T=1

p(T )P (tk = T ) , (5)

where p(T ) denotes the penalty if nutritional intake stops at time T and P (tk = T ) is 474

the probability representing the geometric distribution as introduced in Eq (1). In the 475

following analysis, we assume an interruption probability of λ = 0.05, yielding a 476

maximum bout time of Tmax = 91, where we have added one integer time step to 477

account for possible numerical inaccuracies so that at least 99% of the geometric 478

distribution is considered. 479

In our study, we focused on the dependency of the expected penalty in Eq (5) on 480

model parameters of the neural circuit. In particular, we numerically simulated the 481

ongoing decision-making task by varying the cross-inhibition strength β and the 482

excitation-over-inhibition ratio (E/I-ratio) defined as r = α/β. We then calculated the 483

expected penalty to find parameter values that yield the best performance (lowest value 484

of the expected penalty). Additionally, we determined the effect of varying the 485

switching cost τ on the feeding and drinking behaviour and compared results for 486

different initial nutritional deficits, d1 and d2, and decay parameter γ representing the 487

speed by which deficits are reduced during feeding or drinking bouts. Our results are 488

explained using bifurcation analysis. Throughout the main paper and in S1 Text we 489

make use of the numerical continuation tool MatCont [70,71] to obtain the bifurcation 490

points when the system undergoes transitions between different dynamic regimes. 491
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