

1 A comprehensive anatomical map of the 2 peripheral octopaminergic/tyraminergic 3 system of *Drosophila melanogaster*

4
5 **Dennis Pauls¹, Christine Blechschmidt¹, Felix Frantzmann¹, Basil el Jundi² and**
6 **Mareike Selcho¹**

7
8
9 ¹Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of
10 Würzburg, D-97074 Würzburg, Germany

11 ²Zoology II, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074
12 Würzburg, Germany

13
14
15
16
17
18 **Correspondence:**

19 Mareike Selcho, Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter,
20 University of Würzburg, Am Hubland, 97074 Würzburg, Germany
21 E-mail: mareike.selcho@uni-wuerzburg.de

22
23
24
25
26
27 **Key words:**

28 octopamine, tyramine, Tdc2, peripheral nerves, peripheral organs, campaniform sensilla,
29 chordotonal organ

33 **Abstract**

34 The modulation of an animal's behavior through external sensory stimuli, previous
35 experience and its internal state is crucial to survive in a constantly changing
36 environment. In most insects, octopamine (OA) and its precursor tyramine (TA)
37 modulate a variety of physiological processes and behaviors by shifting the organism
38 from a relaxed or dormant condition to a responsive, excited and alerted state.
39 Even though OA/TA neurons of the central brain are described on single cell level in
40 *Drosophila melanogaster*, the periphery was largely omitted from anatomical studies.
41 Given that OA/TA is involved in behaviors like feeding, flying and locomotion, which
42 highly depend on a variety of peripheral organs, it is necessary to study the peripheral
43 connections of these neurons to get a complete picture of the OA/TA circuitry. We here
44 describe the anatomy of this aminergic system in relation to peripheral tissues of the
45 entire fly. OA/TA neurons arborize onto skeletal muscles all over the body and innervate
46 reproductive organs, the heart, the corpora allata, and sensory neurons in the antenna,
47 wings and halteres underlining their relevance in modulating complex behaviors.

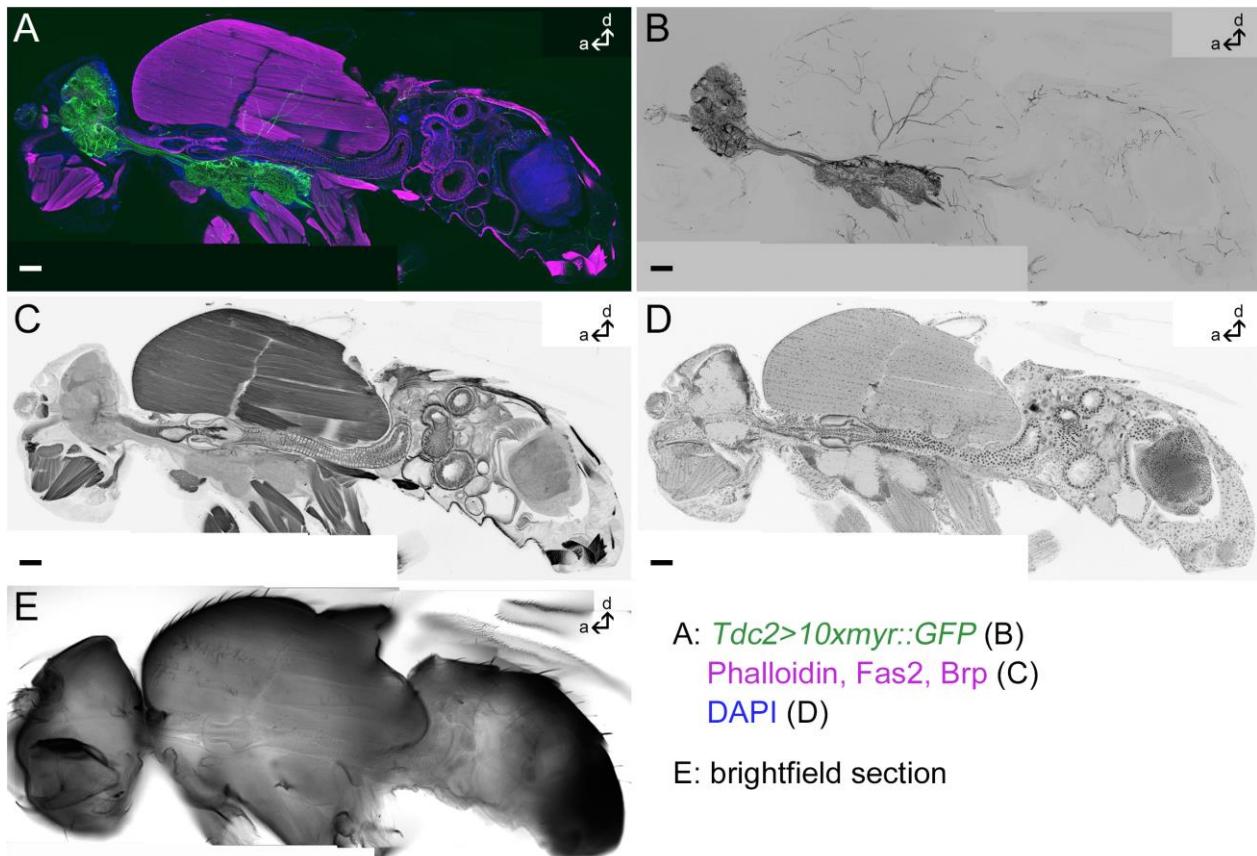
48

49 **Introduction**

50 The adrenergic system of mammals influences various aspects of the animal's life. Its
51 transmitters/hormones, adrenaline and noradrenaline, modulate a variety of
52 physiological processes and behaviors. They are secreted into the bloodstream by the
53 adrenal glands in response to stress. In addition, they are synthesized and released by
54 axonal terminals in the central nervous system (CNS) as well as sympathetic fibers of
55 the autonomic nervous system. Adrenaline and noradrenaline have been described as
56 modulators to shift the organism from a relaxed or dormant state to a responsive,
57 excited and alerted state ¹. Stressful stimuli induce a metabolic and behavioral
58 adaptation, leading to enhanced energy supply, increased muscle performance,
59 increased sensory perception and a matched behavior. This so-called "fight or flight"
60 response can be seen in vertebrates and invertebrates. In insects, the stress response
61 is mediated - among others - by octopamine (OA) and its precursor tyramine (TA) ²⁻⁴. TA
62 is synthesized from tyrosine by the action of a tyrosine decarboxylase enzyme (Tdc) and
63 functions as an independent neurotransmitter/-modulator as well as the intermediate
64 step in OA synthesis. For this, TA is catalyzed by the tyramine-β-hydroxylase (TβH).

65 Similar to the vertebrate adrenergic system, OA and TA act through specific G-protein
66 coupled receptors. Besides structural similarities between OA/TA and
67 adrenaline/noradrenaline and the corresponding receptors, functional similarities are
68 illustrated by the action of these transmitters/hormones in the regulation of physiological
69 processes and behaviors. OA and TA are known to modulate muscle performance,
70 glycogenolysis, fat metabolism, heart rate, and respiration in insects (reviewed by: ⁵).

71 While the role of TA as an independent signaling molecule was underestimated for a
72 long time, OA has been extensively studied and was shown to have effects on almost
73 every organ, sensory modality and behavior in a great variety of insects. The most
74 intensively studied peripheral organs regarding the modulatory role of OA are muscles ^{6–}
75 ¹⁰. Here, OA is thought to not exclusively modulate muscle performance or motor
76 activity. OA rather modulates muscle action according to metabolic and physiological
77 processes, for example by promoting energy mobilization directly from the fat body, or
78 indirectly by promoting the release of adipokinetic hormones (AKH) from neuroendocrine
79 cells in the corpora cardiaca (CC, a homolog of the vertebrate anterior pituitary gland
80 and an analog of mammalian pancreatic alpha cells) ^{11,12}. In addition to the impact of
81 OA/TA on muscles, fat body and AKH cells, OA is shown to modulate the heart, trachea
82 and air sacs, gut, hemocytes, salivary glands, Malpighian tubules and ovaries in insects,
83 mainly to induce a general stress or arousal state. However, in total OA seems to
84 modulate a vast number of behaviors, which are not necessarily coupled to stress
85 responses. The OA/TA system is shown to also act on i.a. learning and memory, sleep,
86 feeding, flight, locomotion, and aggression ^{8,10,12–35}.

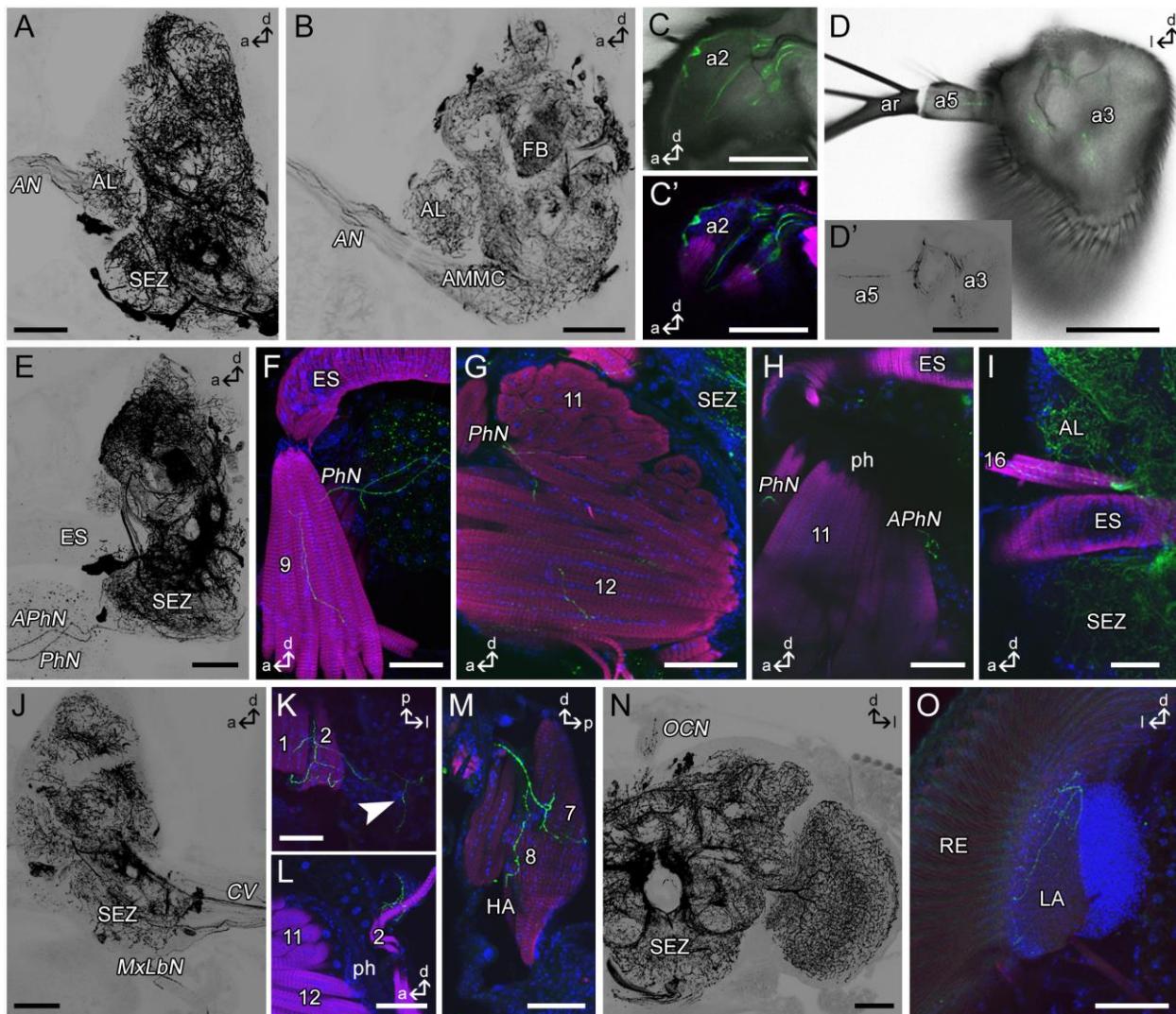

87 As mentioned above, OA and TA act as neurotransmitters and neuromodulators,
88 allowing them to act in a paracrine, endocrine or autocrine fashion. In the fruit fly
89 *Drosophila*, huge efforts were made to describe OA/TA neurons (OANs/TANs) in the
90 brain and ventral nervous system (VNS) down to the single cell level ^{8,16,36–40}.
91 Nevertheless, although our knowledge about physiological processes and behaviors
92 modulated by the OA/TA system in the brain is rich, less is known about how OA and TA
93 reach all its target organs and tissues in the periphery (exceptions: reproductive organs
94 ^{36,40–43} and muscles ^{8,44–46}).

95 Here we use the genetically tractable fruit fly *Drosophila melanogaster* to describe the
96 arborizations of *Tdc2-Gal4*-positive, and therefore OANs and TANs in the periphery, as
97 the *Drosophila* *Tdc2* gene is expressed neurally⁴⁰. We found that OANs/TANs are
98 widespread distributed throughout the fly's body with innervations in the skeletal
99 muscles, reproductive organs, corpora allata, antenna, legs, wings, halteres and the
100 heart. This diverse innervation pattern reflects the modulatory role of OA/TA in many
101 different behaviors and physiological processes. Our results provide, for the very first
102 time, a complete and comprehensive map of the OA/TA circuitry in the entire insect
103 body. This map allows assumptions about the type of OA/TA signaling (paracrine or
104 endocrine) to a specific organ and, at the same time, it provides a deeper understanding
105 to what extend the OA/TA-dependent activity of peripheral organs is altered, for example
106 by genetically manipulating *Tdc2-Gal4*-positive neurons in the brain and VNS.

107

108 **Results**

109 The OANs/TANs of the brain and ventral nervous system (VNS) are described in detail
110 even on single cell level in *Drosophila*^{10,37–39,44}. In contrast little is known about their
111 peripheral arborizations. We used the well-characterized *Tdc2-Gal4* line to deepen our
112 knowledge about the OA/TA system in the entire body of *Drosophila*^{38–41,47}. Nearly all
113 *Tdc2-Gal4*-positive cells in the brain are stained by a *Tdc2* antibody⁴⁷. In the VNS all of
114 the *Tdc2-Gal4*-positive cells were labeled by a T β H antibody and therefore have to be
115 *Tdc2*-positive³⁹. We here expressed myristoylated GFP, enhanced by GFP antibody
116 staining, to label the membranes of *Tdc2-Gal4*-positive neurons from the soma to its fine
117 endings in the periphery. The peripheral organs, tissues and cells are visualized by
118 fluorescent markers for cell bodies (DAPI binds to DNA), muscles (Phalloidin binds F-
119 actin) and antibodies against the synaptic protein Bruchpilot and the cell adhesion
120 molecule Fasciclin 2 (Fig. 1).


121

122 **Fig. 1: *Tdc2-Gal4*-positive arborizations in a whole fly section.** Projection of one
123 medial sagittal agarose section of 80 μ m thickness labeled by anti-GFP to visualize
124 membranes of *Tdc2-Gal4*-positive neurons (green in A, black in B); Phalloidin, anti-
125 *Fasciclin2* (Fas2) and anti-*Bruchpilot* (Brp) to visualize muscles, cells and synapses,
126 respectively (magenta in A, black in C) and DAPI to mark cell bodies (blue in A, black in
127 D). E: A single optical section showing the bright-field picture. Scale bars = 50 μ m.

128

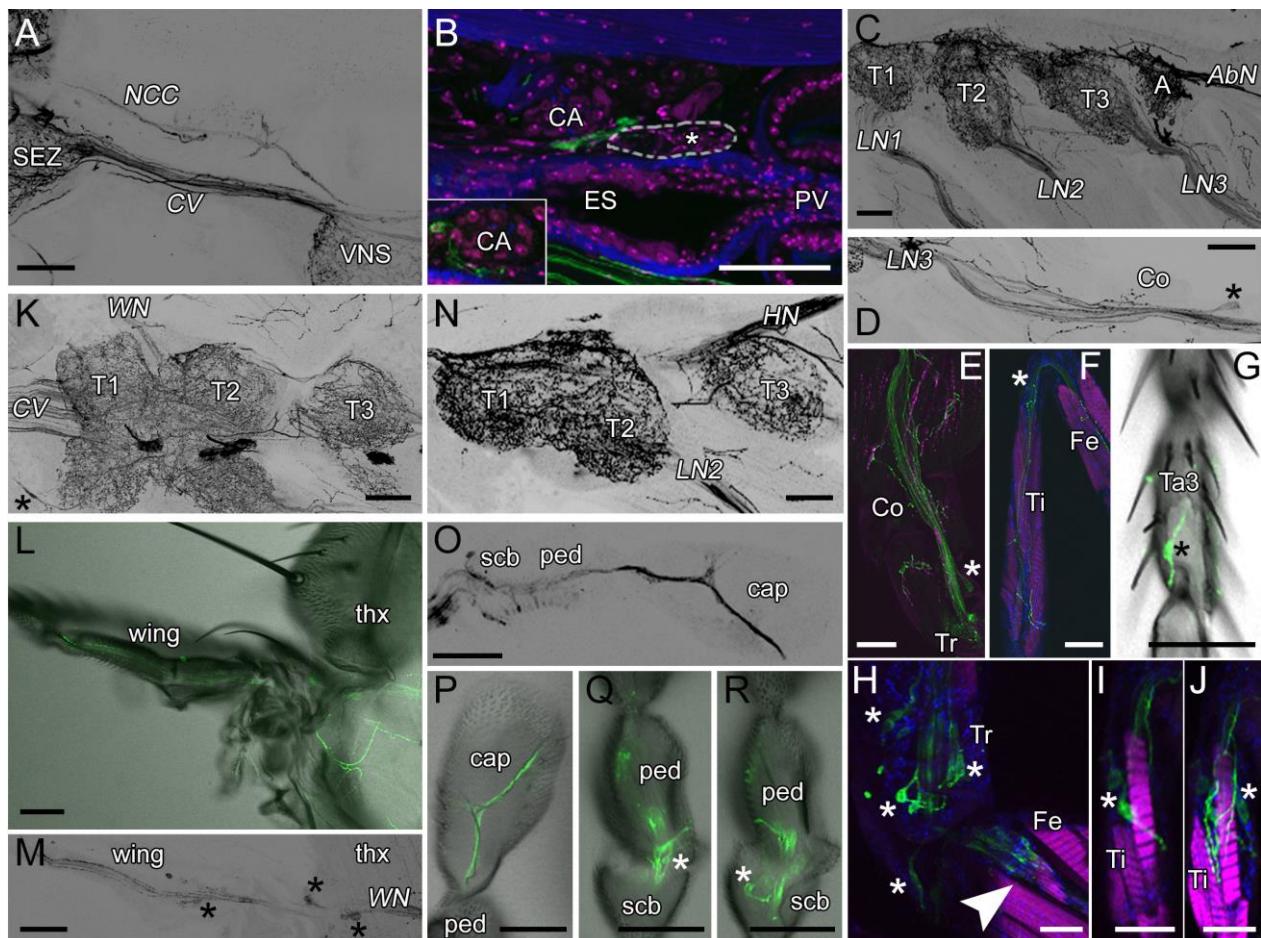
129 ***Tdc2-Gal4*-positive arborizations in the head**

130 *Tdc2-Gal4*-positive neurons (*Tdc2N*) project through all peripheral nerves of the brain:
131 antennal nerve (AN), ocellar nerve (OCN), pharyngeal nerve (PhN) and accessory PhN
132 (APhN), maxillary-labial nerve (MxLbN), corpora cardiaca nerve (NCC), and the cervical
133 connective (CV) (Fig. 2). *Tdc2Ns* in the antennal nerve are connected to the antennal
134 lobe and the antennal mechanosensory and motor center (ammc), respectively, and give
135 rise to staining in the pedicel- the Johnston's organ (JO)-, funiculus and arista of the
136 antenna (Fig. 2A-D). While no cell bodies are visible in the third to fifth segment of the
137 antenna, the JO contains stained cell bodies indicating that the *Tdc2-Gal4* line includes
138 mechanosensory neurons (Fig. 2C).

139

Fig. 2: *Tdc2-Gal4*-positive arborizations in the fly's head. Projections of sagittal (A-C,E-J,M) or frontal (D,K,O) or horizontal (L) optical sections visualizing the arborization pattern of *Tdc2-Gal4*-positive neurons (*Tdc2N*; black or green) in the head. A-D: *Tdc2Ns* run through the antennal nerve (AN) and project in antennal segments a2, a3 and a5. Mechanosensory neurons of the Johnston's organ are visible (C). E-H: Efferent *Tdc2Ns* of the pharyngeal (PhN) and accessory pharyngeal nerve (APhN). F-G: Cells of the PhN innervate muscles 9, 11 and 12. H: Bouton-like structures of APhN neurons beside the pharynx (ph). I: Innervation of muscle 16. J-M: *Tdc2Ns* of the maxillary-labial nerve (MxLbN) project along muscle 1 and 2 (K, L) in the haustellum (HA) and seem to innervate muscles 7 and 8 (M). Arborizations from the MxLbN reach the lateral brain (arrowhead in K). N: *Tdc2Ns* arborize in the ocellar nerve (OCN). O: Ramifications in the lateral lamina (LA) close to the retina (RE). a, anterior; AL, antennal lobe; AMMC, antennal mechanosensory and motor center; ar, arista; d, dorsal; CV, cervical connective; FB, fan-shaped body; l, lateral; p, posterior; SEZ, subesophageal zone. Scale bars = 50 μ m.

155

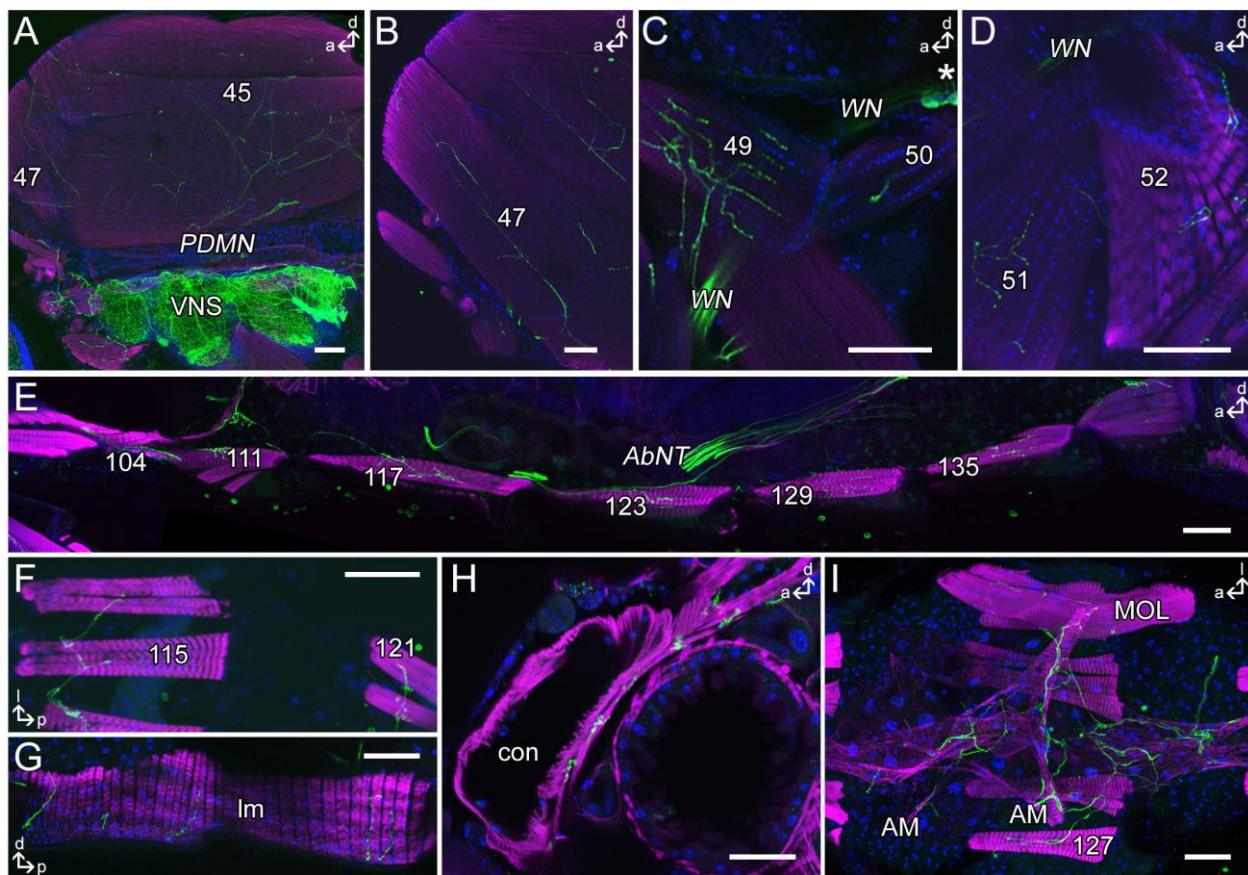

156 The *Tdc2-Ga4*-positive efferent nerves of the subesophageal zone (SEZ) arborize in the
157 rostrum of the proboscis mainly onto muscles (Fig. 2E-M). Cells leaving the brain via the
158 *PhN* innervate muscles 9, 10, 11 and 12 (nomenclature after ⁴⁸; Fig. 2F,G). Cells
159 projecting towards the APhN build bouton like structures beside muscle 11 ventral to the
160 pharynx (ph; Fig. 2H). Cells of the *MxLbN* arborize along muscles 1 and 2 (Fig. 2J-L). It
161 seems as if also muscles 7 and 8 of the haustellum are innervated (Fig. 2M). We only
162 observed this staining in two different specimens. Due to our cutting technique we
163 probably lost these parts of the haustellum frequently. In addition to the innervation of
164 the proboscis muscles we observed arborizations in the ventrolateral head arising from
165 the *MxLbN* (arrowhead Fig. 2K). The ocellar nerve, which connects the ocellar ganglion
166 with the brain, contains fibers arising from the brain (Fig. 2N). The central brain and optic
167 lobes were shown to contain a dense network of OANs/TANs ^{37,38}. In addition, we
168 identified arborizations in the distal part of the lamina by *Tdc2Ns* (Fig. 2O). Muscle 16,
169 which is located dorsal to the esophagus, is innervated via ascending *Tdc2Ns* from the
170 thorax (Fig. 2I).

171

172 ***Tdc2-Ga4*-positive arborizations in the thorax**

173 OANs/TANs form connections between the head and thorax via the CV and NCC (Fig.
174 3A). *Tdc2Ns* running through the NCC arborize close to the corpora allata (CA; Fig. 3B)
175 and anterior stomatogastric ganglion, while no staining is visible in the corpora cardiaca
176 (CC; asterisk Fig. 3B). The CV connects the brain and VNS and contains many *Tdc2Ns*
177 (Fig. 3A). All peripheral nerves of the thoracic ganglion seem to contain *Tdc2-Ga4*-
178 positive axons. Most prominent are the paired leg nerves of each thoracic neuromere
179 (LN1-3 Fig. 3C; ProLN, MesoLN, MetaLN after ⁴⁹), the paired wing (WN Fig. 3K; ADMN
180 after ⁴⁹) and posterior dorsal mesothoracic nerve (PDMN; Fig. 4A) of the mesothoracic
181 neuromere and paired haltere nerves of the metathoracic neuromere (HN Fig. 3N;
182 DMetaN after ⁴⁹). Interestingly, all these nerves, with the exception of *PDMN*, seem to
183 contain efferent *Tdc2Ns* innervating mainly muscles as well as afferent *Tdc2-Ga4*-
184 positive sensory neurons.

185


186

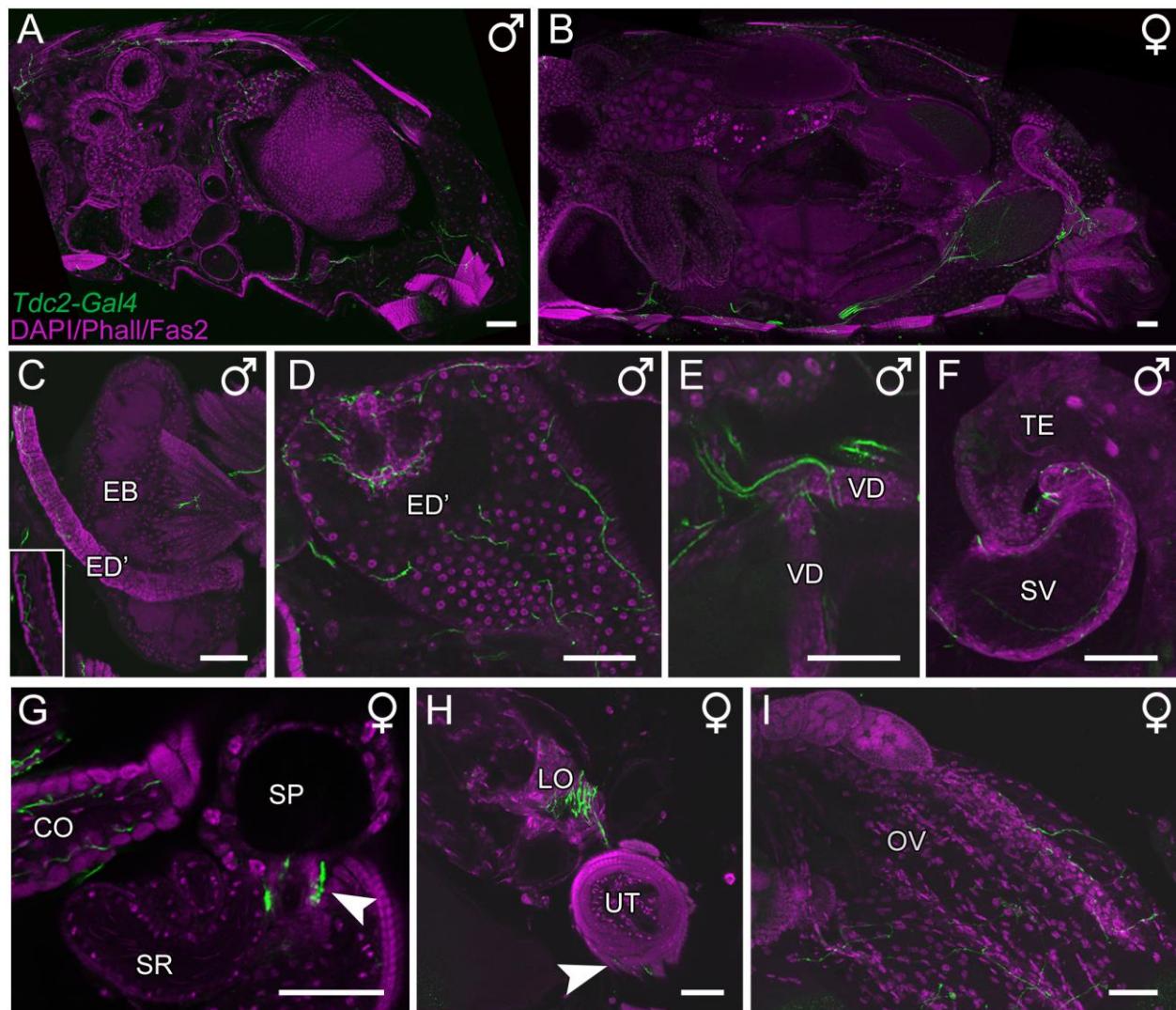
187 **Fig. 3: *Tdc2-Gal4*-positive arborizations in the thorax.** Projections of optical sections
188 visualizing the arborization pattern of *Tdc2-Gal4*-positive neurons (*Tdc2Ns*; black or
189 green) in the thorax. A: *Tdc2Ns* run through the cervical connective (CV) and corpora
190 cardiaca nerve (NCC). B: *Tdc2Ns* arborize close to the corpora allata (CA) and the
191 anterior stomatogastric ganglion (white-rimmed). C-F: *Tdc2Ns* project along the legs and
192 innervate leg muscles. G: An afferent sensory neuron in the third segment of the tarsus.
193 H-J: Cell bodies of sensory neurons (asterisks) of the trochanter (Tr; H) and tibia (Ti; I,J).
194 H: Neurons of the chordotonal organ in the femur (Fe; arrowhead). K-M: *Tdc2Ns* project
195 along the wing nerve (WN). K: Innervation of the thoracic chordotonal organ (asterisk).
196 L,M: *Tdc2Ns* run along the L1 wing vein. Cell bodies of sensory neurons are visible
197 (asterisks). N-R: *Tdc2Ns* in the haltere nerve (HN). *Tdc2*-positive cells project to the
198 distal part of the capitellum (cap). Sensory neurons of the pedicellus (ped) and
199 scabellum (scb) are labeled by *Tdc2-Gal4*. A-J,N-R: sagittal sections; K: horizontal
200 sections; L,M: frontal sections. A, abdominal segment; Co, coxa; ES, esophagus; Fe,
201 femur; LN, leg nerve; PV, proventriculus; SEZ, subesophageal zone; T1-3, thorax
202 segment1-3; Ta, tarsus; thx, thorax; Ti, tibia; Tr, trochanter. Scale bars: A-G,K-R = 50
203 μm; H-J = 25 μm.

204

205 The efferent *Tdc2*Ns in *LN1-3* arborize on the leg muscles down to the tibia (Fig. 3E,F),
206 while afferent fibers originate from sensory neurons of all leg segments (asterisks Fig.
207 3D-J), including i.a. mechanosensory neurons of the chordotonal organ of the femur
208 (arrowhead Fig. 3H) and campaniform sensilla of the tarsus (asterisk Fig. 3G). The *WN*
209 contains *Tdc2*Ns arborizing on indirect and direct flight muscles (Fig. 4B-D) and afferent
210 axons from sensory neurons of the proximal wing (asterisks Fig. 3M, 4C). Moreover,
211 efferent *Tdc2*Ns running to the *PDMN* innervate all six longitudinal indirect flight muscles
212 (45a-f; Fig. 4A) and the posterior dorsal-ventral indirect flight muscles (46a-b). *Tdc2*Ns
213 project along the L1 wing vein (Fig. 3L). *Tdc2*-positive cells innervating the haltere
214 project to the most distal tip of the capitellum (cap; Fig. 3O,P). Additionally, *Tdc2-Ga4*
215 includes sensory neurons of campaniform sensilla of the pedicellus (ped; Fig. 3Q,R) and
216 scabellum (scb; Fig. 3R). Additionally, it seems that *Tdc2-Ga4* labels sensory neurons
217 of the chordotonal organs of the haltere and wing.

218

219


220 **Fig. 4: *Tdc2-Ga14*-positive innervation of skeletal muscles.** Projections of optical
221 sections visualizing the innervation pattern of *Tdc2-Ga14*-positive neurons (*Tdc2Ns*;
222 black or green) on skeletal muscles of thorax and abdomen. A-D: Innervation of the
223 indirect flight muscles (A,B) and direct flight muscles (C,D). E-H: *Tdc2Ns* innervate the
224 ventral (E), dorsal (F) and lateral (G) abdominal body wall muscles. H,I: The longitudinal
225 (H) as well as the alary muscles (I) of the heart are innervated by *Tdc2Ns*. I: In males
226 arborizations on the muscle of Lawrence (MOL) in segment 5 are visible. A-E,G,H:
227 Sagittal sections; F,I: dorsal sections. a, anterior; AbNT, abdominal nerve trunk; AM,
228 alary muscle; con, conical chamber; d, dorsal; l, lateral; lm, lateral muscles; MOL,
229 muscle of Lawrence; p, posterior; PDMN, posterior dorsal mesothoracic nerve; VNS,
230 ventral nervous system; WN, wing nerve. Scale bars = 50 μ m.

231

232 ***Tdc2-Ga14*-positive arborizations in the abdomen**

233 *Tdc2Ns* innervate all ventral (111,117,123,129,135; Fig. 4A) and dorsal skeletal muscles
234 (109,115,121,127,133; Fig. 4B) of abdominal segments 2-6 as well as lateral muscles
235 (Fig. 4C). Additionally, *Tdc2-Ga14*-positive ramifications on the male specific “muscle of
236 Lawrence” in segment 5 are visible (Fig. 4E). Beside the body wall muscles, the ventral
237 longitudinal and the alary muscles of the heart are innervated (Fig. 4D,E). *Tdc2Ns*
238 running along the abdominal nerve trunk (AbNT) innervate the female and male
239 reproductive organs, respectively (Fig. 5). In males, as described before⁴¹ the anterior
240 ejaculatory duct, the vas deferens and seminal vesicle are innervated, while the
241 ejaculatory bulb itself is not innervated but its muscles (Fig. 5C-F). The innervations of
242 the female oviducts, uterus and spermathecal duct have been described in previous
243 publications^{36,40-44}.

244

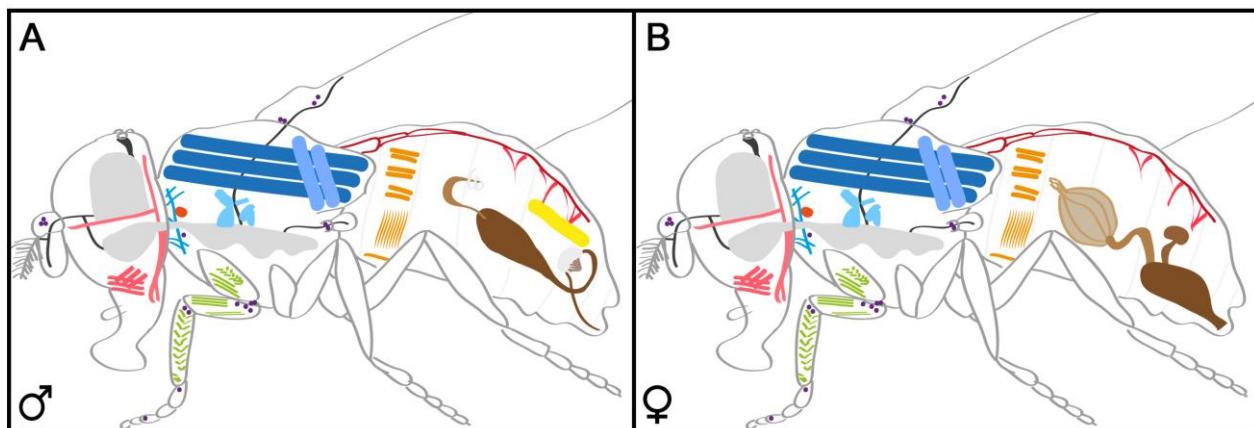
245

246 **Fig. 5: Tdc2-Gal4-positive innervation of the reproductive organs.** Projections of
247 optical sections visualizing the innervation pattern of Tdc2-Gal4-positive neurons
248 (Tdc2Ns; green) of reproductive organs visualized by DAPI, Phalloidin and Fasciclin2
249 staining (magenta). A-B: Tdc2N arborization pattern in a sagittal section of a male (A)
250 and female (B) abdomen, respectively. C-F: The anterior ejaculatory duct (ED'), muscles
251 of the ejaculatory bulb (EB), the vas deferens (VD) and seminal vesicle (SV) are
252 innervated by Tdc2Ns. G-I: Tdc2Ns arborize onto the common and lateral oviduct (CO,
253 LO), spermathecal duct (arrowhead in G), uterus (UT) muscles (arrowhead in H) and the
254 ovaries (OV). SP, spermatheca; SR, seminal receptacle; TE, testes. Scale bars = 50
255 μm.

256

257

258


259

260

261 **Discussion**

262 Here we show a comprehensive description of the innervation of OANs/TANs in the
263 periphery of *Drosophila*. For this, we used the *Tdc2-Gal4* line, allowing Gal4 expression
264 under the control of a regulatory sequence of the tyrosine decarboxylase enzyme ⁴⁰. As
265 this enzyme is essential for the synthesis of TA from tyrosine, the *Tdc2-Gal4*-line labels
266 both TANs and OANs. Within the *Drosophila* brain, *Tdc2-Gal4* labels in total about 137
267 cells, while additional 39 cells are located in the VNS ^{38,39}. The small number of Tdc2Ns
268 lead to arborizations in large parts of the central brain, optic lobes and the thoracic and
269 abdominal ganglion ³⁷⁻⁴⁰. Based on the profound innervation of Tdc2Ns in the brain and
270 VNS, the variety of behaviors modulated by the OA/TA system including learning and
271 memory, feeding, vision, and sleep, are not surprising. Beyond the brain and VNS,
272 OANs and TANs massively innervate regions within the periphery of the fly. Here, we
273 described arborizations on most skeletal muscles, the antenna, wings, halteres and
274 reproductive system and parts of the circulatory system and stomodaeal ganglion (Fig.
275 6; Table 1).

276

277

278 **Fig. 6: Overview of organs, tissues and skeletal muscles innervated by Tdc2Ns.**
279 Schematic drawing of a male (A) and female (B) fly showing the internal structures
280 innervated by Tdc2Ns: proboscis/head muscles (rose); CNS and VNS (grey); peripheral
281 nerves targeting the antenna, ocelli, wings or halters (dark grey); neck, direct and
282 indirect flight muscles (blue); corpora allata (orange); leg muscles (green); heart and
283 alary muscles (red); abdominal skeletal muscles (ocher); muscle of Lawrence (yellow);
284 reproductive organs (brown). Sensory neurons labeled by the *Tdc2-Gal4* line are shown
285 as purple dots.

286

287 Our findings are in line with previous reports focusing on the expression of different OA
288 and TA receptors in the fly^{50,51}. Accordingly, the OA receptor OAMB is expressed in
289 reproductive organs (in both male and female flies) and muscles, which are directly
290 innervated by Tdc2Ns. Additionally, the midgut and trachea contain OA and TA
291 receptors^{50,51}, but do not seem to be innervated by Tdc2Ns, even though axons run in
292 close vicinity to these organs. Likewise, the OA receptor Oct β 2R is expressed in the fat
293 body, salivary glands and Malpighian tubules, tissues that seem not to be innervated by
294 Tdc2Ns, while the expression of Oct β 1R and Oct β 3R is more specific^{50,51}. The three
295 tyramine receptors TyrR, TyrRII and TyrRIII show a broad expression in the periphery.
296 Interestingly, TyrR seems to be the only receptor expressed in the heart, suggesting that
297 only TA modulates heart function⁵⁰. Contrary, OA has a modulatory effect on the heart
298 of other insect species including honeybees, olive fruit flies and cockroaches⁵². This is
299 also in line with a previous report providing evidence that OA modulates the heart rate of
300 the *Drosophila* fly and pupa, but not the larva⁵³.

301 OA-dependent modulation of organs and tissues is mainly elicited through muscle
302 action, especially in terms of its impact on the “fight or flight” response. In line with this,
303 we observed *Tdc2-Ga4*-positive arborizations on nearly all skeletal muscles and many
304 visceral muscles (Table 1). In both *Drosophila* and desert locusts OA and TA is
305 expressed in type II terminals of skeletal muscles⁴⁵. OA has an excitatory effect on
306 *Drosophila* flight muscles, while TA was shown to inhibit excitatory junction potentials,
307 and thereby reduce muscle contractions and locomotion at least in the larva^{6,8,54,55}. In
308 addition, flies lacking OA show severe deficits in flight initiation and maintenance^{10,45}.
309 Interestingly, in an antagonistic effect to serotonin, OA reduces crop muscle activity
310 presumably via Oct β 1R, suggesting that OA has different effects on muscle activity
311 dependent on the type of muscle^{50,56}. However, our data do not provide any evidence of
312 a direct innervation of Tdc2Ns of the crop, even though many fibers run in close vicinity,
313 suggesting that OA might target the crop by volume transmission.

314 Furthermore, OA modulates ovulation and fertilization in insects⁵⁷⁻⁶¹. Flies lacking OA
315 display a severe egg-laying phenotype. Remarkably, within the female reproductive
316 organ two different OA receptors, OAMB and Oct β 2R, are necessary. Again, OA has a
317 strong impact on muscle activity within the reproductive system. Oct β 2R is expressed in

318 the visceral oviduct muscle and elicits muscle relaxation through an increase of
319 intracellular cAMP levels ⁵⁷. Such an OA-dependent modulation appears to be
320 conserved as OA is found in dorsal unpaired median neurons of locusts innervating
321 oviduct muscles through the oviductal nerve ⁶². However, our data suggest that OA-
322 positive fibers not only innervate oviduct muscles, but also enter the organs themselves.
323 The OAMB receptor is expressed in epithelial cells inducing fluid secretion through
324 increasing intracellular Ca^{2+} levels ⁵⁷. Thus, OA affects different processes within the
325 female reproductive organ due to the expression of different receptors and their coupled
326 signaling pathways, which may be a general mechanism of the OA/TA system to fulfill
327 an extensive modulatory function ⁶³.

328 OA does not exclusively modulate muscle activity, but also sensory neurons of external
329 tissues like the antenna, halteres and wings. OA has also been shown to increase the
330 spontaneous activity of olfactory receptor neurons (ORN) ^{64,65}. The modulation of ORNs
331 allows OA to modulate the innate response to attractive stimuli like fruit odors or
332 pheromones ^{66,67}. Further, this modulation helps nestmate recognition in ants ⁶⁸. In
333 addition to *Tdc2-Ga4*-positive arborizations in the funiculus, we found *Tdc2-Ga4*-
334 positive sensory neurons in the Johnston's organ, a chordotonal organ sensitive to
335 mechanosensory stimuli and thus important for hearing in insects. In mosquitos, OA
336 modulates auditory frequency tuning and thereby affects mating behavior ⁶⁹. In locusts,
337 OA similarly modulates the response of chordotonal neurons in the legs to encode
338 proprioceptive information ⁷⁰. Our data suggest that chordotonal neurons in the leg,
339 wings, halteres and thorax are included in the *Tdc2-Ga4* line suggesting a conserved
340 modulatory role of OA/TA for insect proprioception.

341 Taken together, our study suggest that the OA/TA system massively modulates various
342 organs and tissues in the periphery of *Drosophila*. Through distinct receptors and
343 coupled signaling pathways OANs/TANs mainly induce "fight or flight" responses by
344 modulating muscle activity, proprioception, and heart rate. As a result, the innervation
345 pattern in the periphery supports the idea that the OA/TA system is crucial for insects to
346 switch from a dormant to an excited state, by a positive modulation of muscle activity,
347 heart rate and energy supply, and a simultaneous negative modulation of physiological
348 processes like e.g. sleep.

349 **Table 1: Organs, tissues, visceral and skeletal muscles innervated by *Tdc2-Ga4*-**
 350 **positive neurons (*Tdc2Ns*).**

Organs, tissues, visceral muscles	Tdc2N staining	Skeletal muscles (after ⁴⁸)	Tdc2N staining
Digestive system		Head	
Esophagus (ES)	o	1	x
Crop	?	2	x
Hindgut	?	7	(x)
Circulatory system		8	(x)
Corpora allata (CA)	o	10	x
Ventral longitudinal muscles of heart	x	11	x
Alary muscles of heart	x	12	x
Nervous system		16	x
Brain	x	Thorax	
Ventral nervous system (VNS)	x	Leg muscles (after ⁷¹)	
Stomodaegal ganglion	x	Coxa trdm, trlm, trrm	x,x,x
Corpora cardiaca (CC)		Trochanter fedm, ferm	x,x
Ocellar nerve (OCN)	x	Femur ltm2, tilm, tidm, tirm	?x,x,x
Sensory organs		Tibia ltm1, talm, tadm, tarm	x,x,x,x
Antenna		Flight muscles	
Pedicle (a2)	x	indirect	
Funiculus (a3)	x	45,46,47,48	x,x,x,x
Arista (a4,a5)	x	direct	
Wings	x	49,50,51,52,54, 55,56,57,58	x,x,x,x, (x),?x,?
Halteres	x	Cervical muscles	
Male reproductive system		D 20,21,22,23, L 24; V 25,26,27	x,?,x,x, x; x,x,x
Muscles of Ejaculatory bulb (EB)	x	Mesothorax muscles	
Anterior ejaculatory duct (ED')	x	59,60,61,62	x,?,?,x
Accessory gland (AG)	?	Metathorax muscles	
Vas deferens (VD)	x	77,78,79	?
Seminal vesicle (SV)	x	Abdomen	
Female reproductive system		Segment 1	
Ovary (OV)	x		
Lateral oviduct (LO)	x		
Common oviduct (CO)	x		
Spermathecal duct (SPd)	x		
Spermatheca (SP)			

Uterus (UT)	x	D 98,99,100,101,102 L 103; V 80,81,104	x,x,?,x,x x; ?,x,x
Uterus muscles	x		
Sensory organ (SO)	Tdc2N cell body	Segment 2-6	
Chordotonal organ (CO) antenna	x	D 109,115,121,127,133 L 110,116,122,128,134 V 111,117,123,129,135	x,x,x,x,x x,x,x,x,x x,x,x,x,x
CO thorax	x		
CO leg	x		
SO leg	x		
SO wing	x		
SO haltere	x		

351 x, staining; o, encircled by staining; (x), not enough samples; ?, ambiguous results or not investigated; D,
352 dorsal; L, lateral; V, ventral

353

354

355 **Methods**

356 *Fly strains and fly rearing*

357 All flies were cultured according to standard methods. In short, vials were kept under
358 constant conditions with 25°C and 60% humidity in a 12:12 light:dark cycle. Flies
359 carrying the *Tdc2-Ga4* (40, Bloomington Stock Center) and 10xUAS-IVS-*myrGFP* (72,
360 Bloomington Stock Center) constructs were used for immunohistochemistry. To control
361 for an unspecific expression of the UAS construct, we stained 10xUAS-IVS-*myrGFP*
362 alone. No GFP staining was detected.

363

364 *Immunocytochemistry*

365 To visualize the arborisations of *Tdc2-Ga4*-positive neurons in the periphery whole body
366 sections, as well as sections of the head, thorax and abdomen, were performed,
367 respectively (see 73). In short, the cuticle of 4 to 7 days old flies was opened in
368 phosphate buffered saline (PBS, 0.1M) to ensure that the fixative is able to penetrate
369 into the tissue. Whole flies were fixated with 4% paraformaldehyde in PBS for two hours
370 at room temperature and afterwards washed three times with PBS. Subsequently flies
371 were embedded in hot 7% Agarose low EEO (A2114; AppliChem). After hardening, the
372 flies were cut with a vibratome (Leica VT1000S) into 80-100 µm sections. Staining of the

373 sections was continued after washing in PBS containing 0.3% Triton-X100 (PBT) and
374 blocking in 5% normal goat serum in PBT. Rabbit anti-GFP (A6455, Molecular Probes)
375 in combination with mouse anti-Synapsin (3C11; ⁷⁴; 1:50) or mouse anti-Bruchpilot
376 (nc82; ⁷⁵) and mouse anti-Fasciclin 2 (1D4; DSHB; 1:100) were used as primary
377 antibodies. After one night at 4°C the specimens were washed six times in PBT and
378 incubated in secondary antibody solution for a subsequent night at 4°C. As secondary
379 antibodies goat anti-rabbit Alexa488 (Molecular Probes; 1:200) and goat anti-mouse
380 DyLight649 (Jackson ImmunoResearch; 1:200) were used. 4',6-Diamidino-2-phenylindol
381 Dihydrochlorid (DAPI; Sigma-Aldrich; 1:1000) and Alexa Fluor 633 Phalloidin (Molecular
382 Probes; 1:400) were used to visualize DNA and actin, respectively.

383

384 *Confocal microscopy and data processing*

385 Confocal images were taken with a Leica TCS SP8 microscope (Leica Microsystems,
386 Germany) with a 20x high aperture objective. Labelled specimens were scanned with a
387 step size of 1.0 µm to 1.5 µm. Image processing and alignment was performed using Fiji
388 (⁷⁶), Amira 5.3 (Visage Imaging, Berlin, Germany and Adobe Photoshop CS6 (Adobe
389 Systems, USA).

390

391

392 **References**

- 393 1. Goldstein, D. S. Adrenal Responses to Stress. *Cell Mol Neurobiol* **30**, 1433–1440
394 (2010).
- 395 2. Stevenson, P. A. & Rillich, J. Controlling the decision to fight or flee: the roles of
396 biogenic amines and nitric oxide in the cricket. *Curr Zool* **62**, 265–275 (2016).
- 397 3. Adamo, S. A. The stress response and immune system share, borrow, and
398 reconfigure their physiological network elements: Evidence from the insects. *Horm
399 Behav* **88**, 25–30 (2017).

400 4. Adamo, S. A., Linn, C. E. & Hoy, R. R. The role of neurohormonal octopamine during
401 'fight or flight' behaviour in the field cricket *Gryllus bimaculatus*. *J. Exp. Biol.* **198**,
402 1691–1700 (1995).

403 5. Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. *Annu. Rev.*
404 *Entomol.* **50**, 447–477 (2005).

405 6. Saraswati, S., Fox, L. E., Soll, D. R. & Wu, C.-F. Tyramine and octopamine have
406 opposite effects on the locomotion of *Drosophila* larvae. *J. Neurobiol.* **58**, 425–441
407 (2004).

408 7. Koon, A. C. *et al.* Autoregulatory and paracrine control of synaptic and behavioral
409 plasticity by octopaminergic signaling. *Nat. Neurosci.* **14**, 190–199 (2011).

410 8. Selcho, M., Pauls, D., El Jundi, B., Stocker, R. F. & Thum, A. S. The role of
411 octopamine and tyramine in *Drosophila* larval locomotion. *J. Comp. Neurol.* **520**,
412 3764–3785 (2012).

413 9. Pauls, D. *et al.* Potency of transgenic effectors for neurogenetic manipulation in
414 *Drosophila* larvae. *Genetics* **199**, 25–37 (2015).

415 10. Brembs, B., Christiansen, F., Pflüger, H. J. & Duch, C. Flight initiation and
416 maintenance deficits in flies with genetically altered biogenic amine levels. *J.*
417 *Neurosci.* **27**, 11122–11131 (2007).

418 11. Mentel, T. *et al.* Central modulatory neurons control fuel selection in flight muscle of
419 migratory locust. *J. Neurosci.* **23**, 1109–1113 (2003).

420 12. Pflüger, H.-J. & Duch, C. Dynamic neural control of insect muscle metabolism
421 related to motor behavior. *Physiology (Bethesda)* **26**, 293–303 (2011).

422 13. Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. *Annu. Rev.*
423 *Entomol.* **50**, 447–477 (2005).

424 14. Roeder, T. Octopamine in invertebrates. *Prog. Neurobiol.* **59**, 533–561 (1999).

425 15. Roeder, T., Seifert, M., Kähler, C. & Gewecke, M. Tyramine and octopamine:
426 antagonistic modulators of behavior and metabolism. *Arch. Insect Biochem. Physiol.*
427 **54**, 1–13 (2003).

428 16. Selcho, M., Pauls, D., Huser, A., Stocker, R. F. & Thum, A. S. Characterization of the
429 octopaminergic and tyraminergic neurons in the central brain of *Drosophila* larvae. *J.*
430 *Comp. Neurol.* **522**, 3485–3500 (2014).

431 17. Stevenson, P. A., Hofmann, H. A., Schoch, K. & Schildberger, K. The fight and flight
432 responses of crickets depleted of biogenic amines. *J. Neurobiol.* **43**, 107–120 (2000).

433 18. Schwaerzel, M. *et al.* Dopamine and octopamine differentiate between aversive and
434 appetitive olfactory memories in *Drosophila*. *J. Neurosci.* **23**, 10495–10502 (2003).

435 19. Schroll, C. *et al.* Light-induced activation of distinct modulatory neurons triggers
436 appetitive or aversive learning in *Drosophila* larvae. *Curr. Biol.* **16**, 1741–1747
437 (2006).

438 20. Vergoz, V., Roussel, E., Sandoz, J.-C. & Giurfa, M. Aversive learning in honeybees
439 revealed by the olfactory conditioning of the sting extension reflex. *PLoS ONE* **2**,
440 e288 (2007).

441 21. Certel, S. J., Savella, M. G., Schlegel, D. C. F. & Kravitz, E. A. Modulation of
442 *Drosophila* male behavioral choice. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 4706–4711
443 (2007).

444 22. Hoyer, S. C. *et al.* Octopamine in male aggression of *Drosophila*. *Curr. Biol.* **18**, 159–
445 167 (2008).

446 23. Mercer, A. R. & Menzel, R. The effects of biogenic amines on conditioned and
447 unconditioned responses to olfactory stimuli in the honeybee<Emphasis
448 Type="Italic">Apis mellifera</Emphasis>. *J. Comp. Physiol.* **145**, 363–368 (1982).

449 24. Crocker, A., Shahidullah, M., Levitan, I. B. & Sehgal, A. Identification of a Neural
450 Circuit that Underlies the Effects of Octopamine on Sleep:Wake Behavior. *Neuron*
451 **65**, 670–681 (2010).

452 25. Crocker, A. & Sehgal, A. Octopamine regulates sleep in drosophila through protein
453 kinase A-dependent mechanisms. *J. Neurosci.* **28**, 9377–9385 (2008).

454 26. Zhang, T., Branch, A. & Shen, P. Octopamine-mediated circuit mechanism
455 underlying controlled appetite for palatable food in Drosophila. *PNAS* **110**, 15431–
456 15436 (2013).

457 27. Youn, H., Kirkhart, C., Chia, J. & Scott, K. A subset of octopaminergic neurons that
458 promotes feeding initiation in *Drosophila melanogaster*. *PLOS ONE* **13**, e0198362
459 (2018).

460 28. Pflüger, H.-J. & Duch, C. Dynamic neural control of insect muscle metabolism
461 related to motor behavior. *Physiology (Bethesda)* **26**, 293–303 (2011).

462 29. Burke, C. J. *et al.* Layered reward signalling through octopamine and dopamine in
463 Drosophila. *Nature* **492**, 433–437 (2012).

464 30. Mizunami, M. & Matsumoto, Y. Roles of Octopamine and Dopamine Neurons for
465 Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets.
466 *Front Physiol* **8**, 1027 (2017).

467 31. Scheiner, R., Steinbach, A., Claßen, G., Strudthoff, N. & Scholz, H. Octopamine
468 indirectly affects proboscis extension response habituation in Drosophila

469 melanogaster by controlling sucrose responsiveness. *J. Insect Physiol.* **69**, 107–117
470 (2014).

471 32. Stevenson, P. A., Dyakonova, V., Rillich, J. & Schildberger, K. Octopamine and
472 experience-dependent modulation of aggression in crickets. *J. Neurosci.* **25**, 1431–
473 1441 (2005).

474 33. Mancini, N., Giurfa, M., Sandoz, J.-C. & Avarguès-Weber, A. Aminergic
475 neuromodulation of associative visual learning in harnessed honey bees. *Neurobiol
476 Learn Mem* (2018). doi:10.1016/j.nlm.2018.05.014

477 34. Watanabe, K. *et al.* A Circuit Node that Integrates Convergent Input from
478 Neuromodulatory and Social Behavior-Promoting Neurons to Control Aggression in
479 *Drosophila*. *Neuron* **95**, 1112-1128.e7 (2017).

480 35. Zhou, C., Rao, Y. & Rao, Y. A subset of octopaminergic neurons are important for
481 *Drosophila* aggression. *Nature Neuroscience* **11**, 1059–1067 (2008).

482 36. Monastirioti, M. Distinct octopamine cell population residing in the CNS abdominal
483 ganglion controls ovulation in *Drosophila melanogaster*. *Dev. Biol.* **264**, 38–49
484 (2003).

485 37. Sinakevitch, I. & Strausfeld, N. J. Comparison of octopamine-like immunoreactivity in
486 the brains of the fruit fly and blow fly. *J. Comp. Neurol.* **494**, 460–475 (2006).

487 38. Busch, S., Selcho, M., Ito, K. & Tanimoto, H. A map of octopaminergic neurons in
488 the *Drosophila* brain. *J. Comp. Neurol.* **513**, 643–667 (2009).

489 39. Schneider, A. *et al.* Neuronal basis of innate olfactory attraction to ethanol in
490 *Drosophila*. *PLoS ONE* **7**, e52007 (2012).

491 40. Cole, S. H. *et al.* Two functional but noncomplementing *Drosophila* tyrosine
492 decarboxylase genes: distinct roles for neural tyramine and octopamine in female
493 fertility. *J. Biol. Chem.* **280**, 14948–14955 (2005).

494 41. Rezával, C., Nojima, T., Neville, M. C., Lin, A. C. & Goodwin, S. F. Sexually
495 dimorphic octopaminergic neurons modulate female postmating behaviors in
496 *Drosophila*. *Curr. Biol.* **24**, 725–730 (2014).

497 42. Avila, F. W., Bloch Qazi, M. C., Rubinstein, C. D. & Wolfner, M. F. A requirement for
498 the neuromodulators octopamine and tyramine in *Drosophila melanogaster* female
499 sperm storage. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 4562–4567 (2012).

500 43. Middleton, C. A. *et al.* Neuromuscular organization and aminergic modulation of
501 contractions in the *Drosophila* ovary. *BMC Biol.* **4**, 17 (2006).

502 44. Monastirioti, M. *et al.* Octopamine immunoreactivity in the fruit fly *Drosophila*
503 *melanogaster*. *J. Comp. Neurosci.* **356**, 275–287 (1995).

504 45. Stocker, B. *et al.* Structural and Molecular Properties of Insect Type II Motor Axon
505 Terminals. *Front Syst Neurosci* **12**, 5 (2018).

506 46. Rivlin, P. K., St Clair, R. M., Vilinsky, I. & Deitcher, D. L. Morphology and molecular
507 organization of the adult neuromuscular junction of *Drosophila*. *J. Comp. Neurosci.*
508 **468**, 596–613 (2004).

509 47. Pech, U., Pooryasin, A., Birman, S. & Fiala, A. Localization of the contacts between
510 Kenyon cells and aminergic neurons in the *Drosophila melanogaster* brain using
511 SplitGFP reconstitution. *J. Comp. Neurosci.* **521**, 3992–4026 (2013).

512 48. Miller, A. The internal anatomy and histology of the imago of *Drosophila*
513 *melanogaster*. in *In: Demerec (ed) Biology of Drosophila* 420–534 (1950).

514 49. Court, R. C. *et al.* A Systematic Nomenclature for the *Drosophila* Ventral Nervous
515 System. *bioRxiv* 122952 (2017). doi:10.1101/122952

516 50. El-Kholy, S. *et al.* Expression analysis of octopamine and tyramine receptors in
517 *Drosophila*. *Cell Tissue Res.* **361**, 669–684 (2015).

518 51. Ohhara, Y., Kayashima, Y., Hayashi, Y., Kobayashi, S. & Yamakawa-Kobayashi, K.
519 Expression of β -adrenergic-like octopamine receptors during *Drosophila*
520 development. *Zool. Sci.* **29**, 83–89 (2012).

521 52. Papaefthimiou, C. & Theophilidis, G. Octopamine--a single modulator with double
522 action on the heart of two insect species (*Apis mellifera macedonica* and *Bactrocera*
523 *oleae*): Acceleration vs. inhibition. *J. Insect Physiol.* **57**, 316–325 (2011).

524 53. Zornik, E., Paisley, K. & Nichols, R. Neural transmitters and a peptide modulate
525 *Drosophila* heart rate. *Peptides* **20**, 45–51 (1999).

526 54. Kutsukake, M., Komatsu, A., Yamamoto, D. & Ishiwa-Chigusa, S. A tyramine
527 receptor gene mutation causes a defective olfactory behavior in *Drosophila*
528 *melanogaster*. *Gene* **245**, 31–42 (2000).

529 55. Nagaya, Y., Kutsukake, M., Chigusa, S. I. & Komatsu, A. A trace amine, tyramine,
530 functions as a neuromodulator in *Drosophila melanogaster*. *Neurosci. Lett.* **329**,
531 324–328 (2002).

532 56. Solari, P. *et al.* Opposite effects of 5-HT/AKH and octopamine on the crop
533 contractions in adult *Drosophila melanogaster*: Evidence of a double brain-gut
534 serotonergic circuitry. *PLoS ONE* **12**, e0174172 (2017).

535 57. Li, Y., Fink, C., El-Kholy, S. & Roeder, T. The octopamine receptor oct β 2R is
536 essential for ovulation and fertilization in the fruit fly *Drosophila melanogaster*. *Arch.*
537 *Insect Biochem. Physiol.* **88**, 168–178 (2015).

538 58. Lim, J. *et al.* The Octopamine Receptor Oct β 2R Regulates Ovulation in *Drosophila*
539 *melanogaster*. *PLOS ONE* **9**, e104441 (2014).

540 59. Lee, H.-G., Seong, C.-S., Kim, Y.-C., Davis, R. L. & Han, K.-A. Octopamine receptor
541 OAMB is required for ovulation in *Drosophila melanogaster*. *Dev. Biol.* **264**, 179–190
542 (2003).

543 60. Rodríguez-Valentín, R. *et al.* Oviduct contraction in *Drosophila* is modulated by a
544 neural network that is both, octopaminergic and glutamatergic. *J. Cell. Physiol.* **209**,
545 183–198 (2006).

546 61. Monastirioti, M., Linn, C. E. & White, K. Characterization of *Drosophila* tyramine
547 beta-hydroxylase gene and isolation of mutant flies lacking octopamine. *J. Neurosci.*
548 **16**, 3900–3911 (1996).

549 62. Lange, A. B. & Orchard, I. Dorsal unpaired median neurons, and ventral bilaterally
550 paired neurons, project to a visceral muscle in an insect. *J. Neurobiol.* **15**, 441–453
551 (1984).

552 63. Lee, H.-G., Rohila, S. & Han, K.-A. The octopamine receptor OAMB mediates
553 ovulation via Ca $^{2+}$ /calmodulin-dependent protein kinase II in the *Drosophila* oviduct
554 epithelium. *PLoS ONE* **4**, e4716 (2009).

555 64. Stengl, M. Pheromone transduction in moths. *Front Cell Neurosci* **4**, 133 (2010).

556 65. Zhukovskaya, M. I. & Polyanovsky, A. D. Biogenic Amines in Insect Antennae. *Front*
557 *Syst Neurosci* **11**, 45 (2017).

558 66. Linn, C. E. & Roelofs, W. L. Modulatory effects of octopamine and serotonin on male
559 sensitivity and periodicity of response to sex pheromone in the cabbage looper moth,
560 *Trichoplusia ni*. *Archives of Insect Biochemistry and Physiology* **3**, 161–171

561 67. Zhukovskaya, M. I. Selective regulation of sensitivity to odours of different
562 behavioural significance in the American cockroach, *Periplaneta americana*.
563 *Physiological Entomology* **33**, 162–166

564 68. Vander Meer, R. K., Preston, C. A. & Hefetz, A. Queen regulates biogenic amine
565 level and nestmate recognition in workers of the fire ant, *Solenopsis invicta*.
566 *Naturwissenschaften* **95**, 1155–1158 (2008).

567 69. Andrés, M. *et al.* Auditory Efferent System Modulates Mosquito Hearing. *Curr. Biol.*
568 **26**, 2028–2036 (2016).

569 70. Matheson, T. Octopamine modulates the responses and presynaptic inhibition of
570 proprioceptive sensory neurones in the locust *Schistocerca gregaria*. *J. Exp. Biol.*
571 **200**, 1317–1325 (1997).

572 71. Soler, C., Daczewska, M., Da Ponte, J. P., Dastugue, B. & Jagla, K. Coordinated
573 development of muscles and tendons of the *Drosophila* leg. *Development* **131**,
574 6041–6051 (2004).

575 72. Pfeiffer, B. D. *et al.* Refinement of tools for targeted gene expression in *Drosophila*.
576 *Genetics* **186**, 735–755 (2010).

577 73. Selcho, M. & Wegener, C. Immunofluorescence and Genetic Fluorescent Labeling
578 Techniques in the *Drosophila* Nervous System. *Immunocytochemistry and Related*
579 *Techniques* **101**, 39–62 (2015).

580 74. Klagges, B. R. *et al.* Invertebrate synapsins: a single gene codes for several
581 isoforms in *Drosophila*. *J. Neurosci.* **16**, 3154–3165 (1996).

582 75. Wagh, D. A. *et al.* Bruchpilot, a protein with homology to ELKS/CAST, is required for
583 structural integrity and function of synaptic active zones in *Drosophila*. *Neuron* **49**,
584 833–844 (2006).

585 76. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat.*
586 *Methods* **9**, 676–682 (2012).

587

588

589 **Acknowledgements**

590 We thank the Bloomington stock center for flies, Claudia Groh and the Development
591 Studies Hybridoma Bank for antibodies. We thank Christian Wegener and Charlotte
592 Förster for their support and fruitful discussions, and Christian Wegener for comments
593 on the manuscript.

594 This research was supported by a grant from the German Excellence Initiative to the
595 Graduate School of Life Sciences, University of Würzburg (to M.S.); SCIENTIA
596 fellowship “Bayerische Gleichstellungsförderung: Programm zur Realisierung der
597 Chancengleichheit für Frauen in Forschung und Lehre” (to M.S.), and by the Deutsche
598 Forschungsgemeinschaft (PA1979/2-1 to D.P., EL784/1-1 to B.eJ.).

599 D.P. and M.S. conceived and designed the experiments. D.P., C.B., F.F., B.eJ. and M.S.
600 performed the experiments. M.S. analyzed the data. D.P. and M.S. wrote the manuscript
601 and M.S. prepared the figures. All authors reviewed the manuscript.