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Abstract

Recent evidence indicate that humans can learn entirely new information during
sleep. To elucidate the neural dynamics underlying sleep-learning we investigated
brain activity during auditory-olfactory discriminatory associative learning in human
sleep. We found that learning-related delta and sigma neural changes are involved in
early acquisition stages, when new associations are being formed. In contrast,
learning-related theta activity emerged in later stages of the learning process, after
tone-odour associations were already established. These findings suggest that
learning new associations during sleep is signalled by a dynamic interplay between

slow-waves, sigma and theta activity.

Introduction

The possibility to learn during sleep has intrigued humanity for over a century. In his
1911 science fiction novel “Ralph 124C 41+”, Hugo Gernsback described the
Hypnobioscope, a device that transmits words directly to the sleeping brain such that
they would be fully remembered in the next morning. However, decades of scientific
efforts to teach sleeping humans new verbal information have been largely
unsuccessful (for review (Peigneux et al. 2001)). Recently, the question of learning
during sleep was revisited, and by applying simple forms of learning, such as
associative and perceptual learning, it has been found that humans (Arzi et al. 2012,
2014; Ruch et al. 2014; Andrillon and Kouider 2016; Andrillon et al. 2017; Zust et al.
2019) and animals (De Lavilléon et al. 2015) can learn entirely new information

during sleep. Yet, the brain mechanisms enabling learning of novel information


https://doi.org/10.1101/372037
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

bioRxiv preprint doi: https://doi.org/10.1101/372037; this version posted July 29, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

during sleep are still unknown. Here, we aimed to identify brain processes supporting

discriminatory associative learning during sleep.

We hypothesized that main brain sleep signals associated with consolidation and
reactivation of information learned in awake state (Diekelmann and Born 2010;
Oudiette and Paller 2013): slow-waves (delta: 0.5—4 Hz) (Marshall et al. 2006; Rasch
et al. 2007; Antony et al. 2012), theta (4-7Hz) (Schreiner and Rasch 2015; Schreiner
et al. 2015, 2018) and spindles (sigma: 11-16Hz) (Schabus et al. 2004; Tamminen et
al. 2011; Laventure et al. 2016; Cairney et al. 2018), will be associated with learning
novel associations during sleep. To test this hypothesis, we analysed
electroencephalograph (EEG) activity recorded during auditory-olfactory partial-
reinforcement conditioning in non-rapid eye movement (NREM) sleep (Figure 1a-d).
On reinforced trials, each tone (400Hz or 1200Hz) was paired with either a pleasant
or an unpleasant odour. Tone-odour pairings were counter-balanced across
participants. On non-reinforced trials, either tone was presented without an ensuing
odour, enabling the measure of learning-related neural correlates without the
interference of odour. Stimuli were presented in blocks, each consisted of four
reinforced trials and two non-reinforced trials (for detailed experimental design see
methods, Figure S1 and Table S1). The conditioned response was the tone-induced
sniff response, a behavioural change in nasal airflow in response to tone-odour
pairings. Invariably, unpleasant odours drove smaller sniffs than pleasant odours
(Arzi et al. 2012). Sleeping participants that learned these tone-odour associations
subsequently showed modulated sniffs in response to tones alone, in accordance

with the odour valence associated with the tone during sleep [behavioural data
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published in (Arzi et al. 2012). We found that learning-related delta and sigma
activity are involved at early acquisition stages of the learning procedure, while
learning-related theta activity emerges only after the discrimination is established,
suggesting that timely modulation of slow-waves, sigma and theta rhythms during
learning in sleep may prompt the encoding and stabilisation of new associative

memories.

Materials and Methods

The data used here was collected as part of a study that examined whether humans
can learn new associations during sleep and was published independently (Arzi et al.
2012). Thus, detailed information about participants, experimental design, data

acquisition and behavioural results can be found in the original article.

Participants

Fourth-three healthy participants (mean age = 25.2 + 3.2 years, 17 females) gave
informed consent to procedures approved by the Weizmann Institute Ethics
Committee. Participant exclusion criteria included use of medication, history of sleep
disorders and nasal insults, or insufficient sleeping time. Out of these, 28 participants
were presented with the auditory-olfactory conditioning during both NREM and REM
sleep, and 15 participants during NREM sleep-only. Participants were unaware of

specific experimental aims and conditions.
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Stimuli

Pleasant (shampoo or deodorant) and unpleasant (rotten fish or carrion) odorants
were presented in a nasal mask by computer-controlled air-dilution olfactometer from
an adjacent room (stimulus duration = 3 s, constant flow = 6 litres per minute). Tones
(400, 800 and 1,200 Hz, duration = 1 s, at a non-arousing 40 dB) were presented by

a loudspeaker ~2 m from participants’ heads.

Procedures

Participants arrived at the sleep laboratory at a self-selected time, based on their
usual sleep pattern, typically at 11:00 pm. After fitting of the polysomnography
devices (lber et al. 2007), subjects were left alone in the darkened room to be
observed from the neighbouring control room via infrared video camera. The
experimenters observed the real-time polysomnography reading and, after they
determined that the subject had entered the desirable sleep stage, they initiated the
experimental protocol. The conditioned and unconditioned stimuli were partially
reinforced at a ratio of 2:1; on reinforced trials (two-thirds of trials), each 1-s auditory
conditioned stimulus (either 1,200 Hz or 400 Hz) was triggered by inhalation and
paired with a 3-s olfactory unconditioned stimulus (either pleasant or unpleasant). On
non-reinforced trials (one-third of trials), a tone triggered by inhalation was generated
without an odorant (tone alone). Stimuli were generated in blocks of six trials (two
reinforced trials with pleasant odour, two with unpleasant odour and two non-
reinforced trials, one of each tone, randomized between blocks, Inter-trial interval 25-
40 seconds). Tone-odour contingencies were counter-balanced across participants.

The conditioned response was measured by the sniff response magnitude elicited
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during tone alone trials. During wakefulness the sniff response can be conditioned to
a tone such that different tones can drive different sniffs (Resnik et al. 2011).
Therefore, the sniff response was chosen to be the conditioned response in this
experiment. In the NREM and REM group (28 participants), in a night without
arousals/wakes within a window of 30 s from tone onset, five blocks were presented
in NREM sleep, then the procedure was halted up to stable REM sleep, at which
point an additional five blocks were presented. In NREM-only, the procedure was
triggered during NREM sleep only (15 participants). If an arousal/wake was detected
in the ongoing polysomnographic recording, the experiment was immediately
stopped until stable sleep was resumed and continued up to a maximum of 18
blocks. Thus, the distribution between NREM and REM depended on each
participant’s sleep structure. Since the experiment was halted following arousal or
wake, different participants had different numbers of trials (Mean = 62.9 + 19.3 trials)
and varying training intervals between blocks imposed by individual sleep structure.
About half an hour after spontaneous morning wake, conditioned response was
tested in a retention procedure: three auditory stimuli, 1,200 Hz and 400 Hz that
were presented during the night, and a new 800-Hz tone (eight repetitions each),
were sequentially presented while nasal respiration was recorded. Retention

procedure data from two subjects was lost due to technical problems.

Polysomnography
Sleep was recorded by standard polysomnography (lber et al. 2007). EEG (obtained
from C3 and C4, referenced to opposite mastoid), electro-oculogram (placed 1 cm

above or below and laterally of each eye, referenced to opposite mastoid),
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electromyogram (located bilaterally adjacent to the submentalis muscles), and
respiration were simultaneously recorded (Power-Lab 16SP and Octal Bio Amp
ML138, ADInstruments) at 1 kHz. Nasal respiration was measured using a
spirometer (ML141, ADInstruments) and high-sensitivity pneumotachometer (#4719,

Hans Rudolph) in line with the vent ports of the nasal mask.

Nasal airflow analysis

Nasal inhalation volume in the retention session was normalised by dividing the sniff
volume for each tone by the baseline nasal inhalation volume (averaged volume of
15 nasal inhalations preceding retention procedure onset). Participants’ normalized

sniff volume differing by 3 SD were excluded (one participant).

EEG analysis

EEG activity was recorded from C3 and C4 electrodes. Trials with EEG artefacts
within a 5.5-second window before tone onset or 5-second after tone onset were
excluded. EEG spectral analysis in the 0.5-40 Hz frequency range for all non-
reinforced trials that met study criteria was conducted using Hilbert transform on a
10.5-second window using customized MATLAB scripts, with time-frequency
resolution of 0.5Hz bin per 1 msec. The data was filtered using Hamming window
sinc finite impulse response (FIR) filter implemented in EEGLAB. The filter
order/transition band width is 25% of lower bandpass edge but not lower than 2Hz
where possible. Specifically, Hilbert transform was conducted on a longer time
window to avoid edge artefact and the time points before and after the 10.5-second

window of interest were trimmed. The power in each trial was then z-scored. Non-


https://doi.org/10.1101/372037
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

bioRxiv preprint doi: https://doi.org/10.1101/372037; this version posted July 29, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

reinforced trials from each participant were averaged across the two electrodes, and
then averaged across trials to create a single time-frequency representation per
participant, and per condition for the early-training phase (averaged across the non-
reinforced trials in the first five blocks) and late-training phase (averaged across the

non-reinforced trials in the sixth to the last blocks) during NREM sleep.

Inclusion/exclusion criteria

An independent experienced sleep technician, blind to experimental conditions and
to stimulus onset/offset times, scored the data off-line according to American
Academy of Sleep Medicine criteria (Iber et al. 2007). We then used these blindly
obtained scorings to include participants and/or trials. We included only EEG
artefact-free trials without wake or arousal within 30 s of tone onset presented during
NREM sleep. Importantly, trials presented in REM sleep in the ‘NREM and REM’
group where not included in the analysis. To avoid a bias of the results by individual
trials we included in the analysis only participants with a minimum of 10 EEG-clean
and arousals-free non-reinforced trials. Out of the 43 participants, five participants
had less than 10 EEG-clean and arousals-free non-reinforced trials. Excluding these
five participants, data from 38 participants remained for the EEG power analysis. In
addition, two participants lacked the retention paradigm (morning testing) due to
technical error and one participant’s sniff response was an outlier (> 3 SD).
Excluding these three participants, data from 35 participants remained for the
regression analyses presented in the supplementary materials. Total number of
included non-reinforced trials in NREM sleep per learning phase and condition were

153 trials for tone alone previously paired with an unpleasant odour (CSu) and 170
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trials for tone alone previously paired with a pleasant odour (CSp) in early-training,
and 146 trials for CSu and 133 for CSp for late-training. The average number of
included trials per participant was 4.03 + 0.94 for CSu and 4.47 + 0.98 for CSp in
early-training, and 3.8 + 2.9 for CSu and 3.5 + 2.7 for CSp in late-training. The
average number of trials was similar between early- and late-training phases
however the variance was larger in the late-training due to individual differences in

sleep architecture between participants.

Statistical analysis

A permutation-based statistical test of time-frequency data was applied using
FieldTrip (Oostenveld et al. 2011) and customized scripts. Time-frequency
representation of each condition (CSu and CSp) and learning phase (early and late)
in NREM sleep, were submitted to a cluster-based non-parametric permutation test
(Maris and Oostenveld 2007), to determine in which time-frequency points in a 5-
second window from tone onset there was a significant (a = 0.05) change from
baseline (-5500 ms to -500 ms pre-tone onset; Figure 2a-d). In addition, the power
envelope in each frequency band of interest [delta (0.5-4 Hz), theta (4-7 Hz) and
sigma (11-16Hz)] was calculated for each condition separately (CSu and CSp), and
submitted to cluster-based non-parametric permutation test to determine in which
time points in a 5-second window from tone onset there was a significant increase
from baseline per condition per learning phase. To determine whether there was a
significant difference in power between CSu and CSp, non-reinforced trials were
averaged across conditions (CSu and CSp) and learning phases (early and late).

Then the averaged signal was submitted to cluster-based non-parametric
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permutation test to identify the time points where increase in power following the
conditioned stimuli was significantly greater than baseline. A significant cluster was
found in each one of the three frequency bands: delta (13 - 2184 ms, peiuster < 0.001),
theta (1 - 850 ms, pauster < 0.001) and sigma (727 - 1553 ms, peuster < 0.001). The
cluster-based non-parametric permutation test between CSu and CSp in each
learning phase was applied on the time window defined by the above-mentioned
clusters in each frequency band. Multiple regression and correlation analyses were
performed using Matlab and open-source statistical software JASP (JASP Team
(2017), version 0.8.3.1). Nonparametric effect size was calculated by the following

formula r = z/sqrt(n) (Rosenthal et al. 1994).

Results

First, we verified that the behavioural results observed in the current examined
NREM sleep dataset (see Methods) were similar to those reported before (The data
was collected as part of a previous study published independently; Arzi et al. 2012).
In order to investigate learning dynamics during discriminatory associative learning in
NREM sleep we first examined the behavioural sniff response dynamics. We
extracted the sniff volume during NREM sleep for a tone alone previously paired
during sleep with an unpleasant odour (CSu) and for a tone alone previously paired
during sleep with a pleasant odour (CSp) up to the fifth non-reinforced trial of each
condition or first arousal, whichever came first (see Methods). One can see a
gradual increase in CSp-CSu sniff volume difference across trials (Figure 1e).
Moreover, the CSp-CSu sniff volume difference was significantly larger in the 4th -

5th block in comparison to the 1st - 2nd block (p < 0.05), similarly to what was

10
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previously shown in a subset of the dataset (Arzi et al. 2012). These findings suggest
that the new tone-odour discriminatory associations were learned within the first five
blocks. Therefore, we analysed the effects of training during sleep in early- (first five
blocks; where discriminatory paired associations were acquired) and late-training
(sixth to the last block (M = 5.5 + 3.2 SD); where paired associations were well
established). The following morning, during a test session, we observed that sniff
response was larger for CSu than for CSp (35 = 2.86, p = 0.015; excluding outlier: tz4
=2.75, p = 0.017; Figure S3c), suggesting the new associations learned during sleep

were stored as memories readily retrievable upon awake (Figure 1f).

11
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Figure 1: Auditory-olfactory discriminatory learning paradigm

(a) Experimental design: stimuli were generated in blocks of six trials: two
reinforced trials with pleasant odour (pink), two reinforced trials with unpleasant
odour (grey) and two non-reinforced trials (tone alone), one of each tone (see
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methods). T, tone; O, Odour. (b) On reinforced trials, each auditory stimulus (1,200
Hz or 400 Hz) was paired with either a pleasant (shampoo or deodorant) or
unpleasant (rotten fish or carrion) odour. (¢) On non-reinforced trials, either tone was
presented alone. (d) Structure of the retention session performed during the
subsequent morning where three auditory stimuli [1,200 Hz, 400 Hz and a novel 800-
Hz tone (green), eight repetitions each] were presented without odours. (e)
Normalized sniff response across continuous repetitions of a tone alone previously
paired during sleep with a pleasant odour (CSp, pink) and continuous repetitions of a
tone alone previously paired during sleep with unpleasant odour (CSu, grey) during
the first five non-reinforced presentation of each CS during sleep, or first arousal,
whichever came first. (f) Normalized sniff response during the retention session for
CSp (pink bar), novel tone (800Hz, green bar), and for CSu (grey bar). nvu:
normalized sniff volume units [sniff volume divided by the baseline nasal inhalation
(see Methods)]. The data used here was collected as part of a study that examined
whether humans can learn new associations during sleep and was published
independently (Arzi et al. 2012).

Then, to elucidate discriminatory associative learning-related brain dynamics during
sleep, we analysed brain activity during non-reinforced CSu and CSp trials during
NREM sleep for early- and late-training phases separately. Analysis of delta
frequency band showed that during both early- and late-training, CSu elicited higher
delta power in comparison to CSp (early-training: cluster1 396-1096 msec, p =
0.013, effect size r = 0.60; cluster2 1551-2320 msec, p = 0.011, effect size r = 0.43;
Figure 2a,c,e; late-training: cluster 888-1418 msec, p = 0.028, effect size r = 0.42;
Figure 2b,d,f), suggesting a learning-related delta modulation. Interestingly, the
discriminatory neural response was different between the two training phases. While
in the early-training phase two clusters were revealed, in the late-training phase only
one cluster was found. While there was overlapping between the first cluster in early-
training and the cluster in late-training, the second cluster from early-training
uncovered a prolonged learning-related differential response that was not observed

in the late-training phase. Furthermore, the differential response between CSu and

13
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CSp in early and late-training was similar in the first 1500 msec bout (no cluster) but
was larger in early-training compared to late-training in the second 1500 msec bout
from tone onset (1959-2273 msec, pquster = 0.05, effect size r = 0.31). These findings
indicate a modulation of delta activity between early- and late-training, suggesting

this neural correlate could signal the acquisition of new associative memory traces.

Similar analysis of theta frequency band revealed an opposite response pattern to
the one observed in delta. No cluster was found in theta power when comparing CSu
and CSp in early-training (Figure 2a, ¢, g), while late-training CSu elicited higher
theta power (cluster 94-311 msec, p = 0.026, effect size r = 0.36; Figure 2b, d, h)
compared to CSp. Moreover, the differential neural response between CSu and CSp
was larger in late-training when compared with early-training (cluster = 1-156, msec,
p = 0.05, effect size r = 0.37). These findings suggest that learning-related theta

modulations emerge when new associations are well-trained or already established.

Analysis of sigma frequency band showed that CSu trials induced higher power than
CSp homologous events in early-training (cluster 1080-1321 msec, p = 0.032, effect
size r = 0.32; Figure 2a, c, i), but not in late-training (no cluster) (Figure 2b, d, j).
However, we did not find reliable differences between early- and late-training in CSu
and CSp differential response (no cluster). Thus, modulation in sigma power may
underlie acquisition of associative memories in early learning stages, but may not

have a distinct contribution to early- versus late-training stages.
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Figure 2: Learning-related electrophysiological activity in non-reinforced trials
during NREM sleep.

(a-d) Time—frequency decomposition of the EEG signal averaged across C3 and C4
electrodes in non-reinforced trials during NREM sleep time-locked to: (a-b) tone
previously paired during sleep with an unpleasant odour (CSu) during (a) early-
training phase, or (b) late-training phase; (c-d) tone previously paired during sleep
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with a pleasant odour (CSp) during (c) early-training phase, or (d) late-training
phase. Areas inside black contours indicate significant deviations from zero
compared to baseline (cluster permutation t-test, P quster<0.05), each dotted vertical
line represents tone onset, tone duration was 1 sec. EEG delta power during (e)
early-training and (f) late-training for CSu (dark red) and CSp (light red). EEG theta
power during (g) early-training and (h) late-training for CSu (dark green) and CSp
(light green). EEG sigma power during (i) early-training and (j) late-training for CSu
(dark blue) and CSp (light blue). Horizontal lines in the colour of the curve represent
significant deviation from zero compared to baseline. Horizontal black lines represent
significant difference between CSu and CSp (cluster permutation test, P ¢uster<0.05).

Discussion

Here, we aimed to elucidate the brain activity supporting discriminatory associative
learning in sleep. Using EEG recordings during auditory-olfactory conditioning we
uncovered learning-related delta, sigma and theta power modulation in NREM sleep.
Moreover, in the course of discriminatory associative learning, learning-related delta
and sigma activity are modulated at early acquisition stages while theta activity
modulation emerges only after stimuli discrimination is well established. These
effects were evident despite the variability in training history introduced by individual

differences in sleep architecture (Table S1 and Figure S1).

During the discriminatory associative learning procedure sleeping participants
learned to implicitly discriminate between tones predicting odours with different
valence. This process involves learning two independent contingencies between
specific tones and odours, and results in the ability to discriminate between the
expected value of each tone. During the early-training phase, spanning the first five
training blocks, the new tone-odour associations were readily acquired as indicated

by the behavioural sniff response (Figure 1e). However, as contingency learning and
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discrimination occur during the same time frame, and discrimination is an integral
part of the learning, the observed learning-related EEG power may reflect either or
both of these processes. If a specific brain activity correlate is involved in
contingency encoding it should be more apparent when prediction error is high (i.e.
during early-training phase). On the contrary, if the same brain activity correlate
indicates stimuli discrimination it should be increasingly recruited or stay constant as
training progress from early to late trials. Thus, learning-related delta power
modulation observed in cluster1 in both early- and late-training suggests an
involvement of slow waves in the discrimination process occurring all along training.
Modulation of delta power in cluster2 and sigma power observed specifically in early-
training implies a role of these brain correlates in acquisition of new associations
during sleep. Notably, the contribution of sleep depth to learning cannot be fully
dissociated from training phase. In late-training, trials distribution was even between
N2 and N3, however in early-training the vast majority of trials were presented in N3
(supplementary materials and Table S2), implying that sleep depth may interact with
different stages of the learning process. Altogether, these findings suggest that slow-
waves and spindles activity is part of the required conditions for encoding of novel

associations in sleep.

To date, only a few studies investigate the neural activity underlying sleep-learning
(Peigneux et al. 2001; Ruch et al. 2014; Andrillon and Kouider 2016; Andrillon et al.
2017; Farthouat et al. 2018; Zust et al. 2019). The observed learning-related delta
power modulation in this study is in line with recent findings showing that successful

verbal associative learning during NREM sleep is bound to slow-wave peaks (Ruch
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et al. 2014; Zust et al. 2019), and that unsuccessful retrieval of auditory perceptual
learning during NREM sleep is associated with decreased delta power (Andrillon et
al. 2017). In addition, the absence of theta modulation by learning during early-
training stage is in agreement with findings of low theta activity during vocabulary
encoding in NREM sleep (Zist et al. 2019), and could imply that theta activity does
not signal encoding of new associations in NREM sleep. That said, perceptual
learning during REM sleep was found to increase theta power (Andrillon et al. 2017).
On the other hand, learning-related theta activity in later phases of the training
procedure, after the new associations were formed, may be involved in
strengthening already-established memories. For sigma, a more complex picture
emerges. We observed learning-related modulation in early-training, however not in
late-training and found no interaction between learning phases. Other studies, found
no relationship between sigma activity and associative learning retrieval (Zust et al.
2019), and marginal modulation during perceptual learning (Andrillon et al. 2017).
Taken together, these findings suggest that the same brain rhythm may have

different roles during different learning processes and sleep stages.

Delta, sigma and theta activity are key players in memory reactivation and
consolidation of information learned before sleep (Diekelmann and Born 2010;
Oudiette and Paller 2013). Slow-waves have been associated with and causally
related to memory consolidation (Marshall et al. 2006; Rasch et al. 2007; Antony et
al. 2012); spindles have a role in integrating new memories and existing knowledge,
and in memory consolidation (Diekelmann and Born 2010; Tamminen et al. 2011;

Antony et al. 2012, 2019; Oudiette and Paller 2013; Cairney et al. 2018); theta is
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involved in memory consolidation and reactivation of information learned while
awake (Schreiner and Rasch 2015; Schreiner et al. 2015, 2018). Unlike during
sleep-learning, the involvement of these brain oscillations in memory formation,
consolidation and retrieval is well-established (Diekelmann and Born 2010;
Hanslmayr et al. 2016; Antony et al. 2019). However, whether consolidation,
targeted memory reactivation and sleep-learning share similar brain mechanism is

still an open question.

Understanding the brain process underlying acquisition, consolidation and retrieval
of new information presented during sleep constitutes an important step in the
course of identifying what and how is possible to learn during sleep (Simon and
Emmons 1956; Wood et al. 1992; Arzi et al. 2012, 2014; Ruch et al. 2014; Andrillon
and Kouider 2016; Andrillon et al. 2017; Farthouat et al. 2018; Zlst et al. 2019).
Here, we start to elucidate part of these processes showing that encoding of a
discriminatory associative memory during sleep is associated with a dynamic
interplay between learning-related slow-waves, sigma and theta activity. Timely
modulation of these brain rhythms occurring during learning in sleep may determine

the acquisition and storage of new associative memories.
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