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Abstract

We built a rig to perform patch-clamp and extracellular recordings from the
same neuron in vivo. In this setup, the axes of two micromanipulators are
precisely aligned and their relative position tracked in real-time, allowing us to
accurately target patch-clamp recordings to neurons near an extracellular
probe. We used this setup to generate a publicly-available dataset where a
cortical neuron’s spiking activity is recorded in patch-clamp next to a dense
CMOS Neuropixels probe. “Ground-truth” datasets of this kind are rare but
valuable to the neuroscience community, as they power the development and
improvement of spike-sorting and analysis algorithms, tethering them to
empirical observations. In this article, we describe our approach and report
exploratory and descriptive analysis on the resulting dataset. We study the
detectability of patch-clamp spikes on the extracellular probe, within-unit
reliability of spike features and spatiotemporal dynamics of the action potential
waveform. We open discussion and collaboration on this dataset through an

online repository, with a view to producing follow-up publications.
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Prologue

Our efforts to record from the same neuron in vivo using patch-clamp and
dense extracellular probes have resulted in three outputs: a publicly-available

dataset (http://bit.ly/paired_recs) a manuscript, and a code repository

(http://bit.ly/paired_git). Together, these three components form the

publication arising from the experiments we have performed. The role of the
dataset is to be downloaded and re-used. The role of the manuscript is to
describe the experimental methods through which we acquired the dataset,
explain it and showcase which types of questions it can be used to address. The
repository has two roles: first, promoting reproducibility and error correction.
By making our analysis and figure-generation code freely-available, we wish to
make our analysis procedures clear and enable the reader to reproduce our
results from the raw data, alerting us to any potential mistakes. Second, the
repository will form a living, dynamic and interactive component of the
publication: a forum for open collaboration on this dataset. Any interested
scientists can contribute to it, joining us in detailed exploration of these
recordings with a view to producing follow-up publications in which they will be

credited for their input.

Why did we opt to publish this way? The first reason is that the very nature of
the project we here describe - recording the same neuron with patch-clamp
and extracellular probes - invites an open science and open source approach.
This is because the primary use of this type of “ground truth” validation data is
to aid the development of new sorting and analysis algorithms, as well as to

benchmark and improve existing ones. The second reason is that despite being
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conceptually very simple, this project generated a large and complex dataset
that can be tackled in many ways and used to address different types of
question. Some of these questions are beyond the reach of our analytical
expertise; others lie even beyond the scope of our scientific imagination. By
releasing the dataset and providing a repository for scientific discussion and
collaboration, we aim to maximise its scientific return to the community. Instead
of having each interested research group work in isolation, we hope that by
encouraging collaboration and discussion between peers we can foster synergy

between them that will lead to work of greater scientific value.

Although datasets like ours are exquisitely suited for such an approach, we
believe this publication strategy needs to become more widely adopted in
neuroscience. We were pleased to note recent publications spontaneously and
independently using similar approaches'™, in what may well be evidence of
convergent thinking. Perhaps the time has come for new publication and
collaboration paradigms. We will elaborate on this subject during the Epilogue.
For now, let us get back to electrophysiological recordings, before we begin an

experiment on scientific collaboration.
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Introduction

Extracellular recordings

Understanding how the brain works requires seeing the forest and the trees: we
must track large populations of neurons, but also resolve their activity as
units>®. As a method, extracellular recordings have come a long way towards
achieving this goal, progressing through technological advances from
recording single neurons in the 1950s’” to several hundreds in the 2010s'%"? .
However, with each leap in technology come new questions about the nature of
the signal being recorded and requirements for new analysis methods to
interpret the ever-growing datasets. Extracellular recordings offer unparalleled
access to large populations of neurons deep in the brain with sub-millisecond
temporal resolution. However, each electrode can detect the spiking activity of
tens to hundreds of neurons nearby, which poses a formidable analytical
challenge: how to resolve this chaos of activity into individual units? For this

reason, analytical innovations have been just as important as new recording

technologies in increasing the power of extracellular recordings.

Complementary metal-oxide-semiconductor (CMOS) probes are the latest
advance in extracellular recording technology'”. CMOS probes exploit
innovations in microfabrication techniques that ultimately enable scientists to
record from hundreds of channels (384 to 1,440), densely packed (100-170
sites/mm) along a 5-10 mm shank'?. These devices enable access to hundreds
of neurons distributed across multiple brain regions, densely sampling the

extracellular field; this means that each neuron is detected on multiple channels
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of a probe. This additional resolution in sampling is expected to aid analysis

and is currently being used by novel algorithms™*"".

“Ground truth” data

Datasets where one knows precisely when a neuron in the vicinity of an
extracellular probe fired an action potential (commonly referred to as “ground-
truth” ') are necessary for validating the performance of new recording
technology and benchmarking analysis approaches. They have also been
essential for advancing our understanding of the nature of the extracellular
signal and how it corresponds to intracellular recordings'®. Finally, they can
provide empirical answers to matters of technological design: is it more useful
to optimise electrode arrangement for drift correction, or to position channels

strategically in the hope of isolating more units? These datasets have been

18-21 22

acquired for tetrodes/single-wire electrodes or in slice preparations®,
where background activity is greatly reduced. We recently added to this
literature by publishing and sharing a ground-truth dataset from silicon
polytrodes?®, but these devices have significantly different channel count and

101 Ground truth datasets from

arrangement from the new CMOS probes
tetrodes in the hippocampus'® and polytrodes in cortex?® have proved
invaluable for constraining, benchmarking and improving spike sorting

algorithms'24%7.

Given the potential of CMOS probes for becoming
standardised tools adopted worldwide'?, it would be of great interest to
produce a ground-truth dataset for these new devices that can be used to

develop common analysis tools and standards. That is what we did here, using

our previously published method for efficiently targeting two different

" In the sense that the spike times of a verified single neuron (unit) are known.
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electrophysiological recording instruments to the same neuron in vivo®. The

dataset is now available online (http://bit.ly/paired_recs) and the reader can

collaborate with others and ourselves in its analysis (http://bit.ly/paired_git).
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Materials and Methods

Dual-Recording Rig Design and Alignment

For this project, we adapted the design of our previous dual-recording rig®. Our
implementation of a dual-recording rig requires two aligned multi-axis micro-
manipulators (Scientifica Patchstar), a long working distance custom-built optical
microscope (Optomechanics: Thorlabs; Objective: Mitutoyo 378 series 10x; Camera:
PointGrey Flea3 USB) to align the extracellular probe and patch pipette tip, a macro-
zoom lens (Edmund Optics 3.3X Macro Zoom Lens, coupled to a second PointGrey
Flea3 USB camera) to guide probe and patch pipette insertion, software (NeuroGEARS
Bonsai’®) to monitor probe and patch pipette position and calculate distance between
pipette tip and a given coordinate on the probe in real time, a stereotaxic frame for rat
head fixation (Kopf Model 962), a computer, and electrophysiology acquisition
hardware (described below in “Experiments” section). The air table on which the
stereotaxic frame was mounted defined the common X-, Y- and Z- axes to which
manipulators were aligned: X is parallel to the anatomical medio-lateral axis (ML), Y to
the anterior-posterior axis (AP) and Z to the dorso-ventral axis (DV). The two Patchstar
manipulators were mounted on opposite sides of the stereotaxic frame along the X-
axis. They were held at an angle: the probe manipulator at 64° from X on the XZ plane,

and the patch manipulator at 62° on the same plane.

Mechanical alignment

After assembling the rig, we ensured that the axes of both manipulators were parallel
using a mechanical alignment procedure. We “squared” manipulators with the air table
surface using a digital machinist’s dial (RS Pro Fine Reading Indicator) mounted on the
electrode holder. We placed the dial tip in contact with a planar surface of the air table
and moved it along this surface (see ref. 23 for a video of this procedure). The dial is

sensitive to changes as small as 1 pm; changes > 50um for the full range of travel of
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the manipulator were corrected by loosening or tightening manipulator mounting
screws or tapping the manipulator with a soft surface hammer until such differentials

were minimised. We performed this procedure for X-, Y- and Z-axes.

Optical Alignment

The numerical aperture of the alignment microscope objective (0.28) has a theoretical
resolution limit of 1 pm in the X- and Y-axes and 10 ym in Z. Before each experiment,
we mounted a model rat skull (with bregma, lambda and a craniotomy) on the
stereotaxic frame. The alignment microscope’s objective was focused on a point a few
hundred to 1,000 um above bregma. We brought the probe and patch pipette tips to
this point, illuminating them obliquely in order to acquire images of both with sufficient
contrast. We aligned probe and patch pipette tips visually at the centre of the image
(indicated by an overlay crosshair), and reset their XYZ coordinates to zero on the
manipulator position monitoring software (Scientifica Linlab 2.0), a procedure we refer
to as “zeroing”. We previously verified the repeatability of zeroing by manually moving
the tip of the pipette from outside the field of view to the focal plane and image centre
and recording the manipulator coordinates, having found a 0.5 = 0.5 pm reliability in
XY and 2.6 = 1.7 um in Z%*. We then moved the probe to a different position in space.
The microscope was moved and refocused to re-centre the probe tip at the crosshair.
Next, without moving the microscope, we moved the pipette tip to the same XYZ
coordinates as the probe tip. If there was no misalignment between manipulators, the
pipette tip should arrive at the centre of the image crosshair, that is, the same position
as the probe tip. In the event of misalignment, the amount of re-positioning required
(in X, Y and Z) to bring the pipette tip to the probe tip provides an accurate measure of
residual axis misalignment. We performed this procedure sequentially to 15 different
locations in XYZ spanning a 5,000 um x 5,000 pm x 5,000 pm volume in 1000 ym steps
recording every time the cumulative displacement in X, Y and Z. The average distance
error recorded in this volume was 9.9 + 6.2 um (n = 30 measures).

Software alignment
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Taking the probe manipulator as reference, we can use the position errors measured at
several different locations to estimate the coordinate transformation that best
compensates for any residual misalignment of the patch pipette manipulator. We used
multivariate linear regression to compute a transformation matrix for XYZ and then
used the constants derived to transform patch manipulator coordinates in real time
using Bonsai, an open-source reactive visual programming framework (Lopes et al.,

2015; freely available for download at http://bonsai-rx.org/). This procedure allowed us

to reduce residual misalignment to 6.8 * 3.6 um. The Bonsai workflow we used is

available for download at the sc.io repository.

Bonsai-quided targeting of patch-clamp recordings

Having aligned probe and patch pipette manipulators with sufficient accuracy, we
required a way to calculate XYZ coordinates for a patch pipette entry point into the
brain that would allow us, following a straight line path through the brain, to reach a
point in space sufficiently close to one of the probe’s channels. Our approach was the
following: first, we reset probe and patch pipette tip coordinates to zero, at a fixed
point located a few hundred microns over bregma (Figure 1A). Second, we guided the
probe to the target craniotomy location and lowered it slowly until we could detect a
dimple on the surface of the brain (Figure 1B). Third, we recorded the XYZ coordinates
for this point (probe entry, point A Figure 1D), zeroed the virtual approach axis (XZ) to
monitor how deeply the probe was implanted (range from 2500 pm to 3800 um for
different experiments), inserted the probe into the brain at an approach angle of 64°
and recorded the final coordinates for the probe tip (point B Figure 1D). This left us
with a line segment AB defined by two sets of XYZ coordinates: A (probe entry) and B
(probe tip), as depicted in Figure 1D. This allowed us to derive a “probe line equation”
of the form Z = mX + b where m is the slope (64°) and b is the intercept. Fourth, every
time we "hunted” for a cell, we picked a point T (target) located along the probe line
segment. Knowing this point and our patch manipulator approach angle (62°), we

could now define a “patch line equation” for the line that passes through this point at
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62° to the horizontal (segment CT in Figure 1D). By fixing an arbitrary patch pipette Z
coordinate to a point above the brain surface (e.g. points C or C’, Figure 1D), we could
solve the patch line equation for X and thus obtain our X axis (ML) entry point. At this
stage we are therefore in possession of the three required coordinates for a patch
pipette entry point through which we may ultimately reach point T on the probe. To
reiterate, the Z coordinate is defined arbitrarily and based on convenience of
movement; picking a Z coordinate very far above the brain surface will require greater
movement along the X axis (see Figure 1D, point C versus C’), which may be
impractical or outside the travel range of the manipulator. The X coordinate is
calculated based on the arbitrarily-defined Z. Finally, the Y coordinate is the same as
for the probe. In possession of 3 Cartesian coordinates for an entry point C (Figure 1D)
we are therefore ready to slowly advance into the brain along the approach line CT
(Figure 1D) that will lead us to a region in space close to the extracellular probe,
hoping to “collide” with and obtain patch-clamp recordings from neurons in this path.
We implemented these calculations and variables in a Bonsai workflow, enabling us to
a) obtain patch entry point coordinates “on the fly” and b) estimate in real time the
current Euclidean distance between the patch pipette tip and the closest point on the
probe. The latter allowed us to both avoid colliding the patch pipette with the probe
and - crucially - estimate the distance between a recorded neuron and its closest point
in the probe with accuracy, obviating the need for (potentially loss-prone) post-hoc
histology of patch-clamp recorded neurons. The approach we just described was
tested “in air” prior to beginning recordings on each experiment day. Briefly, a virtual
probe insertion was performed using the same coordinates as chosen for the
experiment. We calculated the patch entry point, focused the microscope on the target
point of the probe and moved the patch pipette along the approach line, visually
confirming that its tip touched the target point. If there was a displacement of > 10 pm
between pipette tip and target, we repeated optical and software alignment

procedures from the beginning.
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Probe
Insertion coordinates: Bregma
Bregma -2.7 mm ML (X)
..- -1.8 mm AP (Y)
0 - - \ -2.7 mm DV (2)
\
\
\

Patch pipette

Zero coordinates
then position at:
0.0 ML (X)

-1.8 mm AP (Y)
-2.6 mm DV (2)

2mm -1.8 mm AP

Figure 1. Bonsai-guided targeting for paired recordings.

A. At the beginning of each experiment, the alignment microscope objective was focused on and
fixed at a reference point a few hundred microns above bregma (crosshair). The probe and patch
pipette tips were brought to this point and zeroed.

B. We then guided the probe to the insertion point, noted coordinates and implanted the probe
deep enough to record from all cortical layers.

C. For every patch-clamp recording, the pipette was brought back to the alignment point depicted
in A and its coordinates reset to 0. It was then moved to the target Y (AP) coordinate and a fixed Z
(DV) position.

D. We then picked a target location on the probe (T), defining a point in XYZ to target with
patch-clamp. Depending on the fixed Z position decided upon, this returned a different XY entry
point (points C, C'). The pipette tip was positioned at the entry point, switched to approach mode,
and advanced slowly into the brain at a 62 degree angle.


https://doi.org/10.1101/370080
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/370080; this version posted July 23, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Experiments

Surgery

All animal experiments were approved by the University College London local ethical
review committee and conducted in accordance with Home Office personal and
project (I6A5C9913; 70/8116) licenses, under the UK Animals (Scientific Procedures)
1986 Act.

We used Lister-Hooded rats of both sexes, aged between 6 weeks and 8 months
(weight 300-700 g). Rats were anaesthetized with a single injection of urethane (1.4-1.8
g/kg intraperitoneal), which was followed by a subcutaneous injection of temgesic (20
pg/kg) and rimadyl (5 mg/kg) and intra-muscular injection of Atropine methyl-nitrate
(0.05 mg/kg), for suppression of mucus secretion. Depth of anesthesia was monitored
by paw and tail-pinch and after 2 hours if no pain reflex was observed, surgical
procedures were initiated. Rats were mounted on a stereotaxic frame and their
temperature monitored rectally and maintained at 37.5 °C by a homeothermic blanket.
Lidocaine was injected subcutaneously along the midline of the scalp. We performed
an incision to expose the skull above the targeted brain region(s). One or two line-
shaped craniotomies (1Tmm along the AP and 2-3 mm along the ML axes) were
performed. An incision was performed with a thin scalpel blade or bent 29G needle on
the underlying dura along its full ML extent, taking care to minimize the area of brain
surface exposed and not damage it. Craniotomy coordinates are detailed for each
experiment on the accompanying “Data Summary” spreadsheet. Two reference
electrodes (Ag-AgCl wires from Science Products, model E-255) were implanted
opposite each other, under the most posterior section of the skin incision just above

the neck.

Extracellular Probes

All experiments were performed with Neuropixels Phase3A Option 1 Probes (IMEC).
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This probe model has 384 channels, each with an area of 144 pmz, arranged in a
chessboard pattern along 192 rows and 4 columns'®. Columns are spaced 21 ym and

rows 20 upm apart (see Figure 2 below; also https://github.com/cortex-

lab/neuropixels/wiki). Probe shank dimensions are 5 mm length by a 70x20 pm cross-
section. We were unable to measure probe channel impedance but Jun, Steinmetz and
colleagues have previously documented this value to be 149 £ 6 KQ (Mean = SD)"°. In
Neuropixels probes, the continuous data stream from each channel is split into action
potential (AP, 0.3-10,000 kHz) and local field potential bands (LFP, 0.5-1,000 Hz), which
are amplified and digitized separately (AP 30 kHz, LFP 2.5 kHz). Digitization was
performed at 10 bits, under a gain of 500, yielding a resolution of 2.34 pV per bit. We
acquired data using SpikeGLX open-source software

(https://github.com/billkarsh/Spike GLX).

Patch-Clamp recordings

We used filamented borosilicate glass capillaries (OD 1.5mm, ID 0.86 mm, 10 cm
length; WPI) and pulled patch pipettes from them using a Narishige PC-10 vertical
puller, configuring a pulling program to yield pipette tips with resistance between 7
and 9 MQ. Patch pipettes were filled with intracellular solution containing (in mM): 130
KGluconate, 5 KCI, 10 HEPES, 2 MgCl,, 10 Sodium Phosphocreatine, 2 Na,-ATP and
0.4 Na-GTP. For patch-clamp recordings, data was acquired using an Axon Instruments
Multiclamp 700B amplifier and a National Instruments board, at a sampling rate of
50.023 kHz. Please see accompanying Data Summary spreadsheet to verify sampling
rate for each cell.

We used WinWCP 5.3.4 software for acquisition (developed by John Dempster, freely-

available at http://spider.science.strath.ac.uk/sipbs/software_ses.htm).

Dual Recordings with Extracellular Probes and Patch-Clamp

At the beginning of an experiment, after all alignment steps detailed above,

extracellular probe position was zeroed at the center of a virtual crosshair positioned
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~1mm over the rat's bregma (Figure 1). The extracellular probe was then guided to the
craniotomy site and lowered until a dimple was observed at the brain surface (see
Bonsai-guided targeting of patch-clamp recordings). The probe was then inserted at a
constant velocity of 5 ym/s. We allowed 30 minutes for brain tissue around the probe
to settle before attempting patch-clamp recordings. At this point, a patch pipette was
filled with intracellular solution, brought to the center of the overlay crosshair and
zeroed (Figure 1C). The patch pipette was then guided to the calculated entry point
coordinates (see Bonsai-guided targeting of patch-clamp recordings), at which point
we followed a protocol for in vivo patch-clamp recordings in rodents®”’. High positive
pressure (30-60 mmHg; DPM1B Pneumatic Transducer Tester; Fluke Biomedical) was
applied before entering the pia and pipette resistance measured in voltage-clamp
mode, using 25 mV steps at 20 Hz. Usually, we observed a transient increase in pipette
resistance of up to 100%. We advanced the pipette tip steadily and monitored the
distance to the target point on the probe. Once this fell below 200 pm, positive
pressure was decreased to 10-20 mmHg, and the pipette advanced slowly at 1-2 pm
per second. We monitored the test pulse for increases in pipette resistance of ~50%
and the appearance of a “strike” pulse®, as well as any spike-like waveforms appearing
on the recording trace. When a combination of these signs was detected, we released
pressure and applied slight suction to attempt to obtain a seal on the putative neuron’s
membrane. In cases where a seal resistance of > 1 giga-Q was obtained, we attempted
to go into whole-cell mode by applying short, sharp suction to rupture the cell
membrane. In situations where resistance did not reach giga-Q level, we remained and
recorded in cell-attached mode, either in voltage-clamp mode (n = 30 cells), with
holding voltage set to yield a current of ~0 pA, or current-clamp mode (n = 8 cells),
without injecting current. The remaining 5 cells in the dataset were recorded in whole-
cell configuration. Prior to beginning a dual recording, we monitored patch-clamp
activity for spikes. For cells without spontaneous spiking activity, we attempted to
induce action potentials by injecting current (whole-cell or cell-attached current-clamp)
or setting voltage-clamp holding potential to +10 to +50 mV>°. If the cell was still

“silent”, we discarded it and attempted to record from another neuron. Once we


https://doi.org/10.1101/370080
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/370080; this version posted July 23, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

observed stable activity with action potentials in patch-clamp, we started a dual
recording by initializing a protocol in WinWCP. SpikeGLX extracellular recordings were
triggered by the onset of a TTL pulse, commanded by WinWCP and delivered through
the National Instruments board to the Neuropixels Sync Channel 0. To ensure that
extracellular and patch signals were temporally aligned, TTL pulses were delivered
throughout the recording. For each new recording, the pipette was removed from the
brain through the approach track and a new pipette filled and mounted. Every new
pipette was zeroed as per the procedure described above. We tested in air whether
manipulation of the holder during pipette replacement disrupted alignment and we

were satisfied that it did not (data not shown).
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Processing and Analysis

Inclusion criteria

Unless otherwise specified in particular sections of this article, out of the total of 43
paired recordings obtained, a subsample of 21 was selected for further analysis on the
basis of 3 criteria being met: 1) detection of > 200 spikes on the patch-clamp
recording; 2) Patch spike-triggered average of the extracellular voltage (PSTA)
revealing a waveform with peak-peak amplitude > 10 pV; 3) PSTA revealing a canonical
spike waveform, defined as i) a sharp negative peak followed by a positive peak; orii) a
positive peak, followed by at least one negative peak of greater amplitude. Sixteen
cells showed peak-peak amplitudes <10 pV; 2 cells fired less than 200 spikes over the
whole recording session; 4 cells showed non-canonical spike waveforms. The spike
waveforms for excluded and included cells with peak-peak amplitudes > 10 pV are
plotted in Supplement to Figure 4-1 A. All recordings are available for download;

exclusions related only to analysis subsequent to Figure 4.

Channel with highest peak-peak vs Channel estimated to be closest to soma

We used the coordinates returned by our Bonsai workflow for probe and patch pipette
tip positions along with the Neuropixels Option 1 probe map to estimate which was
the extracellular channel closest to the soma/patch pipette tip. This allowed real-time
monitoring of activity in the range of channels most likely to be picking up activity from
a dual-recorded cell. Moreover, given that the amplitude of extracellular action
potentials is highest in the perisomatic region, this also allowed us to test in vivo and
inside the brain the accuracy of our alignment and positioning system. Figure 2 is a
schematic of the Neuropixels Option 1 probe geometry. In our calculations we
accounted for a distance of 137 ym between the sharp tip of the Option 1 probe and

the deepest channel (Jun et al., 2017; https://github.com/cortex-lab/neuropixels/wiki).

Our estimate for channel predicted to be closest to the soma/pipette tip was

calculated thus:
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Predicted channel = 2 *( (1 - fraction_channel) * rows_inside) - 2,

Where:
fraction_channel = targeted channel depth / total probe insertion length
rows_inside = total probe insertion length / row spacing
row spacing = 20 um
targeted channel depth: see section “Bonsai-guided targeting of patch-clamp
recordings”
S
=8
&
: ﬂ
3
X

12um

S

Figure 2. Neuropixels Option 1 probe layout.
Example channel numbers in white, embedded
within channel (grey). High channel numbers
are towards brain surface.

The difference between predicted channel and channel with the highest peak-peak

amplitude is reported in Data Summart. For 70% of recordings with clear EAP
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waveforms (15/21), our estimate was off by 5 channels or less. Given the geometry
arrangement of Neuropixels Option 1 probes (Figure 2), and depending on which
column we were closest to within a row, this corresponds to a displacement in
Euclidean distance ranging from 45.2 ym (channel at the beginning of a row, for
example channel 100 to 105) to 63.6 pym (channel at the end of a row, for example
channel 97 to 102). This is a considerable increase compared to the precision of 6.8 =
3.6 pm obtained in air after software alignment, but it is to be expected, given
differences between moving a pipette tip or probe in air versus inside brain tissue,
where they may encounter obstacles of varying rigidity such as blood vessels and
thicker neurites. Moreover, putting this measure in the context of somatic diameter, if
we assume this to be approximately 20 pym for a rat layer 5 cortical neuron®', this
suggests our estimated versus real pipette tip position inside the brain in vivo was
predominantly accurate within a range of 2-3 cell bodies. In every analysis using
“nearest channel to the soma”, for the minority of situations where there was a
difference between channel with highest extracellular amplitude and the one
estimated to be nearest the soma, we use the channel with highest extracellular
amplitude. Because this reading and spatial estimates were so close, throughout the
paper we use the terms “nearest channel to the soma” and “channel with the highest

extracellular amplitude” interchangeably.

Synchronization

To make sure our dual modality recordings were temporally aligned, we programmed
digital pulses, which were recorded simultaneously by the extracellular and patch-
clamp acquisition systems. Digital pulses comprised 3 types, distinguished by their
time of onset and duration: a “trial initiation pulse” delivered every 30 seconds, a series
of "ongoing trial pulses” delivered every second and a “trial conclusion pulse”
delivered every 30 seconds. Trial initiation pulses had a duration of 10 ms, whereas
ongoing trial pulses lasted 20 ms and trial conclusion pulses 100 ms. We verified

extracellular-patch temporal alignment by comparing trial duration for each trial
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recorded; no misalignments were observed and therefore trials were concatenated for
analysis. Since extracellular and patch-clamp recordings were acquired at distinct
sampling rates, to relate events in these two streams we used a conversion factor. This
was calculated by dividing the sample length of the two streams, obtaining a constant
which was then multiplied/divided by the sample number of a particular

extracellular/patch-clamp event.

Preprocessing

The signal recorded with Neuropixels Phase 3A probes has an offset that varies per
channel. To remove this, we subtracted from each channel the median of its voltage.
After that, extracellular recordings were filtered using a sixth-order Butterworth high-
pass filter at the cutoff frequency of 200 Hz, run in forward and backward mode.
Finally, we performed common-average referencing by subtracting from each channel
the median voltage over the whole probe at each time-point. The latter two steps were
performed only for our own analysis in this article; the data we have shared publicly
has only undergone offset subtraction. Patch-clamp data were preprocessed only for
spike detection. For this analysis step, we filtered the recording using a sixth-order
Butterworth high-pass filter at the cutoff frequency of 100 Hz, run in forward and

backward mode.

Spike Detection

All code used for analysis and figure production is freely available and commented at

the sc.io repository (http://bit.ly/paired_git). Spikes in patch-clamp recordings were

detected after high-pass filtering (cutoff frequency 100 Hz) and median-subtracting the
data, as crossings of a threshold defined as 7 times the standard deviation of current or
voltage across the whole recording. Extracellular spikes were detected as threshold
crossings for 7 times the median absolute deviation of the signal within a particular
channel. Spike features were thus defined: peak-peak amplitude - voltage at the

positive peak minus voltage at the negative peak; half-width - duration at the half-
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amplitude of the negative peak; duration - time elapsed between the positive and
negative peaks; peak-peak ratio - absolute value of the negative peak amplitude
divided by positive peak amplitude; symmetry - ratio between time elapse from

baseline to negative peak and time elapsed from negative peak back to baseline value.
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Results

Our goal was to record from the same neuron in vivo using high-density CMOS
probes and patch-clamp. To achieve this, we built a dual-recording rig where
the axes of two micromanipulators are precisely aligned and their positions are
tracked in real-time by Bonsai software, enabling us to accurately estimate the
distance between a patch-clamp recorded neuron and the closest channel on
the probe (ref. 23; see Materials and Methods). Our overall aim was to generate
and share a ground-truth dataset for Neuropixels, which are part of a new

generation of extracellular probes with high channel count and density'%'",

Paired recording: a walk-through

Figure 3A depicts a 100-ms segment of a paired recording where we recorded
in voltage-clamp cell-attached mode from a neuron (c46) that was 65 pm away
from the probe. Near-simultaneous spikes appear on the patch-clamp trace
(Fig. 3A, black) and the nearest channel of the Neuropixels probe (channel 181,
Fig. 3A, blue). However, single channels on extracellular probes detect the
activity of tens of nearby neurons - could this apparent correspondence in cell-
attached and extracellular spike times be a mere coincidence? Randomly
sampling 500 spikes from this cell-attached recording and plotting the
corresponding time-windows for the nearest Neuropixels channel suggests not;
a clear time-locked extracellular spike waveform is seen on the extracellular
recording for each and every cell-attached spike (Fig. 3B). Confident that we
can track the spiking activity of the same neuron in patch-clamp and

extracellular recordings, let us look now to panels 3C-E. While we know that
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one channel can pick up spikes from several neurons beyond the dual-
recorded one (Fig. 3A blue), the converse is also true: spikes from the same
neuron can be recorded on multiple channels. Figure 3C depicts the same 100-
ms segment of extracellular activity shown in 3A for each of the 30 channels
nearest to the probe; however, due to background activity and electrical noise,
the individual spike waveforms can sometimes be hard to discern. We therefore
computed the patch spike-triggered average (PSTA) by averaging extracellular
activity in every channel of the Neuropixel probe in the 4-ms time window
surrounding each spike recorded in patch-clamp (Fig. 3D-E). For c46, averaging
activity in time windows around 6,803 spikes revealed a variety of distinct
extracellular spike waveforms, spread along 30 channels of the Neuropixels
probe (Fig. 3D-E). Waveforms obtained for each channel show distinct features
in time (Fig. 3D) and space (Fig. 3E). Though we did not recover morphological
reconstructions in this study, for every experiment we sought to keep probe
insertion angle parallel to the dorso-ventral axis defined by the apical dendrites
of cortical pyramidal neurons. As such, channels in rows above the nearest
channel are likely sampling voltage near the cell-attached neuron’s apical
dendrites, whereas those in rows below potentially capture electric fields near

the basal aspect of the dendritic tree.
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Figure 3. Paired cell-
attached and extra-cellular
recordings from the same
neuron.

A. A segment of 100ms of
cell-attached (top, black)
and extra-cellular (bottom,
blue) recordings (cell c46).
Extra-cellular trace was
sampled from the channel
closest to the cell body
(181). Scale bars for this
and subsequent plots are
100 pA (cell-attached) or
100 uV (extracellular).

B. Sample of 500 cell-
attached spikes (top, black)
and corresponding extra-
cellular 4-ms recording
windows from channel 181
(bottom, blue). Trace
averages overlaid in lighter
tones.

C. The same temporal
segment as in A for the 30
channels closest to the cell
soma. Channel 181 is
indicated by red box. Cell-
attached spike times
indicated by black ticks.

D. Patch spike triggered-
average (PSTA) of extra-
cellular voltage windows for
30 channels closest to the
cell body aligned by patch
spike peak time (dashed).

E. Same as D, arranged to
reflect the channel layout for
Neuropixels probe. Scale =
100 pV. Corresponding
Channels in C-E are
indicated by colour.


https://doi.org/10.1101/370080
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/370080; this version posted July 23, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A summary of the dataset

Where did we record?

We recorded a total of 43 neurons with distances of 10-144um between the
patch pipette tip and the closest channel on the Neuropixels probe (Figure 4A;
Mean * SD: 59.6 + 34 um). In terms of cortical areas, due to constraints on
travel range posed by working with two opposing manipulators, we restricted
probe insertion sites along the mediolateral (ML) axis to a 1,261 pm-wide
region (minimum to maximum, all coordinates relative to bregma: -3,361 to -
2,100 pm). Within this restricted ML axis, we varied anterior-posterior insertion
site substantially (-3,526 to 2,527 pm). On the dorso-ventral axis, we inserted
the probe deep enough to cover all cortical layers in rat (2,500 to 3,800 pym;
cortical thickness in recorded areas ranged from 1,800 to 2500 pm, Paxinos &
Watson, 1998). These 3 intervals of stereotaxic coordinates define a stripe of
cortex spanning, from anterior to posterior, the following areas: primary motor,
primary somatosensory forelimb, primary somatosensory hindlimb and primary
somatosensory trunk. Regarding cortical depth, the vast majority of paired
recordings were obtained from neurons located at 700 to 1,500 pm from the
pial surface (36/43 neurons), suggesting we mostly recorded from neurons in

cortical layer (L)5%.

We divided our initial sample of 43 neurons into two groups: 21 neurons
showed a clear EAP waveform after PSTA, whereas the remaining 22 did not,
revealing waveforms that were either non-canonical, or had peak-peak
amplitudes below the noise threshold (Figure 4A; see Supplement to Figure 4-
1A and Inclusion Criteria in Materials and Methods). The laminar distribution of
neurons in the two groups was similar (Figure 4B) and bore no discernible

relation to distance to the probe (Supplement to Figure 4-3A). Furthermore, the
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presence of neurons without a clear extracellular signature was not explained
by distinct firing rates (Supplement to Figure 4-3C). We will examine possible
explanations for putative “dark neurons” in the Discussion section. Until then,
we will focus our study on the 21 cells showing clear EAP waveforms after PSTA

(orange in Figure 4A-B).

What did we record?

Cell types in the brain can be identified by features such as gene expression,
morphology, connectivity pattern or properties of the action potential
waveform. In our study we had access only to the latter; though not as powerful
for parsing out cell types as intracellular recordings, extracellular spike
waveforms can at least be used to make a basic distinction between putative
inhibitory interneurons and pyramidal cells**. To this end, we computed trough
to peak duration and negative peak half-width for the spike waveform revealed
by PSTA of the extracellular channel with highest peak-peak. This procedure
revealed the presence of 5 putative interneurons in our dataset (c7, c12, c16,
c18 and c22), which clustered separately from putative pyramidal cells by
simultaneously showing the shortest trough to peak and spike half-width
durations (Figure 4C, cyan). In our relatively small sample, this proportion
(23.8%, n = 5/21) is above the documented ratio of interneurons in rat
somatosensory cortex (11.6-12.1%, of all neurons, Meyer et al., 2011). Besides
faster kinetics (Figure 4C), EAPs in the 5 putative interneurons in our sample
were characterized by lower peak-peak amplitude (Figure 4E; Median, inter-
quartile range: pyramids - 64.4 pV, 179.3pV; interneurons - 12.7 pV, 9.7 pV).
This difference between pyramids and interneurons was not explained by
distance to the probe, as this was not significantly different between them

(Median, inter-quartile range: pyramids - 67.6 pm, 57.2 ym; interneurons - 72.2
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um, 35.6 ym; Mann-Whitney U = 31, p = 0.495; Supplement to Figure 4-3B).
Though our small sample size for interneurons precludes strong conclusions, it
is possible that their distinct morphological and biophysical properties

contribute to the decreased amplitude of their EAPs, compared to pyramids.
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A. Peak-peak amplitude of PSTA as a function of distance between cell soma and the channel with highest amplitude for

every cell recorded. N = 43 cells (21 clear EAP [orange], 22 noise/non-canonical EAP [grey]).

B. Cortical depth of recorded cells. Inset shows variation in peak-peak PSTA amplitude as a function of cortical depth.

C. Units with detectable EAP waveforms (orange in 4A-B) could be classified as putative interneurons (cyan) or pyramidal

cells (magenta) according to half-width and peak-to-peak duration of the PSTA extracellular spike waveform.

D. Average spike waveform examples for interneurons (c12, c16) and pyramidal cells (c14, c46). Time window is 2 ms;

vertical scale bar is 5uV for putative interneurons and 50 pV for pyramidal cells. Example cells were recorded at depths,
respectively, of 1,005, 1,529, 891 and 816 ym, and distances to probe of 93, 55, 97 and 45 ym.
E. Cortical depth, putative cell type and PSTA peak-peak amplitude for every cell with a clear EAP waveform.
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Detecting patch-clamp spikes on the extracellular probe

The process of analyzing extracellular recording data begins with the detection
of action potentials. For paired recordings to be useful in benchmarking or
improving spike-sorting algorithms, action potentials recorded in patch-clamp
must be detectable on the extracellular recording. To verify this, we detected
spikes in the 30 channels closest to each of the 21 neurons as negative
crossings of a threshold defined as 7 times the median absolute deviation
(MAD) for that channel. To compare the extracellularly-detected spike times
with action potentials recorded in patch-clamp, we generated peri-event time
histograms (PETHs), computing the times of spikes found in the extracellular
channels relative to each patch-clamp spike, for a window of 50 ms around the
patch-clamp spike (Figure 5; Supplement to Figure 5C). For some paired
recordings, these PETHs showed a high proportion of spike co-occurrence in
the patch-clamp and extracellular channels at approximately 0 ms time delay,
indicating that the patch-clamped neuron’s spike is being found by the
detection algorithm on the extracellular recording (for example, Figure 5A-B,
c21 and c14; see others in Figure 5D). For other pairs (Figure 5C, c44; see
others in Figure 5D), spikes were less reliably detected on the probe, showing
only short peaks (for example, Figure 5D, c27) or barely any peaks at all on the
PETH (Figure 5D, c22) around 0 ms. The reason for this is investigated in Figure
5E; the y axis depicts the ratio of extracellular to patch spike detections at the
time of the patch spike for the channel closest to the probe. For a probe
channel to be judged to be detecting all patch-clamp spikes, it is a necessary
condition that this ratio equals or exceeds” 1. The x axis in Figure 5E indicates

the amplitude of each cell's EAP peak relative to the detection threshold (in log-

2 In the case where the channel picks up spikes from a unit that is not the pair-
recorded cell.
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2 fold-change). If a cell's average EAP peak falls below threshold (left of vertical
line), its spikes will always fail to be detected (unless they “ride” occasionally on
spikes from background units). The extracellular spike detection ratio for the
cells with the highest negative peaks (c28, c37, c45 and c46) suggests these
cells had all of their spikes detected. In three cases (c28, c45 and c46), more
spikes were detected on the extracellular recording than had actually been
fired by the pair-recorded neuron; these false positives likely reflect coincident
background activity, which could potentially be separated by spike sorting. To
conclude, a total of 9 pair-recorded neurons had >50% of their spikes detected
by a simple threshold-crossing algorithm ran on the extracellular trace of the

closest channel of the extracellular probe.
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threshold.
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Variability in spike features within the same unit

Spike sorting algorithms use extracellular waveform features to cluster spikes
and assign them to neurons. Spikes with very different features will in principle
have been fired by distinct neurons. But how variable are the extracellular
waveform features of spikes fired by the same unit? Paired recordings offer a
unique opportunity to answer this question empirically with a view to providing

constraints for analysis and interpretation of extracellular recordings'®?°.

To provide an estimate, we investigated the 9 cells in our dataset that showed
best extracellular detectability® of patch-clamp spikes. To this end, we looked in
the extracellular probe recordings at the 2-ms window either side of each
patch-clamp spike time and ran a custom algorithm for extracting spike features
(see Materials and Methods - Analysis). Despite knowing the precise times for
action potential peaks in dual-recorded cells, occasionally other neurons fired
action potentials that coincided in time and whose voltage summed with our
target neuron’s, distorting spike feature measurements. To skirt this issue, first
we extracted features® for the PSTA waveform of each cell. Then, for each pair-
recorded spike, we computed the absolute z-score for each feature of that
spike, relative to that of the average waveform. By averaging absolute z scores
for 8 spike features, we obtained an indicator of how similar/dissimilar a
particular spike was from the “pure” spike waveform. Since our goal was to
obtain an estimate of within-unit feature variability, we set a strict criterion for

spike selection of having an average z score under 1.0. This resulted in an

? Further inspection of c27 revealed the presence of a highly active “background” neuron,
which can partly be inferred by the short "head to shoulders” ratio of its PETH (Figure 5D). We
replaced it with c24, which was the next best-ranked neuron in detectability, for cells with
negative peaks above threshold.

* Peak-peak amplitude, half-width, duration, peak-to-peak amplitude ratio, latency to patch
spike, duration symmetry (duration of hyperpolarising vs depolarising phases of centred on
negative peak), negative peak amplitude and positive peak amplitude.
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average of 85.4% of spikes being retained for further analysis. All spike
waveforms analyzed are plotted in Figure 6A; all those rejected are shown in

Supplement to Figure 6-1A.

After plotting each spike feature over time (Supplement to Figure 6-2 to 6-6), it
became clear to us that at least for some features, changes occurred at a slow
rate over the course of a whole recording. For instance, peak-peak amplitude in
c14 (top left, Supplement to Figure 6-2) decreased from approximately 120 pV
at the beginning to around 90 pV by the end of the recording. Changes such as
this could be explained by a variety of factors, including deterioration of tissue
surrounding the probe, drift, or membrane stress and increased “leakiness”
caused by the patch electrode. Whilst the first and second factors are part and
parcel of any extracellular recording, the latter isn't and we cannot exclude its
contribution. For this reason we attempted to control for slow changes in our
analysis of within-unit variability by computing for each feature the average of
the running mean and running standard deviation, instead of averaging each
feature outright. From the average and standard deviation we computed the
coefficient of variation (CV) for each feature, in every cell, along with the grand
mean and standard deviation of all cells. We subsequently report the grand
mean * standard deviation of the CV for every feature analyzed (Figure 6B). In
our dataset, the two most reliable features related to spike amplitude: peak-
peak amplitude (CV = 12.5 + 3.1 %) and negative peak amplitude (CV = 14.5
3.8 %). These were followed closely by spike duration (CV = 18.1 + 4.5 %) and
positive peak amplitude (CV = 19.0 = 4.1 %), then peak-peak amplitude ratio
(CV = 221 + 43 %) and spike half-width (24.8 += 6.7 %). Spike duration
symmetry was by far the most variable feature (CV = 64.9 + 14.3 %). Absolute

values of mean = SD for each feature in every cell are plotted in Figure 6D.
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Lastly, re-examining the rolling mean and standard deviation plots
(Supplements to Figure 6-2 to 6-6), we wondered if any of the spike features we
examined changed in a reliable way over time, in this sample of 9 cells. In other
words, was there a consistent slope to the change in a particular feature over
time? We investigated this by computing univariate linear regression for each
feature from the spike index, plotting the slope coefficient in Figure 6C. Of the
7 features analyzed, the 3 that are amplitude-related appeared to decrease
slightly over the course of a recording for the majority of cells. For the

remaining 4 features, no reliable change was apparent.
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Figure 6. Within-unit variability in spike features.

A. Extracellular spike waveforms selected for analysis from 9 pair-recorded cells. Average waveform in cyan.
Below, percentage spikes analysed out of each cell’s total spikes fired.

B. Coefficient of variation for 7 spike features in each of 9 cells analysed. Bars indicate grand mean + SD.
Spike symmetry ratio is plotted on right Y axis.

C. Slope of linear regression between spike number in trial and each of 7 features for 9 cells analysed.

D. Mean = SD for spike features in 9 cells.
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Spatiotemporal dynamics of the extracellular action potential waveform
Spikes from a single neuron can be detected by multiple channels on
extracellular probes, especially in probes with high channel density (Figures 2-

14151727 "3nd therefore

4). This feature is exploited by spike sorting algorithms
knowing more about how voltage spreads over space and time during a spike
may contribute to sorting units more accurately. Moreover, spatiotemporal
structure in spike waveforms across many channels may reveal other potentially
interesting sources of information to exploit, such as the contribution of

different subcellular components to the extracellular signal, or the location and

direction of propagation of action potentials.

The leftmost panel of Figures 7A and B is an attempt to depict the rich
spatiotemporal dynamics of action potential spread. We calculated the first
derivative of voltage over time (normalized to its absolute maximum across the
probe) for the PSTA of each channel in a single column of the probe (192
channels, 40 pm spacing row to row), color-coded and plotted it over time. Red
values indicate a decrease in voltage signal, blue an increase and white no
change. For every channel in the column, we can therefore track the
progression of voltage over time, for a spike. The right-hand panel in Figures
7A and B shows the waveform of each spike within the dashed region indicated
to the left. In c24, we can see that the earliest change in voltage for channel 218
(indicated on left; corresponding magenta trace at right) is a negative shift.
After reaching the negative peak (white pixel), this is followed by an increase in
voltage (blue), corresponding to the repolarization phase of the spike. After
reaching a positive peak (white), voltage decreases again to near baseline
levels (red). Channels near the soma follow a similar progression but delayed in

time. As we move upward along rows, a different pattern is observed (both can
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be seen in c24 and c21), where the earliest phase is a positive voltage
deflection, followed by a negative peak and a second positive deflection,
completing a “triphasic” spike. As one journeys farther up along the probe, the
second positive peak disappears. Spikes with triphasic or positive-then-
negative patterns have previously been implicated with the apical
subcompartments of the dendritic tree®; it is interesting to note that for c21 the
early positive deflection can be seen at rows over 480um away from the probe.
It is possible that for this particular recording, the apical dendrite was in close
parallelism to the axis of insertion of the probe. A final point worth noting in c21
is that the earliest negative peak is not at the channel closest to the soma, but
rather a couple of rows below it. One possibility is that this “early” channel was
detecting the electrical field produced by the axon initial segment. Similar plots

for all remaining cells are presented in Supplements to Figure 7-1 to 7-4.

Based on the variety of waveforms observed in Figure 7 and its supplements,
we asked if, in line with previous work?®, there was any regularity in terms of
where, relative to the cell soma, these patterns were typically observed. To this
end, we implemented a very simple classification of PSTA waveforms into the
categories of Biphasic negative (negative peak followed by positive peak),
Biphasic positive (positive peak followed by negative) and Triphasic (short
positive peak, followed by negative, ending with a more prominent positive
peak), based on order of crossings of positive and negative thresholds by the
first derivative of the voltage over time. Figure 7C shows the PSTA waveforms
for 100 channels (centered on the closest channel to the soma, in bold) for c46.
Waveforms are color-coded according to their classification, and the voltage
axis is scaled per row, to improve visibility of the signal. As for all our

recordings, channel numbers follow a progression from deep in the brain (low
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numbers) to its surface (high numbers). As can be seen from Figure 7C,
biphasic negative waveforms (red) tend to appear near to and below the soma,
whereas biphasic positive spikes are seen towards the cortical surface (yellow).
In between, there are triphasic (green) waveforms. Figure 7D shows example
traces of each waveform class across a single column of the probe for c46. We
plotted such maps for every one of the 10 putative pyramids with PSTA
amplitudes > 50 pV (Supplement to Figure 7-5/6). We next classified PSTA
waveforms and quantified their distribution over 50 channels either side of the
putative site of the soma. A total of 1,000 PSTA waveforms were analyzed,
corresponding to 100 waveforms from each of 10 pyramidal cells. Out of all
cells, in 200 waveforms, no spike could be detected. Out of the remaining 800,
708 spikes could be classified into one of three types. Biphasic negative spikes
accounted for an average of 46.3 = 11.9% of classified PSTA waveforms (Figure
7E, Supplement to Figure 7-5, 7-6 and 7-7, 7-8A) and were mainly observed at
the soma and locations of 160 pm below to 80 um above it (dorso-ventral axis).
Biphasic positives compounded 46.9 = 10.0% of waveforms per cell and were
found mostly above the soma, extending up to 480um towards the surface,
whereas Triphasic waveforms were the rarest (6.9 + 6.4% of spikes per cell) and
restricted themselves to a short segment tiling the space ~100 ym above the

soma.

We stress that our classification algorithm was highly simplistic, missing out on
finer waveform distinctions (e.g. Figure 7D ch165 vs ch177). However, bearing
in mind the orientation of our probe insertions, even this crude approach
captures a tentative regularity which is consistent with previous work: biphasic
negative spikes are mainly found near the soma and proximal basal dendrites;

biphasic positives can usually be observed at distal segments of the apical
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dendrite and lastly, triphasic waveforms (positive-negative-positive) tend to

locate to the proximal apical trunk®.
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Figure 7. Spatiotemporal dynamics of the extracellular action
potential waveform. A, B. Left: Heatmap of normalised derivative of
voltage over time of PSTA for each channel in a single probe column. X
axis is time relative to patch spike peak. Colormap is negative (red) to
positive (blue). Right: PSTA waveforms for 32 channels delimited by
dashed box (left). Channel closest to the soma in magenta. C. PSTA
waveforms for 100 channels on c46. Waveforms were classified as:
biphasic positive (yellow), triphasic (green) or biphasic negative (red).
Grey is unclassified. Voltage scaled row-by-row for visibility. Channel
number indicated at top right of each channel (bold for closest). D. PSTA
waveforms for 15 channels on the same probe column as the soma of
c46. Traces are aligned by patch spike peak and dotted line is the
earliest negative peak detected for c46 PSTAs. E. Distribution of
waveforms of each shape over 100 channels either side (DV) of the
recorded cell, for 10 putative pyramidal neurons (708 PSTA waveforms).
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Caveats and limitations

Distance estimates

Although we calibrated our approach to measure distance between probe and
patch pipette tip extensively, by necessity all such tests and calibrations were
conducted outside the brain. We therefore assumed that the rigidity of the
probe and patch pipette would be sufficient that their penetrating movement
would not be disrupted significantly by brain tissue and therefore affect our
measurement of distance. Furthermore, since we did not recover histological
data (probe tracks and neurobiotin fills), any bending of the probe due to
encountering a volume of tissue with higher rigidity (for example a large blood
vessel) would have been invisible to us during experiments. In our experiments,
the only sign of this occurring would have been recording a series of neurons
with lower PSTA peak-peak amplitudes than expected by our estimated
distance to the probe (for example estimating that we were 30 ym away from
the probe when we were in fact 100). Examining Figure 3A we can see that a
subset of 12 neurons (grey points) located at less than 60 um from the probe
did not show clear EAP waveforms. Although factors such as cell orientation
relative to the probe and morphology can also greatly affect extracellular peak-
peak-amplitude, we cannot exclude that probe displacement within the brain
affected some of our distance estimates. However, our findings are consistent
with the broad consensus that 60-80 pm is the maximum radius from which
extracellular probes are able to record action potentials (Figure 4A; refs. 18,
23). Furthermore, for 70% of recordings with clear EAP waveforms, our estimate
of the channel closest to the soma was off by 5 channels or less, suggesting our

distance estimates were reasonably accurate. We stress that the goal of our
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technical approach to paired recordings was to develop a method that would
enable us to greatly increase the throughput of these challenging experiments,
returning a reasonably accurate estimate, rather than exact measure, of

distance from probe channel to soma.

Intracellular solution

A second point we would like to draw attention to is the fact that we opted to
use high-potassium current-clamp intracellular solution for our recordings.
There were two reasons driving this decision; first, we wished to be able to
break in and record in whole-cell configuration, in situations where we
successfully obtained a giga-seal; second, dual recordings from the same
neuron in vivo are time-consuming, labour-intensive and technically-
challenging. The degree of experimental difficulty is further compounded by
the fact that to be useful, these recordings must contain a reasonable number
of spikes. In whole-cell configuration, this is never an issue since the
experimenter can inject current into the cell and drive it to fire action potentials.
However, in cell-attached mode it may not always be possible to drive a “silent”
neuron to fire. We reasoned that in such situations, high-potassium intracellular
solution would help depolarize a neuron and increase the likelihood of
recording spikes. Whilst this did indeed prove to be a productive approach, it
means that firing rates in channels close to a dual-recorded neuron’s soma will
be artificially inflated by potassium-rich medium. We therefore advise
collaborators to take this point into account when planning analysis and

exploration of our dataset.
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Discussion

Summary

We built a software-assisted dual recording rig?® (Materials and Methods) that
allowed us to patch-clamp neurons at distances close to a Neuropixels dense
CMOS probe'®. This enabled us to record a total of 43 neurons, from which 21
showed clear EAP waveforms on at least one channel of the probe, producing a
publicly-available “ground-truth” dataset that can be used for development and
validation of improved spike sorting algorithms. In accordance with previous

reports18‘22'23

we find that distance is the major factor determining the peak-
peak extracellular signal amplitude, though cell type-specific factors may also
play a role. Our approach enabled us to separate with high precision the
activity of dual-recorded units from cells spiking in the vicinity. We were thus
able to provide an estimate of within-unit variability for a few commonly-used
spike features. Finally, we highlight the richness of spatiotemporal signatures
present in extracellular recordings, which is emphasized in high-density

probesm‘1 !

A publicly-available "ground-truth” dataset

The full dataset (http://bit.ly/paired_recs),metadata, accompanying information

and analysis code is available online (http://bit.ly/paired_git); the interested

reader can obtain any further information by contacting the corresponding
authors. Validation datasets (present study; refs 18 and 23) are invaluable for
benchmarking and improving analysis algorithms and provide empirical

answers to questions about neuro-technological development. Moreover,
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tethering a complex signal (extracellular voltages over time in hundreds of
channels distributed in space) to a simpler one (patch-clamp recordings from a
single neuron identified in 3D space) helps us better delineate signal from
noise - and potentially uncover novel sources of information, previously treated

as noise.

“Dark neurons”

There is a long-standing debate over whether we are missing neurons with
extracellular recording. This stems from a discrepancy in the number of neurons
reported to be firing action potentials when using optical (~50%) compared to
electrical (< 10%) recording techniques®>¢. However, any estimate on the
number of neurons an electrode should detect depends on knowing how far

away a neuron'’s spike can be detected. The distance limit for recording EAPs

h’l 8,22,23 36-39

has been estimated by ground trut and modeling studies to be

around 50 pm, though reports exist of recording unexpectedly large (>50 pV)

EAP waveforms at greater distances from the probe'®4 (

present study, see 3
cells in Figure 3A with EAPs > 200 pV and distance 60-100 pm). Conversely, we
found 14 neurons within the estimated range of extracellular detection (50 um)
that produced small or undetectable EAPs even after averaging thousands of
spikes (Figure 4A). It has been suggested that factors beyond distance can also
contribute to EAP detectability: for instance, bias of extracellular recordings to
highly-active neurons and some cell types producing weaker and more
spatially-localized extracellular signatures®*'. We can rule out the former in our
present study, as we separately monitored spiking activity with patch-clamp,

finding no correlation between firing rate and EAP amplitude for extracellularly-

detected and -undetected neurons (Spearman r = 0.115, p = 0.464;
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Supplement to Figure 4-3D). As for the latter, the small sample of interneurons
in our study tended to produce EAPs of smaller amplitude than pyramidal
neurons at equivalent distances (Supplement to Figure 4-3B). Beyond these
small pieces of information, it will not be our study that ends the debate. Due to
methodological limitations (see Caveats and Limitations), we cannot safely call
the subset of 14 neurons lacking clear EAP waveforms at < 50 pm from the
probe “dark neurons”. All we can provide at this point is further information
about the sessions in which each neuron was recorded (Supplement to Figure
4-3C). Out of a total of 15 recording sessions, 6 contained a mix of neurons with
and others without clear extracellular spike waveforms after patch spike-
triggered averaging (light blue), and 3 resulted only in neurons with clear EAPs
(dark blue). Two sessions initially produced neurons that could be detected
extracellularly, but ended with cells that could not (light red), whereas the
remaining 4 sessions produced only undetected neurons (dark red). The latter
two types of session are consistent with potential errors of manipulator
alignment or bending of the probe after entering the brain (see Caveats and
limitations), which could explain the lack of clear EAP waveforms in the resulting
neurons. Therefore, to obtain a more accurate list of potential “dark neurons”,
we should exclude 1) cells recorded in red and light red sessions and 2) cells
from which we recorded less than 200 spikes, as this number might not have
been high enough to isolate a cell’s firing from background activity. Narrowing
down our list by these two criteria results in 7 cells: c2, ¢3, ¢13, c15, ¢23, c25
and c36. We advise any investigators wishing to mine our dataset for “dark

neurons” to confine their explorations to these recordings.
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Reliability of EAP waveform features

The dual-recording setup allows experimenters to identify the spikes fired by a
single unit. In a way it is - by perhaps not so great a margin - the most labor-
intensive and time-consuming method for manual spike sorting, but also the
most accurate. We exploited this advantage to address the issue of variability in
features of spikes fired by the same unit. From the features we examined, our
results suggest that peak-to-peak amplitude, negative and positive peak
amplitude and peak-peak duration are the most reliable qualities of an action
potential, with standard deviations under 20% of the value of their mean. Spike
half-width and peak-peak amplitude ratio were somewhat more variable, but
their standard deviations were still under 30% of the value of their mean. We
hope these estimates are useful but we highlight that they were obtained in
urethane-anaesthetised rats and cannot rule out that variability is different in
awake recordings, or that our simultaneous patch-clamp recordings affected

the variability of certain features.

Spatiotemporal properties of the EAP waveform

One of the most exciting features of the new generation of CMOS probes is
their high channel count and density, enabled by multiplexing and advances in
microfabrication'?. The short spacing between channels (20 um) is on par with
the spatial scale of changes in neuronal morphology features. Given that a
neuron’s subcellular compartments produce distinct extracellular spike
signatures®, we wondered if this could be exploited to extract gross
morphological information (such as orientation, or the type of compartment
nearest a channel) from extracellular recordings. Our highly-simplistic approach

produced results consistent with models®® based on previous ground-truth
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experiments'®. We suggest it would be of great interest to acquire a further
ground-truth dataset with CMOS probes where the morphology of a dual-
recorded neuron is recovered. These experiments are challenging and likely to
require high numbers of cells, but the potential utility of estimating gross

morphology - or the position in 3D space of a unit's soma - would be immense.
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Potential projects for collaboration

We aimed for this manuscript to perform the function of a “data descriptor”,
explaining the methods and restricting ourselves to mainly descriptive analysis
to familiarize the reader with our dataset. In releasing the dataset publicly, our
hope is that it will help neuroscientists currently developing spike sorting and
analysis algorithms, but also that it will be used to explore further questions. In
particular, we hope to foster peer-to-peer synergy and open collaboration

through our sc.io repository (http://bit.ly/paired_git), with a view to authoring

high-quality, reproducible follow-up publications jointly with a community of

interested scientists.

Here we outline and explain potential projects for collaboration. These projects
are set up as individual branches of the repository which anyone can contribute
to or fork to start their own independent work. Interested scientists are also free
- and in fact, encouraged - to take the lead and pose new questions by

proposing branches for the sc.io repository.

1. Studying synaptic connectivity with dense CMOS probes. One of the most
exciting features of high channel-count/density probes is that the increase in
channel number produces a dramatic increase in likelihood of finding connected

|oairs42

. This will go a long way to advance our ability to study synaptic
modulation, dynamics and plasticity in behaving animals under different brain or
behavioral states. By isolating units with patch-clamp, our dataset offers a solid

testing ground for examining cell-to-cell interactions. There are 5 whole-cell

recordings in it where one could potentially detect sub-threshold post-synaptic
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potentials and search for putative pre-synaptic units, mapping microcircuits
across an entire cortical column. A second feature of interest is that we obtained
a mix of dual-recorded putative interneurons and pyramidal cells, enabling

examination of excitatory and inhibitory interactions between cell types.

2. Exploring axon terminal and field post-synaptic potentials (AxTPs and fPSPs).
Axon terminals generate low-amplitude electrical fields that fall far below the
noise threshold. However, by averaging hundreds or thousands of spikes, if a
unit's axon terminal happens to fall close enough to an extracellular channel,
AxTPs can be revealed®**. A potential confound is to ensure these small signals
are active axonal potentials and not passive detection of the somatic action
potential’s electrical field, attenuated by distance. The distances covered by the
shank of the probe used (3.82 mm) ensure that plenty of channels will be far
enough from a unit's somatic location that AxXTPs may be revealed. fPSPs may
also be investigated at these distal locations, by studying the LFP band. The high
density and channel count of CMOS probes increases the likelihood that axon
terminals or distal dendrites will fall within the detection range of a channel,
making highly-localized signals such as AxTPs and fPSPs more tractable.
Ultimately, these signals could offer strong mechanistic support for inferences

about unit-unit connectivity.

3. Extracting orientation and gross morphological features from extracellular
recordings. In a landmark ground-truth study, Henze and colleagues (2000)
recorded from the same neuron using tetrodes and intracellular recordings,
obtaining morphological reconstructions for a subset of these cells. Follow-up
modeling studies intricately linked morphological and conductance features to

25,26

aspects of the EAP waveform In the present study, we used a crude
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approach to find regularities in waveform shape that related to estimated
neuronal orientation, achieving results in agreement with Gold and colleagues
(Figure 7). Given a) known constraints on the attenuation of electrical fields with
distance in the brain, b) previous biophysical conductance modeling studies
(Gold et al., 2006) and c) the high channel density of CMOS probes, can we
begin to approximate gross morphological features, neuronal morphology
orientation or location in 3D space for extracellular units? If not, what data are we
missing to achieve this? Imaging-based approaches to recording neural activity
offer the ability to relate spikes to identified neurons and their cellular and

neurochemical properties®*°.

Unlocking this possibility for extracellular
recordings would be an extraordinary development, bridging levels of analysis
from molecules to behavior and potentially aiding the sorting process by offering

extra clustering dimensions (e.g. cell-type, immediate-early gene or ion channel

transcripts).

4. Do “dark neurons” share common features? There are 7 neurons in the
present dataset whose EAPs could not be recorded by the extracellular probe,
even though they were within the estimated range of detection. For these 7
paired recordings, we have excluded misalignment or probe bending as
alternative explaining factors. Are there features common to these neurons (or
brain/local network state during their recording sessions) that can be gleaned

from the patch-clamp or extracellular recordings?

5. Are there cell type-specific differences in EAP amplitudes that affect
detectability in extracellular recordings? Conversely to question 4, are there
common features to the neurons in the dataset that showed the highest peak-

peak EAP amplitudes? We note that not all neurons with high EAP amplitudes
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were close to the probe; 3 cells with peak-peak above 200 pV were located 60-
100 uym away from the closest channel, “outperforming” several neurons located
closer (Figure 4A). Other studies'® also reported neurons with higher peak-peak
amplitudes than would be expected from their distances. Are there biophysical
or morphological properties that make certain types of neuron more detectable

in extracellular recordings?

6. Benchmarking automated sorting algorithms. From the point of view of
reproducibility, we would like spike sorting to become a fully automated
process. This is a very challenging goal, but great progress has been made
towards it'"?"*”_ It would be useful to compare and contrast performance across
algorithms on the same datasets, noting situations where each does well or
underperforms with a view to learn, develop and optimize consensual

frameworks.

7. The “psychophysics” of human spike sorting - what are the features or steps
of manual sorting and curation that show the highest and lowest inter-operator
variability? Manual and human curation steps in spike sorting are widely known
to show high inter-operator outcome variability?**®. We would be interested in
running a large-scale study where hundreds of human operators start from the
same recording (either a raw recording, or the intermediated output of a semi-
automated algorithm run on a ground-truth recording) and post their final results
online to a database. It would be interesting to consensually collect additional
data on variables such as level of experience on manual sorting, individual notes
on which features drove specific decisions to merge or split, and potentially even
eye-tracking or “reaction time” (how long did an operator take to make a specific

decision and is this representative of its difficulty?) data. The ultimate goal would
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be, as we put it, to gain understanding about the human psychophysics of the
sorting process - are there perceptual, cognitive or human factor biases that
enhance or impoverish performance? Can we “protect” against them
programmatically? Can we learn from strategies used by experts and implement

them in spike-sorting algorithms?
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Epilogue: an experiment in collaboration and publication.

A bright future for Neuroscience?
Technological developments and the rise of large-scale neuroscience research

4952 are often said to have triggered an age of "big data” in

initiatives
neuroscience. Regardless of one’s views on the merits of drawing comparisons
with particle physics, the fascinating reality is that neuroscientists can nowadays
image 10,000 neurons with two-photon microscopy >3, record hundreds to a

few thousand neurons with extracellular probes at millisecond resolution'®'",

/1 °*°¢, and use clearing/tracing

map synaptic input onto a single identified ce
techniques to reveal sub-micron resolution whole-brain projection maps for
single neurons. Some of these technologies can be combined, and they are not
even an exhaustive list of the powerful tools available to the 21°" century
neuroscientist. As a consequence, neuroscience is producing more data than

ever before and the tools available to us are - by more interpretations of the

term than one - awesome.

But is this all that matters? Are we walking the path of righteousness or strolling

down the yellow brick road?

Curb your enthusiasm.

We are as excited as the most optimistic amongst our peers about the tools and
data becoming available, but feel strongly compelled to raise a few points
about how to handle this opportunity and about the wider scientific context in

which it is arising.
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First, we strongly believe that current paradigms for publication are obsolete,
straining under the weight of gigantic datasets and going short of breath to
catch up with the speed at which they're acquired. We not alone in expressing
concern about what to do with and how to interpret the current deluge of
neural, genetic and behavioral data, as well as in expressing the benefits that a
culture of open science and data sharing could bring to neuroscience *"™°.
Notably, some of the large-scale initiatives mentioned above are highly
collaborative and publish through entirely different models, sharing and
promoting the re-use of high-quality datasets worldwide. Many academic
neuroscience labs should perhaps take note. Second, it is of the utmost
importance that scientific strides are supported by solid ground, such that
scientific progress is not replaced by the superficial appearance thereof. Third,
if we must measure progress and scientific quality, let us tether such indices to
real scientific impact and desirable’ behavior*® instead of the "h-factor”, “Impact
Factor”, re-tweets, downloads and other dubious, self-serving and scientifically-
bankrupt “metrics” widely-adopted by hiring committees and the commercial
publishing industry. Fourth, scientific experiments are a noble but deeply
human activity, as fallible and imperfect as the scientists conducting them, the
last line of defense of the scientific method is its powerful self-correcting nature,

which relies critically on transparency.

For these reasons we believe it is high time that the neuroscience community
explored and demanded tools for publishing, collaboration and sharing that

match the modernity of the tools it uses for acquiring data. In particular, the

> A difficult concept to define, but an interesting operational definition is to answer the
question “How much did this work change the way | do experiments or interpret
them?” (from discussion at 1 SWC Open Neuroscience Workshop, London UK,
25/05/2018).
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neuroscience publishing pipeline of the 21°" century must emphasize data
sharing and re-usability, reproducibility in processing and analysis algorithms,
complete transparency in procedures and materials and finally, adoption of
platforms that can support complex, multi-modal data and interactive

visualizations.

Requirements and Implementations

Our first intent in this Epilogue was to raise awareness for the need to develop
tools to improve the current ecosystem for sharing, handling, and reporting
neuroscience data. Second, we aimed to set out requirements and
specifications for what a modern and improved environment should look like.
Focusing on requirements instead of prescriptions recognizes that there are
many possible implementations that abide by them, keeping the field open for
alternative solutions to emerge prior to optimization and consolidation.
Furthermore, redundancy in open science tools is important, as open resources
may not always remain so. Our own implementation is simple and based on a
combination of easily-accessible data hosting services, a free code repository
and an open-access preprint server. We will outline how our particular
implementation for this project addresses the concerns and requirements we

set out.

1. Data Sharing and re-usability. The full raw dataset and supporting
metadata are available for download through a freely-accessible hosting

service. We have provided in the sc.io repository (http://bit.ly/paired_git)

instructions on how to download the full dataset or subsets of recordings. In
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this manuscript on BiorXiv we explain the methods and provide context and
caveats to our data, making clear any factors conditioning re-usability.
Further clarifications are possible through email contact with the

corresponding authors (AMS and ARK).

2. Reproducibility and transparency in algorithms, procedures and materials.
All code used to process and analyze data and produce figures is freely
available at the sc.io repository, ensuring the reader can run it on the raw
data and obtain the same results. We welcome any feedback on the code
and analyses, especially mistakes that may have eluded us. GitHub code
repositories have been designed exactly with this in mind, providing state-
of-the-art version-control. The reader can “raise issues” and submit “pull
requests” if they have a proposal to fix or improve any code. As for
materials and procedures, since preprints on BiorXiv have no length or
formatting requirements, we sought to provide as much procedural and
material detail as possible in the Methods section, so that scientists
interested in conducting similar experiments can work out how to do so

from the information we provided.

3. Dealing with the size and complexity of datasets and the fast pace at
which they’re acquired. In principle, we have finished data acquisition for
this project. However, should we perform new experiments, new data can
be uploaded and disseminated quickly and existing/new code ran on it to
update figures and results. A new version of the manuscript can be
uploaded on BiorXiv, which also addresses history by keeping prior
versions available. Queries and feedback can be provided with great

responsiveness through the GitHub repository, generating fast cycles of
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assessment, error-checking and review. As we outlined before, our simple
experiment generated a complex dataset that can be explored in many
ways. By adopting a principle of “open input” through the sc.io repository,
we distribute the challenges posed by our dataset to a talented and
interested community in the hope that together as a team we can address

the underlying complexity productively.

4. Quality, impact and credit assignment. Future contributions from the
community - to this manuscript or any follow-ups - are publicly-visible and
entirely transparent on the GitHub platform as the history of “"commits” and
activity on the repository, and as such are easy to build into consensual
authorship. Every interaction (raising issues, submitting pull requests,
committing code, providing comments and suggestions) is trackable,
making credit assignment straightforward since each author’s contribution
is self-evident and public. Since all work is open, quality can be assessed
through scrutiny from the participating community and by soliciting peer

review through preprint journal clubs (such as https://prereview.org/) and

other contacts. Impact (as per our operational definition) can be measured
by tracking how often the dataset is re-used by other authors in
publications. This can be extended to analytical and conceptual
contributions from ourselves or our collaborators, i.e., by measuring how
often a branch of the repository is “forked” (copied by someone else to use

as a starting point on that person’s own analysis/idea).

5. Dealing with rich data, avoiding “flat” visualizations and supporting
interactivity. GitHub repositories can also be used to host websites

showecasing interactive content. One approach to interactivity and rich data
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visualizations is to host a repository with all the code used for analysis and
figure generation, and use the media outputs of that code to build a
website that displays it elegant and interactively. This has been pioneered
and used to great effect by the York group (see

https.//andrewgyork.github.io/ for publications and a template). A very

desirable future development would be for preprint servers to accept
submissions not just in pdf but also html and xml. Jupyter

(http://jupyter.orq/) and other electronic notebooks are also excellent

approaches to provide rich, reproducible and clear visualizations. A very

interesting development is Stencila (https://stenci.la/), a software project

dedicated to developing an open source office suite for reproducible
research. A key advantage of Stencila is lowering the technical entry barrier
for scientists not as comfortable with code to be able to produce

reproducible interactive documents.

6. Peer-review. A criticism commonly heard when discussing publishing on
preprint servers is the lack of peer review. By sharing our code, hosting
discussion and fostering collaboration on a GitHub repository, we provide
access to our analysis routines, enabling peer review as comments, issues
and pull-requests. Furthermore, peer review can be solicited through
preprint journal clubs and direct requests to recognized experts. With due
permission, this feedback can be compiled and posted either on BiorXiv or

on GitHub, and potentially even given a DOI (https://prereview.org),

making it discoverable and citable. Authors and reviewers can engage in
dialogue through each of these platforms and publicly set out plans of

action to address criticism and improve manuscripts.
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The experiment begins.

We have provided and backed up with arguments our perspective on why
neuroscience needs better paradigms for publishing and working openly. We
have also proposed brief specifications for this. We finish with an example of an
implementation which is deployable right now, relying on easily-accessible
tools. For now, we look forwards to testing our implementation, initiating a
worldwide  distributed collaboration, and getting feedback on our

electrophysiology work.

We thank you, the reader, for being patient and getting this far.

This is not an ending, but the beginning of an exciting experiment.
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