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Abstract 1	

Recent evidence indicate that humans can learn entirely new information during 2	

sleep. To elucidate the neural dynamics underlying sleep-learning we investigated 3	

brain activity during auditory-olfactory discriminatory associative learning in human 4	

sleep. We found that learning-related delta and sigma neural changes are involved in 5	

early acquisition stages, when new associations are being formed. In contrast, 6	

learning-related theta activity emerged in later stages of the learning process, after 7	

tone-odour associations were already established. These findings suggest that 8	

learning new associations during sleep is signalled by a dynamic interplay between 9	

slow-waves, sigma and theta activity. 10	

 11	

Introduction 12	

The possibility to learn during sleep has intrigued humanity for over a century. In his 13	

1911 science fiction novel “Ralph 124C 41+”, Hugo Gernsback described the 14	

Hypnobioscope, a device that transmits words directly to the sleeping brain such that 15	

they would be fully remembered in the next morning. However, decades of scientific 16	

efforts to teach sleeping humans new verbal information have been largely 17	

unsuccessful (for review (Peigneux et al. 2001)). Recently, the question of learning 18	

during sleep was revisited, and by applying simple forms of learning, such as 19	

associative and perceptual learning, it has been found that humans (Arzi et al. 2012, 20	

2014; Ruch et al. 2014; Andrillon and Kouider 2016; Andrillon et al. 2017; Züst et al. 21	

2019) and animals (De Lavilléon et al. 2015) can learn entirely new information 22	

during sleep. Yet, the brain mechanisms enabling learning of novel information 23	
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	 3	

during sleep are still unknown. Here, we aimed to identify brain processes supporting 1	

discriminatory associative learning during sleep.  2	

 3	

 We hypothesized that main brain sleep signals associated with consolidation and 4	

reactivation of information learned in awake state (Diekelmann and Born 2010; 5	

Oudiette and Paller 2013): slow-waves (delta: 0.5–4 Hz) (Marshall et al. 2006; Rasch 6	

et al. 2007; Antony et al. 2012), theta (4-7Hz) (Schreiner and Rasch 2015; Schreiner 7	

et al. 2015, 2018) and spindles (sigma: 11-16Hz) (Schabus et al. 2004; Tamminen et 8	

al. 2011; Laventure et al. 2016; Cairney et al. 2018), will be associated with learning 9	

novel associations during sleep. To test this hypothesis, we analysed 10	

electroencephalograph (EEG) activity recorded during auditory-olfactory partial-11	

reinforcement conditioning in non-rapid eye movement (NREM) sleep (Figure 1a-d). 12	

On reinforced trials, each tone (400Hz or 1200Hz) was paired with either a pleasant 13	

or an unpleasant odour. Tone-odour pairings were counter-balanced across 14	

participants. On non-reinforced trials, either tone was presented without an ensuing 15	

odour, enabling the measure of learning-related neural correlates without the 16	

interference of odour. Stimuli were presented in blocks, each consisted of four 17	

reinforced trials and two non-reinforced trials (for detailed experimental design see 18	

methods, Figure S1 and Table S1). The conditioned response was the tone-induced 19	

sniff response, a behavioural change in nasal airflow in response to tone-odour 20	

pairings. Invariably, unpleasant odours drove smaller sniffs than pleasant odours 21	

(Arzi et al. 2012). Sleeping participants that learned these tone-odour associations 22	

subsequently showed modulated sniffs in response to tones alone, in accordance 23	

with the odour valence associated with the tone during sleep [behavioural data 24	
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	 4	

published in (Arzi et al. 2012). We found that learning-related delta and sigma 1	

activity are involved at early acquisition stages of the learning procedure, while 2	

learning-related theta activity emerges only after the discrimination is established, 3	

suggesting that timely modulation of slow-waves, sigma and theta rhythms during 4	

learning in sleep may prompt the encoding and stabilisation of new associative 5	

memories. 6	

 7	

Materials and Methods 8	

 9	

The data used here was collected as part of a study that examined whether humans 10	

can learn new associations during sleep and was published independently (Arzi et al. 11	

2012). Thus, detailed information about participants, experimental design, data 12	

acquisition and behavioural results can be found in the original article. 13	

 14	

Participants 15	

Fourth-three healthy participants (mean age = 25.2 ± 3.2 years, 17 females) gave 16	

informed consent to procedures approved by the Weizmann Institute Ethics 17	

Committee. Participant exclusion criteria included use of medication, history of sleep 18	

disorders and nasal insults, or insufficient sleeping time. Out of these, 28 participants 19	

were presented with the auditory-olfactory conditioning during both NREM and REM 20	

sleep, and 15 participants during NREM sleep-only. Participants were unaware of 21	

specific experimental aims and conditions.   22	

 23	

 24	
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	 5	

Stimuli 1	

Pleasant (shampoo or deodorant) and unpleasant (rotten fish or carrion) odorants 2	

were presented in a nasal mask by computer-controlled air-dilution olfactometer from 3	

an adjacent room (stimulus duration = 3 s, constant flow = 6 litres per minute). Tones 4	

(400, 800 and 1,200 Hz, duration = 1 s, at a non-arousing 40 dB) were presented by 5	

a loudspeaker ~2 m from participants’ heads. 6	

 7	

Procedures 8	

Participants arrived at the sleep laboratory at a self-selected time, based on their 9	

usual sleep pattern, typically at 11:00 pm. After fitting of the polysomnography 10	

devices (Iber et al. 2007), subjects were left alone in the darkened room to be 11	

observed from the neighbouring control room via infrared video camera. The 12	

experimenters observed the real-time polysomnography reading and, after they 13	

determined that the subject had entered the desirable sleep stage, they initiated the 14	

experimental protocol. The conditioned and unconditioned stimuli were partially 15	

reinforced at a ratio of 2:1; on reinforced trials (two-thirds of trials), each 1-s auditory 16	

conditioned stimulus (either 1,200 Hz or 400 Hz) was triggered by inhalation and 17	

paired with a 3-s olfactory unconditioned stimulus (either pleasant or unpleasant). On 18	

non-reinforced trials (one-third of trials), a tone triggered by inhalation was generated 19	

without an odorant (tone alone). Stimuli were generated in blocks of six trials (two 20	

reinforced trials with pleasant odour, two with unpleasant odour and two non-21	

reinforced trials, one of each tone, randomized between blocks, Inter-trial interval 25-22	

40 seconds). Tone-odour contingencies were counter-balanced across participants. 23	

The conditioned response was measured by the sniff response magnitude elicited 24	
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	 6	

during tone alone trials. During wakefulness the sniff response can be conditioned to 1	

a tone such that different tones can drive different sniffs (Resnik et al. 2011). 2	

Therefore, the sniff response was chosen to be the conditioned response in this 3	

experiment. In the NREM and REM group (28 participants), in a night without 4	

arousals/wakes within a window of 30 s from tone onset, five blocks were presented 5	

in NREM sleep, then the procedure was halted up to stable REM sleep, at which 6	

point an additional five blocks were presented. In NREM-only, the procedure was 7	

triggered during NREM sleep only (15 participants). If an arousal/wake was detected 8	

in the ongoing polysomnographic recording, the experiment was immediately 9	

stopped until stable sleep was resumed and continued up to a maximum of 18 10	

blocks. Thus, the distribution between NREM and REM depended on each 11	

participant’s sleep structure. Since the experiment was halted following arousal or 12	

wake, different participants had different numbers of trials (Mean = 62.9 ± 19.3 trials) 13	

and varying training intervals between blocks imposed by individual sleep structure. 14	

About half an hour after spontaneous morning wake, conditioned response was 15	

tested in a retention procedure: three auditory stimuli, 1,200 Hz and 400 Hz that 16	

were presented during the night, and a new 800-Hz tone (eight repetitions each), 17	

were sequentially presented while nasal respiration was recorded. Retention 18	

procedure data from two subjects was lost due to technical problems. 19	

 20	

Polysomnography 21	

Sleep was recorded by standard polysomnography (Iber et al. 2007). EEG (obtained 22	

from C3 and C4, referenced to opposite mastoid), electro-oculogram (placed 1 cm 23	

above or below and laterally of each eye, referenced to opposite mastoid), 24	
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	 7	

electromyogram (located bilaterally adjacent to the submentalis muscles), and 1	

respiration were simultaneously recorded (Power-Lab 16SP and Octal Bio Amp 2	

ML138, ADInstruments) at 1 kHz. Nasal respiration was measured using a 3	

spirometer (ML141, ADInstruments) and high-sensitivity pneumotachometer (#4719, 4	

Hans Rudolph) in line with the vent ports of the nasal mask. 5	

 6	

Nasal airflow analysis 7	

Nasal inhalation volume in the retention session was normalised by dividing the sniff 8	

volume for each tone by the baseline nasal inhalation volume (averaged volume of 9	

15 nasal inhalations preceding retention procedure onset). Participants’ normalized 10	

sniff volume differing by 3 SD were excluded (one participant).  11	

 12	

EEG analysis 13	

EEG activity was recorded from C3 and C4 electrodes. Trials with EEG artefacts 14	

within a 5.5-second window before tone onset or 5-second after tone onset were 15	

excluded. EEG spectral analysis in the 0.5-40 Hz frequency range for all non-16	

reinforced trials that met study criteria was conducted using Hilbert transform on a 17	

10.5-second window using customized MATLAB scripts, with time-frequency 18	

resolution of 0.5Hz bin per 1 msec. The data was filtered using Hamming window 19	

sinc finite impulse response (FIR) filter implemented in EEGLAB. The filter 20	

order/transition band width is 25% of lower bandpass edge but not lower than 2Hz 21	

where possible. Specifically, Hilbert transform was conducted on a longer time 22	

window to avoid edge artefact and the time points before and after the 10.5-second 23	

window of interest were trimmed. The power in each trial was then z-scored. Non-24	
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	 8	

reinforced trials from each participant were averaged across the two electrodes, and 1	

then averaged across trials to create a single time-frequency representation per 2	

participant, and per condition for the early-training phase (averaged across the non-3	

reinforced trials in the first five blocks) and late-training phase (averaged across the 4	

non-reinforced trials in the sixth to the last blocks) during NREM sleep.  5	

 6	

Inclusion/exclusion criteria 7	

An independent experienced sleep technician, blind to experimental conditions and 8	

to stimulus onset/offset times, scored the data off-line according to American 9	

Academy of Sleep Medicine criteria (Iber et al. 2007). We then used these blindly 10	

obtained scorings to include participants and/or trials. We included only EEG 11	

artefact-free trials without wake or arousal within 30 s of tone onset presented during 12	

NREM sleep. Importantly, trials presented in REM sleep in the ‘NREM and REM’ 13	

group where not included in the analysis. To avoid a bias of the results by individual 14	

trials we included in the analysis only participants with a minimum of 10 EEG-clean 15	

and arousals-free non-reinforced trials. Out of the 43 participants, five participants 16	

had less than 10 EEG-clean and arousals-free non-reinforced trials. Excluding these 17	

five participants, data from 38 participants remained for the EEG power analysis. In 18	

addition, two participants lacked the retention paradigm (morning testing) due to 19	

technical error and one participant’s sniff response was an outlier (> 3 SD). 20	

Excluding these three participants, data from 35 participants remained for the 21	

regression analyses presented in the supplementary materials. Total number of 22	

included non-reinforced trials in NREM sleep per learning phase and condition were 23	

153 trials for tone alone previously paired with an unpleasant odour (CSu) and 170 24	
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	 9	

trials for tone alone previously paired with a pleasant odour (CSp) in early-training, 1	

and 146 trials for CSu and 133 for CSp for late-training. The average number of 2	

included trials per participant was 4.03 ± 0.94 for CSu and 4.47 ± 0.98 for CSp in 3	

early-training, and 3.8 ± 2.9 for CSu and 3.5 ± 2.7 for CSp in late-training. The 4	

average number of trials was similar between early- and late-training phases 5	

however the variance was larger in the late-training due to individual differences in 6	

sleep architecture between participants. 7	

 8	

Statistical analysis 9	

A permutation-based statistical test of time-frequency data was applied using 10	

FieldTrip (Oostenveld et al. 2011) and customized scripts. Time-frequency 11	

representation of each condition (CSu and CSp) and learning phase (early and late) 12	

in NREM sleep, were submitted to a cluster-based non-parametric permutation test 13	

(Maris and Oostenveld 2007), to determine in which time-frequency points in a 5-14	

second window from tone onset there was a significant (α = 0.05) change from 15	

baseline (-5500 ms to -500 ms pre-tone onset; Figure 2a-d). In addition, the power 16	

envelope in each frequency band of interest [delta (0.5-4 Hz), theta (4-7 Hz) and 17	

sigma (11-16Hz)] was calculated for each condition separately (CSu and CSp), and 18	

submitted to cluster-based non-parametric permutation test to determine in which 19	

time points in a 5-second window from tone onset there was a significant increase 20	

from baseline per condition per learning phase. To determine whether there was a 21	

significant difference in power between CSu and CSp, non-reinforced trials were 22	

averaged across conditions (CSu and CSp) and learning phases (early and late). 23	

Then the averaged signal was submitted to cluster-based non-parametric 24	
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	 10	

permutation test to identify the time points where increase in power following the 1	

conditioned stimuli was significantly greater than baseline. A significant cluster was 2	

found in each one of the three frequency bands: delta (13 - 2184 ms, pcluster < 0.001), 3	

theta (1 - 850 ms, pcluster < 0.001) and sigma (727 - 1553 ms, pcluster < 0.001). The 4	

cluster-based non-parametric permutation test between CSu and CSp in each 5	

learning phase was applied on the time window defined by the above-mentioned 6	

clusters in each frequency band. Multiple regression and correlation analyses were 7	

performed using Matlab and open-source statistical software JASP (JASP Team 8	

(2017), version 0.8.3.1). Nonparametric effect size was calculated by the following 9	

formula r = z/sqrt(n) (Rosenthal et al. 1994). 10	

 11	

Results 12	

First, we verified that the behavioural results observed in the current examined 13	

NREM sleep dataset (see Methods) were similar to those reported before (The data 14	

was collected as part of a previous study published independently; Arzi et al. 2012). 15	

In order to investigate learning dynamics during discriminatory associative learning in 16	

NREM sleep we first examined the behavioural sniff response dynamics. We 17	

extracted the sniff volume during NREM sleep for a tone alone previously paired 18	

during sleep with an unpleasant odour (CSu) and for a tone alone previously paired 19	

during sleep with a pleasant odour (CSp) up to the fifth non-reinforced trial of each 20	

condition or first arousal, whichever came first (see Methods). One can see a 21	

gradual increase in CSp-CSu sniff volume difference across trials (Figure 1e). 22	

Moreover, the CSp-CSu sniff volume difference was significantly larger in the 4th - 23	

5th block in comparison to the 1st - 2nd block (p < 0.05), similarly to what was 24	
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previously shown in a subset of the dataset (Arzi et al. 2012). These findings suggest 1	

that the new tone-odour discriminatory associations were learned within the first five 2	

blocks. Therefore, we analysed the effects of training during sleep in early- (first five 3	

blocks; where discriminatory paired associations were acquired) and late-training 4	

(sixth to the last block (M = 5.5 ± 3.2 SD); where paired associations were well 5	

established). The following morning, during a test session, we observed that sniff 6	

response was larger for CSu than for CSp (t35 = 2.86, p = 0.015; excluding outlier: t34 7	

= 2.75, p = 0.017; Figure S3c), suggesting the new associations learned during sleep 8	

were stored as memories readily retrievable upon awake (Figure 1f).  9	
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1	
  2	

Figure 1: Auditory-olfactory discriminatory learning paradigm 3	
(a) Experimental design: stimuli were generated in blocks of six trials: two 4	
reinforced trials with pleasant odour (pink), two reinforced trials with unpleasant 5	
odour (grey) and two non-reinforced trials (tone alone), one of each tone (see 6	
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	 13	

methods). T, tone; O, Odour. (b) On reinforced trials, each auditory stimulus (1,200 1	
Hz or 400 Hz) was paired with either a pleasant (shampoo or deodorant) or 2	
unpleasant (rotten fish or carrion) odour. (c) On non-reinforced trials, either tone was 3	
presented alone. (d) Structure of the retention session performed during the 4	
subsequent morning where three auditory stimuli [1,200 Hz, 400 Hz and a novel 800-5	
Hz tone (green), eight repetitions each] were presented without odours. (e) 6	
Normalized sniff response across continuous repetitions of a tone alone previously 7	
paired during sleep with a pleasant odour (CSp, pink) and continuous repetitions of a 8	
tone alone previously paired during sleep with unpleasant odour (CSu, grey) during 9	
the first five non-reinforced presentation of each CS during sleep, or first arousal, 10	
whichever came first. (f) Normalized sniff response during the retention session for 11	
CSp (pink bar), novel tone (800Hz, green bar), and for CSu (grey bar). nvu: 12	
normalized sniff volume units [sniff volume divided by the baseline nasal inhalation 13	
(see Methods)]. The data used here was collected as part of a study that examined 14	
whether humans can learn new associations during sleep and was published 15	
independently (Arzi et al. 2012). 16	
 17	

Then, to elucidate discriminatory associative learning-related brain dynamics during 18	

sleep, we analysed brain activity during non-reinforced CSu and CSp trials during 19	

NREM sleep for early- and late-training phases separately. Analysis of delta 20	

frequency band showed that during both early- and late-training, CSu elicited higher 21	

delta power in comparison to CSp (early-training: cluster1 396-1096 msec, p = 22	

0.013, effect size r = 0.60; cluster2 1551-2320 msec, p = 0.011, effect size r = 0.43; 23	

Figure 2a,c,e; late-training: cluster 888-1418 msec, p = 0.028, effect size r = 0.42; 24	

Figure 2b,d,f), suggesting a learning-related delta modulation. Interestingly, the 25	

discriminatory neural response was different between the two training phases. While 26	

in the early-training phase two clusters were revealed, in the late-training phase only 27	

one cluster was found. While there was overlapping between the first cluster in early-28	

training and the cluster in late-training, the second cluster from early-training 29	

uncovered a prolonged learning-related differential response that was not observed 30	

in the late-training phase. Furthermore, the differential response between CSu and 31	
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CSp in early and late-training was similar in the first 1500 msec bout (no cluster) but 1	

was larger in early-training compared to late-training in the second 1500 msec bout 2	

from tone onset (1959-2273 msec, pcluster = 0.05, effect size r = 0.31). These findings 3	

indicate a modulation of delta activity between early- and late-training, suggesting 4	

this neural correlate could signal the acquisition of new associative memory traces.  5	

 6	

Similar analysis of theta frequency band revealed an opposite response pattern to 7	

the one observed in delta. No cluster was found in theta power when comparing CSu 8	

and CSp in early-training (Figure 2a, c, g), while late-training CSu elicited higher 9	

theta power (cluster 94-311 msec, p = 0.026, effect size r = 0.36; Figure 2b, d, h) 10	

compared to CSp. Moreover, the differential neural response between CSu and CSp 11	

was larger in late-training when compared with early-training (cluster = 1-156, msec, 12	

p = 0.05, effect size r = 0.37). These findings suggest that learning-related theta 13	

modulations emerge when new associations are well-trained or already established. 14	

 15	

Analysis of sigma frequency band showed that CSu trials induced higher power than 16	

CSp homologous events in early-training (cluster 1080-1321 msec, p = 0.032, effect 17	

size r = 0.32; Figure 2a, c, i), but not in late-training (no cluster) (Figure 2b, d, j). 18	

However, we did not find reliable differences between early- and late-training in CSu 19	

and CSp differential response (no cluster). Thus, modulation in sigma power may 20	

underlie acquisition of associative memories in early learning stages, but may not 21	

have a distinct contribution to early- versus late-training stages.  22	
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 1	

Figure 2: Learning-related electrophysiological activity in non-reinforced trials 2	
during NREM sleep. 3	
(a-d) Time–frequency decomposition of the EEG signal averaged across C3 and C4 4	
electrodes in non-reinforced trials during NREM sleep time-locked to: (a-b) tone 5	
previously paired during sleep with an unpleasant odour (CSu) during (a) early-6	
training phase, or (b) late-training phase; (c-d) tone previously paired during sleep 7	
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with a pleasant odour (CSp) during (c) early-training phase, or (d) late-training 1	
phase. Areas inside black contours indicate significant deviations from zero 2	
compared to baseline (cluster permutation t-test, P cluster < 0.05), each dotted vertical 3	
line represents tone onset, tone duration was 1 sec. EEG delta power during (e) 4	
early-training and (f) late-training for CSu (dark red) and CSp (light red). EEG theta 5	
power during (g) early-training and (h) late-training for CSu (dark green) and CSp 6	
(light green). EEG sigma power during (i) early-training and (j) late-training for CSu 7	
(dark blue) and CSp (light blue). Horizontal lines in the colour of the curve represent 8	
significant deviation from zero compared to baseline. Horizontal black lines represent 9	
significant difference between CSu and CSp (cluster permutation test, P cluster < 0.05). 10	
 11	
 12	
 13	

Discussion 14	

Here, we aimed to elucidate the brain activity supporting discriminatory associative 15	

learning in sleep. Using EEG recordings during auditory-olfactory conditioning we 16	

uncovered learning-related delta, sigma and theta power modulation in NREM sleep. 17	

Moreover, in the course of discriminatory associative learning, learning-related delta 18	

and sigma activity are modulated at early acquisition stages while theta activity 19	

modulation emerges only after stimuli discrimination is well established. These 20	

effects were evident despite the variability in training history introduced by individual 21	

differences in sleep architecture (Table S1 and Figure S1).  22	

 23	

During the discriminatory associative learning procedure sleeping participants 24	

learned to implicitly discriminate between tones predicting odours with different 25	

valence. This process involves learning two independent contingencies between 26	

specific tones and odours, and results in the ability to discriminate between the 27	

expected value of each tone. During the early-training phase, spanning the first five 28	

training blocks, the new tone-odour associations were readily acquired as indicated 29	

by the behavioural sniff response (Figure 1e). However, as contingency learning and 30	
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discrimination occur during the same time frame, and discrimination is an integral 1	

part of the learning, the observed learning-related EEG power may reflect either or 2	

both of these processes. If a specific brain activity correlate is involved in 3	

contingency encoding it should be more apparent when prediction error is high (i.e. 4	

during early-training phase). On the contrary, if the same brain activity correlate 5	

indicates stimuli discrimination it should be increasingly recruited or stay constant as 6	

training progress from early to late trials. Thus, learning-related delta power 7	

modulation observed in cluster1 in both early- and late-training suggests an 8	

involvement of slow waves in the discrimination process occurring all along training. 9	

Modulation of delta power in cluster2 and sigma power observed specifically in early-10	

training implies a role of these brain correlates in acquisition of new associations 11	

during sleep. Notably, the contribution of sleep depth to learning cannot be fully 12	

dissociated from training phase. In late-training, trials distribution was even between 13	

N2 and N3, however in early-training the vast majority of trials were presented in N3 14	

(supplementary materials and Table S2), implying that sleep depth may interact with 15	

different stages of the learning process. Altogether, these findings suggest that slow-16	

waves and spindles activity is part of the required conditions for encoding of novel 17	

associations in sleep. 18	

 19	

To date, only a few studies investigate the neural activity underlying sleep-learning 20	

(Peigneux et al. 2001; Ruch et al. 2014; Andrillon and Kouider 2016; Andrillon et al. 21	

2017; Farthouat et al. 2018; Züst et al. 2019). The observed learning-related delta 22	

power modulation in this study is in line with recent findings showing that successful 23	

verbal associative learning during NREM sleep is bound to slow-wave peaks (Ruch 24	
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et al. 2014; Züst et al. 2019), and that unsuccessful retrieval of auditory perceptual 1	

learning during NREM sleep is associated with decreased delta power (Andrillon et 2	

al. 2017). In addition, the absence of theta modulation by learning during early-3	

training stage is in agreement with findings of low theta activity during vocabulary 4	

encoding in NREM sleep (Züst et al. 2019), and could imply that theta activity does 5	

not signal encoding of new associations in NREM sleep. That said, perceptual 6	

learning during REM sleep was found to increase theta power (Andrillon et al. 2017). 7	

On the other hand, learning-related theta activity in later phases of the training 8	

procedure, after the new associations were formed, may be involved in 9	

strengthening already-established memories. For sigma, a more complex picture 10	

emerges. We observed learning-related modulation in early-training, however not in 11	

late-training and found no interaction between learning phases. Other studies, found 12	

no relationship between sigma activity and associative learning retrieval (Züst et al. 13	

2019), and marginal modulation during perceptual learning (Andrillon et al. 2017). 14	

Taken together, these findings suggest that the same brain rhythm may have 15	

different roles during different learning processes and sleep stages.    16	

 17	

Delta, sigma and theta activity are key players in memory reactivation and 18	

consolidation of information learned before sleep (Diekelmann and Born 2010; 19	

Oudiette and Paller 2013).  Slow-waves have been associated with and causally 20	

related to memory consolidation (Marshall et al. 2006; Rasch et al. 2007; Antony et 21	

al. 2012); spindles have a role in integrating new memories and existing knowledge, 22	

and in memory consolidation (Diekelmann and Born 2010; Tamminen et al. 2011; 23	

Antony et al. 2012, 2019; Oudiette and Paller 2013; Cairney et al. 2018); theta is 24	
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involved in memory consolidation and reactivation of information learned while 1	

awake (Schreiner and Rasch 2015; Schreiner et al. 2015, 2018). Unlike during 2	

sleep-learning, the involvement of these brain oscillations in memory formation, 3	

consolidation and retrieval is well-established (Diekelmann and Born 2010; 4	

Hanslmayr et al. 2016; Antony et al. 2019). However, whether consolidation, 5	

targeted memory reactivation and sleep-learning share similar brain mechanism is 6	

still an open question. 7	

 8	

Understanding the brain process underlying acquisition, consolidation and retrieval 9	

of new information presented during sleep constitutes an important step in the 10	

course of identifying what and how is possible to learn during sleep (Simon and 11	

Emmons 1956; Wood et al. 1992; Arzi et al. 2012, 2014; Ruch et al. 2014; Andrillon 12	

and Kouider 2016; Andrillon et al. 2017; Farthouat et al. 2018; Züst et al. 2019). 13	

Here, we start to elucidate part of these processes showing that encoding of a 14	

discriminatory associative memory during sleep is associated with a dynamic 15	

interplay between learning-related slow-waves, sigma and theta activity. Timely 16	

modulation of these brain rhythms occurring during learning in sleep may determine 17	

the acquisition and storage of new associative memories.  18	
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