

Drug susceptibility testing and mortality in patients treated for tuberculosis in high-burden countries

Kathrin Zürcher ^{1 2*}, Marie Ballif ^{1*}, Lukas Fenner ¹, Sonia Borrell ^{2 3}, Peter M. Keller ^{4 5}, Joachim Gnokoro ⁶, Olivier Marcy ⁷, Marcel Yotebieng ⁸, Lameck Diero ^{9 10}, E. Jane Carter ^{9 10}, Neesha Rockwood ^{11 12}, Robert J. Wilkinson ^{11 12 13}, Helen Cox ¹⁴, Nicholas Ezati ^{15 16}, Alash'le G. Abimiku ^{15 16}, Jimena Collantes ¹⁷, Anchalee Avihingsanon ^{18 19}, Kamon Kawkitinarong ¹⁹, Miriam Reinhard ^{2 3}, Rico Hörmke ⁴, Robin Huebner ²⁰, , Sébastien Gagneux ^{2 3*}, Erik C. Böttger ^{4 5*}, Matthias Egger ^{1 21*}, on behalf of the International Epidemiology Databases to Evaluate AIDS (IeDEA)

1 Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland

2 Swiss Tropical and Public Health Institute, Basel, Switzerland

3 University of Basel, Basel, Switzerland

4 Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland

5 Swiss National Center for Mycobacteria, Zurich, Switzerland

6 Centre de Prise en Charge de Recherche et de Formation, Yopougon, Abidjan, Côte d'Ivoire

7 Bordeaux Population Health Research Center Inserm U1219, University of Bordeaux, France

8 The Ohio State University, College of Public Health, Columbus, Ohio, USA

9 Department of Medicine, Moi University School of Medicine, Eldoret, Kenya

10 Department of Medicine, Moi Teaching and Referral Hospital, Eldoret, Kenya

11 Wellcome Centre for Infectious Diseases Research in Africa University of Cape Town, South Africa

12 Department of Medicine, Imperial College, London, W2 1PG UK

13 Francis Crick Institute, London, NW1 1AT UK

14 Division of Medical Microbiology and the Institute for Infectious Disease and Molecular Medicine, University of Cape Town, South Africa

15 Institute of Human Virology, Abuja, Nigeria

16 National Tuberculosis and Leprosy Training Center, Saye, Zaria, Kaduna State, Nigeria

17 Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru

18 HIV-NAT/Thai Red Cross AIDS Research Centre, Bangkok, Thailand

19 Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

20 National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA

21 Centre for Infectious Disease Epidemiology & Research, School of Public Health & Family Medicine, University of Cape Town, South Africa

* equal contribution

Correspondence:

Professor Matthias Egger

Institute of Social and Preventive Medicine (ISPM), University of Bern

Mittelstrasse 43, CH-3012 Bern, Switzerland

Phone: +41 31 631 33 01 Fax: +41 31 631 35 20

E-Mail: matthias.egger@ispm.unibe.ch

Running head: Drug resistant tuberculosis and HIV coinfection

Word count, inserts and supplemental digital content:

Abstract 250 words, main text (including research in context) 3508 words

Inserts: 4 tables, 2 figures, 48 references

Supplemental Digital Content: 4 tables

Sources of support

This research was supported by the Swiss National Science Foundation (grant numbers 153442, 310030_166687 and 174281), the National Institutes of Allergy and Infectious Diseases (NIAID) under award numbers U01 AI096299, U01 AI069919, U01 AI069924, U01 AI069911, U01 AI069907, U01 AI096186, and U01 AI069923, and Swiss National Center for Mycobacteria, University of Zurich, Switzerland.

ABSTRACT

Background: Drug resistance and HIV co-infection are challenges for the global control of tuberculosis.

Methods: We collected *Mycobacterium tuberculosis* isolates from adult patients in Côte d'Ivoire, Democratic Republic of the Congo, Kenya, Nigeria, South Africa, Peru, and Thailand, stratified by HIV status and tuberculosis drug resistance. Molecular or phenotypic drug susceptibility testing (DST) was done locally and at the Swiss tuberculosis reference laboratory. We examined mortality during treatment according to DST results and treatment adequacy in logistic regression models adjusting for sex, age, sputum microscopy and HIV status.

Findings: 634 tuberculosis patients were included; median age was 33.2 years, 239 (37.7%) were female, 272 (42.9%) HIV-positive and 69 (10.9%) patients died. Based on the reference laboratory DST, 394 (62.2%) strains were pan-susceptible, 45 (7.1%) mono-resistant, 163 (25.7%) multidrug-resistant (MDR-TB), and 30 (4.7%) had pre-extensive or extensive drug resistance (pre-XDR/XDR-TB). Results of reference and local laboratories were discordant in 121 (19.1%) cases, corresponding to a sensitivity of 84.3% and a specificity of 90.8%. In patients with drug-resistant tuberculosis, discordant results were associated with increased mortality (risk ratio 1.81; 95% CI 1.07-3.07). In logistic regression, compared to adequately treated patients with pan-susceptible strains, the adjusted odds ratio for death was 4.23 (95% CI 2.16-8.29) for adequately treated patients with drug-resistant strains and 21.54 (95% CI 3.36-138.1) for inadequately treated patients with drug-resistant strains. HIV status was not associated with mortality.

Interpretation: Using a reference laboratory standard, inaccurate DST leading to inappropriate treatment of drug-resistant tuberculosis, but not HIV infection, contributed to mortality.

Funding: National Institutes of Allergy and Infectious Diseases, Swiss National Science Foundation, Swiss National Center for Mycobacteria.

Key words: Tuberculosis, drug resistance, MDR-TB, XDR-TB, mortality, treatment success, low- and middle-income countries.

RESEARCH IN CONTEXT

Evidence before this study

Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) are serious threats to the World Health Organization's End-TB strategy, due to limited access to rapid drug resistance identification and appropriate treatment for patients with MDR-TB or XDR-TB in many high tuberculosis burden countries. We searched PubMed for systematic reviews and original research articles published in any language up to March 31, 2018. We combined terms for "tuberculosis", "drug resistance testing", and "mortality". Several individual studies and systematic reviews have documented the poor outcomes of MDR-TB and pre-XDR/XDR-TB in high-burden countries. Two Cochrane reviews evaluated the accuracy of molecular tests detecting specific mutations associated with resistance, for example the Xpert MTB/RIF, which is recommended by the World Health Organization to detect rifampicin resistance directly from sputum.

Added value of this study

To our knowledge, this is the first multi-country study assessing the accuracy of drug susceptibility testing (DST) in routine settings in high-burden countries by comparing local DST results with those from a tuberculosis reference laboratory, and assessing the impact on mortality. The study showed that the accuracy of local DST in high-burden countries was moderate (sensitivity 84%, specificity 91%). Results from the reference and local laboratories were discordant in about 20% of patients. Mortality during treatment was increased almost two-fold in patients with discordant DST results compared to patients with concordant results. Mortality ranged from 6.0% in adequately treated patients with pan-susceptible strains to 53.3% in inadequately treated patients with drug-resistant strains. In multivariable analyses, associations with mortality changed little after adjustment for sex, age, sputum microscopy result and HIV status. Of note, HIV infection was not associated with mortality during tuberculosis treatment.

Implications of all the available evidence

Drug-resistant tuberculosis is difficult to diagnose and to treat, particularly in high-burden settings, where resources are limited. In these settings, inaccurate DST leading to inappropriate treatment contributes to the high mortality associated with drug-resistant tuberculosis. Access to detailed DST of first- and second-line drugs is required to improve outcomes in patients with MDR-TB and pre-XDR/XDR-TB. Whole genome sequencing is the most promising approach to reach this goal, but much work remains to be done to make this approach feasible and affordable in high-burden countries.

INTRODUCTION

Tuberculosis is a global public health concern. In 2016, an estimated 10.4 million individuals developed active tuberculosis worldwide, of whom an estimated 1.0 million (10%) were HIV-positive [1]. The scale-up of antiretroviral combination therapy (ART) has substantially improved the prognosis of HIV-positive patients [2,3], and reduced the incidence of tuberculosis in this population [4,5]. However, the risk of tuberculosis among HIV-positive patients on ART remains four times higher than among HIV-negative patients [6].

The emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is another threat to the control of tuberculosis [7–9]. In 2016, it was estimated that 4% of the new patients and 19% (up to 48% in Eastern Europe) of previously treated patients had MDR-TB [1]. Treatment of MDR-TB and XDR-TB is challenging due to the longer treatment duration, adverse effects and lower efficacy of second-line drugs [10,11]. Strategies to prevent drug-resistant tuberculosis include surveillance, drug susceptibility testing (DST) and ensuring rapid initiation and completion of full courses of effective treatment regimens [12,13]. Culture-based phenotypic DST is considered the gold-standard, but is time and resource intensive, and too slow to influence decisions on starting treatment [14]. Molecular-based resistance testing offers an alternative to culture-based DST [15]. Xpert MTB/RIF (Cepheid, Sunnyvale, CA, USA) detects resistance to rifampicin directly from sputum and provides results within 1.5 hours [16], while line-probe assays (LPAs) from sputum detect resistance to isoniazid, rifampicin, ethambutol, fluoroquinolones, or second-line injectable drugs (aminoglycosides and capreomycin) and provide results within 1-2 days [15].

We compared the results of resistance testing performed locally in ART and tuberculosis programmes in high tuberculosis burden countries to those from gold

standard phenotypic DST performed in the Swiss reference laboratory, and examined mortality in HIV-positive and HIV-negative tuberculosis patients with concordant and discordant test results.

METHODS

This study was part of a larger research project on the evolution of drug-resistant *Mycobacterium tuberculosis* in the context of HIV co-infection within the International Epidemiology Databases to Evaluate AIDS (IeDEA), a global network of ART programs (see www.iedea.org) [17,18]. Isolates and clinical data were collected from tuberculosis patients in seven high-burden countries in sub-Saharan Africa, Asia and Latin America.

Patient recruitment and data collection

We included adult patients aged 16 years or older who were treated for active pulmonary tuberculosis in Côte d'Ivoire, Democratic Republic of the Congo (DRC), Kenya, Nigeria, South Africa, Peru, and Thailand. All seven countries are defined by the World Health Organization (WHO) as high tuberculosis burden countries, and DRC, Kenya, Nigeria, South Africa and Thailand are also high MDR-TB burden and high HIV/tuberculosis burden countries [19].

HIV-positive tuberculosis patients were recruited from ART clinics participating in IeDEA, HIV-negative patients from tuberculosis clinics serving the same population. Clinics were asked to contribute pulmonary *Mycobacterium tuberculosis* isolates from 25 or more patients within each of the four strata defined by HIV status (positive or negative) and drug resistance (MDR or pan-susceptible). Supplemental Table S1 summarizes the characteristics of participating sites. Clinical data were collected online in French or English using the Research Electronic Data Capture (REDCap) tool [20], including age, sex, country, HIV status, CD4 cell count at start of tuberculosis treatment (if HIV positive), sputum smear microscopy result, risk factors for tuberculosis, type of TB patient as defined by WHO, treatment regimen and outcomes.

Outcomes

Treatment outcomes were defined according to WHO as cured, treatment completed, treatment failure, death, lost to follow-up, transferred to other clinics, ongoing treatment at the time of evaluation or unknown treatment outcome [21]. “Treatment success” included cured patients and patients who completed treatment [21]. The main outcome for this study was mortality during tuberculosis treatment. Outcome data received up to March 31, 2018 were included in analyses.

Drug susceptibility testing

DST was performed locally using liquid or solid cultures or molecular methods: Xpert MTB/RIF or LPAs, such as Genotype MTBDRplus or MTBDRs/ tests (Hain Lifesciences, Germany). The reference laboratory of the Swiss National Center for Mycobacteria, Zurich, Switzerland performed DST using the Mycobacteria Growth Indicator Tube liquid medium system (MGIT, Becton Dickinson, USA) with the following drug concentrations: 0.1 mg/L for isoniazid, 1.0 mg/L for rifampicin, 100.0 mg/L for pyrazinamide, 5.0 mg/L for ethambutol, 1.0 mg/L for amikacin and 0.25 mg/L for moxifloxacin, in line with the critical concentrations recently published by WHO [22].

WHO defines mono-resistance as resistance to one first-line anti-tuberculosis drug (isoniazid, rifampicin, pyrazinamide, or ethambutol); MDR as resistance to isoniazid and rifampicin; pre-XDR as MDR with additional resistance to any fluoroquinolone or one of the second-line injectable drugs (amikacin, capreomycin, or kanamycin); XDR as MDR with additional resistances to any fluoroquinolone and at least one of the second-line injectable drugs [21]. The category “other” drug resistance included any other combination. We defined “pan-susceptible” tuberculosis as no resistance against the six drugs tested at the reference laboratory and any resistance as resistance against at least

one of the tested drugs. First-line regimens (standard treatment) included first-line anti-tuberculosis drugs (isoniazid, rifampicin, pyrazinamide, and ethambutol) and second-line regimens included a combination of first-line and second-line drugs [21,23].

Exposure definition and data analysis

We calculated test accuracy statistics for the diagnosis of any drug resistance. We further classified comparisons between the phenotypic and molecular DST results obtained in the local laboratories and the reference laboratory as follow: concordant results, discordance potentially leading to under treatment, discordance potentially leading to over treatment, and other discordant results. We defined drug regimens received by patients as adequate or inadequate based on the reference DST results, taking WHO and local guidelines into account [21]. For example, adequate treatment included first-line regimens for pan-susceptible or mono-resistant tuberculosis other than rifampicin mono-resistance. Second line-regimens prescribed to rifampicin mono-resistant patients, MDR-TB and pre-XDR/XDR-TB patients were classified as adequately treated according to the reference DST results. Inadequate treatment included first-line regimens given to rifampicin mono-resistant patients, MDR-TB and pre-XDR/XDR-TB patients, or second-line regimens given to pan-susceptible tuberculosis patients and mono-resistant patients other than rifampicin mono-resistance [21]. Supplemental Table S2 shows the classification of regimen adequacy.

We used descriptive statistics to describe patient characteristics by HIV status and levels of drug resistance based on DST performed at the reference laboratory. We examined determinants of mortality using logistic regression. Patients with unknown or missing treatment outcome, ongoing treatment, missing treatment regimen, missing sputum microscopy and “other” drug-resistant tuberculosis were excluded from

regression analyses. Logistic models were adjusted for age, sex, sputum microscopy result and HIV status, and allowed for within-country correlation of standard errors.

Other variables, for example smoking history, diabetes, substance abuse and contact to other tuberculosis patients worsened the fit of the model. For HIV-positive individuals, models were additionally adjusted for CD4 cell count at tuberculosis treatment start. All analyses were done using STATA version 15 (Stata Corporation, College Station, Texas, USA).

Ethical statement

Local institutional review boards or ethics committees approved the study at all participating sites. Informed consent was obtained where requested per local regulations. The study was also approved by the Cantonal Ethics Committee in Bern, Switzerland.

RESULTS

We obtained *Mycobacterium tuberculosis* isolates from 871 patients diagnosed between 2013 and 2016. We excluded 237 patients from analyses of the accuracy of DST, mainly because isolates were contaminated or not viable, and a further 61 patients from analyses of mortality, mainly because treatment was ongoing or outcomes unknown at the time of closing the database (Figure 1).

Characteristics of patients and isolates

The median age of study participants was 33.2 years (interquartile range [IQR] 26.9-42.5 years); 239 (37.7%) were female. The reference laboratory identified 394 (62.1%) pan-susceptible *Mycobacterium tuberculosis* strains, 45 (7.1%) mono-resistant strains, 163 (25.7%) MDR strains, 30 (4.7%) pre-XDR/XDR strains, and 2 (0.3%) strains with other drug resistance profiles (Table 1). Among the 163 patients with MDR-TB, 85 (52.1%) had resistance to rifampicin and isoniazid only, while the remaining patients were additionally resistant to pyrazinamide and/or ethambutol. Among the 24 patients with pre-XDR-TB, resistance to moxifloxacin (n=15) was more frequent than resistance to amikacin (n=9; Table 3). Patients with resistant strains were more likely to receive second-line tuberculosis treatment, and to experience unfavourable treatment outcomes than patients with pan-susceptible strains (Table 1).

A total of 272 (42.9%) tuberculosis patients were HIV-positive, with a median CD4 cell count at the start of tuberculosis treatment of 192 cells/ μ l (IQR 77.5-369 cells/ μ l). Among them, 175 (64.3%) were either on ART at the start of tuberculosis treatment or initiated ART within 3 months; the ART status of the remaining patients was unknown. Compared to HIV-negative individuals, HIV-positive patients were more likely to be female, more likely to have both pulmonary and extrapulmonary disease, and more likely to be patients with recurrent tuberculosis (supplemental Table S3). HIV-

positive patients were also more likely to have a negative sputum smear microscopy result and more likely to have a pan-susceptible *Mycobacterium tuberculosis* infection than HIV-negative patients.

Drug susceptibility testing and treatments

Local laboratories used the Xpert MTB/RIF system, LPAs, phenotypic DST or a combination of these methods to diagnose drug-resistant infections and inform treatment regimens (Table 3, supplemental Table S1). Sensitivity and specificity for the detection of any drug resistance were 84.3% and 90.8%, respectively. The likelihood ratio was 9.2 (95% CI 6.2-13.7) for a DST indicating resistance positive test and 0.17 (0.14-0.22) for a negative test; accuracy was 86.8% (83.9-89.3%).

Results from the reference laboratory and local laboratories were concordant for 513 (80.9%) and discordant for 121 (19.1%) patients. There were 23 (3.6%) discrepancies potentially leading to under treatment, 67 (10.6%) discordant results potentially leading to over treatment, and 31 (4.9%) other discordances (Table 3, supplementary Table S2). When analysing the treatments received, they were adequate in 491 of 507 (96.8%) patients with concordant DST results compared to 94 of 121 patients (77.7%) with discordant results ($P<0.001$).

Mortality

After excluding 61 (9.6%) patients with unknown treatment outcomes, missing data or “other” drug resistance (Figure 1), mortality ranged from 9.9% among patients with concordant DST results to 40.9% among patients with discordant results potentially leading to under treatment. Mortality was 6.4% in pan-susceptible tuberculosis, 25.6% in mono-resistant tuberculosis, 16.4% in MDR-TB and 34.5% in pre-XDR/XDR-TB cases (Figure 2, Table 3). In patients with pan-susceptible *Mycobacterium tuberculosis* strains, mortality was 5.9% (18/307) if DST results were concordant between the

reference laboratory and local laboratories and 10.0% (6/60) if DST results were discordant ($P=0.24$). In patients with drug-resistant strains, mortality was 17.0% (29/171) if DST results were concordant, but 30.8% (16/52) if DST results were discordant ($P=0.030$). The risk ratio comparing discordant with concordant results was 1.81 (95% CI 1.07-3.07), and the population attributable fraction 16.0%. Mortality increased from 5.95% (20/336) in adequately treated patients with pan-susceptible tuberculosis to 53.3% (8/15) in patients with drug-resistant strains receiving inadequate treatment (Figure 2, Table 3).

In multivariable logistic models adjusted for sex, age, sputum microscopy result and HIV status, discordant DST results continued to be associated with increased mortality compared to concordant DST results (Table 4). Compared to concordant DST results, the adjusted odds ratio (aOR) of death was 9.53 (95% CI 1.04-87.32) for patients with discordant results potentially leading to under treatment. Similarly, drug resistance was associated with higher mortality compared to pan-susceptible tuberculosis. The aOR was 4.67 (95% CI 2.59-8.41) for any type of drug resistance, and 11.3 (95% 2.41-53.3) for pre-XDR/XDR (Table 4). Finally, compared to adequately treated patients with pan-susceptible strains, the aOR for death was 4.23 (95% CI 2.16-8.29) for adequately treated patients with resistant strains and 21.54 (95% CI 3.36-138.08) for patients with resistant strains receiving inadequate regimens (Table 4). Sex, positive sputum smear microscopy and HIV status were not associated with the odds of death. The results from univariable models were similar to the aOR from multivariable models (Table S4). When restricting the analysis to HIV-positive patients, mortality was higher among patients with CD4 cell counts <50 cells/ μ L: the aOR was 3.50 (95% CI 1.27-9.64) compared to patients with higher CD4 counts at tuberculosis treatment start.

DISCUSSION

This study of patients treated for drug-resistant or drug-susceptible tuberculosis in seven high tuberculosis burden countries showed that the accuracy of DST testing in routine care was moderate, with discordant results from local DST compared to phenotypic DST in a reference laboratory in about 20 percent of patients. Discordant results led to inadequate treatment and contributed to the excess mortality associated with drug-resistant tuberculosis. As expected, mortality increased with the degree of drug resistance and was higher in patients who received inadequate treatment regimens. To our knowledge, this is the first study to assess the accuracy of DST in real world, routine settings and to examine the impact of inaccurate results on mortality. Our findings support the recent call for a precision medicine approach to the treatment of drug-resistant tuberculosis, guided by detailed DST, to replace the standardised, empirical combination regimens used in many high tuberculosis burden low- and middle-income countries [24].

At present, WHO recommends that “Xpert MTB/RIF should be used as the initial diagnostic test in individuals suspected of having MDR-TB or HIV-associated tuberculosis” [25], based on a Cochrane review of test accuracy studies in adults with suspected rifampicin-resistance or MDR-TB [26]. In line with this recommendation, Xpert MTB/RIF was the most commonly used test in our study sites. The Cochrane review reported a pooled sensitivity of 95%, based on 17 studies and 555 patients with rifampicin-resistant strains [26]. The pooled specificity was 98%. We examined accuracy of DST strategies at the level of the local laboratories in high-burden countries, in routine care settings, rather than by evaluating a single test. Our estimates of sensitivity and specificity, for the detection of any drug resistance, were considerably lower (84.3% and 90.8%, respectively), despite the fact that, in some patients, a

combination of more than one test was used (generally Xpert MTB/RIF followed by LPA or by culture).

There are concerns both about false-negative and false-positive Xpert MTB/RIF test results, and a policy of confirmatory testing has been introduced in South Africa and Brazil [27,28]. The discordant DST results that potentially led to under treatment of drug-resistant tuberculosis (false negative for resistance) were mainly based on locally performed cultures, Xpert MTB/RIF tests, or a combination of the two. Of note, the recently developed Xpert MTB/RIF Ultra assay has been shown to improve detection of rifampicin resistance [29]. Culture-based tests dominated the discordances that potentially led to over treatment, while Xpert MTB/RIF dominated in the category of discordances with unclear clinical significance. We acknowledge that some discordances could be explained by mixed infections, heteroresistance, or minority resistant populations [30,31].

LPAs were rarely used in our study, possibly because they have been widely replaced by Xpert MTB/RIF, which is easier to use and provides results in a shorter time. In addition, LPA suffer from suboptimal accuracy for isoniazid resistance, and WHO recommends that culture-based DST for isoniazid should still be used, particularly in patients with suspected MDR-TB where the LPA result does not detect isoniazid resistance [32]. In one case, the local laboratory detected resistance to ethambutol but this could not be confirmed in the reference laboratory: DST is challenging for ethambutol and less reproducible [33].

Data on treatment outcomes in drug-resistant tuberculosis are scarce, particularly for sub-Saharan Africa. A recent systematic review of treatment outcomes in MDR-TB included data on mortality among adults from seven studies from sub-Saharan Africa, six from South Africa and one from Lesotho [34]. In these studies, mortality during

tuberculosis treatment ranged from 12.4% in patients with MDR-TB treated in a referral hospital in the Western Cape, South Africa [35], to 45.8% in a study of XDR-TB patients from three South African provinces [36]. Our results extend these data to other countries in the region, and add further data for Peru and Thailand. Furthermore, our study confirms the poor outcome in patients with INH mono-resistant tuberculosis who are treated with first-line regimens (as recommended by WHO during the study period [37]), in line with a study from Durban, South Africa [38] and a recent systemic review and meta-analysis [39].

In patients co-infected by HIV, the treatment of drug-resistant tuberculosis is challenging for several reasons, including the poorer absorption of drugs [40], the risk of the immune reconstitution inflammatory syndrome (IRIS) [41], or interactions between antiretroviral and second-line tuberculosis drugs [42–44]. In contrast to previous studies from South Africa, which reported higher mortality at end of treatment in HIV-positive patients with MDR-TB compared to HIV-negative MDR-TB patients [35,45], we found no association with HIV infection, although confidence intervals were wide. The median CD4 cell count of HIV-positive patients was considerably higher in our study (192 cells/ μ L) than in the South African studies [35,45], which may explain the discrepant results. A study from Lesotho [46] also found little evidence for a difference in mortality between HIV-positive patients (median CD4 cell count 185 cells/ μ L) and HIV-negative patients. Finally, for patients with XDR-TB, treatment outcomes have been uniformly poor in previous studies, irrespective of HIV status [36].

Our study has several limitations. We sampled eligible patients within strata defined by drug resistance and HIV infection, and therefore could not estimate the incidence or prevalence of drug-resistant tuberculosis in HIV-positive or HIV-negative patients. In previous studies, HIV infection has not been consistently associated with drug

resistance [27], but it is clear that in regions with a high-burden of HIV, the majority of patients with MDR-TB will be co-infected with HIV [27]. Although we initially exceeded the planned sample size, about a quarter of patients had to be excluded from analyses of drug susceptibility, mainly due to lack of growth or contamination of cultures, and about a third was excluded from the analysis of mortality outcomes, mainly because vital status was unknown at database closure. The reference laboratory tested resistance against six drugs, and we will have missed resistance against other drugs used, for example rifabutin, kanamycin, ethionamide or levofloxacin. Further, the presence of different subpopulations of *Mycobacterium tuberculosis* in isolates tested at the local sites vs reference laboratory might have introduced variability in phenotypic or molecular DST testing [47].

In conclusion, our study shows that the accuracy of DST testing in routine care in high-burden countries was limited and that inaccurate results led to inadequate treatment and contributed to the excess mortality associated with drug-resistant tuberculosis. Our results support the notion that access to detailed DST of first- and second-line drugs at treatment initiation is required to improve outcomes in patients with MDR-TB and pre-XDR/XDR-TB [27]. Whole genome sequencing is the most promising approach to reach this goal, but much work remains to be done to make this approach feasible and affordable in low- and middle-income countries [27]. In particular, direct testing of sputum samples should become routine to circumvent lengthy mycobacterial cultures [39]. A standardised approach for the interpretation of drug resistance conferring mutations has recently been developed [48]. In the meantime, the capacity for the phenotypic and molecular DST testing recommended by WHO should be increased to ensure the most adequate treatment of drug-resistant tuberculosis in these settings.

ACKNOWLEDGEMENTS

We thank all sites who participated in this survey and the patients whose data were used in this study. We are grateful to the Tuberculosis Working Group of IeDEA for helpful discussions. We also would like to thank all regional data centers, who contributed to the coordination of the study. RJW is supported by the Francis Crick Institute (10218), which is funded by the Wellcome Trust, Cancer Research UK, and Research Councils UK. He also receives support from the Wellcome Trust (104803, 203135). HC is supported by a Wellcome Trust fellowship and reports grants from UK Medical Research Council and the National Research Foundation of South Africa.

CONFLICTS OF INTEREST

AA has received honoraria fees from Jensen-Cilag, Gilead and Bristol-Myers Squibb. All other authors have no conflicts of interest to declare.

REFERENCES

1. World Health Organization. Global Tuberculosis Report 2017. Geneva: 2017.
2. Egger M, Hirscher B, Francioli P, et al. Impact of new antiretroviral combination therapies in HIV infected patients in Switzerland: prospective multicentre study. *BMJ* **1997**; 315:1194–1199.
3. May M, Boulle A, Phiri S, et al. Prognosis of patients with HIV-1 infection starting antiretroviral therapy in sub-Saharan Africa: a collaborative analysis of scale-up programmes. *Lancet* **2010**; 376:449–457. Available at: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903328/> Accessed 20 September 2015.
4. Antiretroviral Therapy in Low-Income Countries Collaboration of the International epidemiological Databases to Evaluate AIDS (IeDEA), ART Cohort Collaboration, Brinkhof MWG, et al. Tuberculosis after Initiation of Antiretroviral Therapy in Low-Income and High-Income Countries. *Clin. Infect. Dis.* **2007**; 45:1518–1521. Available at: <https://academic.oup.com/cid/article-lookup/doi/10.1086/522986>. Accessed 30 December 2017.
5. Lawn SD, Wood R, De Cock KM, Kranzer K, Lewis JJ, Churchyard GJ. Antiretrovirals and isoniazid preventive therapy in the prevention of HIV-associated tuberculosis in settings with limited health-care resources. *Lancet Infect Dis* **2010**; 10:489–498.
6. Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD. Tuberculosis incidence rates during 8 years of follow-up of an antiretroviral treatment cohort in South Africa: comparison with rates in the community. *PLoS One* **2012**; 7:e34156.
7. Mariandyshev A, Eliseev P. Drug-resistant tuberculosis threatens WHO's End-TB strategy. *Lancet Infect. Dis.* **2017**; 17:674–675. Available at: [http://dx.doi.org/10.1016/S1473-3099\(17\)30246-3](http://dx.doi.org/10.1016/S1473-3099(17)30246-3).
8. Gandhi NR, Moll A, Sturm AW, et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. *Lancet* **2006**; 368:1575–1580. Available at: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1708475/>.
9. Klopper M, Warren RM, Hayes C, et al. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. *Emerg Infect Dis* **2013**; 19:449–455.
10. Lange C, Abubakar I, Alffenaar JW, et al. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. *Eur Respir J* **2014**; 44:23–63.
11. Horsburgh Jr. CR, Barry CE, Lange C. Treatment of Tuberculosis. *N Engl J Med* **2015**; 373:2149–2160.
12. Wright A, Zignol M, Van Deun A, et al. Epidemiology of antituberculosis drug resistance 2002–07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. *Lancet* **2009**; 373:1861–1873.
13. Falzon D, Jaramillo E, Schunemann HJ, et al. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. *Eur Respir J* **2011**; 38:516–528.
14. Köser CU, Bryant JM, Becq J, et al. Whole-genome sequencing for rapid susceptibility testing of *M. tuberculosis*. *N Engl J Med* **2013**; 369:290–292.
15. Schon T, Miotto P, Koser CU, Viveiros M, Bottger E, Cambau E. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. *Clin Microbiol Infect* **2017**; 23:154–160.

16. Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. *NEJM* **2010**; 363. Available at: <https://doi.org/10.1056/NEJMoa0907847>.
17. Egger M, Ekouevi DKD, Williams C, et al. Cohort Profile: the international epidemiological databases to evaluate AIDS (IeDEA) in sub-Saharan Africa. *Int J Epidemiol* **2012**; 41:1256–1264. PMCID: PMC3465765.
18. McGowan CC, Cahn P, Gotuzzo E, et al. Cohort Profile: Caribbean, Central and South America Network for HIV research (CCASAnet) collaboration within the International Epidemiologic Databases to Evaluate AIDS (IeDEA) programme. *Int J Epidemiol* **2007**; 36:969–976. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/17846055>.
19. World Health Organization. Use of high burden country lists for TB by WHO in the post-2015 era. Geneva: 2015. Available at: http://www.who.int/tb/publications/global_report/high_tb_burdenCountrylists2016-2020.pdf.
20. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support. *J. Biomed. Inform.* **2009**; 42:377–381. Available at: <http://linkinghub.elsevier.com/retrieve/pii/S1532046408001226>. Accessed 19 December 2017.
21. World Health Organization. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. *World Heal. Organ. Doc.* **2014**; :1–464.
22. Technical Report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. Geneva: 2018. Available at: http://www.who.int/tb/publications/2018/WHO_technical_report_concentrations_TB_drug_susceptibility/en/.
23. World Health Organization. Definitions and reporting framework for tuberculosis – 2013 revision (updated December 2014). 2014.
24. Cox H, Hughes J, Black J, Nicol MP. Precision medicine for drug-resistant tuberculosis in high-burden countries: is individualised treatment desirable and feasible? *Lancet Infect. Dis.* **2018**; 3099:11–16. Available at: <http://linkinghub.elsevier.com/retrieve/pii/S147330991830104X>.
25. WHO. Policy Statement: Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance - PubMed - NCBI. Geneva: 2011. Available at: <https://www.ncbi.nlm.nih.gov/pubmed/26158191>. Accessed 6 January 2018.
26. Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. *Cochrane database Syst. Rev.* **2014**; 1:CD009593. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/24448973>. Accessed 7 January 2018.
27. Dheda K, Gumbo T, Maartens G, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. *Lancet Respir Med* **2017**;
28. Sanker P, Ambika AP, Santhosh VT, et al. Are WHO approved nucleic acid amplification tests causing large-scale 'false identification' of rifampicin-resistant tuberculosis?: Programmatic experience from south india. *Int. J. Mycobacteriology* **2017**; 6:21–26. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/28317800>. Accessed 6 January 2018.

29. Chakravorty S, Simmons AM, Rowneki M, et al. The new Xpert MTB/RIF ultra: Improving detection of *Mycobacterium tuberculosis* and resistance to Rifampin in an assay suitable for point-of-care testing. *MBio* **2017**; 8. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/28851844>. Accessed 16 April 2018.
30. Rinder H, Mieskes KT, Löscher T. Heteroresistance in *Mycobacterium tuberculosis*. *Int. J. Tuberc. Lung Dis.* **2001**; 5:339–45. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/11334252>. Accessed 26 June 2018.
31. Cohen T, van Helden PD, Wilson D, et al. Mixed-strain mycobacterium tuberculosis infections and the implications for tuberculosis treatment and control. *Clin. Microbiol. Rev.* **2012**; 25:708–19. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/23034327>. Accessed 26 June 2018.
32. WHO. Policy update. The use of molecular line probe assays for the detection of resistance to isoniazid and rifampicin. Geneva: 2016. Available at: <http://www.who.int/tb/publications/molecular-test-resistance/en/>.
33. Kim SJ. Drug-susceptibility testing in tuberculosis: Methods and reliability of results. *Eur. Respir. J.* **2005**; 25:564–569.
34. Bastos ML, Lan Z, Menzies D. An updated systematic review and meta-analysis for treatment of multidrug-resistant tuberculosis. *Eur. Respir. J.* **2017**; 49:1600803. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/28331031>. Accessed 1 January 2018.
35. Mugabo P, Adewumi AO, Theron D, Burger A, Van ZL. Do HIV infection and antiretroviral therapy influence multidrug-resistant tuberculosis treatment outcomes? *African J. Pharm. Pharmacol.* **2015**; 9:875–880. Available at: <http://academicjournals.org/journal/AJPP/article-abstract/B8C08E355329>.
36. Pietersen E, Ignatius E, Streicher EM, et al. Long-term outcomes of patients with extensively drug-resistant tuberculosis in South Africa: A cohort study. *Lancet* **2014**; 383:1230–1239. Available at: [http://dx.doi.org/10.1016/S0140-6736\(13\)62675-6](http://dx.doi.org/10.1016/S0140-6736(13)62675-6).
37. Seung K, Satti H. Management of MDR-TB : A field guide. A companion document to Guidelines for the programmatic management of drug-resistant tuberculosis. 2010.
38. van der Heijden YF, Karim F, Mufamadi G, et al. Isoniazid-monoresistant tuberculosis is associated with poor treatment outcomes in Durban, South Africa. *Int. J. Tuberc. Lung Dis.* **2017**; 21:670–676. Available at: <http://www.ingentaconnect.com/content/10.5588/ijtd.16.0843>. Accessed 21 May 2018.
39. Gogia M, Winters N, Benedetti A, van Soolingen D, Menzies D. Treatment of isoniazid-resistant tuberculosis with first-line drugs: a systematic review and meta-analysis. *Lancet Infect. Dis.* **2017**; 17:223–234. Available at: <http://linkinghub.elsevier.com/retrieve/pii/S1473309916304078>. Accessed 21 May 2018.
40. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, et al. Malabsorption of rifampin and isoniazid in HIV-infected patients with and without tuberculosis. *Clin. Infect. Dis.* **2004**; 38:280–283. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/14699462>. Accessed 6 January 2018.
41. Muller M, Wandel S, Colebunders R, et al. Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. *Lancet Infect Dis* **2010**; 10:251–261. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/204183458>. Accessed 16 July 2014.
42. Burman WJ, Gallicano K, Peloquin C. Therapeutic implications of drug

interactions in the treatment of human immunodeficiency virus-related tuberculosis. *Clin Infect Dis* **1999**; 28:419–29; quiz 430.

- 43. Gopalan N, Chandrasekaran P, Swaminathan S, Tripathy S. Current trends and intricacies in the management of HIV-associated pulmonary tuberculosis. *AIDS Res. Ther.* 2016; 13:34. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/27708678>. Accessed 4 January 2018.
- 44. Meintjes G. Management of drug-resistant TB in patients with HIV co-infection. *J. Int. AIDS Soc.* **2014**; 17:19508. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/25394017>. Accessed 1 January 2018.
- 45. Gandhi NR, Andrews JR, Brust JCM, et al. Risk factors for mortality among MDR- and XDR-TB patients in a high HIV prevalence setting. *Int. J. Tuberc. Lung Dis.* **2012**; 16:90–97. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/22236852>. Accessed 1 January 2018.
- 46. Seung KJ, Omatayo DB, Keshavjee S, Furin JJ, Farmer PE, Satti H. Early outcomes of MDR-TB treatment in a high HIV-prevalence setting in southern Africa. *PLoS One* **2009**; 4:2–8.
- 47. Merker M, Kohl TA, Roetzer A, et al. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant *Mycobacterium tuberculosis* Beijing strains in patients. *PLoS One* **2013**; 8:e82551. Available at: <http://dx.plos.org/10.1371/journal.pone.0082551>. Accessed 3 January 2018.
- 48. Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in *Mycobacterium tuberculosis*. *Eur. Respir. J.* **2017**; 50. Available at: <http://dx.doi.org/10.1183/13993003.01354-2017>.

TABLES AND FIGURES

Table 1: Patient characteristics by phenotypic drug resistance profiles obtained at the Swiss National Center for Mycobacteria.

	Pan-susceptible	Any resistance	P-value	Mono-resistance			Poly-resistance		
				INH	RIF	PZA	MDR	Pre-XDR/XDR	Other
Total	394 (100)	240 (100)		29 (100)	14 (100)	2 (100)	163 (100)	30 (100)	2 (100)
Sex									
Female	150 (38.1)	89 (37.1)	0.80	6 (20.7)	3 (21.4)	0	65 (39.9)	14 (46.7)	1 (50.0)
Male	244 (61.9)	151 (62.9)		23 (79.3)	11 (78.6)	2 (100)	98 (60.1)	16 (53.3)	1 (50.0)
Age	34.6 (27.8-44.6)	31.5 (25.3-40.2)	0.003	34.3 (26.5-43.2)	27.1 (24.9-35.5)	26.1 (23.3-28.9)	31.5 (25.4-41.4)	30.3 (24.2-37.5)	27.3 (24.4-30.2)
HIV status									
Negative	200 (50.8)	162 (67.5)	<0.001	20 (69.0)	8 (57.1)	1 (50.0)	114 (69.9)	18 (60.0)	1 (50.0)
Positive	194 (49.2)	78 (32.5)		9 (31.0)	6 (42.9)	1 (50.0)	49 (30.1)	12 (40.0)	1 (50.0)
CD4 count at baseline, median (IQR), cells/μl	215 (85-369)	161 (61-369)	0.79	92.5 (55-161)	63.5 (43-81)	43	259 (151-528)	32 (5-105)	213
No. of observations (%)	155 (39.3)	45 (18.9)		6 (20.7)	6 (42.9)	1 (50.0)	24 (14.7)	7 (23.3)	1 (50.0)
Treatment regimen									
First line	369 (93.7)	46 (19.2)	<0.001	27 (93.1)	0	2 (5.4)	14 (9.2)	2 (6.7)	1 (50.0)
Second line	25 (6.3)	188 (78.3)		2 (6.9)	14 (100)	0	143 (85.3)	28 (93.3)	1 (50.0)
Unknown	0	6 (2.5)		0	0	0	6 (5.5)	0	0
Treatment outcomes									
Success	287 (72.8)	124 (51.7)	<0.001	15 (51.7)	7 (50.0)	0	88 (54.0)	13 (43.3)	1 (50.0)
Mortality	24 (6.1)	45 (18.8)		7 (24.1)	2 (14.3)	1 (50.0)	24 (14.7)	10 (33.3)	1 (50.0)
Treatment failure	12 (3.0)	10 (4.2)		0	0	1 (50.0)	5 (3.1)	4 (13.3)	0
Lost to follow-up	29 (7.4)	30 (12.5)		1 (3.5)	3 (21.4)	0	26 (16.0)	0	0
Transfer	15 (3.8)	14 (5.8)		0	2 (14.3)	0	9 (5.5)	3 (10.0)	0
Ongoing treatment / unknown	27 (6.9)	17 (7.1)		6 (20.7)	0	0	11 (6.7)	0	0
Country									
Côte d'Ivoire	48 (12.2)	51 (21.3)	<0.001	3 (10.3)	0	0	44 (27.0)	4 (13.3)	0
Democratic Republic of the Congo	33 (8.4)	29 (12.1)		0	1 (7.1)	0	19 (11.7)	9 (30.0)	0
Kenya	24 (6.1)	11 (4.6)		2 (6.9)	1 (7.1)	0	8 (4.9)	0	0
Nigeria	20 (5.1)	36 (15.0)		1 (3.5)	5 (35.7)	0	26 (16.0)	4 (13.3)	0
Peru	66 (16.8)	38 (15.8)		8 (27.6)	0	0	27 (16.6)	3 (10.0)	0
South Africa	130 (33.0)	57 (23.8)		6 (20.7)	7 (50.0)	1 (50.0)	32 (15.5)	10 (33.3)	1 (50.0)
Thailand	73 (18.5)	18 (7.5)		9 (31.0)	0	1 (50.0)	7 (4.3)	0	1 (50.0)

Analysis based on 634 patients. Numbers (%) or medians (interquartile range) are shown.

INH, isoniazid; MDR, multidrug resistant; PZA, pyrazinamide; RIF, rifampicin; XDR, extensively drug resistant.

Table 2: Drug resistance profiles identified at the Swiss National Center for Mycobacteria.

Resistance profiles	No. of patients (n=634)
Pan-susceptible	394 (62.2%)
Mono-resistance	45 (7.1%)
INH mono-resistance	29
RIF mono-resistance	14
PZA mono-resistance	2
MDR	163 (25.7%)
INH+RIF	85
INH+RIF+EMB	11
INH+RIF+PZA	47
INH+RIF+EMB+PZA	20
Pre-XDR	24 (3.2%)
INH+RIF +MOX+EMB+PZA	8
INH+RIF +MOX+EMB	1
INH+RIF +MOX+PZA	4
INH+RIF +MOX	2
INH+RIF +AMK+PZA+EMB	4
INH+RIF +AMK+PZA	4
INH+RIF +AMK	1
XDR	6 (0.8%)
INH+RIF +AMK+MOX+EMB	3
INH+RIF +AMK+MOX+PZA	2
INH+RIF +AMK+MOX	1
Other	2 (0.3%)
INH+MOX	1
INH+PZA	1

AMK, amikacin; EMB, ethambutol; INH, isoniazid; MDR, multidrug resistant; MOX, moxifloxacin; PZA, pyrazinamide; RIF, rifampicin; XDR, extensively drug resistant.

Table 3: Concordance and discordance of drug susceptibility results obtained from reference and local laboratories.

Concordance/ discordance of DST results	DST results by laboratory		Total (n=634)	Test used at local laboratories			
	Reference laboratory (phenotypic)	Local laboratories		Xpert MTB/RIF ^a	Culture	LPA	Combination of tests
Concordance	Pan-susceptible	Pan-susceptible	332	167	101	1	5
	RIF mono-resistance	RIF mono-resistance	8	0	0	0	7
	INH mono-resistance	INH mono-resistance	8	0	8	0	0
	MDR	MDR	153	49	44	8	52
	Pre-XDR and XDR	Pre-XDR and XDR	12	0	1	2	9
	Total		513 (80.9)	216 (42.1)	154 (30.0)	11 (2.1)	73 (14.2)
Discordance potentially leading to under treatment	MDR	Pan-susceptible	5	2	2	0	1
	Pre-XDR and XDR	MDR	18	6	7	0	5
	Total		23 (3.6)	8 (34.8)	9 (39.1)	0	6 (26.1)
Discordance potentially leading to over treatment	Pan-susceptible	RIF mono-resistance	14	0	0	3	9
	Pan-susceptible	MDR	14	3	8	0	3
	Pan-susceptible	Other mono-resistance ^b	33	2	31	0	1
	Other mono-resistance ^c	MDR	5	0	5	0	0
	MDR	Pre-XDR or XDR	1	0	0	0	1
	Total		67 (10.6)	5 (7.5)	44 (6.6)	3 (4.5)	14 (20.9)
Other discordance	Pan-susceptible	EMB, SM	1	0	1	0	0
	RIF mono-resistance	MDR	7	2	0	0	5
	Other mono-resistance ^d	Pan-susceptible	17	13	3	0	0
	INH, MOX	Mono-resistance	1	0	1	0	0
	IHN, PZA	MDR	1	0	1	0	0
	MDR	RIF mono-resistance	3	0	0	1	2
	MDR	EMB, SM	1	1	0	0	0
	Total		31 (4.9)	16 (51.6)	6 (19.4)	1 (3.2)	7 (22.6)

Analysis based on 634 patients. Number of patients (%) are shown.

DST, drug susceptibility testing; EMB, ethambutol; INH, isoniazid; LPA, line probe assay; MDR, multidrug resistance; PZA, pyrazinamide; RIF, rifampicin; SM, streptomycin; XDR, extensively drug resistant.

In a few patients, the test used to diagnose drug-resistant infection at the local laboratories and the treatment regimen was unknown. Therefore, numbers do not always add up to the row totals.

^a RIF resistance diagnosed with Xpert MTB/RIF only was categorized as MDR, since those patients were treated as MDR-TB patients.

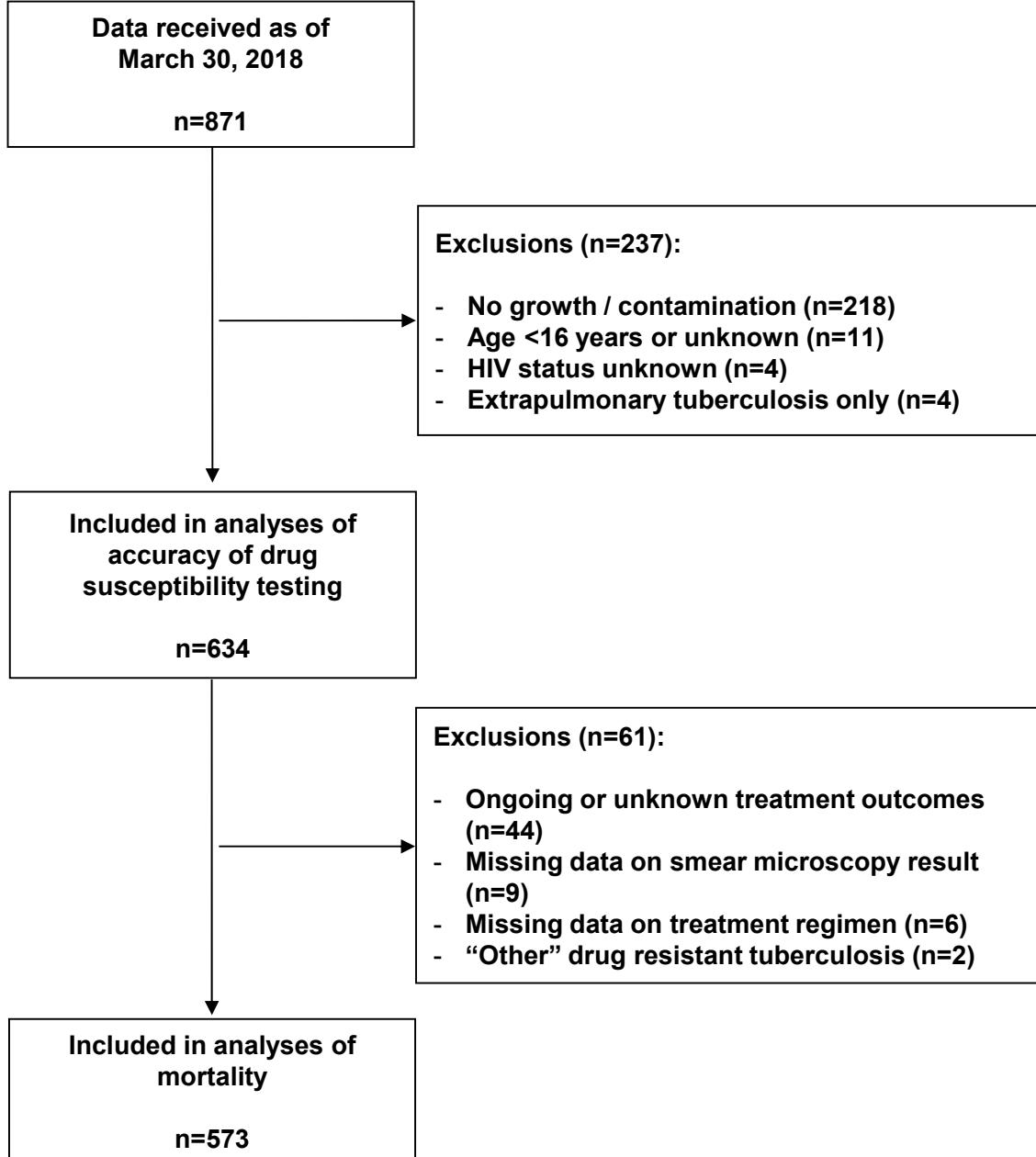
^b Twenty-one strains were resistant to EMB, ten to SM and two INH.

^c Five strains were resistant to INH.

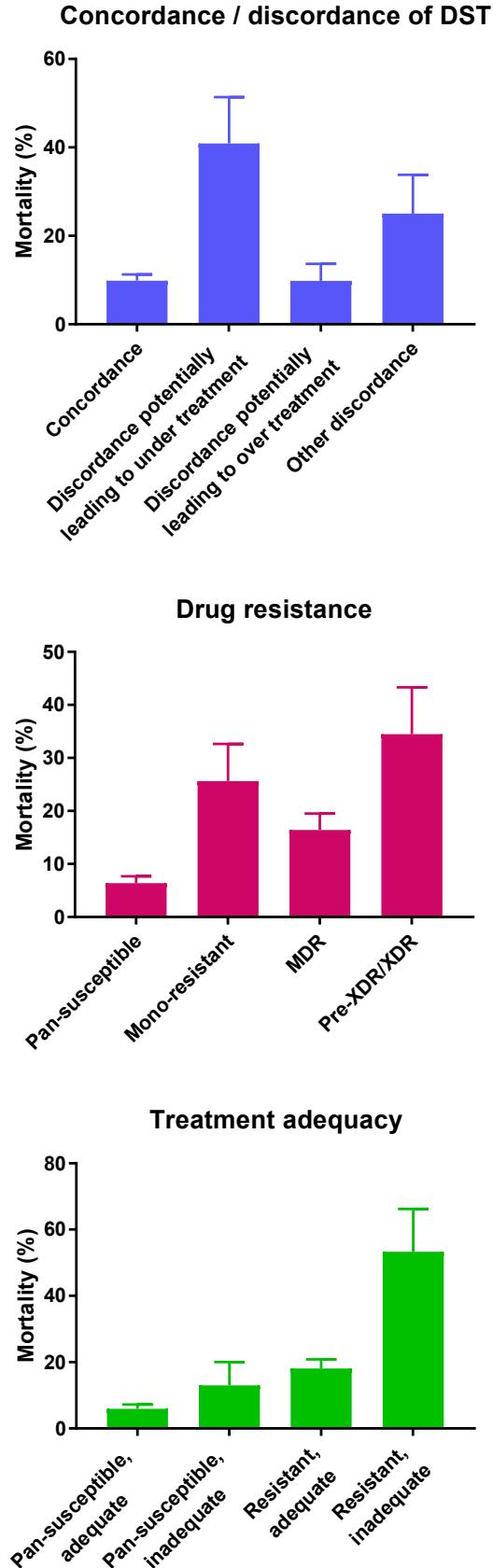
^d Fifteen strains were resistant to INH, two to PZA

Table 4. Results from logistic regression models of the probability of death during tuberculosis treatment.

	No. of patients	No. of deaths (%)	Model 1 aOR (95% CI)	Model 2 aOR (95% CI)	Model 3 aOR (95% CI)
Concordance / discordance of DST results					
Concordance	466	46 (9.9)	1		
Discordance potentially leading to under treatment	22	9 (40.9)	9.53 (1.04-87.32)		
Discordance potentially leading to over treatment	61	6 (9.8)	1.01 (0.26-3.88)		
Other discordance	24	6 (25.0)	4.40 (2.14-9.03)		
Drug resistance ^a					
Pan-susceptible	359	23 (6.4)		1	
Mono-resistance	39	10 (25.6)		5.38 (2.62-11.04)	
MDR	146	24 (16.4)		3.43 (1.91-6.16)	
Pre-XDR/XDR	29	10 (34.5)		11.33 (2.41-53.3)	
Treatment adequacy by drug resistance					
Pan-susceptible, adequate	336	20 (6.0)			1
Pan-susceptible, inadequate	23	3 (13.0)			2.81 (0.50-15.81)
Any resistance, adequate	199	36 (18.1)			4.23 (2.16-8.29)
Any resistance, inadequate	15	8 (53.3)			21.54 (3.36-138.08)
Sex					
Female	219	20 (9.1)	1	1	1
Male	354	47 (13.3)	1.50 (0.84-2.67)	1.48 (0.83-2.66)	1.55 (0.83-2.88)
Age (per 1 year increase)	573	67 (11.7)	1.04 (1.02-1.06)	1.04 (1.03-1.06)	1.04 (1.02-1.07)
Sputum microscopy					
Negative	111	10 (9.0)	1	1	1
Positive	462	57 (12.3)	1.41 (0.40-5.00)	1.45 (0.47-4.44)	1.25 (0.34-4.58)
HIV status					
Negative	337	43 (12.8)	1	1	1
Positive	236	24 (10.2)	1.04 (0.51-2.09)	0.85 (0.42-1.69)	1.07 (0.53-2.16)


Models based on 573 patients with complete data for all variables shown.

Model 1 was adjusted for concordance / discordance of DST results, sex, age, sputum microscopy and HIV status; model 2 was adjusted for drug resistance, sex, age, sputum microscopy and HIV status; model 3 was adjusted for treatment adequacy, sex, age, sputum microscopy and HIV status.


Abbreviations: DST, drug susceptibility testing; MDR, multidrug resistant; XDR, extensively drug-resistant

^a Results from the Swiss National Reference Center for Mycobacteria

Figure 1: Selection of the study population.

Figure 2: Mortality according to drug resistance, to concordance or discordance of drug susceptibility testing (DST) results and to treatment adequacy. Error bars are standard errors. P-values <0.001 for difference in mortality across categories. Analysis based on 573 patients.

Supplemental Tables and Figures

Table S1: Characteristics of participating study sites and settings.

	Côte d'Ivoire	Nigeria	Democratic Republic of the Congo	Kenya	South Africa	Peru	Thailand
Study sites							
Location	Abidjan	Zaria	Kinshasa	Eldoret	Khayelitsha, Cape Town	Lima	Bangkok
Setting	Urban	Rural	Urban	Rural	Urban	Urban	Urban
Recruitment	Centre de Prise en charge de Recherche et de Formation (CePReF), and affiliated TB clinics	National TB and Leprosy Training Center (NTBLTC), and affiliated TB clinics	Kalembelembembe Hospital, ART program, and affiliated TB clinics	Academic Model Providing Access to Healthcare (AMPATH), and affiliated TB clinics	Khayelitsha ART Program, Khayelitsha township, and affiliated TB clinics	Instituto de Medicina Tropical Alexander von Humboldt; Universidad Peruana Cayetano Heredia, and affiliated TB clinics	HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT) King Chulalongkorn Memorial Hospital, and affiliated TB clinics
Laboratory facilities	Centre de Diagnostic et de Recherche sur le Sida (CeDReS)	NTBLTC National TB reference laboratory	National TB Laboratory	Mycobacteriology Laboratory at AMPATH	National Health Laboratory Service, and Molecular Biology Laboratory, Stellenbosch University	National TB Lab and Instituto de Medicina Tropical A. von Humboldt TB Research Laboratory	HIV-NAT Research Laboratory
Drug susceptibility testing methods	Löwenstein-Jensen proportion culture	Xpert MTB/RIF, MGIT liquid culture, line probe assays	Xpert MTB/RIF, Löwenstein-Jensen proportion culture	Xpert MTB/RIF	Xpert MTB/RIF, MGIT liquid culture, line probe assays	Löwenstein-Jensen proportion method, MGIT liquid culture	MGIT liquid culture
Country TB statistics							
Incidence (including HIV)							
Number (thousands)	36	407	254	169	438	37	119
Rate ^a	153	219	323	348	781	117	172
Incidence MDR/RR-TB							
Number (thousands)	2.1	20	7.6	3	19	3.5	4.7
Rate ^a	8.9	11	9.7	6.2	34	11	6.8
Mortality (HIV-negative and HIV-positive people)							
Number (thousands)	2.8	39	8.5	24	100	0.46	3.9
Rate ^a	12	21	11	50	181	1.5	5.7

MGIT, Mycobacteria Growth Indicator Tube; MDR, multidrug resistant; RR rifampicin resistant; TB, tuberculosis;

^a per 100,000 population (from Global Tuberculosis Report 2017. Geneva: World Health Organization, 2017).

Table S2: Classification of treatment regimens by drug resistance profile.

Drug resistances according to Swiss reference laboratory	Total	Adequate treatment		Over treatment		Under treatment	
		No.	treatment regimen	No.	treatment regimen	No.	treatment regimen
Pan-susceptible	394	369	2 H-R-Z-E / 4 H-R	1	2 H-Z-E-Ofx		
				1	2 H-Z-E-S-Ofx		
				2	2 H-R-Z-E-S / 1 H-R-Z-E / 5 H-R-E		
				2	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz		
				1	6 Z-E-Km/Cm-Lfx-Pto-Cs / 14 Z-E-Lfx-Pto-Cs		
				3	8 Z-Km-Pto-Cs-Lfx / 12 Z-Pto-Cs-Lfx		
				1	Z-Km-Lfx-Pto-Cs		
				14	Z-E-Km-Eto-Mox-Trd		
Mono-resistance	45						
INH mono-resistance	29	27	2 H-R-Z-E / 4 H-R	1	Z-E-Km-Lfx-Eto-Cs		
				1	R-Z-E-Lfx		
RIF mono-resistance	14	7	Z-E-Km-Eto-Mox-Trd				
		3	Z-Km-Lfx-Pto-Cs				
		2	Z-Am-Lfx-Pto-Cs				
		1	8 Z-Km-Pto-Cs-Lfx / 12 Z-Pto-Cs-Lfx				
		1	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz				
PZA mono-resistance	2	2	2 H-R-Z-E / 4 H-R				
MDR	163						
INH+RIF	85	2	2 H-R-Z-E-S / 1 H-R-Z-E / 5 H-R-E			10	2 H-R-Z-E / 4 H-R
		31	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz				
		1	6 Z-E-Km/Cm-Lfx-Pto-Cs / 14 Z-E-Lfx-Pto-Cs				
		4	8 Z-Km-Pto-Cs-Lfx / 12 Z-Pto-Cs-Lfx				
		2	Z-Am-Lfx-Pto-Cs				
		2	Z-E-Km-Cs-Eto-Cfx-Pas				
		1	Z-E-Km-Eto-Cfx-Cs				
		1	Z-E-Km-Eto-Lfx-Pas				
		1	Z-E-Km-Lfx-Cs				
		1	Z-E-Km-Lfx-Eto-Cs				
		13	Z-Km-Lfx-Pto-Cs				
		1	R-Z-E-Lfx				
		10	Z-E-Km-Eto-Mox-Trd				
		1	Z-Km-Lfx-Eto-Cs-Pas				
INH+RIF+EMB	11	5	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz			1	2 H-R-Z-E / 4 H-R
		1	8 Z-Km-Pto-Cs-Lfx / 12 Z-Pto-Cs-Lfx				
		1	Z-Km-Lfx-Pto-Cs				
		3	Z-E-Km-Eto-Mox-Trd				
INH+RIF+PZA	47	1	2 H-R-Z-E-S / 1 H-R-Z-E / 5 H-R-E			2	2 H-R-Z-E / 4 H-R
		17	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz				
		1	8 Z-Km-Pto-Cs-Lfx / 12 Z-Pto-Cs-Lfx				
		1	Z-Am-Lfx-Pto-Cs				
		1	E-Km-Lfx-Eto-Cs				

INH+RIF+EMB+PZA	20	3 1 1 1 4 12 1 2 2 1 1 3 3 6	Z-E-Km-Lfx-Eto-Cs Z-Elfx-Am-Eto-Cs H-Z-E-Km-Lfx H-Z-E-Cfz-Eto-Km-Lzd-Mox-Pas-Trd-Bdq-Dlm Z-Km-Lfx-Pto-Cs Z-E-Km-Eto-Mox-Trd Z-Km-Lfx-Eto-Cs-Pas 4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz 6 Z-E-Km/Cm-Lfx-Pto-Cs / 14 Z-E-Lfx-Pto-Cs 8 Z-Km-Pto-Cs-Lfx / 12 Z-Pto-Cs-Lfx Z-Am-Lfx-Pto-Cs Z-E-Km-Lfx-Eto-Cs Z-Km-Lfx-Pto-Cs Z-E-Km-Eto-Mox-Trd	1	2 H-R-Z-E / 4 H-R
Pre-XDR	24				
INH+RIF +AMK	1	1	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz		
INH+RIF +AMK+PZA	4	1 1 2	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz Z-E-Km-Cs-Eto-Cfx-Pas Z-Cfz-Eto-Km-Lzd-Mox-Pas		
INH+RIF +AMK+PZA+EMB	4	2 1	Z-Cfz-Eto-Km-Lzd-Mox-Pas 4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz	1	2 H-R-Z-E / 4 H-R
INH+RIF +MOX	2	1 1	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz H-Z-E-Cfz-Eto-Km-Lzd-Mox-Pas-Trd-Bdq-Dlm		
INH+RIF +MOX+EMB	1	1	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz		
INH+RIF +MOX+PZA	4	3 1	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz H-Z-E-Cfz-Eto-Km-Lzd-Mox-Pas-Trd-Bdq-Dlm		
INH+RIF +MOX+EMB+PZA	8	2 2 3 1	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz H-Z-E-Cfz-Eto-Km-Lzd-Mox-Pas-Trd-Bdq-Dlm Z-Km-Lfx-Pto-Cs 6 Z-E-Km-Ofx-Pto-Cs / 18 Z-E-Ofx-Pto-Cs		
XDR	6				
INH+RIF +AMK+MOX+EMB	3	2	H-Z-E-Cfz-Eto-Km-Lzd-Mox-Pas-Trd-Bdq-Dlm		
INH+RIF +AMK+MOX+PZA	2	1	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz	1	2 H-R-Z-E / 4 H-R
INH+RIF +AMK+MOX	1	1	4 H-Z-E-Km-Mfx-Pto-Cfz / 5 E-Z-Mfx-Cfz		
Other	2		Z-Km-Lfx-Pto-Cs		
INH+MOX	1	1	Z-E-Km-Eto-Mox-Trd		
INH+PZA	1	1	2 H-R-Z-E / 4 H-R		

For six patients the treatment regimen was missing, which are not shown in the table.

H, isoniazid; R, rifampicin; Z, pyrazinamide; E, ethambutol; S, streptomycin; Km, kanamycin; Am, amikacin; Cm, capreomycin;; Ofx, ofloxacin; Lfx, levofloxacin; Ofx, Ofloxacin; Mox, moxifloxacin; Eto, ethionamide; Pto, prothionamide; Cs, D-cycloserine; Trd, terizidone; Cfz, clofazimine; Lzd, linezolid; Bdq, bedaquiline; Dlm, Delamanid; Pas, Para-aminosalicylic acid

Table S3: Patient characteristics by HIV status at diagnosis of tuberculosis.

	All Patients (n=634)	HIV-negative (n=362)	HIV-positive (n=272)	p-value
Age (years)	33.2 (26.9-42.5)	31.7 (25.1-43.3)	34.7 (29.1-42.0)	0.49
Sex				
Male	395 (62.3)	249 (69.8)	146 (53.7)	<0.001
Female	239 (37.7)	113 (31.2)	126 (46.3)	
Site of TB disease				
Pulmonary	609 (96.1)	355 (98.1)	254 (93.4)	0.003
Pulmonary and extrapulmonary	25 (3.9)	7 (1.9)	18 (6.6)	
CD4 count at baseline (cells/µl)	-	-	192 (77.5-369)	
<i>No. of observations (%)</i>	-	-	200 (73.5)	
Type of TB patient				<0.001
New patient	411 (64.8)	233 (64.4)	178 (65.4)	
Recurrent TB	120 (18.9)	56 (15.5)	64 (23.5)	
Treatment after failure	70 (11.0)	56 (15.5)	14 (5.2)	
Treatment after default	27 (4.3)	15 (4.1)	12 (4.4)	
Unknown	6 (0.9)	2 (0.5)	4 (1.5)	
Sputum smear microscopy				<0.001
Negative	113 (17.8)	46 (12.7)	67 (24.6)	
Positive	512 (80.8)	312 (86.2)	200 (73.5)	
Unknown	9 (1.4)	4 (1.1)	5 (1.8)	
TB drug resistance ^a				<0.001
Pan-susceptible	394 (62.1)	200 (55.2)	194 (71.3)	
Any resistance	240 (37.9)	162 (44.8)	78 (28.7)	<0.001
<i>Mono-resistant</i>	45 (7.1)	29 (8.0)	16 (5.9)	
<i>MDR</i>	163 (25.7)	114 (31.5)	49 (18.0)	
<i>Pre-XDR / XDR</i>	30 (4.7)	18 (5.0)	12 (4.4)	
<i>Other</i>	2 (0.3)	1 (0.3)	1 (0.4)	
TB treatment outcome				0.012
Success	411 (64.8)	238 (65.7)	173 (63.6)	
<i>Cure</i>	298 (47.0)	169 (46.7)	129 (47.4)	
<i>Treatment completed</i>	113 (17.8)	69 (19.1)	44 (16.2)	
Treatment failure	22 (3.5)	10 (2.8)	12 (4.4)	
Death	69 (10.9)	43 (11.9)	26 (9.6)	
Lost to follow-up	59 (9.3)	40 (11.0)	19 (7.0)	
Transfer	29 (4.6)	17 (4.7)	12 (4.4)	
Ongoing treatment	4 (0.6)	1 (0.3)	3 (1.1)	
Unknown	40 (6.3)	13 (3.6)	27 (9.9)	
Country				<0.001
Côte d'Ivoire	99 (15.6)	57 (15.7)	42 (15.4)	
Democratic Republic of the Congo	62 (9.8)	50 (13.8)	12 (4.4)	
Kenya	35 (5.5)	15 (4.1)	20 (7.4)	
Nigeria	56 (8.8)	37 (10.2)	19 (7.0)	
Peru	104 (16.4)	64 (17.7)	40 (14.7)	
South Africa	187 (29.5)	84 (23.2)	103 (37.9)	
Thailand	91 (14.4)	55 (15.2)	36 (13.2)	

Analysis based on 634 patients. Numbers (%) or medians (interquartile range) are shown.

MDR, multidrug resistant; TB, tuberculosis; XDR, extensively drug resistant

^a Results from the Swiss National Reference Center for Mycobacteria

Table S4. Results from univariable logistic regression models of the probability of death during tuberculosis treatment.

	No. of patients	No. of deaths (%)	Model 1 OR (95% CI)	Model 2 OR (95% CI)	Model 3 OR (95% CI)
Concordance / discordance of DST results					
Concordance					
Concordance	466	46 (9.9)	1		
Discordance potentially leading to under treatment	22	9 (40.9)	6.32 (2.56-15.59)		
Discordance potentially leading to over treatment	61	6 (9.8)	1.00 (0.41-2.44)		
Other discordance	24	6 (25.0)	3.04 (1.15-8.05)		
Drug resistance ^a					
Pan-susceptible	359	23 (6.4)		1	
Mono-resistance	39	10 (25.6)		5.03 (2.19-11.60)	
MDR	146	24 (16.4)		2.87 (1.56-5.28)	
Pre-XDR/XDR	29	10 (34.5)		7.69 (3.21-18.44)	
Treatment adequacy by drug resistance					
Pan-susceptible, adequate	336	20 (6.0)			1
Pan-susceptible, inadequate	23	3 (13.0)			2.37 (0.65-8.65)
Any resistance, adequate	199	36 (18.1)			3.49 (1.96-6.22)
Any resistance, inadequate	15	8 (53.3)			18.06 (5.95-54.82)
Sex					
Female	219	20 (9.1)	1	1	1
Male	354	47 (13.3)	1.52 (0.88-2.65)	1.52 (0.88-2.65)	1.52 (0.88-2.65)
Age (per 1 year increase)	573	67 (11.7)	1.03 (1.01-1.05)	1.03 (1.01-1.05)	1.03 (1.01-1.05)
Sputum microscopy					
Negative	111	10 (9.0)	1	1	1
Positive	462	57 (12.3)	1.42 (0.70-2.88)	1.42 (0.70-2.88)	1.42 (0.70-2.88)
HIV status					
Negative	337	43 (12.8)	1	1	1
Positive	236	24 (10.2)	0.77 (0.46-1.31)	0.77 (0.46-1.31)	0.77 (0.46-1.31)

Models based on 573 patients with complete data for all variables shown.

Abbreviations: DST, drug susceptibility testing; MDR, multidrug resistant; XDR, extensively drug-resistant

^a Results from the Swiss National Reference Center for Mycobacteria