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Abstract 1 

In complex trait genetics, the ability to predict phenotype from genotype is the ultimate 2 

measure of our understanding of genetic architecture underlying the heritability of a trait. A 3 

complete understanding of the genetic basis of a trait should allow for predictive methods with 4 

accuracies approaching the trait’s heritability. The highly polygenic nature of quantitative traits 5 

and most common phenotypes has motivated the development of statistical strategies focused on 6 

combining myriad individually non-significant genetic effects. Now that predictive accuracies are 7 

improving, there is a growing interest in practical utility of such methods for predicting risk of 8 

common diseases responsive to early therapeutic intervention. However, existing methods 9 

require individual level genotypes or depend on accurately specifying the genetic architecture 10 

underlying each disease to be predicted. Here, we propose a polygenic risk prediction method 11 

that does not require explicitly modeling any underlying genetic architecture. We start with a set 12 

of summary statistics in the form of SNP effect sizes from a large GWAS cohort. We then remove 13 

the correlation structure across summary statistics arising due to linkage disequilibrium and apply 14 

a piecewise linear interpolation on conditional mean effects. In both simulated and real datasets, 15 

this new non-parametric shrinkage (NPS) method can reliably correct for linkage disequilibrium in 16 

summary statistics of 5 million dense genome-wide markers and consistently improves prediction 17 

accuracy. We show that NPS significantly improves the identification of groups at high risk for 18 

Breast Cancer, Type 2 Diabetes, Inflammatory Bowel Disease and Coronary Heart Disease, all of 19 

which have available early intervention or prevention treatments. The NPS software is available 20 

at http://github.com/sgchun/nps/.  21 

 22 

Introduction 23 

In addition to improving our fundamental understanding of basic genetics, phenotypic 24 

prediction has obvious practical utility, ranging from crop and livestock applications in agriculture 25 

to estimating the genetic component of risk for common human diseases in medicine. For 26 

example, a portion of the current guideline on the treatment of blood cholesterol to reduce 27 

atherosclerotic cardiovascular risk focuses on estimating a patient’s risk of developing disease 1; 28 
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in theory, genetic predictors have the potential to reveal a substantial proportion of this risk early 1 

in life (even before clinical risk factors are evident) enabling prophylactic intervention for high-risk 2 

individuals. The same logic applies to many other disease areas with available prophylactic 3 

interventions including cancers and diabetes.  4 

 The field of phenotypic prediction was conceived in plant and animal genetics (reviewed 5 

in refs. 2,3). The first approaches relied on “major genes” – allelic variants of large effect sizes 6 

readily detectable by genetic linkage or association. These efforts were quickly followed by 7 

strategies adopting polygenic models, most notably the genomic version of the Best Linear 8 

Unbiased Predictor (BLUP) 4. 9 

 Similarly, after the early results of human genome-wide association studies (GWAS) 10 

became available, the first risk predictors in humans were based on combining the effects of 11 

markers significantly and reproducibly associated with the trait, typically those with association 12 

statistics exceeding a genome-wide level of significance 5–7. Almost immediately, after realization 13 

that a multitude of small effect alleles play an important role in complex trait genetics 2,3,8, these 14 

methods were extended to accommodate very large (or even all) genetic markers 9–14. These 15 

methods include extensions of BLUP 9,10, or Bayesian approaches that extend both shrinkage 16 

techniques and random effect models 11. Newer methods benefited from allowing for classes of 17 

alleles with vastly different effect size distributions. However, these methods require individual 18 

level genotype data that do not exist for large meta-analyses and are computationally expensive. 19 

“Polygenic scores” 14–18 represent an alternative approach based on summary statistics. 20 

The originally proposed version is additive over genotypes weighted by apparent effect sizes 21 

exceeding a given p-value threshold. In theory, the risk predictor based on expected true genetic 22 

effects given the genetic effects observed in GWAS (conditional mean effects) can achieve the 23 

optimal accuracy of linear risk models regardless of underlying genetic architecture by properly 24 

down-weighting noise introduced by non-causal variants 19. In practice, however, implementing 25 

the conditional mean predictor poses a dilemma. In order to estimate the conditional mean 26 

effects, we need to know the underlying genetic architecture first, but the true architecture is 27 

unknown and difficult to model accurately. The current methods circumvent this issue by deriving 28 
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conditional means under a simplified model of genetic architecture. This methodology has been 1 

successfully used to analyze the UK Biobank, the largest epidemiological cohort that includes 2 

genetic data 20. Individuals with extreme values of polygenic score were shown to have a 3 

substantially elevated risk for corresponding diseases, generating enthusiasm for clinical 4 

applications of the method.  5 

Here, we propose a novel risk prediction approach called partitioning-based non-6 

parametric shrinkage (NPS). Without specifying a parametric model of underlying genetic 7 

architecture, we aim to estimate the conditional mean effects directly from the data. We evaluate 8 

the performance of this new approach under a simulated genetic architecture of 5 million dense 9 

SNPs across the genome. We also test the method using real data in four disease areas: breast 10 

cancer, type 2 diabetes, inflammatory bowel disease and coronary heart disease. 11 

 12 

Results 13 

Method Overview 14 

If true genetic effects of all variants on the trait were known, adding these effects for all 15 

alleles in an individual would provide the ideal linear predictor of the phenotype. The accuracy of 16 

such a predictor would equal narrow sense heritability. However, true genetic effects are 17 

unknown and their statistical estimates deviate from the true values even in expectation. 18 

Estimates of genetic effects in GWAS are strongly affected by sampling noise, and the variants 19 

with smallest effect sizes are difficult to distinguish from the background noise of non-causal 20 

SNPs. Another complication arises from extensive linkage disequilibrium (LD). Estimated genetic 21 

effects are strongly influenced by effects of neighboring variants. Since true genetic effects are 22 

unknown, they have to be approximated based on available data. Formally, the best possible 23 

linear predictor would rely on expected genetic effects conditional on summary statistics19. 24 

Sampling noise increases absolute values of estimated genetic effects compared to the true 25 

effects. The expected true effects can be expressed as “shrinking” the estimated effects towards 26 

zero via differential weighting of the estimated effects. 27 
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 5 

Our approach outlined in Figure 1 is to partition SNPs into groups of similar observed 1 

effect sizes in GWAS data (!") and determine the relative weight based on predictive value of 2 

each partition estimated in the training data. Intuitively, a partition dominated by non-causal 3 

variants will have low power to distinguish cases from controls whereas the partition enriched with 4 

strong signals will be better able to predict a phenotype. In the absence of LD, this is equivalent 5 

to approximating the conditional mean effect curve by piecewise linear interpolation (Methods). 6 

Note that estimating the per-partition weights is a far easier problem than estimating per-SNP 7 

effects. The training sample size is small but still larger than the number of partitions, whereas for 8 

per-SNP effects, the GWAS sample size is considerably smaller than the number of markers in 9 

the genome. This procedure “shrinks” the estimated effect sizes not relying on any specific 10 

assumption about the distribution of true effect sizes. Thus, we call it “Non-Parametric Shrinkage” 11 

(NPS). 12 

In the presence of LD, we cannot apply the partitioning method directly to GWAS effect 13 

sizes since true genetic effects as well as sampling noise are correlated between adjacent SNPs. 14 

To prevent estimated genetic signals smearing across partitions, we transform GWAS data into 15 

an orthogonal domain, which we call “eigenlocus” (Fig. 1b and Methods). Specifically, we use a 16 

decorrelating linear transformation obtained by eigenvalue decomposition of local LD matrix. Both 17 

genotypes and sampling errors are uncorrelated in the eigenlocus representation. We apply our 18 

partitioning-based non-parametric shrinkage to the estimated effect sizes in the eigenlocus, and 19 

then restore them back to the original per-SNP effects.  20 

In general, NPS requires double partitioning on both eigenvalues of the decorrelating 21 

projection and GWAS effect sizes in the eigenlocus space (Methods and Supplementary Note). 22 

Since the full combinatorial optimization of partitioning cut-offs is neither necessary nor practical, 23 

we place the cut-offs for 10 by 10 double-partitioning based on heuristics without optimizing them 24 

on individual datasets. In simulations, we can show that shrinkage weights estimated by the NPS 25 

approach closely track the conditional mean effects in the eigenlocus space (Supplementary Figs. 26 

1-4). 27 

 28 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/370064doi: bioRxiv preprint 

https://doi.org/10.1101/370064
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

Simulated benchmark 1 

To benchmark the accuracy of NPS, we simulated the genetic architecture using the real 2 

LD structure of 5 million dense common SNPs from the 1000 Genomes Project (Methods). We 3 

considered the causal fraction of SNPs from 1% to 0.01%, dependency of heritability on minor 4 

allele frequency (MAF) and enrichment of heritability in DNase I hypersensitive sites (DHS) based 5 

on the previous literature21–23. The prediction accuracy of NPS remained robust across the 6 

simulated genetic architectures (Table 1 and Supplementary Tables 1). We evaluated the 7 

performance of NPS vis-a-vis a comparable successful parametric technique (Supplementary 8 

Tables 1-4). LDPred is the state-of-the-art parametric method, which is similarly based on 9 

summary statistics estimated in large GWAS datasets and an independent training set with 10 

individual-level data. We found that our method resulted in more accurate predictions than 11 

LDPred across a range of genome-wide simulations. This is seemingly surprising given that some 12 

of the simulated allelic architectures are the spike-and-slab allelic architecture for which LDPred 13 

is expected to be optimal as a Bayesian method. However, we found that in most simulations, 14 

LDPred adopted the infinitesimal or extremely polygenic model irrespective of the true simulated 15 

regime, pointing to the challenge of computational optimization in the parametric case 16 

(Supplementary Table 3). The simulations suggest that the well-optimized parametric model is 17 

capable of generating good predictions, but NPS is much more robust and does not suffer from 18 

optimization issues. Overall, our method significantly outperformed LDPred as well as the 19 

commonly-used Pruning and Thresholding (P+T) approach (Table 1). 20 

 21 

Application to real data 22 

We benchmarked the accuracy of NPS and other methods using publicly available 23 

GWAS summary statistics and training and validation cohorts assembled with UK Biobank 24 

samples (Methods) 24–29. For all three phenotypes we examined, NPS showed significantly higher 25 

accuracy than LDPred or P+T. (Table 2, Supplementary Tables 5-7 and Supplementary Figs. 5-26 

9). In particular, our method outperformed the other methods by greater magnitudes with more 27 

recent GWAS summary statistics with finer resolution. For example, the latest breast cancer 28 
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GWAS study has twice as large sample size as the previous study and used a custom genotyping 1 

array to densely genotype known cancer susceptibility loci. The R2 of our method increased by 2 

1.42-fold with the latest breast cancer data whereas the accuracy of P+T and LDPred improved 3 

only 1.14 and 1.12-fold, respectively.  4 

Since our method estimates a large number of parameters from the training data, it might 5 

be particularly vulnerable to overfitting cryptic genetic features common to both training and 6 

testing data which may result in inflated prediction accuracy. To eliminate this possibility, we 7 

benchmarked the prediction models in Partners Biobank, as an independent validation cohort 8 

(Methods) 30. For all phenotypes except early-onset coronary artery disease (for which there were 9 

very few cases in the validation cohort), NPS outperformed both P+T and LDPred in terms of the 10 

prediction R2 (Table 3 and Supplementary Tables 8-10).   11 

A recent study reported that the extreme tails of the polygenic score distribution are 12 

associated with risk that is similar to monogenic mutations 20. At the highest 5% tail in polygenic 13 

risk score distribution, NPS yielded odds ratios that were higher than the other methods across all 14 

phenotypes (Tables 2 and 3). Overall, the odds ratios of disease for the upper 5% tail (compared 15 

to the remainder of the distribution) produced by NPS were significantly higher than those of 16 

LDPred and P+T (Fisher’s method, P=0.002 and 0.0002, respectively), indicating an ability to 17 

identify an even higher risk subset of the population than previously appreciated. 18 

 19 

Discussion 20 

Understanding how phenotype maps to genotype has always been a central question of 21 

basic genetics. With the explosive growth in the amount of training data, there is also a clear 22 

prospect and enthusiasm for clinical applications of the polygenic risk prediction 20,31. The current 23 

reality is, however, that most large-scale GWAS datasets are available in the form of summary 24 

statistics only. Nonetheless, data on a limited number of cases are frequently available from 25 

epidemiological cohorts such as UK Biobank or from public repositories with a secured access 26 

such as dbGaP. This motivated us to develop a method that is primarily based on summary 27 

statistics but also benefits from smaller training data at the raw genotype resolution. Although we 28 
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 8 

heavily rely on the training data to construct a prediction model, the requirement for out-of-sample 1 

training data is not unique for our method. Widely-used thresholding-based polygenic scores and 2 

Bayesian parametric methods also need genotype-level data to optimize their model parameters 3 
18,32. Also, our method assumes – similar to other methods – that all datasets come from a 4 

homogeneous population. It has been shown that polygenic risk models are not transferrable 5 

between populations due to differences in allele frequencies and patterns of linkage 6 

disequilibrium 33, which is a problem that should be addressed by future work in this field. 7 

Human phenotypes vary in the degree of polygenicity 34, in the fraction of heritability 8 

attributable to low-frequency variants 21 and in other aspects of allelic architecture 22,35. The 9 

optimality of a Bayesian risk predictor is not guaranteed when the true underlying genetic 10 

architecture deviates from the assumed prior. In particular, recent studies have revealed complex 11 

dependencies of heritability on minor allele frequency (MAF) and local genomic features such as 12 

regulatory landscape and intensity of background selections 21–23,34,35. Several studies have 13 

proposed to extend polygenic scores by incorporating additional complexity into the parametric 14 

Bayesian models, yet these methods were not applied to genome-wide sets of markers due to 15 

computational challenges 36,37. Recently, there has been a growing interest in non-parametric or 16 

semi-parametric approaches, such as those based on modeling of latent variables or kernel-17 

based estimation of prior or marginal distributions, however, thus far they cannot leverage 18 

summary statistics or directly account for the linkage disequilibrium (LD) structure in the data 38–19 
41. To address these issues, we developed NPS, a non-parametric method which is agnostic to 20 

allelic architecture. In simulations, we show that this approach should be advantageous across a 21 

wide range of phenotypes and traits with differing underlying architectures, and find that it 22 

outperforms existing prediction methods in UK Biobank for four different traits of medical interest. 23 

Finally, as demonstrated in the prediction accuracy using two different breast cancer GWAS 24 

summary statistics, with increasing size and marker density in case-control association studies 25 

across a range of diseases, our NPS method should continue to outperform traditional parametric 26 

approaches for identifying individuals at increased risk.  27 

 28 
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 9 

Methods 1 

Overview of Non-Parametric Shrinkage (NPS). In the absence of LD, conditional mean effects, 2 

namely, the expected true genetic effects given observed GWAS data, can be approximated by 3 

piecewise linear interpolation. We partition SNPs into K disjoint intervals based on observed 4 

GWAS effect sizes (!"#) and fit a linear function $%!"#& = ()!"# on each interval of * = 1,… , .. 5 

Specifically, when /0# is the genotype of individual 1 at SNP 2 = 1,… ,3 and !# is the true effect 6 

size at marker 2, the predicted phenotype 450 based on conditional mean effects 67	!#	|	!"#: can be 7 

interpolated as follows:  8 

450 =;67	!#	|	!"#:	/0#

<

#=>

≈;@;()!"#A%B)C> < !"# ≤ B)&

F

)=>

G /0#

<

#=>

 9 

where B)C> and B) are partition boundaries and A(⋅) is an indicator function for partition *. This 10 

equation can be further simplified by changing the order of summation as below:  11 

 12 

=;() K; !"#/0#

<

#	∈MN

O

F

)=>

= ;()P0)

F

)=>

																																																																			(1) 13 

 14 

where M) is the set of all markers assigned to partition *. If we define a partitioned risk score P0) 15 

to be a risk score of individual 1 calculated using only SNPs in partition *, () becomes equivalent 16 

to the per-partition shrinkage weight. Based on equation (1), we can use a small genotype-level 17 

training cohort to estimate () by fitting phenotypes 40 with partitioned risk scores P0) of training 18 

individual 1.  19 

In the presence of LD, we transform genotypes and GWAS effect sizes into the 20 

eigenlocus representation defined by a decorrelating linear projection R. Specifically, the 21 

decorrelating projection R is defined as follows: 22 

R = SC>/U	VW																																																																																(2) 23 
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 10 

where S and V are matrices of eigenvalues and eigenvectors, respectively, of a local reference 1 

LD matrix Y. For the axis of projection 2 defined by eigenvalue Z# and eigenvector [#, R yields the 2 

following projected genotype /0#\  and estimated effect ]̂#:  3 

/0#
\ =

1

_Z#
[#
`/0												and												]̂# =

1

_Z#
[#
`!"																																																				(3) 4 

where /0 and !"  are genotypes and estimated GWAS effects, respectively, in the original SNP 5 

space. In the eigenlocus representation, both /0#\  and sampling errors of ]̂# are uncorrelated 6 

across axes of projection 2, therefore we can apply the partitioning-based non-parametric 7 

shrinkage on /0#\  and ]̂# similarly for the case without LD (Supplementary Note).    8 

 9 

Application of NPS to genome-wide datasets. The estimated effect sizes !"# at SNPs 2 = 1, …, 10 

M are available as summary statistics from a large discovery GWAS study. When !"# was a per-11 

allele effect, we converted them relative to standardized genotypes by multiplying by 12 

e2$#%1 − $#&, where $# is the allele frequency of SNP 2 in the discovery GWAS cohort. For 13 

case/control GWAS, logistic log odds ratios were used for !"#.  14 

Because of the difficulty to finely partition the largest-effect tail, we handled the genome-15 

wide significant SNPs separately from the rest of SNPs. The genome-wide significant SNPs were 16 

set aside to a special partition Mg, for which the decorrelating projection was set to the identity 17 

matrix A. To avoid LD between SNPs in Mg, genome-wide significant SNPs were selected into Mg 18 

keeping the minimum distance of 500 kb from each other. Secondary GWAS peaks within 500 kb 19 

from a SNP included in Mg were handled together with the rest of polygenic signals regardless of 20 

their conditional significance. In order to avoid double-counting the effects of SNPs set aside to 21 

Mg, GWAS effect sizes were residualized on the estimated effect of each SNP in Mg up to 500 kb 22 

in both directions.  23 

Then, we processed the residualized effect size estimates !"# and genotypes of 24 

individuals in a training cohort of sample size h′ in non-overlapping windows of 4,000 SNPs each 25 

(~2.4 Mb in length). In each window, given an h′ × 4,000 standardized genotype matrix j, the 26 
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raw reference LD matrix Y = >

kl
j`j was regularized in order to suppress sampling noise, 1 

particularly in off-diagonal entries. Specifically, pairwise LD was set to 0 if the SNPs were 2 

separated by > 500 kb or the absolute value of estimated LD was smaller than 5/√ho.  Since the 3 

standard error of pairwise LD is approximately 1/√ho under no correlation, we expect that on 4 

average, only 1.7 uncorrelated SNP pairs escape the above regularization threshold per window. 5 

The regularized LD matrix Y∗ was factorized into the following by eigenvalue decomposition:  6 

Y∗ = V	S	V` 7 

where S is a diagonal matrix of eigenvalues and V is an orthonormal matrix of eigenvectors. 8 

Since Y∗ is not necessarily non-negative semi-definite, S can include negative eigenvalues. 9 

Negative eigenvalues were truncated along with those that are positive but smaller than 0.5 since 10 

they were dominated by noise. Applying the eigenlocus projection R (equation 2), we obtained 11 

decorrelated genotypes /0#\  and decorrelated effect size estimates ]̂# for each projection defined 12 

by eigenvalue Z# and corresponding eigenvector [# (equation 3), where 1 is an individual and 2 is 13 

the index for decorrelating projection.  14 

 Although we chose the window size to be large enough to capture the majority of local LD 15 

patterns, some LD structures, particularly near the edge, span across windows, which in turn 16 

yield cross-window correlations. To eliminate such correlations, we applied LD pruning in the 17 

eigenlocus space between adjacent windows. Specifically, we calculated Pearson correlations 18 

q##o between decorrelated genotypes /0#\  and /0#o\ , where 2 and 2′ are the indices of projection, 19 

belonging to neighboring windows. For the pairs with rq##lr > 0.3, we kept the one yielding a 20 

larger absolute effect size and eliminated the other.  21 

 Next, we merged decorrelated effect sizes ]̂# across all windows and defined the 10 × 10 22 

double-partitioning boundaries on intervals of Z# and r]̂#r. The eigenvalues were split to 10 23 

intervals of Z#, equally distributing ∑ Z##  across partitions. The partitions on eigenvalues are 24 

denoted here by M>, …, M>g from the lowest to the highest. Each partition of eigenvalues M) was 25 

sub-partitioned on intervals of r]̂#r, equally distributing ∑ ]̂#
U

#  across partitions, and split to 26 

partitions M),>, …, M),>g. The partition boundaries of r]̂#r were defined separately for each partition 27 
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 12 

of eigenvalues because the distribution of r]̂#r is dependent on Z#. In total, we used 101 partitions 1 

including the partition of genome-wide significant SNPs Mg.  2 

 In each partition *, we calculated a partitioned risk score P0) of training individual 1 as the 3 

following:  4 

P0) = ; ]̂#
#∈MN

/0#
\  5 

where * = 0 or * ∈ {1…10} × {1…10}. Given the phenotype 40 of each individual in the training 6 

cohort, we estimated per-partition shrinkage weights () by linear discriminant analysis (LDA) 7 

using the equation (1). Each ]̂# was reweighted by the shrinkage weight of corresponding 8 

partition to obtain conditional mean decorrelated effects as follows: 9 

67]#	|	]̂#: = ()]̂#			for	2 ∈ M) 10 

Then, we back-transformed the effect sizes from the eigenlocus representation to the original per-11 

SNP effect space in each window (Supplementary Note).  12 

 Because the accuracy of eigenlocus projection declines near the edge of windows, the 13 

overall performance of NPS is affected by the placement of window boundaries relative to 14 

locations of strong association peaks. To alleviate such dependency, we repeated the same NPS 15 

procedure shifting by 1,000, 2,000, and 3,000 SNPs and took the average reweighted effect sizes 16 

across four NPS runs.  17 

 18 

Simulation of genetic architecture with dense genome-wide markers. For simulated 19 

benchmarks, we generated genetic architecture with 5 million dense genome-wide markers from 20 

the 1000 Genomes Project. We kept only SNPs with MAF > 5% and Hardy-Weinberg equilibrium 21 

test p-value > 0.001. We used EUR panel (n=404) to populate LD structures in simulated genetic 22 

data. Due to the limited sample size of the LD panel, we regularized the LD matrix by applying 23 

Schur product with a tapered banding matrix so that the LD smoothly tapered off to 0 starting 24 

from 150 kb up to 300 kb 42.  25 

 Next, we generated genotypes across the entire genome, simulating the genome-wide 26 

patterns of LD. We assume that the standardized genotypes follow a multivariate normal 27 
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 13 

distribution. Since we assume that LD travels no farther than 300 kb, as long as we simulate 1 

genotypes in blocks of length greater than 300 kb, we can simulate the entire chromosome 2 

without losing any LD patterns by utilizing a conditional multivariate normal distribution as the 3 

following. The genotypes for the first block of 1,250 SNPs (average 750 kb in length) were 4 

sampled directly out of multivariate normal distribution h({ = 0, Σ = Y(>)). From the next block, 5 

we sampled the genotypes of 1,250 SNPs each, conditional on the genotypes of previous 1,250 6 

SNPs. When the genotype of block } is x� and the LD matrix spanning block } and } + 1 is split 7 

into submatrices as the following:  8 

Å
Y� Y�,�Ç>

Y�Ç>,� Y�Ç>
É 9 

then, the genotype of next block } + 1 follows a conditional MVN as:  10 

X�Ç>|Ö� = x�	~	h%{ = Y�Ç>,�Y�
C>x�, Σ = Y�Ç> − Y�Ç>,�Y�

C>Y�,�Ç>& 11 

After the genotype of entire chromosome was generated in this way, the standardized genotype 12 

values were converted to allelic genotypes by taking the highest á$#U and lowest á(1 − $#)U 13 

genotypes as homozygotes and the rest as heterozygotes under the Hardy-Weinberg equilibrium. 14 

á is the number of simulated samples, and $# is the allele frequency of SNP 2. This MVN-based 15 

simulator can efficiently generate a very large cohort with realistic LD structure across the 16 

genome and guarantees to produce homogenous population without stratification. 17 

 We simulated three different sets of genetic architecture: point-normal mixture, MAF 18 

dependency and DNase I hypersensitive sites (DHS). The point-normal mixture is a spike-and-19 

slab architecture in which a fraction of SNPs have normally distributed causal effects !# as below:  20 

!#	~	àh(0,1) + (1 − à)âg 21 

where à is the fraction of causal SNPs being 1, 0.1 or 0.01% and âg is a point mass at the effect 22 

size of 0. For the MAF-dependent model, we allowed the scale of causal effect sizes to vary 23 

across SNPs in proportion to ä$#%1 − $#&ã
å
 with ç = −0.25 21 as follows:  24 

!#	~	à	h ä0, ä$#%1 − $#&ã
å
ã + (1 − à)âg 25 
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Finally, for the DHS model, we further extended the MAF-dependent point-normal architecture to 1 

exhibit clumping of causal SNPs within DHS peaks. Fifteen per cents of simulated SNPs were 2 

located in the master DHS sites that we downloaded from the ENCODE project. We assumed a 3 

five-fold higher causal fraction in DHS (àéèê) compared to the rest of genome in order to simulate 4 

the enrichment of per-SNP heritability in DHS reported in the previous study 23. Specifically, !# 5 

was sampled from the following distribution:  6 

!#	~ë
àéèê	h ä0, ä$#%1 − $#&ã

å
ã + (1 − àéèê)âg					if SNP	2	is in DHS

1
5
	àéèêh ä0, ä$#%1 − $#&ã

å
ã + Å1 −

1
5
àéèêÉâg													otherwise

 7 

 In each genetic architecture, we simulated phenotypes for discovery, training and 8 

validation populations of 100,000, 50,000 and 50,000 samples, respectively, using a liability 9 

threshold model of the heritability of 0.5 and prevalence of 0.05. In the discovery population, we 10 

obtained GWAS summary statistics with Plink by testing for the association with the total liability 11 

instead of case/control status; this is computationally easier than to generate a large case/control 12 

GWAS cohort directly, and the estimated effect sizes are equivalent. With the prevalence of 0.05, 13 

statistical power of quantitative trait association studies using the total liability is roughly similar to 14 

those of dichotomized case/control GWAS studies of same sample sizes 43. For the training 15 

dataset, we assembled a cohort of 2,500 cases and 2,500 controls by down-sampling controls out 16 

of the simulated population of 50,000 samples. The validation population was used to evaluate 17 

the accuracy of prediction model in terms of R2 of the liability explained and Nagelkerke’s R2 to 18 

explain case/control outcomes.  19 

 20 

GWAS summary statistics. GWAS summary statistics are publicly available for phenotypes of 21 

breast cancer 24,25, inflammatory bowel disease (IBD) 26, type 2 diabetes (T2D) 27 and coronary 22 

artery disease (CAD) 29. These GWAS summary statistics were based only on Caucasian 23 

samples with an exception of CAD, for which 13% of discovery cohort comprised of non-24 

European ancestry. 25 

 26 
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UK Biobank. UK Biobank samples were used for training and validation purposes. Case and 1 

control samples were defined as follows. Breast cancer cases were identified by ICD10 codes of 2 

diagnosis. Controls were selected from females who were not diagnosed with or did not self-3 

report history of breast cancer. We excluded individuals with history of any other cancers, in situ 4 

neoplasm or neoplasm of unknown nature or behavior from both cases and controls. For IBD, we 5 

identified case individuals by ICD10 or self-reported disease codes of Crohn’s disease, ulcerative 6 

colitis or IBD. Controls were randomly selected excluding participants with history of any auto-7 

immune disorders. For T2D, cases were identified by ICD10 diagnosis codes or by questionnaire 8 

on history of diabetes combined with the age of diagnosis over 30. For early-onset CAD, case 9 

individuals were identified by ICD10 codes of diagnosis or cause of death. The early-onset was 10 

determined by the age of heart attack on the questionnaire (£ 55 for men and £ 65 for women). 11 

Individuals with history of CAD were excluded from controls regardless of the age of onset. The 12 

latest CAD summary statistics include UK Biobank samples in the interim release; thus, to avoid 13 

sample overlap, we used only post-interim samples, which were identified by genotyping batch 14 

IDs.   15 

For genotype QC, we filtered out SNPs with MAF below 5% or INFO score less than 0.4. 16 

We also excluded tri-allelic SNPs and InDels. We discarded SNPs if MAFs deviate by more than 17 

0.1 between UK Biobank and GWAS discovery cohorts. 18 

For all phenotypes, we filtered out participants who were retracted, not from white British 19 

ancestry, or had indication of any QC issue in UK Biobank. We included only samples which were 20 

genotyped with Axiom array. Related samples were excluded to avoid potential confounding. 21 

Controls were down-sampled to meet the case to control ratio of 1:1. The selected samples were 22 

randomly split to training and validation cohorts. Because of case/control ascertainment, we 23 

determined the 5% cut-off in polygenic risk score distribution indirectly by over-sampling control 24 

samples while accounting for the known prevalence of disease in UK Biobank (1,000 iterations).  25 

 26 

Partners Biobank. We used Partners Biobank 30 to evaluate the accuracy of prediction models in 27 

an independent validation cohort. These genotyping data were previously generated using the 28 
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MEGA-Ex array. Markers with monomorphic allele frequency, complementary alleles, less than 1 

99.5% genotyping rate, or deviation from Hardy-Weinberg equilibrium (P < 0.05) were removed. 2 

Then, statistical imputation was conducted to infer genotypes at missing markers using Eagle 3 

v2.4 and IMPUTE v4 on the reference panel (1000 Genomes Phase 3). Excluding samples of 4 

non-European ancestry, a total of 16,839 samples from US white population were available for 5 

use. Participants with breast cancer, IBD, T2D and CAD were identified using a phenotype query 6 

algorithm with the PPV parameter of 0.90 44. To obtain early-onset CAD, both cases and controls 7 

were restricted to men with age £ 55 and women with age £ 65. Since the definition of early-onset 8 

CAD is sex-dependent, we included the sex covariate in the genetic risk model for CAD. The 9 

coefficient of sex covariate was estimated in the training cohort.  10 

 11 

LDPred. The accuracy of LDPred was evaluated in simulated and real datasets using the default 12 

parameter setting. The underlying causal fraction parameter was optimized using the training 13 

cohort, which is available as individual-level genotype data. Specifically, the causal SNP fractions 14 

of 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003 and 0.0001 were tested in the training data, and 15 

the prediction model yielding the highest prediction R2 was selected for validation. The training 16 

genotypes were also used as a reference LD panel.  17 

LDPred accepts only hard genotype calls as inputs. Thus, for real data we converted 18 

imputed allelic dosages to most likely genotypes after filtering out SNPs with genotype probability 19 

< 0.9. SNPs with the missing rate > 1% or deviation from Hardy-Weinberg equilibrium (P < 10-5) 20 

were also excluded. Prediction models were trained using only SNPs which passed all QC filters 21 

in both training and validation datasets, as recommended by the authors. SNPs with 22 

complementary alleles were excluded automatically by LDPred. In simulations, all genotypes 23 

were generated as hard calls, and complementary alleles were avoided; thus, the exactly same 24 

set of SNPs were used for both LDPred and NPS. In a subset of datasets, we further examined 25 

the accuracy of LDPred when it was run only with directly genotyped SNPs. In simulated 26 

datasets, we assumed that both training and validation cohorts were genotyped with Illumina 27 

HumanHap550v3 array, restricting the genotype data to 490,504 common SNPs. For UK Biobank 28 
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datasets, prediction models were constrained to up to 354,110 common SNPs in UK Biobank 1 

Axiom array. In the case of validation in Partners Biobank, we did not consider running LDPred 2 

only with genotyped SNPs since too few SNPs were directly genotyped in both UK Biobank and 3 

Partners Biobank.  4 

 5 

LD Pruning and Thresholding. LD Pruning and Thresholding (P+T) algorithm was evaluated 6 

using PRSice software in the default setting 45. In real data, imputed allelic dosages were 7 

converted to hard-called genotypes similarly as for LDPred. A training cohort was used as a 8 

reference LD panel and to optimize pruning and thresholding parameters. The best prediction 9 

model suggested by PRSice was evaluated in validation cohorts.  10 

 11 
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Table 1. Comparison of prediction accuracy in simulated genetic architecture.  1 
 2 

    R2 gain over 

% causal SNPs Method R2
Nagelkerke h2 explained (%) P+T LDPred 

1% 

P+T 0.050 14.8   

LDPred 0.068 20.6   

NPS 0.078 23.4 1.55 * 1.15 * 

0.1% 

P+T  0.136 40.8   

LDPred 0.080 23.0   

NPS 0.167 47.8 1.23 * 1.42 * 

0.01% 

P+T  0.213 61.4   

LDPred 0.153 (0.268)1 43.8 (74.6)1   

NPS 0.315 88.8 1.48 * 1.94 * 
 3 

Non-parametric shrinkage (NPS) is more robust and accurate than Pruning and Thresholding (P+T) and 4 

Bayesian parametric method (LDPred). The simulations incorporate the dependency of heritability on 5 

minor allele frequency and clumping of causal SNPs in known DHS elements. The heritability was 0.5, 6 

and the prevalence was 5%. The number of markers was 5,012,500. The GWAS sample size was 7 

100,000. Prediction models were optimized in the training cohort of 2,500 cases and 2,500 controls. R2 of 8 

prediction was measured in the validation cohort of 50,000 samples. The h2 explained stands for the 9 

proportion of heritability on the liability scale explained by polygenic scores. The star (*) indicates a 10 

significant improvement in Nagelkerke’s R2 (paired t-test). 1The accuracy of LDPred varies widely 11 

depending on the convergence of prediction model; thus, we report the maximum R2 in parenthesis as 12 

well as the average performance. 13 

  14 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/370064doi: bioRxiv preprint 

https://doi.org/10.1101/370064
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Table 2. Accuracy of polygenic prediction in real data.  1 
 2 

 Training Validation  
   R2 gain over 

Discovery GWAS (UK Biobank) (UK Biobank) Method R2
Nag Tail OR  P+T LDPred 

Breast Cancer 2015 
(N=~120,000) 

N=3,956/3,956 N=3,957/3,957 

P+T 0.051 2.28    

LDPred 0.061 2.33    

NPS 0.060 2.50  1.19 * 0.98 

Breast Cancer 2017 
(N=~230,000) 

P+T 0.064 2.25    

LDPred 0.059 2.54    

NPS 0.085 2.86  1.33 * 1.44 * 

Inflammatory Bowel 
Disease 

(N=~35,000) 
N=2,483/2,483 N=2,482/2,482 

P+T 0.085 2.85    

LDPred 0.076 2.71    

NPS 0.094 3.19  1.11 1.24 * 

Type 2 Diabetes  
(N=~160,000) 

N=7,298/7,298 N=7,298/7,298 

P+T 0.057 2.29    

LDPred 0.081 2.78    

NPS 0.094 2.93  1.65 * 1.16 * 

 3 

Non-Parametric Shrinkage (NPS) outperforms both Pruning and Thresholding (P+T) and LDPred in real 4 

data. Both training and validation cohorts were sampled from UK Biobank. The tail Odds Ratio (OR) 5 

stands for the odds ratios of cases over controls at the 5% tail in polygenic score distribution compared to 6 

the rest. The star (*) indicates a significant improvement in Nagelkerke’s R2 (R2Nag) by bootstrapping.  7 

8 
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Table 3. Accuracy of polygenic prediction in independent validation cohorts.  1 
 2 

 Training Validation  
   R2 gain over 

Discovery GWAS (UK Biobank) (Partners) Method R2
Nag Tail OR  P+T LDPred 

Breast Cancer 2017 
(N=~230,000) 

N=3,956/3,956 N=754/8,324 

P+T 0.016 1.56    

LDPred 0.015 1.78    

NPS 0.024 2.08  1.52 * 1.64 * 

Inflammatory  
Bowel Disease 
(N=~35,000) 

N=2,483/2,483 N=839/16,000 

P+T 0.050 3.57    

LDPred 0.038 3.07    

NPS 0.057 3.81  1.15 1.53 * 

Type 2 Diabetes  
(N=~160,000) 

N=7,298/7,298 N=2,026/14,813 

P+T 0.016 1.78    

LDPred 0.024 1.81    

NPS 0.029 2.04  1.84 * 1.20 * 

Coronary Artery 
Disease 

(N=~330,000) 
N=2,773/2,773 N=268/7,107 

P+T 0.020 3.05    

LDPred 0.016 2.22    

NPS 0.019 3.27  0.94 1.19 

 3 

Non-Parametric Shrinkage (NPS) outperforms both Pruning and Thresholding (P+T) and LDPred in 4 

completely independent validation cohorts from US white population (Partners Biobank). The same 5 

cohorts from UK Biobank was used for training prediction models (Table 2). The tail Odds Ratios (OR) 6 

stand for the odds ratios of cases over controls at the 5% tail in polygenic score distribution compared to 7 

the rest. The star (*) indicates a significant improvement in Nagelkerke’s R2 by bootstrapping.  8 

  9 
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Supplementary Figure 1. Non-parametric shrinkage (NPS) approximates the conditional mean effects: 
infinitesimal genetic architecture. For the infinitesimal architecture, the analytic solution for conditional mean 
effect is known and can be reformulated as follows (See ref. 1 and Supplementary Note):  
 

𝐸"𝜂$	|	𝜂̂$( =
𝜆$

𝜆$ +
𝑀
𝑁ℎ/

	𝜂̂$ 

 
where 𝜆$ is the eigenvalue of eigenlocus projection 𝑗, M is the number of markers, N is the sample size of discovery 
GWAS, h2 is the heritability, and 𝜂$ and 𝜂̂$ are the true and estimated genetic effects, respectively, in the eigenlocus 
space. Using this theoretical derivation, we examined the accuracy of NPS in simulated datasets. (a) We 
partitioned the eigenlocus space into 10 subgroups, 𝒮2 = {𝑗	|	𝑏256 < 𝜆$ ≤ 𝑏2}, on intervals of eigenvalues 𝜆$ and 
then estimated per-partition shrinkage weight 𝜔2 in each partition 𝑘 = 1,… ,10 by NPS. In effect, NPS is equivalent 
to applying the following linear interpolation in each partition: 
  

𝐸$∈AB"𝜂$	|	𝜂̂$( ≈ 𝜔2𝜂̂$ 
 
As expected, the estimated 𝜔2 (red line) closely tracked the theoretical optimum, 𝜆$/(𝜆$ +

F
GHI

) (black line). 
However, in the partitions of 𝒮6 and 𝒮6K, 𝜔2 deviated significantly from theoretical expectation. In 𝒮6, 𝜔6 ≈ 0 since 
the eigenvectors of smallest eigenvalues are too noisy to estimate using the reference LD panel. 𝒮6K (grey box) 
spans the widest interval of eigenvalues but consists of the fewest number of SNPs. While it is ideal to apply a finer 
partitioning in this interval to better interpolate the theoretical curve, the total numbers of SNPs and independent 
projection vectors in the genome are the fundamental limiting factor. (b) To examine the robustness of NPS, we 
applied general 10-by-10 double partitioning on 𝜆$ and 𝜂̂$. The NPS approximated the theoretical conditional mean 
effect, 𝐸"𝜂$	|	𝜂̂$(, across all intervals of L𝜂̂$L sub-partitioning 𝒮6K (See Supplementary Fig. 3 for sub-partitions of 
𝒮6,… , 𝒮M). For both (a) and (b), the estimated 𝜔2 and their 95% CIs (red shade) were estimated from 5 replicates. 
Grey vertical lines indicate partitioning boundaries {𝑏2}. No shrinkage line (green) indicates 𝜔2 = 1. M=101,296. 
N=101,296. h2=0.5. 
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Supplementary Figure 2. Non-parametric shrinkage (NPS) approximates the conditional mean effects:  
non-infinitesimal genetic architecture. For non-infinitesimal genetic architectures, we do not have an analytic 
derivation of conditional mean effect 𝐸"𝜂$	|	𝜂̂$(; therefore we empirically estimated the conditional means in 
simulations using the true underlying effects 𝜂$ and true LD structure of the population (Supplementary Note). We 
applied general 10-by-10 double partitioning on 𝜆$ and 𝜂̂$. Shown here are sub-partitions for (a) partition of largest 
eigenvalues 𝒮6K and (b) partition of second smallest eigenvalues 𝒮/ (See Supplementary Fig. 4 for the rest of 
partitions). As expected, the true conditional mean (black line) dips for the lowest values of 𝜂̂$ but approaches no 
shrinkage (𝜔2 = 1, green line) with increasing values of 𝜂̂$. A notable difference between (a) 𝒮6K and (b) 𝒮/ is that 
the true conditional mean is very close to no shrinkage for large 𝜂̂$ in the former. This is because eigenvalues are 
proportional to the scale of true effects 𝜂$; therefore, with large enough eigenvalues, the sampling error becomes 
relatively small and the estimated effect sizes more accurate (Supplementary Note). In all partitions, conditional 
mean effects estimated by NPS (red line) stayed very close to the true conditional means. For both (a) and (b), the 
estimated 𝜔2 and their 95% CIs (red shade) were estimated from 5 replicates. The true conditional means were 
estimated over 40 simulation runs. Simulations to obtain true conditional means were completely independent from 
simulations to run NPS; only the genetic architecture parameters and underlying LD structure were shared between 
two sets of simulations. One percent of SNPs were simulated to be causal with normally distributed effect sizes. 
Grey vertical lines indicate partitioning boundaries {𝑏2}. No shrinkage line (green) indicates 𝜔2 = 1. M=101,296. 
N=101,296. h2=0.5. 
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Supplementary Figure 3. Non-parametric shrinkage (NPS) approximates the conditional mean effects: 
infinitesimal genetic architecture (𝒮6,… , 𝒮M). NPS shrinkage weights 𝜔2 (red line) were compared to the 
theoretical optimum (black line), 𝜆$/(𝜆$ +

F
GHI

), under the infinitesimal architecture. 𝒮6,… , 𝒮6K indicates the partitions 
of lowest to highest eigenvalues of projection (See Supplementary Fig. 1 for 𝒮6K). The mean NPS shrinkage 
weights (red line) and their 95% CIs (red shade) were estimated from 5 replicates. No shrinkage line (green) 
indicates 𝜔2 = 1. The number of markers M is 101,296. The discovery GWAS size N equals to M. The heritability h2 
is 0.5.  
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Supplementary Figure 4. Non-parametric shrinkage (NPS) approximates the conditional mean effects:  
non-infinitesimal genetic architecture (𝒮6, 𝒮N, … , 𝒮M). NPS shrinkage weights 𝜔2 (red line) were compared to the 
true conditional means (black line), which were estimated empirically in 40 simulation runs. 𝒮6,… , 𝒮6K indicates the 
partitions of lowest to highest eigenvalues of projection (See Supplementary Fig. 2 for  𝒮/ and 𝒮6K). The mean NPS 
shrinkage weights (red line) and their 95% CIs (red shade) were estimated from 5 replicates. No shrinkage line 
(green) indicates 𝜔2 = 1. The number of markers M is 101,296. The discovery GWAS size N equals to M. The 
heritability h2 is 0.5. The fraction of causal SNPs is 1%. 
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Supplementary Figure 5. Conditional mean effects estimated by 
non-parametric shrinkage in breast cancer dataset (Michailidou et 
al. 2017). NPS was run on sliding windows, which were shifted by 0, 
1,000, 2,000, or 3,000 SNPs. Then, estimated conditional mean effect 
curves were averaged over the four shifted NPS runs. 𝒮6,… , 𝒮6K 
denotes the partitions of lowest to highest eigenvalues of eigenlocus 
projection. The weights 𝜔2 were re-scaled so that the weight 𝜔K of 
genome-wide significant partition 𝒮K becomes 1. Compared to 
Michailidou et al. 2015 (Supplementary Fig. 6), Michailidou et al. 2017 
has twice the sample size.   
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Supplementary Figure 6. Conditional mean effects estimated by 
non-parametric shrinkage in breast cancer dataset (Michailidou et 
al. 2015). NPS was run on sliding windows, shifting by 0, 1,000, 2,000, 
or 3,000 SNPs. Then, estimated conditional mean effect curves were 
averaged over the four shifted NPS runs. 𝒮6,… , 𝒮6K denotes the 
partitions of lowest to highest eigenvalues of eigenlocus projection. 
The weights 𝜔2 were re-scaled so that the weight 𝜔K of genome-wide 
significant partition 𝒮K becomes 1. 
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Supplementary Figure 7. Conditional mean effects estimated by 
non-parametric shrinkage in inflammatory bowel disease (IBD) 
dataset (Liu et al. 2015). NPS was run on sliding windows, shifting by 
0, 1,000, 2,000, or 3,000 SNPs. Then, estimated conditional mean 
effect curves were averaged over the four shifted NPS runs. 𝒮6,… , 𝒮6K 
denotes the partitions of lowest to highest eigenvalues of eigenlocus 
projection. The weights 𝜔2 were re-scaled so that the weight 𝜔K of 
genome-wide significant partition 𝒮K becomes 1. 
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Supplementary Figure 8. Conditional mean effects estimated by 
non-parametric shrinkage in type 2 diabetes dataset (Scott et al. 
2017). NPS was run on sliding windows, shifting by 0, 1,000, 2,000, or 
3,000 SNPs. Then, estimated conditional mean effect curves were 
averaged over the four shifted NPS runs. 𝒮6,… , 𝒮6K denotes the 
partitions of lowest to highest eigenvalues of eigenlocus projection. 
The weights 𝜔2 were re-scaled so that the weight 𝜔K of genome-wide 
significant partition 𝒮K becomes 1. 
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Supplementary Figure 9. Conditional mean effects estimated by 
non-parametric shrinkage in cardio-vascular disease dataset 
(Nelson et al. 2017). NPS was run on sliding windows, shifting by 0, 
1,000, 2,000, or 3,000 SNPs. Then, estimated conditional mean effect 
curves were averaged over the four shifted NPS runs. 𝒮6,… , 𝒮6K 
denotes the partitions of lowest to highest eigenvalues of eigenlocus 
projection. The weights 𝜔2 were re-scaled so that the weight 𝜔K of 
genome-wide significant partition 𝒮K becomes 1. 
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Supplementary Table 1. Comparison of prediction accuracy in genetic architectures simulating uniformly 
distributed causal SNPs.  
 

Genetic   Validation  R2
Nag gain over 

Architecture % causal SNPs Method R2
Nagelkerke R2

Liability  P+T LDPred 

(a) 
Point-Normal 

(GCTA) 

1% 

P+T 0.049 0.072    

LDPred 0.071 0.103    
NPS 0.080 0.116  1.63 1.12 

0.1% 

P+T  0.141 0.205    

LDPred 0.071 0.102    

NPS 0.156 0.224  1.11 2.19 

0.01% 
P+T  0.189 0.273    

LDPred 0.076 0.110    

NPS 0.313 0.444  1.66 4.14 

(b) 
Point-Normal 

with  
MAF dependency 

(𝛼 = −0.25) 

1% 
P+T  0.050 0.071    

LDPred 0.073 0.101    

NPS 0.090 0.125  1.81 1.23 

0.1% 
P+T  0.142 0.206    

LDPred 0.076 0.112    

NPS 0.160 0.232  1.13 2.11 

0.01% 
P+T  0.199 0.293    

LDPred 0.087 0.126    

NPS 0.310 0.444  1.56 3.55 
 
Non-parametric shrinkage (NPS) is more accurate than Pruning and Thresholding (P+T) and Bayesian parametric 
method (LDPred). Here, two sets of Point-Normal architectures were simulated: (a) a spike-and-slab GCTA model 
which assumes the independence of heritability on minor allele frequency (MAF) and (b) an architecture 
incorporating the dependency of heritability on MAF (𝛼 = −0.25). Under each model and for each causal fraction, 
three instances of genetic architecture were generated. Recent studies have found that low frequency SNPs 
contribute less heritability than previously expected under no dependency 2,3. Low-frequency SNPs tend to be 
captured by eigenvectors of small eigenvalues and are challenging to handle with spectral decomposition. More 
realistic simulations (b) lowering the overall heritability contribution of low-frequency SNPs made non-parametric 
shrinkage prediction slightly more accurate than (a) GCTA models. The heritability was set to 0.5 on the liability 
scale, and the prevalence of was 5%. The number of markers was 5,012,500. The GWAS sample size was 
100,000. Prediction models were optimized in the training cohort of 2,500 cases and 2,500 controls. The prediction 
R2 was measured in the validation cohort of 50,000 samples and averaged over three simulations. 	  
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Supplementary Table 2. Accuracy of non-parametric shrinkage in genetic architectures simulating the enrichment 
of causal SNPs within DNase I Hypersensitive Sites (DHS). 
 

Fraction of 
causal SNPs 

 Training   Validation  
 AUC  R2

Nag R2
Liability AUC 

1% 

 0.737  0.074 0.113 0.698 
 0.731  0.079 0.118 0.704 
 0.724  0.082 0.119 0.708 

0.1% 

 0.784  0.171 0.238 0.791 
 0.793  0.179 0.247 0.799 
 0.777  0.166 0.237 0.787 
 0.799  0.165 0.240 0.790 
 0.786  0.157 0.234 0.784 
 0.799  0.163 0.238 0.787 

0.01% 

 0.876  0.311 0.444 0.880 
 0.886  0.307 0.443 0.876 
 0.879  0.326 0.451 0.884 

 
Each row represents the prediction accuracy of non-parametric shrinkage (NPS) in an individual simulation run. 
The prediction accuracy of NPS went down slightly compared to simulations of uniformly distributed causal SNPs 
(Supplementary Table 1) but still remained robust even if we did not explicitly account for DHS overlap in the 
current version of NPS. The causal fractions of 1% and 0.01% were replicated three times each, and the causal 
fraction of 0.1% were replicated six times. The simulation incorporates the dependency of heritability on minor allele 
frequency (𝛼 = −0.25) and five-fold enrichment of causal SNPs in DHS elements. The heritability was set to 0.5 on 
the liability scale with the case prevalence of 5%. The number of markers was 5,012,500. The GWAS sample size 
was 100,000. Prediction models were optimized in the training cohort of 2,500 cases and 2,500 controls. The 
prediction R2 was measured in validation cohorts of 50,000 samples. AUC – Area Under the Curve. 
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Supplementary Table 3. Accuracy of LDPred in genetic architectures simulating the enrichment of causal SNPs 
within DNase I Hypersensitive Sites (DHS). 
 

Fraction of  
causal SNPs (p)  

Input Training  Validation 

SNPs Estimated p AUC  R2
Nag R2

Liability AUC 

1% 

All  
SNPs 

(M=5,012,500) 

1.0 0.706  0.065 0.100 0.684 

1.0 0.695  0.068 0.102 0.689 
1.0 0.686  0.071 0.105 0.693 

0.1% 

0.3 0.695  0.080 0.108 0.705 

1.0 0.690  0.083 0.116 0.711 

1.0 0.686  0.075 0.107 0.699 

0.3 0.698  0.078 0.118 0.704 

1.0 0.693  0.069 0.103 0.694 

0.1 0.644  0.098 0.140 0.727 

0.01% 
0.3 0.726  0.093 0.141 0.721 
0.3 0.723  0.098 0.143 0.729 

0.01 0.840  0.268 0.373 0.854 

1% 

Genotyped 
SNPs 
Only 

(M=490,504) 

1.0 0.699  0.062 0.094 0.680 

1.0 0.683  0.062 0.095 0.680 
1.0 0.674  0.066 0.095 0.687 

0.1% 

0.003 0.756  0.149 0.210 0.773 

1.0 0.679  0.079 0.106 0.707 
0.0001 0.729  0.116 0.165 0.715 

0.001 0.765  0.138 0.197 0.764 

0.3 0.718  0.100 0.144 0.730 
0.0003 0.753  0.123 0.183 0.753 

0.01% 

0.0003 0.786  0.150 0.222 0.780 

0.001 0.749  0.115 0.166 0.743 
0.001 0.816  0.222 0.317 0.827 

 
Each row represents the prediction accuracy of LDPred in an individual simulation run. The causal fractions of 1% 
and 0.01% were replicated three times each, and 0.1% was replicated six times. The simulation incorporates the 
dependency of heritability on MAF (𝛼 = −0.25) and five-fold enrichment of causal SNPs in DHS. The h2 was 0.5 
with the prevalence of 5%. LDPred was run using all 5,012,500 SNPs (top) as well as a sparse set of 490,504 
SNPs taken from HumanHap550v3 genotyping array (bottom). With sparse SNPs, LDPred converged to closer-to-
truth simulated causal fractions and resulted a higher average but lower maximum accuracy than using all markers. 
The prediction model reaching the highest accuracy in a training cohort was selected for validation. The estimated 
causal fraction (p) represents the causal fraction of best performing prediction model in training. p=1.0 denotes the 
infinitesimal model in which all SNPs are causal. The GWAS sample size was 100,000. Prediction models were 
optimized in the training cohort of 2,500 cases and 2,500 controls. The prediction R2 was measured in validation 
cohorts of 50,000 samples. AUC – Area Under the Curve.	  
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Supplementary Table 4. Accuracy of pruning and thresholding in genetic architectures simulating the enrichment 
of causal SNPs within DNase I Hypersensitive Sites (DHS). 
 

True  Training  Validation 

causal SNPs  P cutoff # SNPs AUC  R2
Nag R2

Liability AUC 

1% 

 0.046 57,816 0.680  0.047 0.072 0.662 

 0.097 92,163 0.661  0.050 0.076 0.664 
 0.153 121,820 0.664  0.054 0.075 0.670 

0.1% 

 0.0001 2,082 0.783  0.174 0.244 0.793 

 0.00015 2,562 0.751  0.133 0.186 0.761 

 0.0002 2,765 0.735  0.119 0.164 0.747 

 0.0001 2,147 0.795  0.160 0.247 0.787 

 0.0001 2,296 0.736  0.105 0.163 0.738 

 0.00015 2,529 0.759  0.128 0.190 0.757 

0.01% 
 0.0001 1,662 0.827  0.209 0.305 0.823 
 0.0001 1,631 0.807  0.176 0.263 0.797 

 0.0001 1,553 0.833  0.252 0.352 0.848 
 
Each row represents the prediction accuracy of pruning and thresholding (P+T) algorithm in an individual simulation 
run. The causal fractions of 1% and 0.01% were replicated three times each, and the causal fraction of 0.1% were 
replicated six times. The simulation incorporates the dependency of heritability on minor allele frequency (𝛼 =
−0.25) and five-fold enrichment of causal SNPs in DHS elements. The heritability was set to 0.5 on the liability 
scale with the case prevalence of 5%. The prediction model reaching the highest accuracy in a training cohort was 
selected for validation. The P-value cutoff of best-performing model is reported here along with the number of SNPs 
after pruning and thresholding. The GWAS sample size was 100,000. Prediction models were optimized in the 
training cohort of 2,500 cases and 2,500 controls. The prediction R2 was measured in validation cohorts of 50,000 
samples. AUC – Area Under the Curve.  
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Supplementary Table 5. Accuracy of non-parametric shrinkage applied to real GWAS summary statistics and UK 
Biobank datasets. 
 

  Training  Validation (UK Biobank) 

GWAS  # SNPs AUC  AUC Tail OR (5%) 

Breast Cancer 2015  5,755,927 0.654  0.620 [0.61-0.63] 2.50 [2.1-3.0] 

Breast Cancer 2017  6,063,180 0.668  0.643 [0.63-0.66] 2.86 [2.4-3.4] 
IBD  5,784,396 0.676  0.649 [0.63-0.66] 3.19 [2.6-4.0] 

Type 2 Diabetes  5,827,280 0.661  0.651 [0.64-0.66] 2.93 [2.6-3.3] 
 
GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD) and type 2 diabetes were obtained 
from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015 and Scott et al. 2017, respectively. The training 
and validation cohorts were both assembled using UK Biobank samples (see Table 2 for case/control sample 
sizes). The tail OR denotes the odds ratio at the 5% highest risk tail compared to the rest of cohort. The 5% cutoff 
of polygenic score distribution in the unascertained population was determined by resampling at known disease 
prevalence in UK biobank. The numbers in brackets are the 95% confidence intervals for AUC (Area Under the 
Curve) and tail OR, which were estimated by bootstrapping. 
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Supplementary Table 6. Accuracy of LDPred applied to real GWAS summary statistics and UK Biobank datasets. 
 

  Training  Validation (UK Biobank) 

GWAS  # SNPs Estimated causal 
fraction AUC  AUC Tail OR (5%) 

Breast Cancer 2015  3,417,759 0.01 0.630  0.621 [0.61-0.63] 2.33 [1.9-2.8] 

Breast Cancer 2017  3,478,993 0.1 0.621  0.618 [0.61-0.63] 2.54 [2.1-3.0] 

IBD  3,396,783 0.03 0.640  0.635 [0.62-0.65] 2.71 [2.2-3.4] 
Type 2 Diabetes  3,451,818 0.01 0.642  0.639 [0.63-0.65] 2.78 [2.5-3.2] 

Breast Cancer 2015  351,917 0.3 0.605  0.600 [0.59-0.61] 2.37 [2.0-2.9] 

Breast Cancer 2017  353,627 1.0 0.606  0.608 [0.60-0.62] 2.09 [1.7-2.5] 
IBD  353,325 1.0 0.618  0.620 [0.60-0.64] 2.71 [2.2-3.4] 

Type 2 Diabetes  354,110 0.1 0.640  0.643 [0.63-0.65] 2.88 [2.5-3.3] 
 
GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD) and type 2 diabetes were obtained 
from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015 and Scott et al. 2017, respectively. The training 
and validation cohorts were both assembled using UK Biobank samples (see Table 2 for case/control sample 
sizes). LDPred was ran using all hard-called common SNPs (top) as well as directly genotyped SNPs (bottom). 
LDPred runs only with genotypes and automatically excludes complementary alleles; therefore, the number of input 
SNPs are fewer than the number of all available imputed SNPs. The estimated causal fraction represents the 
causal fraction parameter of best performing prediction model in training cohort. The estimated causal fraction of 
1.0 denotes the infinitesimal model in which all SNPs are causal. The tail OR denotes the odds ratio at the 5% 
highest risk tail compared to the rest of cohort. The 5% cutoff of polygenic score distribution in the unascertained 
population was determined by resampling at known disease prevalence in UK biobank. The numbers in brackets 
are the 95% confidence intervals for AUC (Area Under the Curve) and tail OR, which were estimated by 
bootstrapping. 
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Supplementary Table 7. Accuracy of pruning and thresholding applied to real GWAS summary statistics and UK 
Biobank datasets. 
 

  Training  Validation (UK Biobank) 
GWAS  P cutoff # SNPs AUC  AUC Tail OR (5%) 

Breast Cancer 2015  0.0001 427 0.615  0.611 [0.60-0.62] 2.28 [1.9-2.7] 
Breast Cancer 2017  0.0003 1,516 0.627  0.625 [0.61-0.64] 2.25 [1.9-2.7] 

IBD  0.0002 621 0.648  0.643 [0.63-0.66] 2.85 [2.3-3.6] 
Type 2 Diabetes  0.0004 691 0.613  0.616 [0.61-0.63] 2.29 [2.0-2.6] 

 
GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD) and type 2 diabetes were obtained 
from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015 and Scott et al. 2017, respectively. The training 
and validation cohorts were both assembled using UK Biobank samples (see Table 2 for case/control sample 
sizes). The prediction model reaching the highest accuracy in a training cohort was selected for validation. The P-
value cutoff of best-performing model is reported here along with the number of SNPs after pruning and 
thresholding. The tail OR denotes the odds ratio at the 5% highest risk tail compared to the rest of cohort. The 5% 
cutoff of polygenic score distribution in the unascertained population was determined by resampling at known 
disease prevalence in UK biobank. The numbers in brackets are the 95% confidence intervals for AUC (Area Under 
the Curve) and tail OR, which were estimated by bootstrapping. 
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Supplementary Table 8. Accuracy of non-parametric shrinkage in independent validation cohorts. 
 

  Training  Validation (Partners Biobank) 

GWAS  # SNPs AUC  AUC Tail OR (5%) 

Breast Cancer 2017  5,755,927 0.654  0.611 [0.59-0.63] 2.08 [1.6-2.7] 

IBD  6,063,180 0.668  0.669 [0.65-0.69] 3.81 [3.1-4.7] 

Type 2 Diabetes  5,784,396 0.676  0.606 [0.59-0.62] 2.04 [1.7-2.4] 
CAD  5,741,641 0.698  0.603 [0.57-0.64] 3.27 [2.2-4.7] 

 
The polygenic risk models trained in UK Biobank (Table 2 and Supplementary Table 5) were validated in US white 
population (Partners Biobank). GWAS summary statistics for coronary artery disease (CAD) were obtained from 
Nelson et al. 2017. See Table 3 for case/control sample sizes of validation cohorts. The tail OR denotes the odds 
ratio at the 5% highest risk tail compared to the rest of cohort. The numbers in brackets are the 95% confidence 
intervals for AUC (Area Under the Curve) and tail OR, which were estimated by DeLong’s method and 
bootstrapping, respectively. 
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Supplementary Table 9. Accuracy of LDPred in independent validation cohorts. 
 

  Training (UK Biobank)  Validation (Partners Biobank) 

GWAS  # SNPs Est causal AUC  AUC Tail OR (5%) 

Breast Cancer 2017  1,261,292 0.1 0.600  0.580 [0.56-0.60] 1.78 [1.3-2.3] 

IBD  1,238,654 0.03 0.609  0.639 [0.62-0.66] 3.07 [2.5-3.8] 

Type 2 Diabetes  1,243,787 0.01 0.618  0.597 [0.58-0.61] 1.81 [1.5-2.2] 
CAD  1,237,683 0.003 0.715  0.595 [0.56-0.63] 2.22 [1.4-3.3] 

 
The polygenic risk models were trained with LDPred in UK Biobank cohorts and validated in US white population 
(Partners Biobank). The training cohorts for breast cancer, inflammatory bowel disease (IBD) and type 2 diabetes 
are identical to those in Table 2 and Supplementary Table 6. However, the prediction models were reconstructed 
by re-running LDPred on the SNPs found in both training and validation cohorts as recommended by the authors. 
LDPred runs only with genotypes and automatically excludes complementary alleles; therefore, the number of hard-
called input SNPs are fewer than the number of all available imputed SNPs. The estimated causal fraction 
represents the causal fraction parameter of best performing prediction model in training cohort. The estimated 
causal fraction of 1.0 denotes the infinitesimal model in which all SNPs are causal. See Table 3 for case/control 
sample sizes of validation cohorts. The tail OR denotes the odds ratio at the 5% highest risk tail compared to the 
rest of cohort. The numbers in brackets are the 95% confidence intervals for AUC (Area Under the Curve) and tail 
OR, which were estimated by DeLong’s method and bootstrapping, respectively. 
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Supplementary Table 10. Accuracy of pruning and thresholding in independent validation cohorts. 
 

  Training (UK Biobank)  Validation (Partners Biobank) 
GWAS  P cutoff # SNPs AUC  AUC Tail OR (5%) 

Breast Cancer 2017  0.00035 801 0.613  0.589 [0.57-0.61] 1.56 [1.2-2.1] 

IBD  0.0002 331 0.629  0.659 [0.64-0.68] 3.57 [2.9-4.4] 

Type 2 Diabetes  0.0001 165 0.603  0.577 [0.56-0.59] 1.78 [1.5-2.1] 
CAD  0.3878 33,078 0.717  0.612 [ 0.58-0.65] 3.05 [2.1-4.4] 

 
The polygenic risk models were trained with pruning and thresholding algorithm in UK Biobank cohorts and 
validated in US white population (Partners Biobank). The training cohorts for breast cancer, inflammatory bowel 
disease (IBD) and type 2 diabetes are identical to those in Table 2 and Supplementary Table 7. However, the 
prediction models were reconstructed by re-running pruning and thresholding algorithm on the SNPs found in both 
training and validation cohorts. The prediction model reaching the highest accuracy in a training cohort was 
selected for validation. The P-value cutoff of best-performing model is reported here along with the number of SNPs 
after pruning and thresholding. See Table 3 for case/control sample sizes of validation cohorts. The tail OR denotes 
the odds ratio at the 5% highest risk tail compared to the rest of cohort. The numbers in brackets are the 95% 
confidence intervals for AUC (Area Under the Curve) and tail OR, which were estimated by DeLong’s method and 
bootstrapping, respectively. 
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Supplementary Note 
 
Decorrelating projection 
 We split the genome into 𝐿 non-overlapping windows of 𝑚 SNPs each. An individual window is 
large enough to capture the majority of linkage disequilibrium (LD) patterns except near the edge. For 
the sake of simplicity, we assume that LD is confined to each window and there exists no LD across 
windows. 
 

In genomic window 𝑙 ∈ {1, … , 𝐿}, let 𝑿X  be an 𝑁 ×𝑚 genotype matrix of a discovery cohort and 
𝑿XZ be an 𝑁′ × 𝑚 genotype matrix of a training cohort. The sample sizes of discovery and training cohorts 
are 𝑁 and 𝑁′, respectively. The genotypes are standardized to the mean of 0 and variance of 1. Let 𝛽]X  be 
an 𝑚-dimensional vector of observed effect sizes at all SNPs from the discovery GWAS. 𝛽]X  is also defined 
with respect to the standardized genotypes. Let 𝛽X  be an 𝑚-dimensional vector of true underlying 
genetic effects at all SNPs in window 𝑙. For convenience, we omit the subscript 𝑙 when it is clear from the 
context.  
 

The LD matrix 𝑫 is given by 𝑫 = 6
G
𝑿_𝑿. Let us assume for a moment that 𝑫 has full rank. In this 

case, 𝑫 is symmetric and positive semi-definite, thus can be factorized by eigenvalue decomposition into 
the following form:  
 

𝑫 = 𝑸	𝜦	𝑸𝑻	
	
where 𝑸 is an orthonormal matrix of eigenvectors and 𝜦 is a diagonal matrix of positive eigenvalues. The 
extension to rank-deficient LD matrix is straight-forward and will be discussed later.  
 

Now we introduce a linear decorrelating transformation 𝒫, which projects summary statistics 
and genotypes into a decorrelated space which we call “eigenlocus space.” The projection 𝒫 is called 
“eigenlocus projection” and defined as the following:  

	
𝒫 ≔ 𝜦5

e
I	𝑸𝑻																																																																	(𝐸𝑞	𝑆1)	

			
The effect size estimates 𝜂̂ and projected genotypes 𝑿Zh in the eigenlocus space are obtained by 

applying the eigenlocus projection 𝒫 on GWAS effect sizes 𝛽]  and genotypes 𝑿Z as follows:  
 

𝜂̂ ∶= 𝒫𝛽]  
(𝐸𝑞	𝑆2) 

(𝑿Zh)_ ≔ 𝒫𝑿Z_  
 
 
Distribution of projected genotypes in the eigenlocus space 
 Let 𝑋kZ be an 𝑚-dimensional genotype vector of training sample 𝑖 in window 𝑙. Then, 𝑋kZ follows 
the following multivariate normal distribution:  
 

𝑋kZ~𝑁(𝟎,𝑫) 
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Since the projected genotype XkZh is derived by applying 𝒫 on 𝑋kZ by definition (Eq S2), XkZh	also follows a 
multivariate normal distribution. Specifically, the distribution of XkZh is: 
 

𝑋kZh~𝑁 p𝜦
56/	𝑸𝑻𝟎, q𝜦5

6
/	𝑸𝑻r𝑫 q𝜦5

6
/	𝑸𝑻r

𝑻
s 

 

= 𝑁q𝟎, 𝜦5
6
/	𝑸𝑻𝑸𝜦𝑸𝑻𝑸𝜦5

6
/r = 𝑁(𝟎, 𝑰) 

 
since 𝑫 = 𝑸𝜦𝑸𝑻 and 𝑸𝑻𝑸 = 𝑰. The projected genotypes in the eigenlocus space are decorrelated with 
the covariance of 𝑰.  
 
Distribution of effect size estimates in the eigenlocus space 

In the discovery GWAS, the estimated effect sizes 𝛽]  are calculated by linear regression as below:  
 

𝛽] =
1
𝑁𝑿

_𝑦 

 
where 𝑦 is an 𝑁-dimensional phenotype vector. For convenience, we assume that 𝑦 is standardized to 
the mean of 0 and variance of 1. At this time, we treat genotypes as fixed variables and model the 
genetic effects 𝛽 and residuals 𝜖 as random. Since 𝑦 = 𝑿𝛽 + 𝜖,  
 

𝛽] =
1
𝑁𝑿

𝑻(𝑿𝛽 + 𝜖) = 𝑫𝛽 +
1
𝑁𝑿

𝑻𝜖	
 
where the residual 𝜖 follows an 𝑁-dimensional multivariate normal distribution 𝑁(𝟎, 𝜎x/𝑰). In an 
individual window, the genetic effects explain only a small fraction of phenotypic variation, therefore 
𝜎x/ ≈ var(y) = 1. The distribution of sampling noise in 𝛽] , namely the distribution of 𝛽]  given 𝛽, follows:  
 

𝛽]	|	𝛽	~	𝑁(𝑫𝛽 +
1
𝑁𝑿

𝑻𝟎,
𝜎x/

𝑁/ 𝑿
𝑻𝑰𝑿) 

≈ 𝑁(𝑫𝛽,
1
𝑁𝑫) 

 
since 𝑫 = 6

G
𝑿_𝑿. Since the estimated effect size 𝜂̂ in the eigenlocus space is obtained by applying 𝒫 on 

𝛽]  by definition (Eq S2), the distribution of 𝜂̂ given 𝛽 also follows a multivariate normal distribution:  
 

𝜂̂	|	𝛽	~	𝑁 p𝜦5
6
/	𝑸𝑻𝑫𝛽,

1
𝑁 𝜦

56/	𝑸𝑻𝑫q𝜦5
6
/	𝑸𝑻r

𝑻
s 

 

= 𝑁 q𝜦5
6
/𝑸𝑻𝑸𝜦𝑸𝑻𝛽,

1
𝑁 𝜦

56/	𝑸𝑻𝑸𝜦𝑸𝑻𝑸𝜦5
6
/r 

 

= 𝑁 q𝜦
6
/𝑸𝑻𝛽,

1
𝑁 𝑰r																																																					(𝐸𝑞	𝑆3) 
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since 𝑫 = 𝑸𝜦𝑸𝑻 and 𝑸𝑻𝑸 = 𝑰. The sampling noise in 𝜂̂ is now decorrelated with the covariance of 6
G
𝑰. 

Hence, the eigenlocus projection 𝒫 removes correlations in both genotypes and sampling noise of effect 
size estimates. 
 
Interpretation of eigenvalues 

 Based on Eq S3, 𝜂̂	|	𝛽 approaches to 𝜦
e
I𝑸𝑻𝛽 as the sample size goes to the infinity. Thus, we 

define true genetic effect 𝜂 in the eigenlocus space as: 
 

𝜂 ≔ 𝜦
6
/𝑸𝑻𝛽																																																																	(𝐸𝑞	𝑆4) 

 
Let us assume that the distribution of 𝛽 is symmetric at 0 and independent at each SNP. Then,  
 

𝐸"𝜂$( = 𝐸 ��𝜆$	𝑞$_𝛽� = �𝜆$	𝑞$_𝐸[𝛽] = 0 

and 

𝑣𝑎𝑟"𝜂$( = 𝐸 �q�𝜆$	𝑞$_𝛽r
/

� − 	𝐸"𝜂$(
/
 

 

= 𝜆$�𝑞�$/
�

��6

𝐸[𝛽�/] 

 
where the 𝑗-th eigenvector 𝑞$  is (𝑞6$ … 𝑞�$)_. Therefore, the scale of 𝜂$, namely, 𝑣𝑎𝑟"𝜂$(, is 
proportional to eigenvalue 𝜆$. Furthermore, in particular when all SNPs have the same variance of per-
SNP effect sizes 𝜎�/,  
 

𝑣𝑎𝑟"𝜂$( = 𝜆$𝜎�/ 
 
since ∑ 𝑞�$/�

��6 = 1.  
 
Conditional mean effects under infinitesimal genetic architecture in the eigenlocus space 

Under infinitesimal genetic architecture, the conditional mean effect has been analytically 
derived by Vilhjalmsson et al.1: 

 

𝐸"𝛽	|	𝛽]( = q
𝑀
𝑁ℎ/ 𝑰 + 𝑫r

5𝟏

𝛽]																																																	(𝐸𝑞	𝑆5) 

 
under the assumption that 𝑫 is the LD matrix of full rank. Since  
 

q
𝑀
𝑁ℎ/ 𝑰 + 𝑫r = 𝑸q

𝑀
𝑁ℎ/ 𝑰 + 𝚲r𝑸

𝑻 

and 

q
𝑀
𝑁ℎ/ 𝑰 + 𝑫r

5𝟏

= 𝑸q
𝑀
𝑁ℎ/ 𝑰 + 𝚲r

5𝟏

𝑸𝑻 
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we can reformulate Eq S5 as follows:  
 

𝐸"𝛽	|	𝛽]( = 	𝑸 � F
GHI

𝑰 + 𝚲�
5𝟏
𝑸𝑻𝛽]																																																												(𝐸𝑞	𝑆6)  

 

= 	𝑸q
𝑀
𝑁ℎ/ 𝑰 + 𝚲r

5𝟏

𝜦
6
/ q𝜦5

6
/𝑸𝑻𝛽]r 

 

= 	𝑸 q
𝑀
𝑁ℎ/ 𝑰 + 𝚲r

5𝟏

𝜦
6
/	𝜂̂	 

 
by the definition of 𝜂̂ (Eq S2). Hence,  
 

𝐸[𝜂	|	𝜂̂] = 𝜦
6
/𝑸𝑻𝐸[𝛽	|	𝜂̂] = 𝜦

6
/𝑸𝑻𝐸"𝛽	|	𝛽]( 

 

=	𝜦
6
/𝑸𝑻𝑸q

𝑀
𝑁ℎ/ 𝑰 + 𝚲r

5𝟏

𝜦
6
/	𝜂̂ 

 

=	q
𝑀
𝑁ℎ/ 𝑰 + 𝚲r

5𝟏

𝚲	𝜂̂																																																		(𝐸𝑞	𝑆7) 

 
by the definition of 𝜂 (Eq S4). Therefore, for the eigenlocus projection 𝑗 defined by 𝜆$  and 𝑞$, the 
conditional mean effect is given as the following:  
 

𝐸"𝜂$	|	𝜂̂$( =
𝜆$

𝜆$ +
𝑀
𝑁ℎ/

𝜂̂$  

 
Thus, in infinitesimal architecture, the conditional mean effect 𝐸"𝜂$	|	𝜂̂$( simplifies to 𝜔	𝜂̂$, where 𝜔 is 
the optimal shrinkage weight and depends only on eigenvalues as follow: 
 

𝜔 =
𝜆$

𝜆$ +
𝑀
𝑁ℎ/

 

 
General partitioning strategy  
 In general, we approximate the conditional mean effect 𝐸"𝜂$	|	𝜂̂$( by piecewise linear 
interpolation as follows: 
 

𝐸$∈𝒮B"𝜂$	|	𝜂̂$( ≈ 𝜔2	𝜂̂$  
 
where 𝜔2 is per-partition shrinkage weight in the eigenlocus space.  
 

In the infinitesimal architecture, 𝜔2 will depend only on eigenvalues 𝜆$, therefore, partitioning 
needs to be done only on intervals of 𝜆$. However, in general, 𝜔2 depend on both 𝜆$  and 𝜂̂$. Therefore, 
in general we need to apply double-partitioning on 𝜆$  and 𝜂̂$  in the eigenlocus space. The intuition 
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behind this double-dependency is the following: 1) The scale of true eigenlocus effects, namely 𝑣𝑎𝑟"𝜂$(, 
is proportional to the eigenvalue 𝜆$. On the other hand, the sampling error, namely 𝜂̂$	|	𝜂$, is fixed at 
1/𝑁, where 𝑁 is the sample size of discovery GWAS cohort. Therefore, with increasing eigenvalues, 
estimated effects 𝜂̂$  become more reliable since the scale of 𝜂$  becomes larger relative to the sampling 
error. In contrast, with decreasing eigenvalues, 𝜂̂$  becomes dominated by sampling error. 2) When 
underlying genetic architecture has a low polygenicity, i.e. a small proportion of causal SNPs, some of 
eigenlocus projection vectors may not involve even a single causal SNP, and in this case, their true 
decorrelated effect size 𝜂$  will be 0. Such non-causal projection will be enriched among small estimates 
of 𝜂̂$. Thus, in such a low-polygenic architecture, 𝐸"𝜂$	|	𝜂̂$( ≈ 0 for smaller values of 𝜂̂$. In contrast, as 
the polygenicity approaches the infinitesimal architecture, 𝜔2 will lose the dependency on 𝜂̂$  and 
become a constant depending only on 𝜆$. 
 
Estimation of shrinkage weights using training data  
 We rely on a small independent cohort with full genotype information (training cohort) to 
estimate the shrinkage weights 𝜔. Let us assume that the eigenlocus space is partitioned into K disjoint 
subsets, 𝒮6, … , 𝒮2 on intervals of eigenvalues 𝜆$  and estimated effects 𝜂̂$. Then, we define a partitioned 
risk score 𝐺k2 in the eigenlocus space as follows:  
 

𝐺k2 = � 𝜂̂$𝑥k$h

$∈𝒮B

 

 
Then, the predicted phenotype 𝑦�k  of individual 𝑖 becomes:  

𝑦�k =�𝐸"𝜂$	|	𝜂̂$(	𝑥k$h

$

= ���𝜔2𝜂̂$𝐼(𝑗 ∈ 𝒮2)
2

� 𝑥k$h

$

= �𝜔2 �� 𝜂̂$𝑥k$h

$∈𝒮B

	�
�

2�6

= �𝜔2𝐺k2

�

2�6

 

by applying piece-wide linear interpolation on 𝐸"𝜂$	|	𝜂̂$( and changing the order of summation.  
 

For quantitative traits, the per-partition shrinkage weights 𝜔2 can be estimated by applying 
linear regression to training data. For binary phenotypes, 𝜔2 can be learned from a linear discriminant 
analysis (LDA)-based classifier in the K-dimensional feature space formed by partitioned risk scores 𝐺k2. 
LDA guarantees the optimal accuracy of classifier when case and control subgroups follow multivariate 
normal distributions in the feature space. We claim that the distributions of K-dimensional vector of 
partitioned risk scores 𝐺k	|	𝑦k  of individual 𝑖 satisfies the following:  
 

𝐺k	|	𝑦k = 1	~	𝑁(𝜇� �x, Σ� �x) 
 

𝐺k	|	𝑦k = 0	~	𝑁(𝜇�¢£¤¥¢X, Σ�¢£¤¥¢X) 
and 

Σ� �x ≈ Σ�¢£¤¥¢X  
 
where 𝜇� �x and 𝜇�¢£¤¥¢X  are mean partitioned risk scores among cases and controls, respectively, and 
Σ� �x and Σ�¢£¤¥¢X  are 𝐾 × 𝐾 covariance matrices of partitioned risk scores in each subgroup. This is 
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because the partitioned risk scores of cases and controls, namely 𝐺k2	|	𝑦k, follow approximately normal 
distributions as long as each partition consists of a sufficient number of eigenloci 4. The variance of 
partitioned risk scores is approximately equal between cases and controls since 𝐺k2 of an individual 
partition explains only a small fraction of phenotypic variation on the observed scale in typical GWAS 
data 5. Furthermore, Σ� �x and Σ�¢£¤¥¢X  are both approximately diagonal; although in theory, the liability 
thresholding effect induces slight non-zero covariance between partitions, this effect is typical small and 
negligible.  
 

LDA-derived shrinkage weights can be independently estimated for each partition and simplify 
to:  
 

𝜔2 ≈ 2
𝐸[	𝐺k2|	𝑦k = 1] − 𝐸[	𝐺k2|	𝑦k = 0]

𝑣𝑎𝑟[	𝐺k2|	𝑦k = 1] + 𝑣𝑎𝑟[	𝐺k2|	𝑦k = 0]																																																		(𝐸𝑞	𝑆8) 

 
The discriminant function is similar when covariates are included 6.  
	
Back-conversion from the eigenlocus space to the original SNP space  
 Let 𝑦� be an 𝑁′-dimensional vector of predicted phenotypes in a training cohort. We construct 𝑦� 
by summing over all projected genotypes multiplied by conditional mean effects in the eigenlocus space 
as follows:  
 

𝑦� =�𝑋XZh𝐸[𝜂X	|	𝜂̂X]
¨

X�6

 

 
where the conditional mean effect 𝐸[𝜂X	|	𝜂̂X] is obtained by non-parametric shrinkage. By the definition 
of 𝑋XZh (Eq S2), 
 

𝑦� =�𝑋XZ p𝜦X
56/𝑸X_s

_

𝐸[𝜂X	|	𝜂̂X]
¨

X�6

 

 

=�𝑋XZ p𝑸X𝜦X
56/𝐸[𝜂X	|	𝜂̂X]s

¨

X�6

 

 
Note that 𝑋XZ is the genotype matrix of training samples in the original SNP space. Thus, 𝐸[𝜂X	|	𝜂̂X] can be 
converted back to per-SNP effect sizes by the following transformation:  
 

𝑸X𝜦X
56/𝐸[𝜂X	|	𝜂̂X] 

 
Rank deficiency of LD matrix  
 Even when the LD matrix 𝑫 is not full rank, it is symmetric and non-negative semi-definite. In this 
case, eigenvalue decomposition on 𝑫 yields only 𝑟 positive eigenvalues, where 𝑟 is the rank of the 
matrix and 𝑟 < 𝑚, and the rest of eigenvalues are 0. Without the loss of generality, we can reorder the 
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eigenvalues and corresponding eigenvectors in such a way that only the first 𝑟 eigenvalues are positive. 
We truncate the components corresponding to eigenvalues 𝑟 + 1,… ,𝑚	and reduce the dimension to 𝑟. 
Specifically, the truncated matrices are defined as the following:  
 

𝑸′ = (𝑞6 … 𝑞¥) 
 

𝜦Z = �	
𝜆6 0 0
0 … 0
0 0 𝜆¥

� 

 
where 𝜆$  and 𝑞$  are the 𝑗-th positive eigenvalues and corresponding eigenvectors, respectively. Since 𝑸′ 
and 𝜦′ satisfy the following:  

𝑫 = 𝑸Z𝚲Z𝑸Z𝑻 
and 

𝑸Z𝑻𝑸Z = 𝑰¥  
 
all results we derived in the previous sections hold with 𝑸′ and 𝜦′ in place of 𝑸 and 𝜦, respectively. 
 
 However, the analysis of infinitesimal model (Eqs S5-S7) requires further discussion since it is 
non-trivial to generalize to rank deficient 𝑫. Note that Eq S5 was derived under the assumption that 𝑫 
has full rank 1, thus cannot be used directly for rank deficient 𝑫 even though the matrix F

GHI
𝑰 + 𝑫 is 

always invertible.  
 
 We can re-derive the posterior mean effects from joint probability density function of 𝜂̂ and 𝜂 in 
reduced 𝑟-dimensional space. Now 𝐸[𝜂	|	𝜂̂] of Eq S7 becomes the following equation:  
 

𝐸[𝜂	|	𝜂̂] = q
𝑀
𝑁ℎ/ 𝑰¥ + 𝜦′r

5𝟏

𝜦′	𝜂̂ 

 
Therefore,  

𝐸"𝛽	|	𝛽]( = 𝑸Z𝜦Z5
6
/𝐸[𝜂	|	𝜂̂] 

 

= 𝑸Z𝜦Z5
6
/ q

𝑀
𝑁ℎ/ 𝑰¥ + 𝜦′r

5𝟏

𝜦′	 q𝜦′5
6
/𝑸′𝑻𝛽]r 

= 𝑸Z q
𝑀
𝑁ℎ/ 𝑰¥ + 𝜦′r

5𝟏

𝑸′𝑻𝛽]																																																	(𝐸𝑞	𝑆9) 
 
Note that this result is not identical to the previous Eq S6, which was derived for full-rank 𝑫:  
 

𝐸"𝛽	|	𝛽]( = 	𝑸 q
𝑀
𝑁ℎ/ 𝑰 + 𝜦r

5𝟏

𝑸𝑻𝛽]																																											(𝐸𝑞	𝑆6)	
 
In Eq S6, 𝑀/𝑁ℎ/ term remains for 𝑞¥ª6, … , 𝑞� whereas it is truncated in Eq S9.  
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Simulations to show that NPS approximates the conditional mean effects 
To show that shrinkage weights estimated by NPS approximate conditional mean effects in the 

eigenlocus space (Supplementary Figs. 1-4), we simulated genetic architecture with SNPs in LD. The LD 
matrix was calculated using the genotypes of the 1000 Genomes Project CEU panel (n=99) for a total of 
101,296 SNPs, which were obtained by 10-fold down-sampling of SNPs in Illumina HumanHap550 
genotyping array. SNPs with minor allele frequency (MAF) < 5% were filtered out. The genome was 
broken down to 2 Mb loci, and SNP-poor loci with less than 40 SNPs were excluded. Overall, a total of 
1,236 loci with 82 SNPs on average were used for this simulation. Since the raw LD matrix was calculated 
with the reference LD panel of a small sample size, we suppressed spurious long-range LD by setting the 
LD between SNPs separated by > 500 kb to 0. For simplicity, we confined LD structure to each locus and 
disallowed LD spanning across loci.  

 
We considered two genetic architectures: an infinitesimal model with normally distributed effect 

sizes and a non-infinitesimal model for which only 1% of SNPs are casual with normally distributed effect 
sizes. The discovery GWAS summary statistics were directly sampled from the following m-dimensional 
multivariate normal distribution (MVN) one locus each time:  
 

𝛽]~𝑁(𝜇 = 𝛽𝑫, Σ =
1
𝑁𝑫) 

 
where 𝛽 and 𝛽]  are m-dimensional vectors of true and estimated effect sizes of SNPs in the locus, 
respectively, D is a local LD matrix, m is the number of SNPs in the locus, and N is the discovery GWAS 
sample size. N was set to equal to the genome-wide number of markers M. The standardized genotypes 
of training cohort were also generated from an MVN as follows:  
 

𝑋k~𝑁(𝜇 = 0, Σ = 𝑫) 
 
where 𝑋k  is an m-dimensional genotype vector of individual 𝑖. We generated genotypes for 50,000 
individuals and simulated phenotypes under a liability threshold model with the heritability h2 of 0.5 and 
prevalence of 5%. By down-sampling controls, we assembled a training case/control cohort of 2,500 
cases and 2,500 controls.  
 

For this simulation, we ran NPS treating each locus as a single analysis window without averaging 
over sliding windows since LD was assumed to be confined in each window. The true underlying LD 
matrix D was hidden, and NPS estimated the reference LD from the training cohort. For the infinitesimal 
model, the theoretically optimal shrinkage weight 𝜔2¢ is known 1:  

 

𝜔2¢ = 𝜆$/(𝜆$ +
𝑀
𝑁ℎ/) 

 
For the non-infinitesimal model, we do not have analytically known optimal shrinkage, therefore 

instead empirically estimated it by regressing conditional mean effects on 𝜂̂$  with the fixed intercept of 
0 as follows: 
 

𝐸"	𝜂$	|	𝜂̂$ ∈ 𝒮2(	~	𝜔2¢	𝜂̂$ + 0 
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Then, we averaged 𝜔2¢ over 40 runs of simulations under the same genetic architecture parameters. 
𝐸"	𝜂$	|	𝜂̂$ ∈ 𝒮2( was estimated by taking the average of true decorrelated effects 𝜂$  in each partition 𝒮2. 
We calculated 𝜂$ = «𝜆$	𝒒$_𝛽 using the true genetic effects 𝛽 and spectral decomposition of true 
population LD matrix. To make sure that the consistency between estimated and true mean conditional 
effects are not due to shared underlying data, at each simulation run, we re-generated the entire 
dataset starting from fresh sampling of 𝛽 but under the same genetic architecture parameters.  
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