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Abstract

Decision-making is a complex task and requires adaptive mechanisms that facilitate
efficient behaviour. Here, we consider a neural circuit that guides the behaviour of an
animal in ongoing binary choice tasks. We adopt an inhibition motif from neural
network theory and propose a dynamical system characterized by nonlinear feedback,
which links mechanism (the implementation of the neural circuit) and function
(increasing reproductive value). A central inhibitory unit influences evidence-integrating
excitatory units, which in our terms correspond to motivations competing for selection.
We determine the parameter regime where the animal exhibits improved
decision-making behaviour, and explain different behavioural outcomes by making the
link between bifurcation analysis of the nonlinear neural circuit model and
decision-making performance. We find that the animal performs best if it tunes internal
parameters of the neural circuit in accordance with the underlying bifurcation structure.
In particular, variation of inhibition strength and excitation-over-inhibition ratio have a
crucial effect on the decision outcome, by allowing the animal to break decision
deadlock and to enter an oscillatory phase that describes its internal motivational state.
Our findings indicate that this oscillatory phase may improve the overall performance of
the animal in an ongoing foraging task. Our results underpin the importance of an
integrated functional and mechanistic study of animal activity selection.

Author summary

Organisms frequently select activities, which relate to economic, social and perceptual
decision-making problems. The choices made may have substantial impact on their lives.
In foraging decisions, for example, animals aim at reaching a target intake of nutrients;
it is generally believed that a balanced diet improves reproductive success, yet little is
known about the underlying mechanisms that integrate nutritional needs within the
brain. In our study, we address this coupling between physiological states and a
decision-making circuit in the context of foraging decisions. We consider a model animal
that has the drive to eat or drink. The motivation to select and perform one of these
activities (i.e. eating or drinking), is processed in artificial neuronal units that have
access to information on how hungry and thirsty the animal is at the point it makes the
decision. We show that inhibitory and excitatory mechanisms in the neural circuit
shape ongoing binary decisions, and we reveal under which conditions oscillating
motivations may improve the overall performance of the animal. Our results indicate
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been accepted for publication in the journal Neural Computation.
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that inefficient or pathological decision-making may originate from suboptimal
modulation of excitation and inhibition in the neurobiological network.

Introduction

Modelling complex decision-making problems requires the integration of mechanism and
function in a combined modelling framework [1H3]. In binary decision-making, for
example, mechanistic neuro-models have been proposed that are based on different
inhibitory motifs, such as cross-inhibition [4H10], feed-forward inhibition [11,/12], and
interneuronal inhibition [13]. Furthermore, linear diffusion-type models which describe
the accumulation of noisy evidence are widely applied to study two-alternative choice
tasks [141[15]. A specific feature of diffusion models is their ability to resemble
statistically optimal processes [15]. However, it has been found that decision-makers do
not always behave optimally [2}/8]/1618]. Suboptimality may arise from the evolution of
decision rules in complex environments [2}[16], from limited precision in neural
computations [18], or from nonlinearity in the neural network circuitry, as nonlinear
models often have several stable stationary states and therefore may integrate evidence
by reaching a decision state, which may not correspond to the optimal solution [8].

The aim of the present paper is to study the behaviour of a hypothetical animal
performing ongoing activity selection through a nonlinear neural circuit model that
implements the interneuronal inhibitory motif. Unlike the cross-inhibition motif, in our
model (and in the interneuronal inhibition motif in general [13]) evidence-integrating
units do not inhibit each other mutually but receive negative feedback from a separate
neural population - the inhibitory unit. Previous studies indicate that the
cross-inhibition motif is an approximation of the more realistic interneuronal inhibition
motif [7/15] and we emphasise in the present paper that reducing model complexity may
lead to the loss of dynamical regimes which show interesting and unexpected
phenomena. In particular, we highlight that, compared with the cross-inhibition motif,
our implementation of the interneuronal inhibition motif yields an extended subset of
dynamical states characterising the decision-maker, including the occurrence of
oscillations. In addition to the inhibitory motif, recurrent excitation is taken into
account in the same decision-making circuit. The excitation-over-inhibition ratio (E/I
ratio) plays a pivotal role in our model analysis and it is considered to be tunable in the
decision-making circuit. In general, balancing excitation and inhibition in neural
networks is crucial for processing input and executing functions [19-24], and modulating
excitation and inhibition can drive the decision-maker through different states
characterising the decision-making performance [2526]. Specifically, cognitive disorders
are related to unbalanced E/I-ratios [27], which may be reflected by impaired
decision-making present, for instance, in schizophrenia where deficits in inhibition of
behavioural responses can be observed [28].

To examine the utility of our proposed mechanism we embed it in a well-studied
nutritional theory, the geometric framework [29]. In this framework animals perform
actions (consume resources with different nutrient ratios) to reach a preferred nutrient
target. They derive utility according to how close to the target they get, usually
determined by Euclidean distance between momentary nutritional state and target
state, as in the present study. This framework, while capturing real feeding behaviour of
diverse species [29], seems sufficiently general to capture the general problem of ongoing
action selection [30]. More specifically, in the scenario considered in the present paper, a
model animal makes ongoing foraging decisions and may perform the action chosen until
another food choice is made. Our modelling approach is based on the assumption that,
influenced by the level of nutrients inside the body, animals have an inner drive (or
motivation) to feed and drink [31H34]. This nutritional state changes over time and
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therefore animals have to select and perform activities that satisfy and balance their 49
nutritional needs [29]. Furthermore, in real scenarios animals are embedded in an 50
uncertain environment and may be subject to frequent changes [16] and predation 51
risk [35]. To include uncertainties in our model, we assume that during the process of =
selecting the next activity and whilst performing the action chosen, the ongoing 53
decision-making task may be interrupted. All information available to the 54
decision-maker need to be integrated together with the momentary nutritional 55
requirements in a multi-faceted physiologically- and neurobiologically-wired 56
network [36-40]. Hence, the intake of required nutrients affects the decision-making 57
process by reducing the motivation to feed or drink [33}/34,41]. In this regard, the 58
internal nutritional state acts as excitatory input for the underlying neural circuit 50

involved in the decision-making process. In neurobiological networks, excitatory inputs e
are usually balanced by inhibitory mechanisms [19], and it has been shown in previous &
theoretical studies of foraging animals that inhibitory mechanisms facilitate improved 6

feeding behaviour [33l|41]. 63

Our model-based analysis can be considered as an approach to link nutritional state e
and behaviour coupled through a decision-making circuit. As a result, we find a 6
mapping between the nutritional deficits of the animal combined with an adaptive 66
tuning of excitation and inhibition and the animal’s foraging behaviour. As the ongoing
decision-making of the animal resembles repeated two-alternative choice tasks, we 68
conclude that low-performance decision-making of the animal emerges from unbalanced e
E/I-ratios, thus indicating potential parallels between neural disorders and ineffective 70
intake of nutrients. n
Results n
Temporal evolution of inputs and internal representations 7
The model animal in our study is required to continuously make decisions between two 7
activities. In what follows, we refer to activity 1 as ’eating food’, and to activity 2 as 7
‘drinking water’. We take into account a cost for switching between both activities. This 7
cost is given as time constant 7 which represents the time necessary to overcome the 7

physical distance between food source and water source. More details are given in the 78
Methods section. Initially, we place the animal exactly midway between food source and 7

water source, as illustrated in Fig[l} First, we assume that deficits in food (d;) and 80
water (dq) are equal, i.e. Ad = d; — ds = 0; below we also consider unequal deficits 81
Ad > 0 in Section 'Dependence of expected penalty on initial deficits’. 8

initial position 7 /2

Fig 1. Depiction of the initial position of the animal. It is located at 7/2, i.e.
exactly between food and water sources. The nutritional deficits in food and water are
dy(t = 0) and dy(t = 0) when the ongoing decision-making process commences.

We start this analysis by presenting the results of a typical simulation. Fig[2]shows &
the evolution of food and water deficits (inputs) over time and the temporal evolution of s
the corresponding motivations (internal representations). We make the assumption that s

the animal decides to perform the activity with the greatest motivation. It feeds or 8
moves towards the food source if Az > 0 and drinks or moves towards the water source &
if Az < 0. This assumption has been applied in previous studies of ongoing 8
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decision-making tasks, where internal representations are continuously updated over
time (e.g. [41]). By inspecting Fig [2| we can see the interaction of physiological states
(deficits) and neuronal variables (motivations). First, we allow the system to reach a
stable stationary state (see Figs and ) to ensure that we have well-defined initial
conditions for the ongoing decision making task. Figs and show symmetric initial
conditions, i.e. z1(t = 0) = x2(t = 0), with different absolute values that may be
reached by oscillatory behaviour (Fig ) The presence of oscillations depends on the
choice of the value of the E/I-ratio r. In addition, the E/I-ratio influences the
motivations (Figs[2B and 2E) and the reduction of the deficits Figs [2C and [2F during
the entire decision-making process. The r = 1 example shows that when the initial
motivational state is close to dynamical regimes where oscillatory solutions are obtained
(Fig ), then oscillations inherent to the nonlinear decision-making model also
dominate during the ongoing decision-making task (Fig ) These oscillations around
Az # 0 are not present in Fig [2JE, where the magnitudes |Az| are generally smaller than
in Fig[2B. Further to this, the r = 1 case is more effective than the r = 2 case, which we
can see by comparing Figs and 2F. For r = 1, the final state after the maximum
bout time (see Methods section for definition of maximum bout time) is characterised by
lower deficits compared with the r = 2 simulation. This finding indicates that
oscillatory regimes which arise from nonlinearity of the underlying dynamical system
may facilitate the continuous decision-making process.
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Fig 2. Simulation of ongoing decision-making process for different
excitation/inhibition-ratios. A-C: r =1 and D-F: r = 2. A and D show the
evolution of the initial conditions for the motivations for 7 = 1 and r = 2, ending in well
defined states. The animal is located at position 7/2 at time ¢ = 0. The nutritional
decision-making task starts at ¢ = 0 and ends at t = 91, the maximum terminal time.
The temporal changes of motivation differences are shown in B and E, with the
corresponding reduction of deficits depicted in C and F, respectively. The values of the
parameters are: d,,(t <0)=7.5, Ad(t<0)=0,7=4,v=0.15¢=0.1, 8 =3,
k=0.8, kinp, =08, w=3, g. =10=g;, bo = 0.5 =b;, 0 =0 (A and D) and o = 0.01
(B, C, E and F).
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Performance of the animal under the modulation of inhibition 109
strength and excitation/inhibition-ratio 10

To further underline the results of the previous section, we present Fig (3] where we have 1
simulated the system in Eq , introduced below in the Methods section, for inhibition 1
strengths in the range 0 < 8 < 5 and E/I-ratios varied between 0 < r < 2.5. This graph 13
depicts the performance of the hypothetical animal measured by the expected penalty 1.
(see Eq ), where lower values of the expected penalty correspond to a better 115
performance. Additionally, we show the bifurcations that occur when varying the values 1
of § and r. An area of improved performance is clearly recognisable (lowest values of 17
expected penalty) in the bottom-left panel of Fig. [3l The shape of this area can be 118
explained using the corresponding bifurcation diagrams. In Fig[3] we show the 119
bifurcation diagram when keeping 5 = 3 constant and varying r (bottom-right panel), 120
and the bifurcation diagram when keeping r = 1 constant and varying S (top-left panel). 1
Both bifurcation diagrams relate to the initial deficit condition at ¢ = 0. As time 122
progresses, the bifurcation diagrams will be updated, so that at every instant in time 123
the bifurcation diagrams change. However, we believe that the bifurcation diagrams at 1

t = 0 are the most important ones and representative for the whole decision-making 125
process, as the system has been prepared in one of the available stationary states. 126
Furthermore, during the ongoing nutritional decision-making task, the animal goes 127
through several internal changes, where deficits are equal (due to alternating 128

motivations and intake of nutrients). In all these cases, the bifurcation diagrams show 120
similarities. However, for ¢ > 0 it is unlikely that the animal reaches one of the stable 1
steady states available, as the decision-making process is subject to continuous updates 1
of the deficits (whilst the animal feeds or drinks) and therefore frequent internal changes 1
of nutritional deficit levels prevent the animal from reaching these states. This further 1
indicates that the bifurcation diagrams at ¢ = 0 are the most meaningful ones. 134

Inspecting the bifurcation diagram when § is the critical parameter (top-left panel), 1
we can see that for low values of the inhibition strength (8 < 0.57) the only stable fixed 1
point is given by a decision deadlock state (Az = 0). Increasing 3 to larger values, we 1
observe possible decision deadlock-breaking indicated by the existence of stable 138
equilibria with Az = 0. With the occurrence of decision deadlock-breaking the 139
performance of the animal improves (compare bifurcation diagram in top-left panel and 10
performance plot in bottom-left panel). The performance improves even more with the 1

emergence of stable periodic orbits on additional branches Az 2 0 (see two Hopf 1492
bifurcations points for 8 ~ 1.9). However, at 8 = 3.4 we observe another Hopf 143
bifurcation on the Ax = 0 branch at which point the performance of the animal 144
decreases (compare bifurcation diagram in top-left panel and performance plot in 145
bottom-left panel). 146

Similar qualitative behaviour can be observed in the bifurcation digram with r as 17

the critical parameter (see bottom-right panel). The performance improves as soon as 1
the decision deadlock state is broken (see branch point at r ~ 0.56), and is even further 1o
enhanced with the emergence of stable periodic orbits on the Az Z 0 branches (see 150
Hopf bifurcations at r ~ 0.71). However, we observe a clear drop in performance when 1
the periodic orbits collide with saddle points and vanish (via homoclinic bifurcations at 1s

r =~ 1.0; homoclinic bifurcations are further discussed in Section 2 in . In 153
addition, at » ~ 1.1 we observe another Hopf bifurcation on the Az = 0 branch, which 15
may contribute to the performance drop. Periodic limit cycles relating to these Hopf 155
bifurcations, however, only exist until r ~ 1.3, where we observe a limit point of cycles. 156
Here, stable and unstable periodic orbits meet. The unstable orbit vanishes at 157
approximately the same r-value. 158

Our results indicate that the occurrence of periodic orbits on branches characterised —1so
by motivation differences Az Z 0 may enhance decision-making performance. The size 10

52
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Fig 3. Depiction of the expected penalty with corresponding bifurcation
diagrams. Bifurcation diagrams depending on inhibition strength 8 (top-left panel)
and excitation/inhibition ratio r (bottom-right panel) correspond to orange dashed lines
in bottom-left panel. Maximum and minimum amplitudes are plotted for the periodic
solutions (top-left and bottom-right). Areas characterised by the lowest penalty values
mirror the best performance of the model animal (bottom-left). The circular markers
(bottom-left) correspond to the examples in Fig[2] i.e. the marker at (=3, r=1)
relates to Figs PA2IC, and the one at (8 = 3, r = 2) to Figs 2DJ2JF. The values of the
parameters are: d,,,(t =0) = 7.5, Ad(t =0)=0,7=4,7=0.15,¢=0.1, k = 0.8,

kinnh = 0.8, w =3, g. = 10 = g;, b. = 0.5 =b;, 0 = 0.01 (bottom-left) and o =0
(top-left and bottom-right). Abbreviations: LP: limit point, BP: branch point, H: Hopf
bifurcation point. Selected bifurcation points from the top-left and bottom-right panels
are redrawn in the bottom-left panel as diamond markers along the orange dashed lines.

of the area of improved performance is more extended along the S-axis and narrower
along the r-axis, which seems to be strongly correlated with the range for which these
periodic solutions exist. In contrast, periodic oscillations on the Az = 0 branch lead to
a drop in performance. If the motivational state is moving along this orbit, then
frequent changes in motivation difference may occur due to the presence of noise. The
stable orbit, however, prevents the solution from gaining large motivation differences
and drives it back to the symmetric state x1 = x2. In contrast, when the motivations
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move along the asymmetric orbits with Az 2 0 (e.g. see Fig ) the periodic orbit
allows the motivations to achieve sufficiently large motivation differences, so that the
animal can effectively perform one of the actions, feeding or drinking. However, within
one cycle motivation differences always come close to the switching line Az = 0. Due to
the reduction of deficits (whilst eating or drinking) and the presence of noise, this allows
activity switching in an efficient way. As food and water sources are physically
separated, oscillatory solutions seem to be a way to mediate between feeding and
drinking behaviour of the animal determined by motivation differences computed in a
neural circuit, the cost for switching (the animal has to travel without being able to
reduce deficits) and the internal nutritional state.

Possible effects of noise on behaviour modulated by excitation and
inhibition: Inside the brain, noise is present at all stages of the sensorimotor loop
and has immediate behavioural consequences [42]. Varying noise strengths may induce
transitions between different dynamical regimes |[43-45]. For example, it has been shown
that the presence of noise in nonlinear dynamical systems may shift Hopf-bifurcation
points [43], and can lead to stochastic resonance-like behaviour even in the absence of
external periodic signals, when the system is close to a Hopf-bifurcation point [44]. This
seems to be particularly relevant for our study, as we have demonstrated that stable
limit cycles born at Hopf-bifurcation points may improve decision-making and feeding
behaviour. Considering the noise strength o as the critical bifurcation parameter in our
model (see Eq ), it will be interesting to see if the behavioural response of the model
animal can be further improved by tuning ¢ within an appropriate parameter range.
This, however, is a subtle issue and deserves to be investigated in a separate study, as
noise-induced Hopf-bifurcation-type sequences may also arise in parameter regimes,
where noise-free equations do not exhibit periodic solutions [45]. We consider this topic
of behavioural resonance as a possible direction for future research.

Dependence of expected penalty on initial deficits

To investigate the dependence of the expected penalty on the deficit difference at ¢t = 0
we refer to Fig 4] where expected penalties are plotted for different E/I-ratios r,
alongside examples of the temporal evolution of motivations for selected Ad(t = 0). To
investigate the effect of nonlinearity, we show the results for the nonlinear model in
Eq in Figs and for a linearised version of that model in Figs . The
mathematical details of the linearisation are given in Section 5 in To simplify
the comparison among different Ad(0), we choose the initial deficits dy(0) and dz(0)
such that the value of the initial penalty py remains constant for all Ad(0). Hence, in all
cases the animal’s deficit state is characterised by identical initial penalties but different
initial deficits.

Fig |4| shows the impact of varying the E/I-ratio r on the performance of the animal
depending on the initial deficit difference. For instance, the r = 1 curve in Fig shows
a lower penalty value compared with both smaller (r = 0.5) and larger (r = 1.5 and
r = 2) values of the E/I-ratio for sufficiently small differences in the initial deficits. In
contrast, when increasing the initial deficit differences we can see that first the » = 0.5
and r = 1.5 curves (at Ad(t = 0) ~ 1) and later the r = 2 curve (at Ad(t =0) = 2.1)
drop below the » = 1 curve. However, the » = 0.5 and » = 1.0 show only small
differences in performance in the whole Ad-interval, except for very small Ad(t = 0)
(Fig ) Thus, we find that adjusting the E/I-ratio according to the initial deficit state
may help the animal to improve its effectiveness. The drop of expected penalty we
observe on the r = 1.5 and r = 2 curves in Fig[@A is a direct consequence of the
interplay between switching cost 7 and the coexistence of different stable stationary
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Fig 4. Plots of expected penalties and motivations depending on the initial
deficit difference. Curves are shown for different E/I-ratios. In all curves the initial
deficit difference was introduced such that the initial penalty was kept constant. This
means that the mean value of the initial deficit was shifted to lower values with
increasing Ad, i.e. we have a range from d,,(t = 0) = 7.50 for Ad(t = 0) =0 up to

dp (t = 0) = 7.42 for Ad(t = 0) = 2.16. A-C: nonlinear model in Eq ({); D-F: linearised
model presented in Eq (S6) in Error bars in A and D represent standard
deviations obtained from 1000 simulations. B: Ad(0) = 1.04 (nonlin. model), C:
Ad(0) = 1.25 (nonlin. model), E: Ad(0) = 1.25 (lin. model), F: Ad(0) = 1.81 (lin.
model). The values of the other parameters are: 7 =4, 8 =3, v =0.15, ¢ = 0.1,
k=0.8, kinp, =08, w=3, g. =10 = g;, b = 0.5 =b;, and ¢ = 0.01.

motivational states. The existence of these stationary states is characterised in detail in
Section 2 in and briefly described in the following. For Ad > 0 there are two
different stable fixed points available with Az > 0, one characterised by a large
difference in motivations and another fixed point characterised by a small motivational
difference. In what follows, the value of the initial deficit difference quantifying the
switch between small-Az and large-Axz stable fixed points is denoted Adgyizcn-
Consider, for example, the » = 1.5 curves in Fig[4A and [B. If the initial deficit
difference is small (0 < Ad < Adgypiten = 1.0, Fig ), then motivational differences are
small, too (see initial motivations for r = 1.5 at ¢ = 0 in Fig ) However, if initial
deficit differences are larger than Adgyiten, the initial motivational states make a
transition from the small-Ax fixed point to the large-Ax equilibrium (cf. initial
motivations for » = 1.5 at ¢ = 0 in Figs UB and ) If this occurs, then the motivational
differences are so far away from the switching condition (Az = 0) that the animal only
consumes one item, either water or food, over the entire course of the ongoing
decision-making task. Even when the animal has reduced all deficits of one type to zero,
its motivations reach a new steady state which is still too far from the switching
condition, as shown in Fig (see curve labelled = 1.5). The explanation for the drop
of the r = 2 curve at Ad ~ 2.1 in Fig is equivalent to that for the behaviour of the
r = 1.5 curve. Hence, for sufficiently large differences of the initial deficits the animal
may consume only one nutritional item, and by doing so, may achieve the lowest penalty
value. However, this is only beneficial if the corresponding time frame is sufficiently
small. Otherwise, it would be detrimental for the animal to only focus on balancing one
of its deficits, and neglecting the other one. We also note that for zero (or sufficiently
small) switching costs, the penalty for consuming exclusively one item (here food or
water) would be higher compared with switching between the two activities . We
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confirm this and present more details about the reduction of deficits for 7 = 0.05 and 20

7 =4 in Section 7 in including the deficit plots corresponding to Fig [C. 243

Results obtained based on the linearised interneuronal inhibition model are depicted 24
in Figs @DHF. Here, we also observe improved performance with increasing initial 245
deficit differences. In particular, we observe a performance boost on the r = 0.5 curve 2
at Ad =~ 1.7 (Fig ) The reason for the drop in penalty is that the animal enters 247

oscillatory motivational states that are sufficiently far away from the switching line, but s
allow switching after appropriate deficit reduction and due to noise (compare r = 0.5 249

curves in Figs ME and [4JF). Hence, we observe qualitative similarities between the 250
nonlinear model in Eq (4]) and its linearised version (see Eq (S6) in [S1 Text|). 251
Nevertheless, only in the nonlinear system do we observe the coexistence of several 25
possible equilibria, whereas in the linear system there is only one such state available,  2s3
which can however change with modulation of the E/I-ratio. 254

In Section 8 in we also show that with increasing distance between food and 2
water sources (i.e. switching cost 7), the expected penalty increases as well, making 256
feeding and drinking less efficient for larger physical distances that have to be overcome a7
to take in nutrients. Further to this, we also demonstrate that an equal increase of 258
initial deficits accelerates the reduction of deficits in Section 9 in[S1 Texfl This is a 259
clear indication that the interneuronal inhibition model employed in the presented 260
paper is sensitive to input magnitudes, which has emerged to be a general feature of 261

both individual [9,|47,|48] and collective decision-making [30,|49H51]. We present more 2
details on magnitude-sensitivity of our interneuronal inhibition model in Section 1 in[S1] 2
Finally, we point out that the expected penalty also depends on the deficit decay 24

constant ~y, which is discussed in Section 10 in [ST Text| 265
Discussion 256
Using a realistic neural inhibition motif, we demonstrated that modulating inhibition 2
and E/I-ratio may enhance decision-making performance in an ongoing binary 268
decision-making task. The inhibitory motif was implemented in a simple coarse-grained 2
circuit that focuses on mechanism without taking into account synaptic details. This 210
approach has proven to be useful in previous studies, where models have been n
introduced as low-dimensional right from the start [4H6L/15] or have been derived via 212

dimension reduction from more complex network models |7,[26L[52]. Critically, we find 2
that the model can be driven through different states by the regulation of parameters of 27
the underlying neural circuit, thereby controlling the efficiency of the decision-making 215
task. This is in qualitative agreement with results obtained from neural network 276
analysis [25], where it was found that independently modulating postsynaptic excitatory 2
and inhibitory conductances may increase decision-making performance and robustness. 2z
However, a pathological relationship between excitation and inhibition may diminish 279
neural network stability and hence decrease the signal-to-noise ratio, which, for example, 250
could account for different symptoms in schizophrenia [53], a neural disorder that causes o
failures in cognitive control [28]. Hence, our model analysis further underlines that 282
modulating excitation and inhibition is of paramount importance in the ability of neural 2
circuits to adapt to change in a controlled way, in accordance with previous studies on  2ss

the interplay of excitation and inhibition in neuronal activity [19-23]. 285

We find that stable limit cycles, which emerge at Hopf bifurcation points, are 286
accessible states of the decision-making circuit, which have not been reported previously e
in other low-dimensional decision-making models (cf. [4-7,26], for example). The 288
existence of stable limit cycles is influenced by the magnitude of excitatory inputs 289
(Fig , and the adjustment of inhibition strength 8 and E/I-ratio r in response to the 20
stimulus (Figs [2] and . Strikingly, our results show that oscillating internal 201
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representations of the decision variable may have opposite effects — improvement or
decline of decision-making performance — which can be explained by the underlying
bifurcation structure of the model (Fig . Adaptation of internal neural parameters to
varying stimuli in our model therefore points to a dual role of oscillatory activity in
decision-making circuits. More generally, in the cortex, healthy oscillatory behaviour
may be led back to the synchronisation of populations of cortical neurons, where
interneurons (as in our study) are thought to play a pivotal role [19,/20]. Particularly in
a decision-making context, electrophysiological recordings showed frequency-specific
gamma-oscillations in parietal and fronto-polar cortex [54]. However, oscillations in
corticobasal ganglia circuits are also related to neuronal disorders like Parkinson’s
disease [55]. Moreover, recent findings suggest that intrinsic cortical oscillators are
impaired in schizophrenia, which is supposed to originate from a lack of phase locking in
brain oscillations; see [19] and references therein. These examples indicate that there
are both positive and negative effects of oscillatory activity on cognitive abilities, in line
with the findings reported in the present paper (e.g. see Fig|3]).

Without loss of generality, we applied the nonlinear interneuronal inhibitory circuit
to guide a model animal making foraging decisions. Doing so allowed us to link
neuronal mechanisms, physiological states and functional foraging behaviour in the
context of an ongoing decision-making task. In particular, we have shown that allowing
both the inhibition strength 8 and the E/I-ratio r to vary provides the hypothetical
animal with the ability to shape its response according to nutritional deficit levels,
which is reflected in the animal’s performance (Fig . Interestingly, a study where
monkeys performed motion-discrimination tasks, knowing about possible rewards
associated with each option [56], indicates that animals can approach optimality in
foraging decisions. In the present paper, the behaving model animal was embedded in
an uncertain environment (interruption probability, e.g. predators might be present),
and motivations were driven by nutritional imbalance (coupling of physiological and
cognitive states). In our opinion, these assumptions together with calculating the
animal’s performance using the distance from a target intake (geometrical
framework [29]), enhance the comparability with foraging behaviour of animals.

Experimentally, it has been shown that predatory ground beetles (A. dorsalis), for
instance, can regulate their intake of proteins and lipids [57], and that total egg
production of female beetles of the same species peaked at the target intake of these two
required nutrients [58]. This directly confirms the relationship between an optimal diet
and improved reproductive success [58]. Similar results have recently been confirmed in
mealworm beetles (Tenebrio molitor L.) [59], which further underline the immediate
relationship between lifespan, reproductive value and a balanced diet [29,[46]. We note,
that the ability to optimally adjust diets to nutritional needs has also been observed in
decentralised systems, such as the monomorphic green-headed ants (Rhytidoponera
sp.) [60], where social interactions may influence decision-making [61-63]. We believe
that the implementation of the neural circuit linked with nutritional needs as
investigated in the present paper is based on realistic assumptions, and therefore the
model animal’s improved behavioural performance could be understood by balancing
excitation and inhibition to enable an optimal diet, which directly relates mechanism
with function. However, experimental studies have also revealed that decision-makers do
not always act optimally [2,15H18]. As noted before in [8], nonlinear dynamical systems
may explain deviations from optimal behaviour as a result of different accessible states,
that capture the decision-maker in suboptimal stable equilibria. Regarding our results,
Fig [3| shows a separation between areas of good and bad performances, depending on
the choice of inhibition strength 8 and E/I-ratio . As underpinned by the
corresponding bifurcation analysis, these distinct areas represent parameter regimes
which offer different stable attracting motivational states. Therefore, improved (or
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optimal) foraging behaviour clearly depends on the optimal modulation of excitation
and inhibition in the neural circuit, or in other words: a decline in performance is
caused by deficits in the adjustment of excitation and inhibition.

In conclusion, our results may have important implications in understanding
neuronal regulation in decision-making in general, and in a foraging context in
particular. On the one hand, our findings may help elucidate the relationship between
decision-making performance in ongoing decision-making tasks and impaired
decision-making, and, on the other hand, may improve our understanding of the
required adaptation of excitation and inhibition to appropriately modulate behavioural
responses according to internal physiological needs and external factors.

Methods

The decision-making task

We consider a hypothetical animal which performs an activity-selection task whilst
interacting with its environment. Driven by nutrional deficits, the task consists of
deciding between two options — feeding or drinking. We take into account that the

animal may be interrupted whilst executing the sequence of feeding and drinking bouts.

This interruption might be due to the presence of a predator or fast changing weather
conditions, for instance. To include the possibility of interruption, here we follow the
modelling approach presented in [41] by assuming that feeding and drinking activities
are geometrically distributed. The geometric distribution is given as

Plty=T) = (1= )T, (1)

where t;, takes integer values, i.e. tx = 1,2,3.... With interruption probability A the
distribution P(t; = T) gives the probability that the ongoing decision-making task
comes to an end at the integer time ¢, = T. In Fig[p| the geometric distribution and its
cumulative distribution function (inset) are displayed. The maximum bout time T}, 4, is
chosen such that at least 99% of the distribution is included.

L 1.0 ct‘JmuIati‘ve crjilstrit]Ju‘tion function ]
£ 0.05 .
I 08 ]
<0.04 So6 i
~— VI
[ Zoa i
> 0.03 s h
E ' 0.2 |
Q e N
8 0.02 0'00 10 20 30 40 50 60 70 80 90
o bout time T 1
E. 0.01 E
0.000™10 20 30 40 50 60 70 80 90
bout time T

Fig 5. Geometric distribution. Plot of Eq with interruption probability
A = 0.05. Interruption may happen at each integer time step. The inset depicts the
corresponding cumulative distribution function.

In addition, we assume that food and water sources are physically separated. Thus,
there is a cost for the animal to switch between feeding and drinking, as the animal
cannot consume nutrients whilst it is moving to the place where it can perform the
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alternative activity. In our model (and as in the study in ) this cost is represented  z64
by a time constant 7 quantifying the physical distance between food and water sources. 365
Hereby we implicitly presume that the animal moves with an average speed, such that s
the linear relationship between position and time holds. 367

Mechanism 368

To guide the behaviour of the animal making foraging decisions we adopt a model
architecture that is based on a cortical network . In particular, we use a nonlinear
version of that model architecture, which has previously been studied as a simplified
linear version . A schematic of the model architecture is shown in Fig @ The model
relates to a decision between two food options. Evidence in favour of option 1 (option 2)
is integrated by neuronal units x1 (z3). In nutritional decision-making option 1 may be
‘eat food’ and option 2 may be ’drink water’. Choosing feeding and drinking is not a
necessary assumption, as both options could represent any two food items that differ in
their nutritional content, e.g. one food item rich in carbohydrates and the other rich in
proteins, or, more generally, any two alternatives the magnitudes of which may vary
over time. The momentary nutritional state of the decision-maker generates a
representation as neural activation. This is the function of the pre-processing units in
Fig[6] which transform the physiological state into inputs I and I» that feed their
respective integrators x; and x5. Here, we assume a linear relationship between
physiological levels characterising the nutritional state (deficits) and their
representations in the neural circuit, i.e.

Ii(d;) =qd;,  (1=1,2), (2)
where ¢ denotes the sensitivity of the animal to deficits d; (j = 1,2) in nutritional items. se
— inhibition A

---leak : Kinh
— excitation

Bfi(y)

Is+noise

pre-
process-
ing

pre-
process-
ing

Fig 6. Schematic of the interneuronal inhibition motif. This is a graphical
representation of the model in Eq @

Equation corresponds to the curve labelled g = 2/b in Fig E As can be seen in s
this graphic, this curve, although based on a nonlinear functional dependency (of the an
same form as Eq )7 approximately shows a linear relationship over a wide range of 32
input values. We show in more detail in Section 4 in [ST Tex{] under which conditions a7
this assumption holds by approximating the sigmoidal relationship with a linear 374
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function, yielding a direct proportionality between ¢ in Eq and the gain 375
characterising the sigmoidal function. 376
1.0 SN —
| = g=2/b £ ]
@ 0.8 " g=1 f:' > ]
S— || mmm g = 10 :
S 0.6} g =50 :
(@] " E
pra} » J
O
So04 1
— inflection point |
9 0.2 4
0. mu””‘.\“”:‘\\\\\ RTINS, ] L L
gow £ =b fhigh
input ¢

Fig 7. Plot of nonlinear input-output function. Typical input-output function
that illustrates how neuronal units transform inputs via a nonlinear, sigmoidal function.

Further to this, we assume that inputs I; (j = 1,2) are polluted by processing noise
with standard deviation o, which may arise from currents originating from other circuits
in the brain. Noise is included via Wiener processes W7 and Ws. Recurrent excitation is
taken into account in the self-excitatory terms with strength a. If activity levels of x4
and zo are sufficiently large then the interneuronal inhibitory unit y becomes activated
with strength w and in turn inhibits the evidence-integrating units with strength j.
The functions f. ;(-) appearing in different places in Fig |§| are nonlinear input-output
(I-O) functions with a typical sigmoidal shape, as shown Fig |7l Here, f. denotes the
nonlinear I-O function involved in excitatory processes, whereas f; represents inhibition.
The form of the sigmoidal functions is given as

1
1+ expl—ge,i (€ —bei)]

fei(€) (3)
Here, g. and g; are the gains, and b. and b; are the positions where f. and f; have
inflection points and reach half-level, respectively. In addition, we assume that
information may be lost by including leak-terms in the evidence-integrating units 1
and zo (rate k), and in the interneuronal inhibitory unit y (rate k;,;). This model is
described by the following system of nonlinear stochastic differential equations

dry = [~kxy +a fo(xy) — B fi(y) + I(dy)] dt + o dW,,
dy = [~kas+ a fe(xz) = B fi(y) + I(d2)] dt + o dWa, (4)
dy = [—kinny +w (fe(z1) + fe(z2))] dt.

In addition to the nonlinear functions in Eq we introduce an artificial nonlinearity — sn
to prevent 1, x2 and y from taking negative values, i.e. when numerically integrating s
the stochastic system from time ¢,, to obtain the state variables at the next time step s
tnt1, we reset Xy = max(0, Xy, ), X = x1,22,y. Otherwise the leak terms (rates k& s
and k;,p) would become positive when the state variables change sign. 381

A detailed characterisation of this dynamical system is given in Section 2 in 382
In the following, we identify z; as the motivation to feed and x5 as the motivation to s
drink, and hence d; and ds represent food deficit and water deficit, respectively. During  sss
feeding and drinking, the time-dependent deficits are reduced according to ass
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d;(t) = d;(0) — v t, where d;(0) are the initial deficits at t = 0 and ~ is the deficit decay
parameter [34,/41]. This is a valid assumption if feeding and drinking takes place within
sufficiently short periods of time [34}/41].

Relation with other models of decision-making

The model presented in Eq is closely related to previous models of both perceptual
and nutritional (value-based) decision-making. Therefore, it may be applied to a variety
of decision-making problems, and may be incorporated into a hierarchy of models as
follows. Consider the interneuronal inhibition model in Eq detached from the
foraging context. Although implemented as a nonlinear model in the present study, our
model is a simpler, more tractable, version of the original network model proposed

in [13], which included synaptic details and comprised 8000 equations. However, the
pooled inhibition model investigated in |13] could be reduced in dimensionality to a
model consisting of only two equations [7]. In terms of model complexity, our model can
be considered as being in between the original model by [13] and the one which is
reduced in dimension [7]. In Section 3 in we explain that the model used in our
paper offers additional dynamics (e.g. stable limit cycles) not present in the type of
model studied by [7], which is based on cross-inhibition as inhibitory motif. The
cross-inhibition motif has been applied in a variety of studies of decision-making [4-9]
and may generally be considered as an approximation of the more realistic interneuronal
inhibition motif [7].

To relate the model of the present paper to previous models of animal foraging
behaviour [34,41], we make use of a linearised version of the interneuronal inhibition
model in Eq , which is derived in Eq (S6) in Section 5 in and derive from
this linearised interneuronal inhibition model a model, which is based on the
cross-inhibition motif in a linear two-dimensional dynamical system, see Eq (S8) in
This approximated cross-inhibition model can be cast in equations, which closely
resemble the model studied in [41], and under specific assumptions can be made
equivalent to it. The mathematical details of this derivation are presented in Section 6
in As discussed in [41], the linearised cross-inhibition model can, in turn, be
related to other models which describe animals making foraging decisions [34}46] and
models of perceptual decision-making [4,/15]. We note, however, that in contrast to
previous models of activity selection (e.g. [34,/41]) the inputs in our model in Eq (4) do
not contain derivatives dj (t), i.e. the rates of change by which deficits are altered over
time. Given our model assumption that d]- = —~, where v is a constant, including them
could be achieved by substituting d; — d; 4+ c¢d; = d; — ¢y, where ¢ is another constant
(see also Section 6 in [S1 Text]). However, this might not hold for more complex
physiological models, where the equation of motion describing the time evolution of the
deficits d;(t) cannot be expressed in simple terms.

Function

We adopt the assumption that in order to maximise its reproductive value a foraging
animal needs to reach its target intake of nutrients [46]. Being empirically well
motivated [29], we can further assume that reproductive value decreases with decline of
the foraging performance, that is the distance between actual intake of nutrients and
the target consumption increases [46]. A simple measure for performance in a
nutritional decision-making task is the square of the Euclidian distance between current
state and target state in nutrient space. Considering (super)organisms in nutrient space
is known as the geometric framework and was pioneered by Simpson and
Raubenheimer [29]. Several experimental studies have successfully confirmed the
assumptions of this approach, e.g. see [58-60,/6468].
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In Fig[8| we show an illustration of the geometric framework in deficit space, where
we assume that an animal has to decide about the sequence in which to feed or drink.
Starting from an initial nutritional state characterised by deficits in water and food
(state A), the animal selects the order of possible activities and how long it performs the
activity chosen. In this example the animal switches several times between eating and
drinking to reach the nutritional state B. The trajectory of the animal in Fig[8|is given

as a combination of lines each of which is parallel to either the food or water deficit axis.

This means that in our model the animal exclusively drinks or eats but does not
perform both actions at the same time. This is further discussed below.

A o .
initial deficits

deficits after
ongoing intake

water deficit do

target state: zero deficits

food deficit ds

Fig 8. Illustration of the geometric framework. Application of the geometric
framework of nutrition to deficit space; horizontal and vertical axes show the deficits of
the animal. The target state is the origin of the diagram (d; = 0, d2 = 0). Via a
sequence of feeding and drinking bouts, the animal approaches its target state. Here,
deficits can only decrease or remain constant. The performance is proportional to the
FEuclidean distance between states in the diagram and the origin, i.e. the target state T.

deB

To characterise the momentary nutritional state and to evaluate behavioural
performance, we make use of the penalty function p = d3 + d3, i.e. the square of the
distance between points in the deficit space and its origin. For example, the penalty
characterising state B is pp = di , 4+ d3,. This penalty function has been applied in
previous studies (e.g. [41]) and is equivalent to the reward function presented in [46].
Denoting the reward function Rew, then the relationship between reward Rew and
penalty p is given as p = Kax — Rew, where K.« is a constant representing the
maximum reward possible. Hence, a penalty of zero corresponds to yielding the
maximal reward that relates to maximising reproductive value.

Model implementation

The implementation of the neural circuit provides the link between the nutritional state
of the animal and its foraging objective to come as close as possible to the target intake
of nutrients. In every simulation, we place the animal initially exactly midway between
food and water source. Initial deficits of food and water are set to either equal or
unequal values. To determine the initial motivational state of the animal we use the
dynamical system we employ in the decision-making process without noise (i.e. we set
o =0in Eq ) to obtain well defined initial conditions. This means that based on the
interneuronal inhibition motif implemented in the neural circuit in Fig[6] the animal’s
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initial neural representation of the decision problem is also based on mechanism. This is
different from previous theoretical studies (for example, cf. [41]), where an arbitrary
initial motivational state has been assumed. During the execution of the ongoing
decision-making task, processing noise is present in the neural circuit, and hence equal
deficits will not lead to a decision-deadlock, which is in contrast to [41].

When numerically integrating the deterministic equations (o = 0) we make use of a
fourth-order Runge-Kutta method and when simulating the stochastic differential
equations (o = 0.01) we apply a predictor-corrector method, where the deterministic
part is calculated with second order of accuracy in timestep dt [69]. For both methods
we used a timestep of dt = 0.005 in the numerical integration. We found that this choice
of dt gives a good compromise between computation time and accuracy when
integrating the system, particularly with regard to the stochastic equations.

We interpret the activities z1 and x5 as motivations. The animal performs the
activity with the greatest motivation, i.e. if 1 > x5 the animal chooses feeding and if
9 > x1 the animals selects drinking. However, the animal has to move to reach food
source or water source and whilst the animal is moving we allow the motivations to
change but the nutritional state is assumed to remain constant. Given the nonlinearity
of the model, the inclusion of fluctuations and the continuous update of motivations, it
might happen that motivations change while the animal is moving at which point it
reverses direction and moves back to the source of the previous bout. We assume that
the ongoing performance of the animal may be interrupted whilst eating food, drinking
water or moving between food and water sources. The measure that quantifies the
overall performance of the animal is the expectation value of the penalty, calculated
based on the geometric distribution introduced in Eq. . The expected penalty is
given as [41]

Trmax
E(p)=Y_ p(T)P(ty=1T), (5)
T=1

where p(T') denotes the penalty if nutritional intake stops at time T and P(t; = T) is
the probability representing the geometric distribution as introduced in Eq . In the
following analysis, we assume an interruption probability of A = 0.05, yielding a
maximum bout time of T;,4,; = 91, where we have added one integer time step to
account for possible numerical inaccuracies so that at least 99% of the geometric
distribution is considered.

In our study, we focused on the dependency of the expected penalty in Eq on
model parameters of the neural circuit. In particular, we numerically simulated the
ongoing decision-making task by varying the cross-inhibition strength 8 and the
excitation-over-inhibition ratio (E/I-ratio) defined as r = a/3. We then calculated the
expected penalty to find parameter values that yield the best performance (lowest value
of the expected penalty). Additionally, we determined the effect of varying the
switching cost 7 on the feeding and drinking behaviour and compared results for
different initial nutritional deficits, d; and da, and decay parameter + representing the
speed by which deficits are reduced during feeding or drinking bouts. Our results are
explained using bifurcation analysis. Throughout the main paper and in [S1 Text| we
make use of the numerical continuation tool MatCont [70L71] to obtain the bifurcation
points when the system undergoes transitions between different dynamic regimes.
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