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Abstract

In complex trait genetics, the ability to predict phenotype from genotype is the ultimate
measure of our understanding of genetic architecture underlying the heritability of a trait. A
complete understanding of the genetic basis of a trait should allow for predictive methods with
accuracies approaching the trait’s heritability. The highly polygenic nature of quantitative traits
and most common phenotypes has motivated the development of statistical strategies focused on
combining myriad individually non-significant genetic effects. Now that predictive accuracies are
improving, there is a growing interest in practical utility of such methods for predicting risk of
common diseases responsive to early therapeutic intervention. However, existing methods
require individual level genotypes or depend on accurately specifying the genetic architecture
underlying each disease to be predicted. Here, we propose a polygenic risk prediction method
that does not require explicitly modeling any underlying genetic architecture. We start with a set
of summary statistics in the form of SNP effect sizes from a large GWAS cohort. We then remove
the correlation structure across summary statistics arising due to linkage disequilibrium and apply
a piecewise linear interpolation on conditional mean effects. In both simulated and real datasets,
this new non-parametric shrinkage (NPS) method can reliably correct for linkage disequilibrium in
summary statistics of 5 million dense genome-wide markers and consistently improves prediction
accuracy. We show that NPS significantly improves the identification of groups at high risk for
Breast Cancer, Type 2 Diabetes, Inflammatory Bowel Disease and Coronary Heart Disease, all of
which have available early intervention or prevention treatments. The NPS software is available

at http://qithub.com/sgchun/nps/.

Introduction

In addition to improving our fundamental understanding of basic genetics, phenotypic
prediction has obvious practical utility, ranging from crop and livestock applications in agriculture
to estimating the genetic component of risk for common human diseases in medicine. For
example, a portion of the current guideline on the treatment of blood cholesterol to reduce

atherosclerotic cardiovascular risk focuses on estimating a patient’s risk of developing disease ';
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1 in theory, genetic predictors have the potential to reveal a substantial proportion of this risk early

(\S]

in life (even before clinical risk factors are evident) enabling prophylactic intervention for high-risk
individuals. The same logic applies to many other disease areas with available prophylactic
interventions including cancers and diabetes.

The field of phenotypic prediction was conceived in plant and animal genetics (reviewed
in refs. 23). The first approaches relied on “major genes” — allelic variants of large effect sizes
readily detectable by genetic linkage or association. These efforts were quickly followed by

strategies adopting polygenic models, most notably the genomic version of the Best Linear
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Unbiased Predictor (BLUP) “.

10 Similarly, after the early results of human genome-wide association studies (GWAS)

11 became available, the first risk predictors in humans were based on combining the effects of

12 markers significantly and reproducibly associated with the trait, typically those with association
13 statistics exceeding a genome-wide level of significance 5. AiImost immediately, after realization
14 that a multitude of small effect alleles play an important role in complex trait genetics 238, these
15 methods were extended to accommodate very large (or even all) genetic markers %4, These

16 methods include extensions of BLUP °'°, or Bayesian approaches that extend both shrinkage

17  techniques and random effect models ''. Newer methods benefited from allowing for classes of
18 alleles with vastly different effect size distributions. However, these methods require individual
19 level genotype data that do not exist for large meta-analyses and are computationally expensive.
20 “Polygenic scores” 4" represent an alternative approach based on summary statistics.
21 The originally proposed version is additive over genotypes weighted by apparent effect sizes

22 exceeding a given p-value threshold. In theory, the risk predictor based on expected true genetic
23 effects given the genetic effects observed in GWAS (conditional mean effects) can achieve the
24 optimal accuracy of linear risk models regardless of underlying genetic architecture by properly
25  down-weighting noise introduced by non-causal variants '°. In practice, however, implementing
26 the conditional mean predictor poses a dilemma. In order to estimate the conditional mean

27 effects, we need to know the underlying genetic architecture first, but the true architecture is

28  unknown and difficult to model accurately. The current methods circumvent this issue by deriving
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conditional means under a simplified model of genetic architecture. This methodology has been
successfully used to analyze the UK Biobank, the largest epidemiological cohort that includes
genetic data 2°. Individuals with extreme values of polygenic score were shown to have a
substantially elevated risk for corresponding diseases, generating enthusiasm for clinical
applications of the method.

Here, we propose a novel risk prediction approach called partitioning-based non-
parametric shrinkage (NPS). Without specifying a parametric model of underlying genetic
architecture, we aim to estimate the conditional mean effects directly from the data. We evaluate
the performance of this new approach under a simulated genetic architecture of 5 million dense
SNPs across the genome. We also test the method using real data in four disease areas: breast

cancer, type 2 diabetes, inflammatory bowel disease and coronary heart disease.

Results
Method Overview

If true genetic effects of all variants on the trait were known, adding these effects for all
alleles in an individual would provide the ideal linear predictor of the phenotype. The accuracy of
such a predictor would equal narrow sense heritability. However, true genetic effects are
unknown and their statistical estimates deviate from the true values even in expectation.
Estimates of genetic effects in GWAS are strongly affected by sampling noise, and the variants
with smallest effect sizes are difficult to distinguish from the background noise of non-causal
SNPs. Another complication arises from extensive linkage disequilibrium (LD). Estimated genetic
effects are strongly influenced by effects of neighboring variants. Since true genetic effects are
unknown, they have to be approximated based on available data. Formally, the best possible
linear predictor would rely on expected genetic effects conditional on summary statistics®.
Sampling noise increases absolute values of estimated genetic effects compared to the true
effects. The expected true effects can be expressed as “shrinking” the estimated effects towards

zero via differential weighting of the estimated effects.
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1 Our approach outlined in Figure 1 is to partition SNPs into groups of similar observed

2 effect sizes in GWAS data (£) and determine the relative weight based on predictive value of

3 each partition estimated in the training data. Intuitively, a partition dominated by non-causal
variants will have low power to distinguish cases from controls whereas the partition enriched with
strong signals will be better able to predict a phenotype. In the absence of LD, this is equivalent
to approximating the conditional mean effect curve by piecewise linear interpolation (Methods).

Note that estimating the per-partition weights is a far easier problem than estimating per-SNP

effects. The training sample size is small but still larger than the number of partitions, whereas for
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per-SNP effects, the GWAS sample size is considerably smaller than the number of markers in
10  the genome. This procedure “shrinks” the estimated effect sizes not relying on any specific

11 assumption about the distribution of true effect sizes. Thus, we call it “Non-Parametric Shrinkage”
12 (NPS).

13 In the presence of LD, we cannot apply the partitioning method directly to GWAS effect
14  sizes since true genetic effects as well as sampling noise are correlated between adjacent SNPs.
15 To prevent estimated genetic signals smearing across partitions, we transform GWAS data into
16  an orthogonal domain, which we call “eigenlocus” (Fig. 1b and Methods). Specifically, we use a
17 decorrelating linear transformation obtained by eigenvalue decomposition of local LD matrix. Both
18 genotypes and sampling errors are uncorrelated in the eigenlocus representation. We apply our
19 partitioning-based non-parametric shrinkage to the estimated effect sizes in the eigenlocus, and
20  then restore them back to the original per-SNP effects.

21 In general, NPS requires double partitioning on both eigenvalues of the decorrelating

22 projection and GWAS effect sizes in the eigenlocus space (Methods and Supplementary Note).
23 Since the full combinatorial optimization of partitioning cut-offs is neither necessary nor practical,
24 we place the cut-offs for 10 by 10 double-partitioning based on heuristics without optimizing them
25 on individual datasets. In simulations, we can show that shrinkage weights estimated by the NPS
26  approach closely track the conditional mean effects in the eigenlocus space (Supplementary Figs.
27  1-4).

28
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Simulated benchmark

To benchmark the accuracy of NPS, we simulated the genetic architecture using the real
LD structure of 5 million dense common SNPs from the 1000 Genomes Project (Methods). We
considered the causal fraction of SNPs from 1% to 0.01%, dependency of heritability on minor
allele frequency (MAF) and enrichment of heritability in DNase | hypersensitive sites (DHS) based
on the previous literature?'23, The prediction accuracy of NPS remained robust across the
simulated genetic architectures (Table 1 and Supplementary Tables 1). We evaluated the
performance of NPS vis-a-vis a comparable successful parametric technique (Supplementary
Tables 1-4). LDPred is the state-of-the-art parametric method, which is similarly based on
summary statistics estimated in large GWAS datasets and an independent training set with
individual-level data. We found that our method resulted in more accurate predictions than
LDPred across a range of genome-wide simulations. This is seemingly surprising given that some
of the simulated allelic architectures are the spike-and-slab allelic architecture for which LDPred
is expected to be optimal as a Bayesian method. However, we found that in most simulations,
LDPred adopted the infinitesimal or extremely polygenic model irrespective of the true simulated
regime, pointing to the challenge of computational optimization in the parametric case
(Supplementary Table 3). The simulations suggest that the well-optimized parametric model is
capable of generating good predictions, but NPS is much more robust and does not suffer from
optimization issues. Overall, our method significantly outperformed LDPred as well as the

commonly-used Pruning and Thresholding (P+T) approach (Table 1).

Application to real data

We benchmarked the accuracy of NPS and other methods using publicly available
GWAS summary statistics and training and validation cohorts assembled with UK Biobank
samples (Methods) 2*-2°. For all three phenotypes we examined, NPS showed significantly higher
accuracy than LDPred or P+T. (Table 2, Supplementary Tables 5-7 and Supplementary Figs. 5-
9). In particular, our method outperformed the other methods by greater magnitudes with more

recent GWAS summary statistics with finer resolution. For example, the latest breast cancer
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1 GWAS study has twice as large sample size as the previous study and used a custom genotyping
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array to densely genotype known cancer susceptibility loci. The R? of our method increased by
1.42-fold with the latest breast cancer data whereas the accuracy of P+T and LDPred improved
only 1.14 and 1.12-fold, respectively.

Since our method estimates a large number of parameters from the training data, it might
be particularly vulnerable to overfitting cryptic genetic features common to both training and
testing data which may result in inflated prediction accuracy. To eliminate this possibility, we

benchmarked the prediction models in Partners Biobank, as an independent validation cohort

O 0 N N n B~ W

(Methods) *°. For all phenotypes except early-onset coronary artery disease (for which there were
10  very few cases in the validation cohort), NPS outperformed both P+T and LDPred in terms of the
11 prediction R? (Table 3 and Supplementary Tables 8-10).

12 A recent study reported that the extreme tails of the polygenic score distribution are

13 associated with risk that is similar to monogenic mutations 2°. At the highest 5% tail in polygenic
14 risk score distribution, NPS yielded odds ratios that were higher than the other methods across all
15 phenotypes (Tables 2 and 3). Overall, the odds ratios of disease for the upper 5% tail (compared
16  to the remainder of the distribution) produced by NPS were significantly higher than those of

17  LDPred and P+T (Fisher's method, P=0.002 and 0.0002, respectively), indicating an ability to

18 identify an even higher risk subset of the population than previously appreciated.

19

20  Discussion

21 Understanding how phenotype maps to genotype has always been a central question of
22 basic genetics. With the explosive growth in the amount of training data, there is also a clear

23 prospect and enthusiasm for clinical applications of the polygenic risk prediction 2°3'. The current
24 reality is, however, that most large-scale GWAS datasets are available in the form of summary
25  statistics only. Nonetheless, data on a limited number of cases are frequently available from

26  epidemiological cohorts such as UK Biobank or from public repositories with a secured access
27 such as dbGaP. This motivated us to develop a method that is primarily based on summary

28  statistics but also benefits from smaller training data at the raw genotype resolution. Although we
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heavily rely on the training data to construct a prediction model, the requirement for out-of-sample
training data is not unique for our method. Widely-used thresholding-based polygenic scores and
Bayesian parametric methods also need genotype-level data to optimize their model parameters
1832 Also, our method assumes — similar to other methods — that all datasets come from a
homogeneous population. It has been shown that polygenic risk models are not transferrable
between populations due to differences in allele frequencies and patterns of linkage
disequilibrium 33, which is a problem that should be addressed by future work in this field.

Human phenotypes vary in the degree of polygenicity 4, in the fraction of heritability
attributable to low-frequency variants 2! and in other aspects of allelic architecture 2235, The
optimality of a Bayesian risk predictor is not guaranteed when the true underlying genetic
architecture deviates from the assumed prior. In particular, recent studies have revealed complex
dependencies of heritability on minor allele frequency (MAF) and local genomic features such as
regulatory landscape and intensity of background selections 2'-233435_Several studies have
proposed to extend polygenic scores by incorporating additional complexity into the parametric
Bayesian models, yet these methods were not applied to genome-wide sets of markers due to
computational challenges 2%, Recently, there has been a growing interest in non-parametric or
semi-parametric approaches, such as those based on modeling of latent variables or kernel-
based estimation of prior or marginal distributions, however, thus far they cannot leverage
summary statistics or directly account for the linkage disequilibrium (LD) structure in the data 3~
41 To address these issues, we developed NPS, a non-parametric method which is agnostic to
allelic architecture. In simulations, we show that this approach should be advantageous across a
wide range of phenotypes and traits with differing underlying architectures, and find that it
outperforms existing prediction methods in UK Biobank for four different traits of medical interest.
Finally, as demonstrated in the prediction accuracy using two different breast cancer GWAS
summary statistics, with increasing size and marker density in case-control association studies
across a range of diseases, our NPS method should continue to outperform traditional parametric

approaches for identifying individuals at increased risk.
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1  Methods

2 Overview of Non-Parametric Shrinkage (NPS). In the absence of LD, conditional mean effects,
3 namely, the expected true genetic effects given observed GWAS data, can be approximated by
4 piecewise linear interpolation. We partition SNPs into K disjoint intervals based on observed

5  GWAS effect sizes (;) and fit a linear function f(;) = w,f; on each interval of k = 1, ..., K.

6  Specifically, when x;; is the genotype of individual i at SNP j = 1,..., M and B; is the true effect

7 size at marker j, the predicted phenotype §; based on conditional mean effects E[ﬁj [ Bj] can be
8  interpolated as follows:

9 i = Z E[B; | B;] xij = Z (Z wiBil(by-y < B < bk)) Xij

j=1 j=1 \k=1
10  where b,_, and b, are partition boundaries and I(-) is an indicator function for partition k. This

11 equation can be further simplified by changing the order of summation as below:

12
K M K

13 = Z Wy Z Bjxij = Z WGk €Y)
=1 jESk k=1

14

15 where S, is the set of all markers assigned to partition k. If we define a partitioned risk score G;;
16  to be arisk score of individual i calculated using only SNPs in partition k, w, becomes equivalent
17  to the per-partition shrinkage weight. Based on equation (1), we can use a small genotype-level
18  training cohort to estimate w,, by fitting phenotypes y; with partitioned risk scores G, of training
19  individual i.

20 In the presence of LD, we transform genotypes and GWAS effect sizes into the

21 eigenlocus representation defined by a decorrelating linear projection P. Specifically, the

22 decorrelating projection P is defined as follows:

23 P=A"12Q" ()
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1 where A and Q are matrices of eigenvalues and eigenvectors, respectively, of a local reference
2 LD matrix D. For the axis of projection j defined by eigenvalue 4; and eigenvector q;, P yields the
3 following projected genotype x{} and estimated effect #;:

1 1 N
4 xh=—=qfx  and i =—=qfp 3)

J %
5 where x; and 8 are genotypes and estimated GWAS effects, respectively, in the original SNP
6  space. In the eigenlocus representation, both xi’} and sampling errors of #; are uncorrelated

7 across axes of projection j, therefore we can apply the partitioning-based non-parametric

8 shrinkage on xi’}. and 7j; similarly for the case without LD (Supplementary Note).

10  Application of NPS to genome-wide datasets. The estimated effect sizes Bj atSNPsj =1, ...,
11 M are available as summary statistics from a large discovery GWAS study. When Bj was a per-

12 allele effect, we converted them relative to standardized genotypes by multiplying by

13 /ij(l — f;), where f; is the allele frequency of SNP j in the discovery GWAS cohort. For

14 case/control GWAS, logistic log odds ratios were used for [?j.

15 Because of the difficulty to finely partition the largest-effect tail, we handled the genome-
16  wide significant SNPs separately from the rest of SNPs. The genome-wide significant SNPs were
17 set aside to a special partition S, for which the decorrelating projection was set to the identity

18  matrix I. To avoid LD between SNPs in S,, genome-wide significant SNPs were selected into S,
19  keeping the minimum distance of 500 kb from each other. Secondary GWAS peaks within 500 kb
20  from a SNP included in §, were handled together with the rest of polygenic signals regardless of
21 their conditional significance. In order to avoid double-counting the effects of SNPs set aside to
22 S,, GWAS effect sizes were residualized on the estimated effect of each SNP in S, up to 500 kb
23 in both directions.

24 Then, we processed the residualized effect size estimates Ej and genotypes of

25 individuals in a training cohort of sample size N’ in non-overlapping windows of 4,000 SNPs each

26  (~2.4 Mb in length). In each window, given an N’ x 4,000 standardized genotype matrix X, the

10


https://doi.org/10.1101/370064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/370064; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

o

~N N D

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

aCC-BY-NC-ND 4.0 International license.

. 1 . . . .
raw reference LD matrix D = FXTX was regularized in order to suppress sampling noise,

particularly in off-diagonal entries. Specifically, pairwise LD was set to 0 if the SNPs were
separated by > 500 kb or the absolute value of estimated LD was smaller than 5/+/N’. Since the
standard error of pairwise LD is approximately 1/+/N’ under no correlation, we expect that on
average, only 1.7 uncorrelated SNP pairs escape the above regularization threshold per window.
The regularized LD matrix D* was factorized into the following by eigenvalue decomposition:
D'=QAQT
where A is a diagonal matrix of eigenvalues and Q is an orthonormal matrix of eigenvectors.
Since D* is not necessarily non-negative semi-definite, A can include negative eigenvalues.
Negative eigenvalues were truncated along with those that are positive but smaller than 0.5 since
they were dominated by noise. Applying the eigenlocus projection P (equation 2), we obtained
decorrelated genotypes xi’} and decorrelated effect size estimates 1#; for each projection defined
by eigenvalue 4; and corresponding eigenvector q; (equation 3), where i is an individual and j is
the index for decorrelating projection.

Although we chose the window size to be large enough to capture the majority of local LD
patterns, some LD structures, particularly near the edge, span across windows, which in turn
yield cross-window correlations. To eliminate such correlations, we applied LD pruning in the
eigenlocus space between adjacent windows. Specifically, we calculated Pearson correlations
pjj between decorrelated genotypes x/; and x[,, where j and j' are the indices of projection,
belonging to neighboring windows. For the pairs with |pj]-/| > 0.3, we kept the one yielding a
larger absolute effect size and eliminated the other.

Next, we merged decorrelated effect sizes #); across all windows and defined the 10 x 10
double-partitioning boundaries on intervals of 4; and |77]| The eigenvalues were split to 10
intervals of 1;, equally distributing }; 4; across partitions. The partitions on eigenvalues are
denoted here by s, ..., §;, from the lowest to the highest. Each partition of eigenvalues S, was

sub-partitioned on intervals of

f1;|,» equally distributing 3’ nf across partitions, and split to

partitions Sy 4, ..., Sx10. The partition boundaries of

7};| were defined separately for each partition

11
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of eigenvalues because the distribution of

7);| is dependent on A;. In total, we used 101 partitions
including the partition of genome-wide significant SNPs §,,.
In each partition k, we calculated a partitioned risk score G;;, of training individual i as the

following:

— P
G = Z nj Xij
j€Sk

where k =0 or k € {1...10} x {1...10}. Given the phenotype y; of each individual in the training
cohort, we estimated per-partition shrinkage weights w;, by linear discriminant analysis (LDA)
using the equation (1). Each 7); was reweighted by the shrinkage weight of corresponding
partition to obtain conditional mean decorrelated effects as follows:

E[n; 1 1;] = wiii; forj €S,
Then, we back-transformed the effect sizes from the eigenlocus representation to the original per-
SNP effect space in each window (Supplementary Note).

Because the accuracy of eigenlocus projection declines near the edge of windows, the
overall performance of NPS is affected by the placement of window boundaries relative to
locations of strong association peaks. To alleviate such dependency, we repeated the same NPS
procedure shifting by 1,000, 2,000, and 3,000 SNPs and took the average reweighted effect sizes

across four NPS runs.

Simulation of genetic architecture with dense genome-wide markers. For simulated
benchmarks, we generated genetic architecture with 5 million dense genome-wide markers from
the 1000 Genomes Project. We kept only SNPs with MAF > 5% and Hardy-Weinberg equilibrium
test p-value > 0.001. We used EUR panel (n=404) to populate LD structures in simulated genetic
data. Due to the limited sample size of the LD panel, we regularized the LD matrix by applying
Schur product with a tapered banding matrix so that the LD smoothly tapered off to 0 starting
from 150 kb up to 300 kb 2.

Next, we generated genotypes across the entire genome, simulating the genome-wide

patterns of LD. We assume that the standardized genotypes follow a multivariate normal

12
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1 distribution. Since we assume that LD travels no farther than 300 kb, as long as we simulate

2 genotypes in blocks of length greater than 300 kb, we can simulate the entire chromosome

3 without losing any LD patterns by utilizing a conditional multivariate normal distribution as the

4  following. The genotypes for the first block of 1,250 SNPs (average 750 kb in length) were

5  sampled directly out of multivariate normal distribution N(u = 0,2 = D ,)). From the next block,
6  we sampled the genotypes of 1,250 SNPs each, conditional on the genotypes of previous 1,250
7 SNPs. When the genotype of block [ is x, and the LD matrix spanning block [ and [ + 1 is split

8 into submatrices as the following:

9 ( D, Dz,z+1>
D1y Dy

10  then, the genotype of next block [ + 1 follows a conditional MVN as:

11 XXy =x ~ N(# = Dz+1,le_1Xl:Z =Dy — Dl+1,lDl_1Dl,l+1)

12 After the genotype of entire chromosome was generated in this way, the standardized genotype
13 values were converted to allelic genotypes by taking the highest nf? and lowest n(1 — f;)?

14  genotypes as homozygotes and the rest as heterozygotes under the Hardy-Weinberg equilibrium.
15 n is the number of simulated samples, and f; is the allele frequency of SNP j. This MVN-based
16  simulator can efficiently generate a very large cohort with realistic LD structure across the

17 genome and guarantees to produce homogenous population without stratification.

18 We simulated three different sets of genetic architecture: point-normal mixture, MAF

19 dependency and DNase | hypersensitive sites (DHS). The point-normal mixture is a spike-and-
20 slab architecture in which a fraction of SNPs have normally distributed causal effects g; as below:
21 B; ~pN(0,1) + (1 - p)é,

22 where p is the fraction of causal SNPs being 1, 0.1 or 0.01% and &, is a point mass at the effect

23 size of 0. For the MAF-dependent model, we allowed the scale of causal effect sizes to vary

24 across SNPs in proportion to (fj(l - f]-))“ with @ = —0.25 2! as follows:

25 B~ N(0.(f(1-1£))) + 1 -p)é,

13
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Finally, for the DHS model, we further extended the MAF-dependent point-normal architecture to
exhibit clumping of causal SNPs within DHS peaks. Fifteen per cents of simulated SNPs were
located in the master DHS sites that we downloaded from the ENCODE project. We assumed a
five-fold higher causal fraction in DHS (pps) compared to the rest of genome in order to simulate
the enrichment of per-SNP heritability in DHS reported in the previous study 2. Specifically, B;

was sampled from the following distribution:

Pous N (0,(f;(1 = £,))") + (1 = pous)8o  f SNP jis in DHS

% PousN (0, (fj(l - fj))a) + (1 - %po) 8o otherwise

~

J

In each genetic architecture, we simulated phenotypes for discovery, training and
validation populations of 100,000, 50,000 and 50,000 samples, respectively, using a liability
threshold model of the heritability of 0.5 and prevalence of 0.05. In the discovery population, we
obtained GWAS summary statistics with Plink by testing for the association with the total liability
instead of case/control status; this is computationally easier than to generate a large case/control
GWAS cohort directly, and the estimated effect sizes are equivalent. With the prevalence of 0.05,
statistical power of quantitative trait association studies using the total liability is roughly similar to
those of dichotomized case/control GWAS studies of same sample sizes #3. For the training
dataset, we assembled a cohort of 2,500 cases and 2,500 controls by down-sampling controls out
of the simulated population of 50,000 samples. The validation population was used to evaluate
the accuracy of prediction model in terms of R? of the liability explained and Nagelkerke’s R? to

explain case/control outcomes.

GWAS summary statistics. GWAS summary statistics are publicly available for phenotypes of
breast cancer 225, inflammatory bowel disease (IBD) %5, type 2 diabetes (T2D) 27 and coronary
artery disease (CAD) ?°. These GWAS summary statistics were based only on Caucasian
samples with an exception of CAD, for which 13% of discovery cohort comprised of non-

European ancestry.
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UK Biobank. UK Biobank samples were used for training and validation purposes. Case and
control samples were defined as follows. Breast cancer cases were identified by ICD10 codes of
diagnosis. Controls were selected from females who were not diagnosed with or did not self-
report history of breast cancer. We excluded individuals with history of any other cancers, in situ
neoplasm or neoplasm of unknown nature or behavior from both cases and controls. For IBD, we
identified case individuals by ICD10 or self-reported disease codes of Crohn’s disease, ulcerative
colitis or IBD. Controls were randomly selected excluding participants with history of any auto-
immune disorders. For T2D, cases were identified by ICD10 diagnosis codes or by questionnaire
on history of diabetes combined with the age of diagnosis over 30. For early-onset CAD, case
individuals were identified by ICD10 codes of diagnosis or cause of death. The early-onset was
determined by the age of heart attack on the questionnaire (< 55 for men and < 65 for women).
Individuals with history of CAD were excluded from controls regardless of the age of onset. The
latest CAD summary statistics include UK Biobank samples in the interim release; thus, to avoid
sample overlap, we used only post-interim samples, which were identified by genotyping batch
IDs.

For genotype QC, we filtered out SNPs with MAF below 5% or INFO score less than 0.4.
We also excluded tri-allelic SNPs and InDels. We discarded SNPs if MAFs deviate by more than
0.1 between UK Biobank and GWAS discovery cohorts.

For all phenotypes, we filtered out participants who were retracted, not from white British
ancestry, or had indication of any QC issue in UK Biobank. We included only samples which were
genotyped with Axiom array. Related samples were excluded to avoid potential confounding.
Controls were down-sampled to meet the case to control ratio of 1:1. The selected samples were
randomly split to training and validation cohorts. Because of case/control ascertainment, we
determined the 5% cut-off in polygenic risk score distribution indirectly by over-sampling control

samples while accounting for the known prevalence of disease in UK Biobank (1,000 iterations).

Partners Biobank. We used Partners Biobank 3 to evaluate the accuracy of prediction models in

an independent validation cohort. These genotyping data were previously generated using the

15
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MEGA-Ex array. Markers with monomorphic allele frequency, complementary alleles, less than
99.5% genotyping rate, or deviation from Hardy-Weinberg equilibrium (P < 0.05) were removed.
Then, statistical imputation was conducted to infer genotypes at missing markers using Eagle
v2.4 and IMPUTE v4 on the reference panel (1000 Genomes Phase 3). Excluding samples of
non-European ancestry, a total of 16,839 samples from US white population were available for
use. Participants with breast cancer, IBD, T2D and CAD were identified using a phenotype query
algorithm with the PPV parameter of 0.90 4. To obtain early-onset CAD, both cases and controls
were restricted to men with age <55 and women with age < 65. Since the definition of early-onset
CAD is sex-dependent, we included the sex covariate in the genetic risk model for CAD. The

coefficient of sex covariate was estimated in the training cohort.

LDPred. The accuracy of LDPred was evaluated in simulated and real datasets using the default
parameter setting. The underlying causal fraction parameter was optimized using the training
cohort, which is available as individual-level genotype data. Specifically, the causal SNP fractions
of 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003 and 0.0001 were tested in the training data, and
the prediction model yielding the highest prediction R? was selected for validation. The training
genotypes were also used as a reference LD panel.

LDPred accepts only hard genotype calls as inputs. Thus, for real data we converted
imputed allelic dosages to most likely genotypes after filtering out SNPs with genotype probability
< 0.9. SNPs with the missing rate > 1% or deviation from Hardy-Weinberg equilibrium (P < 10%)
were also excluded. Prediction models were trained using only SNPs which passed all QC filters
in both training and validation datasets, as recommended by the authors. SNPs with
complementary alleles were excluded automatically by LDPred. In simulations, all genotypes
were generated as hard calls, and complementary alleles were avoided; thus, the exactly same
set of SNPs were used for both LDPred and NPS. In a subset of datasets, we further examined
the accuracy of LDPred when it was run only with directly genotyped SNPs. In simulated
datasets, we assumed that both training and validation cohorts were genotyped with Illlumina

HumanHap550v3 array, restricting the genotype data to 490,504 common SNPs. For UK Biobank
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datasets, prediction models were constrained to up to 354,110 common SNPs in UK Biobank
Axiom array. In the case of validation in Partners Biobank, we did not consider running LDPred
only with genotyped SNPs since too few SNPs were directly genotyped in both UK Biobank and

Partners Biobank.

LD Pruning and Thresholding. LD Pruning and Thresholding (P+T) algorithm was evaluated
using PRSice software in the default setting *°. In real data, imputed allelic dosages were
converted to hard-called genotypes similarly as for LDPred. A training cohort was used as a
reference LD panel and to optimize pruning and thresholding parameters. The best prediction

model suggested by PRSice was evaluated in validation cohorts.

References

1. Grundy, S. M. et al. 2018
AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on
the Management of Blood Cholesterol: A Report of the American College of
Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am.
Coll. Cardiol. (2018). doi:10.1016/j.jacc.2018.11.003

2. Goddard, M. E. & Hayes, B. J. Mapping genes for complex traits in domestic animals and
their use in breeding programmes. Nat Rev Genet 10, 381-391 (2009).
3. Falke, K. C. et al. The spectrum of mutations controlling complex traits and the genetics of

fitness in plants. Curr Opin Genet Dev 23, 665-671 (2013).
4. Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. Prediction of Total Genetic Value
Using Genome-Wide Dense Marker Maps. (2001).

5. Ripatti, S. et al. A multilocus genetic risk score for coronary heart disease: case-control
and prospective cohort analyses. Lancet 376, 1393—1400 (2010).
6. Wacholder, S. et al. Performance of common genetic variants in breast-cancer risk

models. N. Engl. J. Med. (2010). doi:10.1056/NEJMo0a0907727

7. Wray, N. R., Goddard, M. E. & Visscher, P. M. Prediction of individual genetic risk to
disease from genome-wide association studies. Genome Res. 17, 1520-8 (2007).

8. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human
height. Nat. Genet. 42, 5659 (2010).

9. Golan, D. & Rosset, S. Effective Genetic-Risk Prediction Using Mixed Models. Am. J.
Hum. Genet. 95, 383-393 (2014).

10. Speed, D. & Balding, D. J. MultiBLUP: improved SNP-based prediction for complex traits.
Genome Res. 24, 1550-1557 (2014).

11. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with bayesian sparse linear
mixed models. PLoS Genet. 9, e1003264 (2013).

12. Chatterjee, N. et al. Projecting the performance of risk prediction based on polygenic
analyses of genome-wide association studies. Nat. Genet. 45, 400-5, 405e1-3 (2013).

13. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and
bipolar disorder. Nature 460, 748—752 (2009).

14. Stahl, E. a et al. Bayesian inference analyses of the polygenic architecture of rheumatoid
arthritis. Nat. Genet. 44, 483-9 (2012).

15. Chatterjee, N. et al. Projecting the performance of risk prediction based on polygenic
analyses of genome-wide association studies. Nat Genet 45, 400-5, 405e1-3 (2013).

17


https://doi.org/10.1101/370064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/370064; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

OO0~ WN KW —

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

aCC-BY-NC-ND 4.0 International license.

Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and
bipolar disorder. Nature 460, 748-52 (2009).

Shi, J. et al. Winner’'s Curse Correction and Variable Thresholding Improve Performance
of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level
Data. PLoS Genet 12, e1006493 (2016).

Vilhjalmsson, B. J. et al. Modeling Linkage Disequilibrium Increases Accuracy of
Polygenic Risk Scores. Am J Hum Genet 97, 576-592 (2015).

Goddard, M. E., Wray, N. R., Verbyla, K. & Visscher, P. M. Estimating Effects and Making
Predictions from Genome-Wide Marker Data. Stat. Sci. 24, 517-529 (2009).

Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify
individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219-1224
(2018).

Speed, D., Cai, N., Johnson, M. R., Nejentsev, S. & Balding, D. J. Reevaluation of SNP
heritability in complex human traits. Nat. Genet. 49, 986-992 (2017).

Zeng, J. et al. Signatures of negative selection in the genetic architecture of human
complex traits. Nat. Genet. 50, 746—753 (2018).

Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across
11 common diseases. Am. J. Hum. Genet. 95, 535-52 (2014).

Michailidou, K. et al. Genome-wide association analysis of more than 120,000 individuals
identifies 15 new susceptibility loci for breast cancer. Nat. Genet. 47, 373-380 (2015).
Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature
551, 92-94 (2017).

Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel
disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979-986
(2015).

Scott, R. A. et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in
Europeans. Diabetes 66, 2888-2902 (2017).

Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data.
Nature 562, 203—209 (2018).

Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci
for coronary artery disease. Nat. Genet. 49, 1385-1391 (2017).

Karlson, E. et al. Building the Partners HealthCare Biobank at Partners Personalized
Medicine: Informed Consent, Return of Research Results, Recruitment Lessons and
Operational Considerations. J. Pers. Med. 6, 2 (2016).

Riglin, L. et al. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood:
a population-based cohort study. The Lancet Psychiatry 4, 57—-62 (2017).

Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14,
507-15 (2013).

Martin, A. R. et al. Human Demographic History Impacts Genetic Risk Prediction across
Diverse Populations. Am. J. Hum. Genet. 100, 635-649 (2017).

Boyle, E. A, Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From
Polygenic to Omnigenic. Cell 169, 1177-1186 (2017).

Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits
shows action of negative selection. Nat. Genet. 49, 1421-1427 (2017).

Hu, Y. et al. Leveraging functional annotations in genetic risk prediction for human
complex diseases. PLoS Comput. Biol. 13, 1-16 (2017).

Hu, Y. et al. Joint modeling of genetically correlated diseases and functional annotations
increases accuracy of polygenic risk prediction. PLoS Genet. 13, 1-22 (2017).

Zeng, P. & Zhou, X. Non-parametric genetic prediction of complex traits with latent
Dirichlet process regression models. Nat. Commun. 8, 1-11 (2017).

Efron, B. Empirical bayes estimates for large-scale prediction problems. J. Am. Stat.
Assoc. 104, 1015-1028 (2009).

So, H. C. & Sham, P. C. Improving polygenic risk prediction from summary statistics by an
empirical Bayes approach. Sci. Rep. 7, 1-11 (2017).

Gianola, D., Fernando, R. L. & Stella, A. Genomic-Assisted Prediction of Genetic Value
with Semiparametric Procedures. Genetics 173, 1761-1776 (2006).

18


https://doi.org/10.1101/370064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/370064; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

— p—

— OO0 NP WN—

42.

43.

44,

45.

aCC-BY-NC-ND 4.0 International license.

Cai, T. T., Zhang, C. H. & Zhou, H. H. Optimal rates of convergence for covariance matrix
estimation. Ann. Stat. 38, 2118-2144 (2010).

Yang, J., Wray, N. R. & Visscher, P. M. Comparing apples and oranges: Equating the
power of case-control and quantitative trait association studies. Genet. Epidemiol. 34,
254-257 (2010).

Gainer, V. S. et al. The Biobank Portal for Partners Personalized Medicine: A Query Tool
for Working with Consented Biobank Samples, Genotypes, and Phenotypes Using i2b2. J.
Pers. Med. 6, (2016).

Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: Polygenic Risk Score software.
Bioinformatics 31, 1466—1468 (2015).

19


https://doi.org/10.1101/370064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/370064; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1 Table 1. Comparison of prediction accuracy in simulated genetic architecture.

R? gain over
% causal SNPs Method R%nagelkerke h? explained (%) P+T LDPred
P+T 0.050 14.8
1% LDPred 0.068 20.6
NPS 0.078 23.4 1.55 * 1.15 *
P+T 0.136 40.8
0.1% LDPred 0.080 23.0
NPS 0.167 47.8 1.23 * 1.42 *
P+T 0.213 61.4
0.01% LDPred 0.153 (0.268)* 43.8 (74.6)*
NPS 0.315 88.8 1.48 * 1.94 *
3
4 Non-parametric shrinkage (NPS) is more robust and accurate than Pruning and Thresholding (P+T) and
5 Bayesian parametric method (LDPred). The simulations incorporate the dependency of heritability on
6 minor allele frequency and clumping of causal SNPs in known DHS elements. The heritability was 0.5,
7 and the prevalence was 5%. The number of markers was 5,012,500. The GWAS sample size was
8 100,000. Prediction models were optimized in the training cohort of 2,500 cases and 2,500 controls. R? of
9  prediction was measured in the validation cohort of 50,000 samples. The h? explained stands for the

10 proportion of heritability on the liability scale explained by polygenic scores. The star (*) indicates a

11 significant improvement in Nagelkerke’s R? (paired t-test). '"The accuracy of LDPred varies widely

12 depending on the convergence of prediction model; thus, we report the maximum R? in parenthesis as
13 well as the average performance.
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1 Table 2. Accuracy of polygenic prediction in real data.

2
Training Validation R? gain over
Discovery GWAS (UK Biobank) (UK Biobank) Method  R%ygg Tail OR P+T LDPred
P+T 0.051 2.28
Breast Cancer 2015
(N=~120,000) LDPred  0.061 2.33
NPS 0.060 2.50 1.19* 0.98
N=3,956/3,956 N=3,957/3,957
P+T 0.064 2.25
Breast Cancer 2017
(N=~230,000) LDPred  0.059 2.54
NPS 0.085 2.86 1.33* 144*
Inflammatory Bowel P+T 0.085 2.85
Disease N=2,483/2,483 N=2,482/2,482 LDPred 0.076 2.71
(N="35,000) NPS 0094  3.19 111 1.24*
P+T 0.057 2.29
Type 2 Diabetes _ _
(N=~160,000) N=7,298/7,298 N=7,298/7,298 LDPred 0.081 2.78
NPS 0.094 2.93 1.65* 1.16*
3
4 Non-Parametric Shrinkage (NPS) outperforms both Pruning and Thresholding (P+T) and LDPred in real
5 data. Both training and validation cohorts were sampled from UK Biobank. The tail Odds Ratio (OR)
6  stands for the odds ratios of cases over controls at the 5% tail in polygenic score distribution compared to
7  the rest. The star (*) indicates a significant improvement in Nagelkerke's R? (R?nag) by bootstrapping.
8
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1 Table 3. Accuracy of polygenic prediction in independent validation cohorts.
2
Training Validation R? gain over
Discovery GWAS (UK Biobank) (Partners) Method R’v,, Tail OR P+T LDPred
P+T 0.016 1.56
Breast Cancer 2017
(N=~230,000) N=3,956/3,956 N=754/8,324 LDPred 0.015 1.78
NPS 0.024 2.08 1.52* 164*
Inﬂammatory P+T 0.050 3.57
Bowel Disease N=2,483/2,483 N=839/16,000 LDPred 0.038 3.07
(N="35,000) NPS 0057  3.81 115 1.53%
P+T 0.016 1.78
Type 2 Diabetes _ B
(N=~160,000) N=7,298/7,298 N=2,026/14,813 LDPred 0.024 1.81
NPS 0.029 2.04 1.84* 1.20*
Coronary Artery P+T 0.020 3.05
Disease N=2,773/2,773 N=268/7,107 LDPred 0.016 2.22
(N=~330,000) NPS 0019  3.27 094 119
3
4 Non-Parametric Shrinkage (NPS) outperforms both Pruning and Thresholding (P+T) and LDPred in
5 completely independent validation cohorts from US white population (Partners Biobank). The same
6  cohorts from UK Biobank was used for training prediction models (Table 2). The tail Odds Ratios (OR)
7 stand for the odds ratios of cases over controls at the 5% tail in polygenic score distribution compared to
8  the rest. The star (*) indicates a significant improvement in Nagelkerke's R? by bootstrapping.
9
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Figure 1. Overview of Non-Parametric Shrinkage (NPS).

(a) For unlinked markers, NPS partitions SNPs into K subgroups splitting the GWAS effect sizes (B]-) at
cut-offs of by, by, ..., bg. Partitioned risk scores G;;, are calculated for each partition k and individual i using
an independent genotype-level training cohort. The per-partition shrinkage weights w,, are determined by
the separation of G;;, between training cases and controls. (b) For markers in LD, genotypes and
estimated effects are decorrelated first by a linear projection P in non-overlapping windows of ~2 Mb in
length, and then NPS is applied to the data. The size of black dots indicates genotype frequencies in
population. Before projection, genotypes between SNP 1 and 2 are correlated due to LD (), and thus
sampling errors of estimated effects (Bj | B;) are also correlated between adjacent SNPs. The projection P
neutralizes both correlation structures. The axes of projection are marked by red dashed lines. §; denotes

the true genetic effect at SNP j. N is the sample size of GWAS cohort.
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Supplementary Figure 1. Non-parametric shrinkage (NPS) approximates the conditional mean effects:
infinitesimal genetic architecture. For the infinitesimal architecture, the analytic solution for conditional mean
effect is known and can be reformulated as follows (See ref. ' and Supplementary Note):

E[n; 17;] =—jM’71

where /; is the eigenvalue of eigenlocus projection j, M is the number of markers, N is the sample size of discovery
GWAS, h?is the heritability, and 7; and 7); are the true and estimated genetic effects, respectively, in the eigenlocus
space. Using this theoretical derivation, we examined the accuracy of NPS in simulated datasets. (a) We
partitioned the eigenlocus space into 10 subgroups, S, = {j | by_; < 4; < b}, on intervals of eigenvalues 4; and
then estimated per-partition shrinkage weight w, in each partition k = 1, ...,10 by NPS. In effect, NPS is equivalent
to applying the following linear interpolation in each partition:

Ejesk[ﬂj | ﬁj] ~ wkﬁj

As expected, the estimated w, (red line) closely tracked the theoretical optimum, 4;/(4; + %) (black line).

However, in the partitions of §; and S, ,, w, deviated significantly from theoretical expectation. In S, w, = 0 since
the eigenvectors of smallest eigenvalues are too noisy to estimate using the reference LD panel. §,, (grey box)
spans the widest interval of eigenvalues but consists of the fewest number of SNPs. While it is ideal to apply a finer
partitioning in this interval to better interpolate the theoretical curve, the total numbers of SNPs and independent
projection vectors in the genome are the fundamental limiting factor. (b) To examine the robustness of NPS, we
applied general 10-by-10 double partitioning on A; and #;. The NPS approximated the theoretical conditional mean
effect, E[n; | 1};], across all intervals of |#};| sub-partitioning S;, (See Supplementary Fig. 3 for sub-partitions of

S1, -, Sg). For both (a) and (b), the estimated w;, and their 95% Cls (red shade) were estimated from 5 replicates.

Grey vertical lines indicate partitioning boundaries {b, }. No shrinkage line (green) indicates w, = 1. M=101,296.
N=101,296. h*=0.5.
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Supplementary Figure 2. Non-parametric shrinkage (NPS) approximates the conditional mean effects:
non-infinitesimal genetic architecture. For non-infinitesimal genetic architectures, we do not have an analytic
derivation of conditional mean effect E[n]- | ﬁj]; therefore we empirically estimated the conditional means in
simulations using the true underlying effects n; and true LD structure of the population (Supplementary Note). We
applied general 10-by-10 double partitioning on A; and 7};. Shown here are sub-partitions for (a) partition of largest
eigenvalues §,, and (b) partition of second smallest eigenvalues §, (See Supplementary Fig. 4 for the rest of
partitions). As expected, the true conditional mean (black line) dips for the lowest values of 7j; but approaches no
shrinkage (w, = 1, green line) with increasing values of 7j;. A notable difference between (a) S;, and (b) S, is that
the true conditional mean is very close to no shrinkage for large 7; in the former. This is because eigenvalues are
proportional to the scale of true effects 7;; therefore, with large enough eigenvalues, the sampling error becomes
relatively small and the estimated effect sizes more accurate (Supplementary Note). In all partitions, conditional
mean effects estimated by NPS (red line) stayed very close to the true conditional means. For both (a) and (b), the
estimated w,, and their 95% Cls (red shade) were estimated from 5 replicates. The true conditional means were
estimated over 40 simulation runs. Simulations to obtain true conditional means were completely independent from
simulations to run NPS; only the genetic architecture parameters and underlying LD structure were shared between
two sets of simulations. One percent of SNPs were simulated to be causal with normally distributed effect sizes.

Grey vertical lines indicate partitioning boundaries {b, }. No shrinkage line (green) indicates w, = 1. M=101,296.
N=101,296. h*=0.5.
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Supplementary Figure 3. Non-parametric shrinkage (NPS) approximates the conditional mean effects:
infinitesimal genetic architecture (S, ..., S;). NPS shrinkage weights w,, (red line) were compared to the
theoretical optimum (black line), 4;/(4; + %), under the infinitesimal architecture. §,, ..., S;, indicates the partitions
of lowest to highest eigenvalues of projection (See Supplementary Fig. 1 for §;,). The mean NPS shrinkage
weights (red line) and their 95% Cls (red shade) were estimated from 5 replicates. No shrinkage line (green)
indicates w, = 1. The number of markers M is 101,296. The discovery GWAS size N equals to M. The heritability h?

is 0.5.
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Supplementary Figure 4. Non-parametric shrinkage (NPS) approximates the conditional mean effects:
non-infinitesimal genetic architecture (S;, S5, ..., §5). NPS shrinkage weights w, (red line) were compared to the
true conditional means (black line), which were estimated empirically in 40 simulation runs. §,, ..., §;, indicates the
partitions of lowest to highest eigenvalues of projection (See Supplementary Fig. 2 for §, and §;,). The mean NPS
shrinkage weights (red line) and their 95% Cls (red shade) were estimated from 5 replicates. No shrinkage line
(green) indicates w; = 1. The number of markers M is 101,296. The discovery GWAS size N equals to M. The
heritability h? is 0.5. The fraction of causal SNPs is 1%.
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Supplementary Figure 5. Conditional mean effects estimated by
non-parametric shrinkage in breast cancer dataset (Michailidou et
al. 2017). NPS was run on sliding windows, which were shifted by O,
1,000, 2,000, or 3,000 SNPs. Then, estimated conditional mean effect
curves were averaged over the four shifted NPS runs. §,, ..., S;,
denotes the partitions of lowest to highest eigenvalues of eigenlocus
projection. The weights w, were re-scaled so that the weight w, of
genome-wide significant partition S, becomes 1. Compared to
Michailidou et al. 2015 (Supplementary Fig. 6), Michailidou et al. 2017
has twice the sample size.
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Supplementary Figure 7. Conditional mean effects estimated by
non-parametric shrinkage in inflammatory bowel disease (IBD)
dataset (Liu et al. 2015). NPS was run on sliding windows, shifting by
0, 1,000, 2,000, or 3,000 SNPs. Then, estimated conditional mean

S effect curves were averaged over the four shifted NPS runs. S, ..., S5,
denotes the partitions of lowest to highest eigenvalues of eigenlocus

,‘ // projection. The weights w, were re-scaled so that the weight w, of
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Supplementary Figure 8. Conditional mean effects estimated by
non-parametric shrinkage in type 2 diabetes dataset (Scott et al.
2017). NPS was run on sliding windows, shifting by 0, 1,000, 2,000, or
3,000 SNPs. Then, estimated conditional mean effect curves were
averaged over the four shifted NPS runs. §,, ..., S;, denotes the
partitions of lowest to highest eigenvalues of eigenlocus projection.
The weights w, were re-scaled so that the weight w, of genome-wide
significant partition S, becomes 1.
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Supplementary Figure 9. Conditional mean effects estimated by

non-parametric shrinkage in cardio-vascular disease dataset
(Nelson et al. 2017). NPS was run on sliding windows, shifting by 0,

1,000, 2,000, or 3,000 SNPs. Then, estimated conditional mean effect

curves were averaged over the four shifted NPS runs. §,, ..., 83,
denotes the partitions of lowest to highest eigenvalues of eigenlocus
projection. The weights w, were re-scaled so that the weight w, of

genome-wide significant partition S, becomes 1.
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Supplementary Table 1. Comparison of prediction accuracy in genetic architectures simulating uniformly
distributed causal SNPs.

Genetic Validation R?vag gain over
Architecture o/ caysal SNPs ~ Method  Rwagekerke  Rluiabitiy P+T LDPred
P+T 0.049 0.072
1% LDPred 0.071 0.103
NPS 0.080 0.116 1.63 1.12
(@) P+T 0.141 0.205
Point-Normal 0.1% LDPred 0.071 0.102
(GCTA) NPS 0.156 0.224 1.11 2.19
P+T 0.189 0.273
0.01% LDPred 0.076 0.110
NPS 0.313 0.444 1.66 4.14
P+T 0.050 0.071
1% LDPred 0.073 0.101
NPS 0.090 0.125 1.81 1.23
Pointf::)ormm P+T 0.142 0.206
with 0.1% LDPred 0.076 0.112
MAF dependency NPS 0.160 0.232 1.13 2.11
(@ = —0.25)
P+T 0.199 0.293
0.01% LDPred 0.087 0.126
NPS 0.310 0.444 1.56 3.55

Non-parametric shrinkage (NPS) is more accurate than Pruning and Thresholding (P+T) and Bayesian parametric
method (LDPred). Here, two sets of Point-Normal architectures were simulated: (a) a spike-and-slab GCTA model
which assumes the independence of heritability on minor allele frequency (MAF) and (b) an architecture
incorporating the dependency of heritability on MAF (¢ = —0.25). Under each model and for each causal fraction,
three instances of genetic architecture were generated. Recent studies have found that low frequency SNPs
contribute less heritability than previously expected under no dependency ?2. Low-frequency SNPs tend to be
captured by eigenvectors of small eigenvalues and are challenging to handle with spectral decomposition. More
realistic simulations (b) lowering the overall heritability contribution of low-frequency SNPs made non-parametric
shrinkage prediction slightly more accurate than (a) GCTA models. The heritability was set to 0.5 on the liability
scale, and the prevalence of was 5%. The number of markers was 5,012,500. The GWAS sample size was
100,000. Prediction models were optimized in the training cohort of 2,500 cases and 2,500 controls. The prediction
R? was measured in the validation cohort of 50,000 samples and averaged over three simulations.
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Supplementary Table 2. Accuracy of non-parametric shrinkage in genetic architectures simulating the enrichment
of causal SNPs within DNase | Hypersensitive Sites (DHS).

Eraction of Training Validation
causal SNPs AUC R?Nag RP4iability AUC
0.737 0.074 0.113 0.698
1% 0.731 0.079 0.118 0.704
0.724 0.082 0.119 0.708
0.784 0.171 0.238 0.791
0.793 0.179 0.247 0.799
0.1% 0.777 0.166 0.237 0.787
0.799 0.165 0.240 0.790
0.786 0.157 0.234 0.784
0.799 0.163 0.238 0.787
0.876 0.311 0.444 0.880
0.01% 0.886 0.307 0.443 0.876
0.879 0.326 0.451 0.884

Each row represents the prediction accuracy of non-parametric shrinkage (NPS) in an individual simulation run.
The prediction accuracy of NPS went down slightly compared to simulations of uniformly distributed causal SNPs
(Supplementary Table 1) but still remained robust even if we did not explicitly account for DHS overlap in the
current version of NPS. The causal fractions of 1% and 0.01% were replicated three times each, and the causal

fraction of 0.1% were replicated six times. The simulation incorporates the dependency of heritability on minor allele
frequency (@ = —0.25) and five-fold enrichment of causal SNPs in DHS elements. The heritability was set to 0.5 on
the liability scale with the case prevalence of 5%. The number of markers was 5,012,500. The GWAS sample size

was 100,000. Prediction models were optimized in the training cohort of 2,500 cases and 2,500 controls. The
prediction R? was measured in validation cohorts of 50,000 samples. AUC — Area Under the Curve.
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Supplementary Table 3. Accuracy of LDPred in genetic architectures simulating the enrichment of causal SNPs
within DNase | Hypersensitive Sites (DHS).

Fraction of Input Training Validation
causal SNPs (p) SNPs Estimated p AUC R?nag RLiability AUC
1.0 0.706 0.065 0.100 0.684
1% 1.0 0.695 0.068 0.102 0.689
1.0 0.686 0.071 0.105 0.693
0.3 0.695 0.080 0.108 0.705
1.0 0.690 0.083 0.116 0.711
All 1.0 0.686 0.075 0.107 0.699
0.1% SNPs
(M=5,012,500) 0.3 0.698 0.078 0.118 0.704
1.0 0.693 0.069 0.103 0.694
0.1 0.644 0.098 0.140 0.727
0.3 0.726 0.093 0.141 0.721
0.01% 0.3 0.723 0.098 0.143 0.729
0.01 0.840 0.268 0.373 0.854
1.0 0.699 0.062 0.094 0.680
1% 1.0 0.683 0.062 0.095 0.680
1.0 0.674 0.066 0.095 0.687
0.003 0.756 0.149 0.210 0.773
Genotyped 1.0 0.679 0.079 0.106 0.707
0% SNPs 0.0001 0.729 0.116 0.165 0.715
Only 0.001 0.765 0.138 0.197 0.764
(M=430,504) 0.3 0.718 0.100 0.144 0.730
0.0003 0.753 0.123 0.183 0.753
0.0003 0.786 0.150 0.222 0.780
0.01% 0.001 0.749 0.115 0.166 0.743
0.001 0.816 0.222 0.317 0.827

Each row represents the prediction accuracy of LDPred in an individual simulation run. The causal fractions of 1%
and 0.01% were replicated three times each, and 0.1% was replicated six times. The simulation incorporates the
dependency of heritability on MAF (a = —0.25) and five-fold enrichment of causal SNPs in DHS. The h? was 0.5
with the prevalence of 5%. LDPred was run using all 5,012,500 SNPs (top) as well as a sparse set of 490,504
SNPs taken from HumanHap550v3 genotyping array (bottom). With sparse SNPs, LDPred converged to closer-to-
truth simulated causal fractions and resulted a higher average but lower maximum accuracy than using all markers.
The prediction model reaching the highest accuracy in a training cohort was selected for validation. The estimated
causal fraction (p) represents the causal fraction of best performing prediction model in training. p=1.0 denotes the
infinitesimal model in which all SNPs are causal. The GWAS sample size was 100,000. Prediction models were
optimized in the training cohort of 2,500 cases and 2,500 controls. The prediction R? was measured in validation
cohorts of 50,000 samples. AUC — Area Under the Curve.
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Supplementary Table 4. Accuracy of pruning and thresholding in genetic architectures simulating the enrichment
of causal SNPs within DNase | Hypersensitive Sites (DHS).

True Training Validation
causal SNPs P cutoff # SNPs AUC R%nog R2iability AUC
0.046 57,816 0.680 0.047 0.072 0.662
1% 0.097 92,163 0.661 0.050 0.076 0.664
0.153 121,820 0.664 0.054 0.075 0.670
0.0001 2,082 0.783 0.174 0.244 0.793
0.00015 2,562 0.751 0.133 0.186 0.761
0.1% 0.0002 2,765 0.735 0.119 0.164 0.747
0.0001 2,147 0.795 0.160 0.247 0.787
0.0001 2,296 0.736 0.105 0.163 0.738
0.00015 2,529 0.759 0.128 0.190 0.757
0.0001 1,662 0.827 0.209 0.305 0.823
0.01% 0.0001 1,631 0.807 0.176 0.263 0.797
0.0001 1,553 0.833 0.252 0.352 0.848

Each row represents the prediction accuracy of pruning and thresholding (P+T) algorithm in an individual simulation
run. The causal fractions of 1% and 0.01% were replicated three times each, and the causal fraction of 0.1% were
replicated six times. The simulation incorporates the dependency of heritability on minor allele frequency (a« =
—0.25) and five-fold enrichment of causal SNPs in DHS elements. The heritability was set to 0.5 on the liability
scale with the case prevalence of 5%. The prediction model reaching the highest accuracy in a training cohort was
selected for validation. The P-value cutoff of best-performing model is reported here along with the number of SNPs
after pruning and thresholding. The GWAS sample size was 100,000. Prediction models were optimized in the
training cohort of 2,500 cases and 2,500 controls. The prediction R? was measured in validation cohorts of 50,000
samples. AUC — Area Under the Curve.
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Supplementary Table 5. Accuracy of non-parametric shrinkage applied to real GWAS summary statistics and UK

Biobank datasets.

Training

Validation (UK Biobank)

GWAS #SNPs  AUC

AUC

Tail OR (5%)

Breast Cancer 2015 5,755,927 0.654
Breast Cancer 2017 6,063,180 0.668
IBD 5,784,396 0.676

Type 2 Diabetes 5,827,280 0.661

0.620 [0.61-0.63]
0.643 [0.63-0.66]
0.649 [0.63-0.66]
0.651 [0.64-0.66]

2.50[2.1-3.0]
2.86 [2.4-3.4]
3.19 [2.6-4.0]
2.93[2.6-3.3]

GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD) and type 2 diabetes were obtained
from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015 and Scott et al. 2017, respectively. The training

and validation cohorts were both assembled using UK Biobank samples (see Table 2 for case/control sample

sizes). The tail OR denotes the odds ratio at the 5% highest risk tail compared to the rest of cohort. The 5% cutoff

of polygenic score distribution in the unascertained population was determined by resampling at known disease
prevalence in UK biobank. The numbers in brackets are the 95% confidence intervals for AUC (Area Under the

Curve) and tail OR, which were estimated by bootstrapping.

15


https://doi.org/10.1101/370064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/370064; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Table 6. Accuracy of LDPred applied to real GWAS summary statistics and UK Biobank datasets.

Training Validation (UK Biobank)

GWAS gsnps ~ Cstimatedcausal 0 AUC Tail OR (5%)
fraction

Breast Cancer 2015 3,417,759 0.01 0.630 0.621[0.61-0.63] 2.33[1.9-2.8]
Breast Cancer 2017 3,478,993 0.1 0.621 0.618 [0.61-0.63] 2.54 [2.1-3.0]
IBD 3,396,783 0.03 0.640 0.635[0.62-0.65] 2.71[2.2-3.4]
Type 2 Diabetes 3,451,818 0.01 0.642 0.639 [0.63-0.65] 2.78 [2.5-3.2]
Breast Cancer 2015 351,917 0.3 0.605 0.600 [0.59-0.61] 2.37[2.0-2.9]
Breast Cancer 2017 353,627 1.0 0.606 0.608 [0.60-0.62] 2.09 [1.7-2.5]
IBD 353,325 1.0 0.618 0.620 [0.60-0.64] 2.71[2.2-3.4]
Type 2 Diabetes 354,110 0.1 0.640 0.643 [0.63-0.65] 2.88 [2.5-3.3]

GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD) and type 2 diabetes were obtained
from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015 and Scott et al. 2017, respectively. The training

and validation cohorts were both assembled using UK Biobank samples (see Table 2 for case/control sample
sizes). LDPred was ran using all hard-called common SNPs (top) as well as directly genotyped SNPs (bottom).

LDPred runs only with genotypes and automatically excludes complementary alleles; therefore, the number of input

SNPs are fewer than the number of all available imputed SNPs. The estimated causal fraction represents the
causal fraction parameter of best performing prediction model in training cohort. The estimated causal fraction of
1.0 denotes the infinitesimal model in which all SNPs are causal. The tail OR denotes the odds ratio at the 5%
highest risk tail compared to the rest of cohort. The 5% cutoff of polygenic score distribution in the unascertained
population was determined by resampling at known disease prevalence in UK biobank. The numbers in brackets
are the 95% confidence intervals for AUC (Area Under the Curve) and tail OR, which were estimated by

bootstrapping.
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Supplementary Table 7. Accuracy of pruning and thresholding applied to real GWAS summary statistics and UK

Biobank datasets.

Training Validation (UK Biobank)
GWAS P cutoff #SNPs AUC AUC Tail OR (5%)
Breast Cancer 2015 (0.0001 427 0.615 0.611[0.60-0.62] 2.28[1.9-2.7]
Breast Cancer 2017 (0.0003 1,516 0.627 0.625[0.61-0.64] 2.25[1.9-2.7]
IBD 0.0002 621 0.648 0.643[0.63-0.66] 2.85[2.3-3.6]
Type 2 Diabetes  0.0004 691 0.613 0.616[0.61-0.63]  2.29[2.0-2.6]

GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD) and type 2 diabetes were obtained
from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015 and Scott et al. 2017, respectively. The training

and validation cohorts were both assembled using UK Biobank samples (see Table 2 for case/control sample

sizes). The prediction model reaching the highest accuracy in a training cohort was selected for validation. The P-

value cutoff of best-performing model is reported here along with the number of SNPs after pruning and

thresholding. The tail OR denotes the odds ratio at the 5% highest risk tail compared to the rest of cohort. The 5%

cutoff of polygenic score distribution in the unascertained population was determined by resampling at known

disease prevalence in UK biobank. The numbers in brackets are the 95% confidence intervals for AUC (Area Under
the Curve) and tail OR, which were estimated by bootstrapping.
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Supplementary Table 8. Accuracy of non-parametric shrinkage in independent validation cohorts.

Training Validation (Partners Biobank)
GWAS #SNPs  AUC AUC Tail OR (5%)
Breast Cancer 2017 5,755,927 0.654 0.611 [0.59-0.63] 2.08 [1.6-2.7]
IBD 6,063,180 0.668 0.669 [0.65-0.69] 3.81(3.1-4.7]
Type 2 Diabetes 5,784,396 0.676 0.606 [0.59-0.62] 2.04 [1.7-2.4]
CAD 5,741,641 0.698 0.603 [0.57-0.64] 3.27 [2.2-4.7]

The polygenic risk models trained in UK Biobank (Table 2 and Supplementary Table 5) were validated in US white
population (Partners Biobank). GWAS summary statistics for coronary artery disease (CAD) were obtained from
Nelson et al. 2017. See Table 3 for case/control sample sizes of validation cohorts. The tail OR denotes the odds
ratio at the 5% highest risk tail compared to the rest of cohort. The numbers in brackets are the 95% confidence
intervals for AUC (Area Under the Curve) and tail OR, which were estimated by DeLong’s method and
bootstrapping, respectively.
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Supplementary Table 9. Accuracy of LDPred in independent validation cohorts.

Training (UK Biobank)

Validation (Partners Biobank)

GWAS #SNPs Est causal AUC AUC Tail OR (5%)
Breast Cancer 2017 1,261,292 0.1 0.600 0.580 [0.56-0.60] 1.78 [1.3-2.3]
IBD 1,238,654 0.03 0.609 0.639[0.62-0.66] 3.07 [2.5-3.8]

Type 2 Diabetes 1,243,787 0.01 0.618 0.597 [0.58-0.61] 1.81[1.5-2.2]
CAD 1,237,683 0.003 0.715 0.595 [0.56-0.63] 2.22[1.4-3.3]

The polygenic risk models were trained with LDPred in UK Biobank cohorts and validated in US white population
(Partners Biobank). The training cohorts for breast cancer, inflammatory bowel disease (IBD) and type 2 diabetes
are identical to those in Table 2 and Supplementary Table 6. However, the prediction models were reconstructed
by re-running LDPred on the SNPs found in both training and validation cohorts as recommended by the authors.

LDPred runs only with genotypes and automatically excludes complementary alleles; therefore, the number of hard-

called input SNPs are fewer than the number of all available imputed SNPs. The estimated causal fraction
represents the causal fraction parameter of best performing prediction model in training cohort. The estimated
causal fraction of 1.0 denotes the infinitesimal model in which all SNPs are causal. See Table 3 for case/control
sample sizes of validation cohorts. The tail OR denotes the odds ratio at the 5% highest risk tail compared to the
rest of cohort. The numbers in brackets are the 95% confidence intervals for AUC (Area Under the Curve) and tail

OR, which were estimated by DelLong’s method and bootstrapping, respectively.
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Supplementary Table 10. Accuracy of pruning and thresholding in independent validation cohorts.

Training (UK Biobank)

Validation (Partners Biobank)

GWAS P cutoff #SNPs AUC AUC Tail OR (5%)
Breast Cancer 2017 0.00035 801 0.613  0.589[0.57-0.61] 1.56 [1.2-2.1]
IBD 0.0002 331 0.629  0.659[0.64-0.68] 3.57 [2.9-4.4]

Type 2 Diabetes ~ 0.0001 165 0.603  0.577 [0.56-0.59] 1.78 [1.5-2.1]
CAD 0.3878 33,078 0.717 0.612[0.58-0.65] 3.05 [2.1-4.4]

The polygenic risk models were trained with pruning and thresholding algorithm in UK Biobank cohorts and
validated in US white population (Partners Biobank). The training cohorts for breast cancer, inflammatory bowel
disease (IBD) and type 2 diabetes are identical to those in Table 2 and Supplementary Table 7. However, the

prediction models were reconstructed by re-running pruning and thresholding algorithm on the SNPs found in both

training and validation cohorts. The prediction model reaching the highest accuracy in a training cohort was

selected for validation. The P-value cutoff of best-performing model is reported here along with the number of SNPs
after pruning and thresholding. See Table 3 for case/control sample sizes of validation cohorts. The tail OR denotes

the odds ratio at the 5% highest risk tail compared to the rest of cohort. The numbers in brackets are the 95%

confidence intervals for AUC (Area Under the Curve) and tail OR, which were estimated by DeLong’s method and

bootstrapping, respectively.
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Supplementary Note

Decorrelating projection

We split the genome into L non-overlapping windows of m SNPs each. An individual window is
large enough to capture the majority of linkage disequilibrium (LD) patterns except near the edge. For
the sake of simplicity, we assume that LD is confined to each window and there exists no LD across
windows.

In genomic window [ € {1, ..., L}, let X; be an N X m genotype matrix of a discovery cohort and
X be an N’ X m genotype matrix of a training cohort. The sample sizes of discovery and training cohorts
are N and N’, respectively. The genotypes are standardized to the mean of 0 and variance of 1. Let Bl be
an m-dimensional vector of observed effect sizes at all SNPs from the discovery GWAS. B, is also defined
with respect to the standardized genotypes. Let 5; be an m-dimensional vector of true underlying
genetic effects at all SNPs in window [. For convenience, we omit the subscript [ when it is clear from the
context.

The LD matrix D is given by D = %XTX. Let us assume for a moment that D has full rank. In this

case, D is symmetric and positive semi-definite, thus can be factorized by eigenvalue decomposition into
the following form:

D=QAQ"

where @ is an orthonormal matrix of eigenvectors and A is a diagonal matrix of positive eigenvalues. The
extension to rank-deficient LD matrix is straight-forward and will be discussed later.

Now we introduce a linear decorrelating transformation P, which projects summary statistics

and genotypes into a decorrelated space which we call “eigenlocus space.” The projection P is called
“eigenlocus projection” and defined as the following:

Pi= A2 QT (Eq S1)

The effect size estimates # and projected genotypes X'? in the eigenlocus space are obtained by
applying the eigenlocus projection P on GWAS effect sizes B and genotypes X' as follows:

(Eq S2)
X" =Px'"

Distribution of projected genotypes in the eigenlocus space
Let X; be an m-dimensional genotype vector of training sample i in window [. Then, X; follows
the following multivariate normal distribution:

X/~N(0,D)

21


https://doi.org/10.1101/370064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/370064; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Since the projected genotype X:” is derived by applying P on X/ by definition (Eq S2), X{* also follows a
multivariate normal distribution. Specifically, the distribution of X{P

Xi'~N (11_% Q7o (A‘% QT) D (11—% QT)T>
1 1
= N(0,472Q7Q4Q7QA™z) = N(0, )

since D = QAQT and QTQ = I. The projected genotypes in the eigenlocus space are decorrelated with
the covariance of I.

Distribution of effect size estimates in the eigenlocus space
In the discovery GWAS, the estimated effect sizes [? are calculated by linear regression as below:

er—*

p=

where y is an N-dimensional phenotype vector. For convenience, we assume that y is standardized to
the mean of 0 and variance of 1. At this time, we treat genotypes as fixed variables and model the
genetic effects  and residuals € as random. Since y = Xf8 + €,

A

B = XT(X,8+6)—Dﬁ+1XT

where the residual € follows an N-dimensional multivariate normal distribution N(0, gZI). In an
individual window, the genetic effects explain only a small fraction of phenotypic variation, therefore

02 ~ var(y) = 1. The distribution of sampling noise in ,@, namely the distribution ofB given (3, follows:

2

BIB~NDB+ L xro, mxTIX)

1
~ N(DB, ;D)

since D = %XTX. Since the estimated effect size 7j in the eigenlocus space is obtained by applying P on
B by definition (Eq $2), the distribution of 7j given f8 also follows a multivariate normal distribution:

115~N(a7%Q"Dp, A% Q"D (a2 QT)T
1 'N
1 1 1 1
= N (47207 Q4Q"5, 472 @"Q4Q" Q42
N
1 1
- N (AZQT[?,NI) (Eq S3)
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since D = QAQT and QT Q = I. The sampling noise in # is now decorrelated with the covariance of%l.

Hence, the eigenlocus projection P removes correlations in both genotypes and sampling noise of effect
size estimates.

Interpretation of eigenvalues

1
Based on Eq S3, 7} | B approaches to AzQT 8 as the sample size goes to the infinity. Thus, we
define true genetic effect n in the eigenlocus space as:

0= A2Q"p (Eq 54)

Let us assume that the distribution of 8 is symmetric at 0 and independent at each SNP. Then,

E[n;] =E [\/;jqfﬁ] = \/;,-qJTE[ﬁ] =0

and
z 2
varl = |( [1 a78) | - 1o
m
=% ) a% ElpH)
s=1
where the j-th eigenvector q; is (91j -+ 9mj)T. Therefore, the scale of nj, namely, var[nj], is

proportional to eigenvalue A;. Furthermore, in particular when all SNPs have the same variance of per-
SNP effect sizes g7,

var[nj] = A0

since Y4t g2 = 1.

Conditional mean effects under infinitesimal genetic architecture in the eigenlocus space
Under infinitesimal genetic architecture, the conditional mean effect has been analytically
derived by Vilhjalmsson et al.®:

-1

N M A
E[g16] = (yz!+D) B (Eq S5)

under the assumption that D is the LD matrix of full rank. Since

<£I+D)=Q<£I+A)QT

Nh? Nh?
and
M -1 M -1
- — _ T
(w1 +p) =e(gmi+a) e
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we can reformulate Eq S5 as follows:

E[p18] = @(s1+4) " @75 (Eq 56)
o) s (i)
-1

M 1
:Q<W’+A) A1

by the definition of 77 (Eq S2). Hence,

E[ | 7] = A2QTE[B | ] = A2Q"E[B | f]

-1

= AZQ7Q <£1+A) Az
Nh?
M -1

by the definition of n (Eq S4). Therefore, for the eigenlocus projection j defined by 4; and g, the
conditional mean effect is given as the following:

2.
Eln; 1 j] = —51;
4+ Nz

Thus, in infinitesimal architecture, the conditional mean effect E[nj | ﬁj] simplifies to w 7}, where w is
the optimal shrinkage weight and depends only on eigenvalues as follow:

A
M
4+ Nz

w =

General partitioning strategy
In general, we approximate the conditional mean effect E[nj | ﬁj] by piecewise linear
interpolation as follows:

Ejes, [ 1] = wi
where wy, is per-partition shrinkage weight in the eigenlocus space.

In the infinitesimal architecture, w; will depend only on eigenvalues 4;, therefore, partitioning
needs to be done only on intervals of 4;. However, in general, w; depend on both 4; and 7};. Therefore,
in general we need to apply double-partitioning on 4; and 7}; in the eigenlocus space. The intuition
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behind this double-dependency is the following: 1) The scale of true eigenlocus effects, namely var[nj],
is proportional to the eigenvalue 4;. On the other hand, the sampling error, namely 7; | n;, is fixed at
1/N, where N is the sample size of discovery GWAS cohort. Therefore, with increasing eigenvalues,
estimated effects 7j; become more reliable since the scale of ; becomes larger relative to the sampling
error. In contrast, with decreasing eigenvalues, fj; becomes dominated by sampling error. 2) When
underlying genetic architecture has a low polygenicity, i.e. a small proportion of causal SNPs, some of
eigenlocus projection vectors may not involve even a single causal SNP, and in this case, their true
decorrelated effect size n; will be 0. Such non-causal projection will be enriched among small estimates

of ;. Thus, in such a low-polygenic architecture, E[nj | ﬁj] ~ 0 for smaller values of 7};. In contrast, as
the polygenicity approaches the infinitesimal architecture, w; will lose the dependency on 7j; and
become a constant depending only on 4;.

Estimation of shrinkage weights using training data

We rely on a small independent cohort with full genotype information (training cohort) to
estimate the shrinkage weights w. Let us assume that the eigenlocus space is partitioned into K disjoint
subsets, 8, ..., S on intervals of eigenvalues )lj and estimated effects ﬁj. Then, we define a partitioned

risk score Gy, in the eigenlocus space as follows:

Gix = Z flxf;

JESK

Then, the predicted phenotype y; of individual i becomes:

K K
9 = Z E[n; | ;] xf; = Z (Z w1 € 50)’65 = Z Wi Z njxiy | = Z Wi G
k k=1

J j k =1 JESk

by applying piece-wide linear interpolation on E[nj | ﬁj] and changing the order of summation.

For quantitative traits, the per-partition shrinkage weights w;, can be estimated by applying
linear regression to training data. For binary phenotypes, wj can be learned from a linear discriminant
analysis (LDA)-based classifier in the K-dimensional feature space formed by partitioned risk scores G
LDA guarantees the optimal accuracy of classifier when case and control subgroups follow multivariate
normal distributions in the feature space. We claim that the distributions of K-dimensional vector of
partitioned risk scores G; | y; of individual i satisfies the following:

Gi I Vi = 1~ N(.ucaseﬁzcase)

Gi | Vi = 0~ N(.ucontrolﬁzcontrol)
and

anse ~ ZCOTltT‘Ol

where Uqqse AN Ucontror @€ mean partitioned risk scores among cases and controls, respectively, and
Ycase aNd Z.oneror are K X K covariance matrices of partitioned risk scores in each subgroup. This is
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because the partitioned risk scores of cases and controls, namely G;i | y;, follow approximately normal
distributions as long as each partition consists of a sufficient number of eigenloci *. The variance of
partitioned risk scores is approximately equal between cases and controls since G;;, of an individual
partition explains only a small fraction of phenotypic variation on the observed scale in typical GWAS
data °. Furthermore, 245 and Z oniro1 are both approximately diagonal; although in theory, the liability
thresholding effect induces slight non-zero covariance between partitions, this effect is typical small and
negligible.

LDA-derived shrinkage weights can be independently estimated for each partition and simplify
to:

E[Gylyi =1] — E[ Gi| y; = 0]

Eg S8
varl Gl v = 11 + varl Goel y; = 0] (Eq 58)

(Uk =~
The discriminant function is similar when covariates are included °.

Back-conversion from the eigenlocus space to the original SNP space

Let y be an N'-dimensional vector of predicted phenotypes in a training cohort. We construct y
by summing over all projected genotypes multiplied by conditional mean effects in the eigenlocus space
as follows:

L
9= XiPEln |l
=1

where the conditional mean effect E[n, | 7j;] is obtained by non-parametric shrinkage. By the definition
of X;¥ (Eq S2),

- 1
- x (le Bl | r“n])
=1

Note that X; is the genotype matrix of training samples in the original SNP space. Thus, E[n, | j;] can be
converted back to per-SNP effect sizes by the following transformation:

1

Q.A, 2Eln, | ]

Rank deficiency of LD matrix

Even when the LD matrix D is not full rank, it is symmetric and non-negative semi-definite. In this
case, eigenvalue decomposition on D yields only r positive eigenvalues, where 7 is the rank of the
matrix and r < m, and the rest of eigenvalues are 0. Without the loss of generality, we can reorder the
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eigenvalues and corresponding eigenvectors in such a way that only the first r eigenvalues are positive.
We truncate the components corresponding to eigenvalues r + 1, ..., m and reduce the dimension to r.
Specifically, the truncated matrices are defined as the following:

Q=@ -~ 9)

A 0 O
A = ( 0o .. O)
0 0 4,
where A; and q; are the j-th positive eigenvalues and corresponding eigenvectors, respectively. Since Q
and A’ satisfy the following:
D = QIAIQIT
and

1T Ay
e Q=1I
all results we derived in the previous sections hold with Q" and A’ in place of Q and A, respectively.

However, the analysis of infinitesimal model (Eqs S5-57) requires further discussion since it is
non-trivial to generalize to rank deficient D. Note that Eq S5 was derived under the assumption that D

has full rank !, thus cannot be used directly for rank deficient D even though the matrix %I + Dis
always invertible.

We can re-derive the posterior mean effects from joint probability density function of 7 and 7 in
reduced r-dimensional space. Now E[n | 7j] of Eq S7 becomes the following equation:

M _1
Bl 1) = (e +47) 44
Therefore,
5 —x .
E[B 18] = QA ZE | 4]
1/ M -1 1
=@ (gt +a0) 4 (472078)
M Bl
= Q' (gl +4) @78 (Eq59)

Note that this result is not identical to the previous Eq S6, which was derived for full-rank D:

, M o
E[g16] = e(gz1+4) @' (Eq 56)

In Eq S6, M/Nh? term remains for g, 1, ..., ,, Whereas it is truncated in Eq S9.
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Simulations to show that NPS approximates the conditional mean effects

To show that shrinkage weights estimated by NPS approximate conditional mean effects in the
eigenlocus space (Supplementary Figs. 1-4), we simulated genetic architecture with SNPs in LD. The LD
matrix was calculated using the genotypes of the 1000 Genomes Project CEU panel (n=99) for a total of
101,296 SNPs, which were obtained by 10-fold down-sampling of SNPs in [llumina HumanHap550
genotyping array. SNPs with minor allele frequency (MAF) < 5% were filtered out. The genome was
broken down to 2 Mb loci, and SNP-poor loci with less than 40 SNPs were excluded. Overall, a total of
1,236 loci with 82 SNPs on average were used for this simulation. Since the raw LD matrix was calculated
with the reference LD panel of a small sample size, we suppressed spurious long-range LD by setting the
LD between SNPs separated by > 500 kb to 0. For simplicity, we confined LD structure to each locus and
disallowed LD spanning across loci.

We considered two genetic architectures: an infinitesimal model with normally distributed effect
sizes and a non-infinitesimal model for which only 1% of SNPs are casual with normally distributed effect
sizes. The discovery GWAS summary statistics were directly sampled from the following m-dimensional
multivariate normal distribution (MVN) one locus each time:

A

p~N(u=pD,x = %D)

where B and /3 are m-dimensional vectors of true and estimated effect sizes of SNPs in the locus,
respectively, D is a local LD matrix, m is the number of SNPs in the locus, and N is the discovery GWAS
sample size. N was set to equal to the genome-wide number of markers M. The standardized genotypes
of training cohort were also generated from an MVN as follows:

X;~N(u = 0,2 = D)

where X; is an m-dimensional genotype vector of individual i. We generated genotypes for 50,000
individuals and simulated phenotypes under a liability threshold model with the heritability h? of 0.5 and
prevalence of 5%. By down-sampling controls, we assembled a training case/control cohort of 2,500
cases and 2,500 controls.

For this simulation, we ran NPS treating each locus as a single analysis window without averaging
over sliding windows since LD was assumed to be confined in each window. The true underlying LD
matrix D was hidden, and NPS estimated the reference LD from the training cohort. For the infinitesimal
model, the theoretically optimal shrinkage weight wy, is known *:

o M

For the non-infinitesimal model, we do not have analytically known optimal shrinkage, therefore

instead empirically estimated it by regressing conditional mean effects on 7}; with the fixed intercept of
0 as follows:

E[n;|1; € Si] ~wih; +0
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Then, we averaged wj, over 40 runs of simulations under the same genetic architecture parameters.

E[ njln; € Sk] was estimated by taking the average of true decorrelated effects 7; in each partition Sy.
We calculated n; = \/7] q]T-,B using the true genetic effects f and spectral decomposition of true
population LD matrix. To make sure that the consistency between estimated and true mean conditional
effects are not due to shared underlying data, at each simulation run, we re-generated the entire
dataset starting from fresh sampling of 8 but under the same genetic architecture parameters.
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