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Abstract

A number of rare variant tests have been developed to explore the effect of low
frequency genetic variations on complex phenotypes. However, an often neglected aspect
in these tests is the position of genetic variations. Here we are proposing a way to assess
the differences in spatial organization of rare variants by assessing their distributional
differences between affected and unaffected subjects. To do so, we have formulated an
adaptation of the well know Kolmogorov-Smirnov (KS) test, combining both KS and a
simple gene burden approach, called KS-Burden.

The performance of our test was evaluated under a comprehensive simulations
framework using real data and various scenarios. Our results show that the KS-Burden
test is able to outperform the commonly used SKAT-O test, as well as others, in the
presents of clusters of causal variants within a genomic region. Furthermore, our test is
able to maintain competitive statistical power in scenarios unfavorable to its original
assumptions. Hence, the KS-Burden test is a valuable alternative to existing tests and
provides better statistical power in the presents of causal clusters within a gene.

Introduction 1

The advent of genome-wide association studies (GWAS) has contributed significantly to 2

our understanding of complex traits by finding several thousand robust association 3

between genetic variants and complex phenotypes [1]. However, GWASs survey only 4

common variants (MAF > 0.01) and ignore lower frequency variations which make up 5

the majority of polymorphisms. Detection of low frequency variants have been more 6

challenging but the recent development of next-generation sequencing based 7

technologies have provided rich opportunities to study those rare variants and their 8

impact on complex human traits [2]. 9

Indeed, rare variants, which can be defined as genetic variations occurring in less 10

than 1% of the population, have been suggested to play an important role in the 11

etiology of human traits and potentially account for the missing heritability [3, 4]. Thus 12

considerable effort has been made to develop and deploy statistical methods to discover 13

important causal relationships between rare variants and complex human traits [5–8]. In 14

GWASs, a single variants is associated with the trait in question. This approach is 15
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largely unfeasible in rare variants due to their low frequency and large numbers, as well 16

as the limited sample size of most studies [9]. Thus most approaches have been focused 17

on combining multiple rare variants in order to increase statistical power. This can be 18

either done on the gene or pathway level, but for simplicity we will only consider gene 19

based tests within this paper. 20

In general, one can classify rare variant tests into three categories, namely burden, 21

variance-component and omnibus tests, based on their assumption regarding the 22

underlying genetic architecture [9]. In general, burden tests aggregate single rare genetic 23

variations. Thus assuming that all variants in a given genomic region have the same 24

direction of effect. Violation of this assumption results in considerable reduction in 25

statistical power. Examples of this methods include the Combined Multivariate and 26

Collapsing (CMC) test [10], as well as the weighted sum statistic [11]. Alternatively, 27

variance-component tests do not assume uni-directional effect of all included variants. 28

These methods investigate the distribution of genetic effects for a genomic region and 29

are robust to variants with differing direction of effects. Prominent example of 30

variance-component tests are SKAT [12] and C-Alpha [13]. These tests are more 31

powerful compared to the burden approach in situations when the majority of rare 32

variants are of neutral or bi-directional effect. However, burden tests in general 33

outperform variance-component based tests when a large proportion of variants have 34

the same direction of effect. This has lead to the development of omnibus tests to 35

combine both approaches. A commonly used example of these omnibus tests is 36

SKAT-O [14] which uses a combination of SKAT and burden tests statistics to derive a 37

combined p-value. 38

An often neglected aspect of rare variant tests are the position of these genetic 39

variation and only a few tests have so far been suggested [15–17]. Multiple biological 40

evidence has been reported in the past demonstrating clustering of causal rare variants 41

within the genome [16]. It is biological plausible to suggest that rare deleterious 42

mutations causally related to a considered trait might be more likely to be located in 43

protein functional domains or gene regulatory elements. 44

We are here proposing a way to assess the differences in spatial organization by 45

assessing the distributional differences of rare variants between cases and controls. To 46

do so we make use of the well known Kolmogorov-Smirnov (KS) test. We demonstrate, 47

through simulations, that our methods shows good statistical power compared to 48

commonly used tests, such as SKAT and burden, when the assumption of the KS test 49

are met. Further, we combine the KS and burden test to provide an omnibus approach 50

to our gene based association tests. 51

Materials and methods 52

Notation 53

Assume n subjects are sequenced (indexed by i) and in a given region and p variant 54

sites were observed (indexed by j). Then Gi = (Gi1, . . . , Gip) denotes the genotype for 55

the p variants. One assumes an additive genetic model and Gij = 0, 1, 2 represents the 56

number of copies of the minor allele. 57

Kolmogorov-Smirnov (KS) Test 58

The two sample KS test is a non-parametric test for the equality of two one-dimensional 59

probability distributions. The test can be adapted to test for the distributional 60

differences of multiple variants in a region on a dichotomous phenotype by computing 61

the respective cumulative distribution functions (see Figure 1). 62
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For a given genotype matrix G of size n× p one can compute the empirical 63

cumulative distribution function at any given variant position x in G as 64

F (x) =
1

Γ

x∑
j=1

n∑
i=1

Gij (1)

in which Γ =
∑p

j=1

∑n
i=1Gij . Hence F (x) computes the cumulative proportion of 65

alleles present in a region from the beginning up until the position x within a genomic 66

region. 67

Given the genotype matrices of affected and unaffected individuals (GA and GU ) on 68

can compute F (x) for both groups separately for all genomic positions x. The test 69

statistic of the KS test is then given as 70

K = sup
x
|FA(x)− FU (x)| (2)

Thus the KS test aims to identify distributional differences of multiple variants by 71

identifying the largest absolute differences between the two empirical cumulative 72

distribution functions. 73

Fig 1. Illustrative example of the KS test applied to a genomic region. The arrow
indicates the larges distance between the two cumulative distribution functions of
affected and unaffected individuals.

Evaluating distributional differences of variants between affected and unaffected 74

individuals corresponds to testing the null hypothesis H0 : FA = FU . While the classical 75

KS test is distribution-free when F is continuous, it is not the case with discrete data, 76

such as allele count. Indeed, application of the Kolmogorov distribution to obtain 77

critical values for K for discrete data yields conservative estimates [18,19]. Therefore, 78

we applied a permutation-based approach to evaluate K under H0. 79

p =

∑B
b=1 I(Kb ≥ K) + 1

B + 1
(3)

In which Kb is the test statistic of the bth permuted sample and K is the observed test 80

statistic. 81

Omnibus Test for KS and Burden 82

The KS test evaluates distributional differences of multiple variants in a given region, 83

but does not test for overall differences in the amount of variants between affected and 84

unaffected individuals. The Burden test, in contrast, does not take distributional 85

differences into account but tests for the differences in allele counts between affected 86

and unaffected individuals. One can define the test statistic of the Burden tests as 87

U = (

p∑
i=1

(y − ȳ)×Gi)

2

(4)

Hence, under H0 the KS test and Burden test can be seen as orthogonal to each 88

other. Multiple different methods have been developed to combine two different tests, 89

most prominently Fisher’s product methods. We made use of a similar developed which 90

has been shown to be more powerful [20]. Specially, given the ordered p-values of both 91

KS and Burden (indexed by j) one can compute Wj as 92

Wj =

j∏
i=1

p(i) (5)
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Hence, W1 represents the smallest p-value from either KS or Burden, while W2 is the 93

product of both p-values. 94

This combined test rejects the null if ∪2j=1(Wj ≤ τj). The critical value τj for W1 95

and W2 is estimated via a Monte Carlo approach as following: 96

1. Create a matrix P sized L× 2 with elements plj , j = 1, 2; l = 1, . . . , L for some 97

large integer L, in which plj ∼ U(0, 1) 98

2. Calculate pl(1) and
∏2

i=1 pl(i); denote them as W[l.] = wl1, wl2 99

3. Compute the α-percentile for each column of W and note the critical values τj 100

This relatively simple approach allows to combine both KS and Burden, while holding 101

the type 1 error rate stable [20]. 102

Implementation of the KS, Burden and the combined KS-Burden was done in C++ 103

and can be found at https://github.com/rmporsch/ksburden. 104

Simulation Study 105

In contrast to most previous studies investigating the statistical properties of rare 106

variant association tests, we made use of real sequencing data. Thus, genotypes were 107

not simulated but acquired from a previous sequencing study. The main aim of using 108

real data is to accurately reflect the diversity of genes within the human genome as well 109

as limitations commonly encountered in sequencing-based studies. Indeed, most gene 110

based tests are confronted with a variety of small and medium gene lengths which is 111

often not reflected in the original power estimations. Hence we will make use of a large 112

sequenced sample originally intended to study Hirschsprung’s diseases to investigate the 113

statistical properties of the KS and KS-Burden test. 114

Simulation Dataset: The Hirschsprung Sequencing Project 115

Hirschsprung disease (HSCR) is a rare congenital disorder occurring in about one in 116

5, 000 births [21]. The here used sample contains 464 cases as well as 498 controls 117

analyzed by whole-genome sequencing (36.6X median read depth). All patients are 118

sporadic cases with known family history of HSCR and were recruited in China 119

(n = 341) and Hanoi, Vietnam (n = 102). Controls were obtained from same or nearby 120

cities in order to match the subpopulation of patients. Samples were excluded due to 121

failure in heterozygosity (an excessive amount of heterozygous genotypes in a sample 122

can indicate potential genotyping problems), gender accordance, duplications, and 123

relatedness. Population outliers, e.i. samples which were not of Chinese or Vietnamese 124

descent, were removed by PCA resulting in a final set of 443 cases and 493 controls. 125

Furthermore, genotype level quality control was applied with KGGseq [22] and 126

genotypes with quality less than 20 (GQ < 20) or covered by less than 8 reads 127

(DP < 8) were excluded. In addition, variants with call rate < 0.9 or those violating 128

Hardy-Weinberg equilibrium (p < 10−5) were removed. This resulted in a final call set 129

of 33.5 million (M) SNVs and 3.3M indels, the majority of which are novel (61.5% for 130

SNVs and 68.7% for indels). 131

Variants were then annotated for protein functions against RefSeq gene annotations 132

as well as population frequencies (1000 Genomes Project phase 3, ExAC and ESP). 133

Only nonsynonymous exonic variants (frameshift, nonframeshift, stopgain, missense, 134

startloss, stoploss, splicing) with an MAF ≤ 1% were included in the simulations. 135

Overall frequency of rare nonsynonymous mutations per gene are displayed in Figure 2. 136

Fig 2. Overall frequency of rare non-synonymous mutations per gene in HSCR data set.
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Fig 3. Graphical representation of the simulation configurations 1

Fig 4. Graphical representation of the simulation configurations 2

Simulation Framework 137

To explore and test the statistical properties of the KS and KS-Burden test we carried 138

out simulations under a number of different scenarios. For all simulations we used 139

sequenced genotypes from our seed population sample. From the set of 15, 480 genes 140

present within this population we selected 50 genes at random which had at least 10 or 141

more rare variants. Variants were defined as rare if the minor allele frequency (MAF) 142

was below or equal 1%. We simulated two different scenarios (see Figure 3 and Figure 4) 143

in which we assume different configurations of causal clusters γ. 144

The phenotype for each configuration was simulated via a liability threshold model. 145

Hence the phenotype Yi of the ith subject was generated via Yi = G′iβ + εi in which Gi 146

are the standardized genotype of the nth subjects with P variants, β is the effect size 147

vector of size 1× P and εi is a standard normally-distributed error term with a mean of 148

0 and a variance of 1− h in which h =
∑P

j=1 βj . The effect h was uniformly distributed 149

across all causal variants and therefore representing the effect of the whole genomic 150

region. We assigned case status for each subject whose Yi was above a certain liability 151

threshold, q. This process was repeated until 500 cases and an equal number of controls 152

were collected. 153

Configuration 1 We assumed a single cluster in a given genomic region, called γ, 154

which is located at random positions within the genomic region. All variants in γ were 155

assigned to be causal. Furthermore, the size of γ was expressed as the proportion of 156

variants included in the causal cluster relative to the total number of variants in a given 157

region. For example, given γ = 0.1 and a gene with 100 rare variants causal status 158

would be assigned to a cluster of 10 variants. 159

Configuration 2 In addition to randomly placing a single causal cluster within the 160

genomic region, we extended the number of clusters to more than 1. Variants in all 161

clusters were assigned to be casual, while the proportion of causal variants within the 162

genomic regions (γ) were kept constant. 163

Results 164

For each gene and scenario, statistical power was evaluated after 1000 replications, with 165

a liability threshold q of 0.01 and an effect size h = 0.02. The significant threshold α 166

was set to 0.05. Overall statistical power was then estimated as the average power 167

across 50 randomly chosen genes. 168

As expected, both KS and KS-Burden performed favorably, compared to other 169

commonly used gene based tests in the presents of a single causal cluster. Specially, the 170

KS test shows stable statistical power at γ = {0.2− 0.5}, while declining at larger 171

causal cluster sizes. Interestingly, at γ = 0.1 power of the KS test was reduced, possible 172

due to the limited length of some genes. The omnibus KS-Burden test shows superior 173

performance between γ = 0.1 and γ = 0.5 compared to SKAT-O as well as others, while 174

maintaining similar statistical power at larger cluster sizes. The two burden tests, CMC 175

and Burden, perform poorly in the presents of small clusters, but retain competitive 176

power at larger cluster sizes. Interestingly, the simple Burden test seems to 177

underperfrom relative to SKAT-O in scanarios most favorable to the former. Specially, 178
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the Burden test assumes that all variants have the same direction of effect, a situation 179

which corresponds to γ = 1.0. While within this scenario the Burden test does indeed 180

expresses its highest statiscal power, SKAT-O as well as KS-Burden are able to 181

outperform the simple Burden test. 182

To conclude, given a single causal region, the KS-Burden test is a valuable 183

alternative to the commonly used SKAT-O. Furthermore, out test demonstrates better 184

statistical power when a single small cluster of causal variants is present, while 185

maintaining good performance at larger cluster sizes. 186

Fig 5. Estimated statistical power for four different causal cluster size γ.

Next, we explored the behavior of the our developed tests in situations with more 187

than 1 causal cluster (see Figure 5). Not surprisingly, statistical power of the KS test is 188

reduced with the increase of causal clusters while holding the total size of clusters 189

relative to the size of the genomic region constant. In contrast KS-Burden is not 190

affected by the increase in the number of clusters. Similar our simulations show that the 191

statistical power of CMC, Burden, SKAT and SKAT-O is independent of the number of 192

clusters. 193

Overall, SKAT-O performs favorable in most scenarios, while KS and KS-Burden 194

lose statistical power relative to the other tests as the number of causal clusters 195

increases. It is notably, however, that the KS-Burden test is able to maintain good 196

power in many scenarios unfavorable to the KS test. Demonstrating that our omnibus 197

approach is able to compensate for the shortcomings of the KS test. 198

Hence, these simulations have shown that the KS-Burden is able to compensate 199

mismatched assumptions of the KS test effectively and that the KS-Burden is able to 200

maintain appropriate performance across a variety of scenarios. 201

Fig 6. Statistical power for Burden, CMC, KS, KS-Burden, SKAT and SKAT-O for
different cluster sizes (right panel) and number of clusters (top panel).

Overall, our simulations have shown that the KS-Burden test is able to outperform 202

commonly used tests in some specific scenarios. Furthermore, the test is able to 203

maintain good statistical power in simulations unfavorable to the KS test. Therefore, 204

providing a valuable alternative to commonly used tests. 205

Interestingly, type 1 error rate for all tests is significantly lower than the chosen α of 206

0.05 (see Figure 7). It is important to note that permutation approaches are known to 207

estimate conservative p-value in rare event data, such as rare genetic variations. 208

Nevertheless, type 1 error rate is noticeable low for both SKAT and SKAT-O, while the 209

burden based approaches, such as CMC and Burden are slightly higher. The highest 210

type 1 error rate is present in our KS-Burden test, but still significantly below 0.05. 211

Discussion 212

We have shown that the KS-Burden test is able to outperform commonly used 213

gene-based tests when a single causal cluster is present within a genomic region. 214

Furthermore, our test shows similar performance compared to other tests in scenarios 215

which are unfavorable to its underlying assumptions. 216

It is important to emphasize all gene based tests make assumptions about the 217

underlying genetic architecture [9]. Specifically, while the Burden tests assumes that all 218

Fig 7. Type 1 error rate for various rare variant tests.
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variants have the same direction of effect and SKAT assumes the presents of protective 219

and damaging alleles, the KS test makes the assumption that a single causal region is 220

present in the genomic region under consideration. These underlying assumptions 221

reflect the researchers prior believe about the underlying genetic architecture. For 222

example, given a well known genomic region, which has been exhaustively annotated 223

with information about the potential pathogenicity of all contained variants, one would 224

expect that most, if not all, variants selected for a gene based rare-variant test have the 225

same direction effect. Hence the Burden test would yield the best statistical power in 226

this particular situation. On the other hand, an ill defined genomic region with little to 227

no variant annotations would be more favorable to both KS and SKAT since many 228

variants would be of neutral effect towards the phenotype. Here it is important to note 229

that the KS test makes the reasonable biological assumption that causal variants are 230

clustered together. Thus increasing statistical power in the presents of such cluster. In 231

the absence of such cluster, the KS-Burden test was designed to compensate for such 232

shortcomings, similar how SKAT-O combats assumption mismatch of SKAT. 233

Importantly, the KS-Burden test is able to maintain the good statistical power in the 234

present of assumption mismatch, while still accounting for the potential presents of a 235

single causal cluster. This makes the KS-Burden test a good candidate for rare variant 236

testing in genomic region with little or no biological annotations. Furthermore, given 237

that the KS test statistic is the largest absolute difference between the two empirical 238

cumulative distribution functions the KS test is able to provide researchers with a 239

specific location of the causal cluster. Thus not only providing better statistical power 240

when the assumptions of the test hold, but also delivering valuable biological insight. 241

In addition, the low type 1 error rate across all tests needs to be discussed which is 242

in contrast to previous studies [12–14,23,24]. Interestingly, most previous studies did 243

only used simulated genotype matrices to estimate statistical power. In contrast, our 244

study made use of a large whole genome sequencing data set therefore reflecting 245

commonly encountered scenarios in rare variant association studies. Indeed, most genes 246

used in our analysis are relatively small and contain only a few rare variants. This has a 247

direct effect on the commonly used permutation approaches and results in conservative 248

p-value estimations. However, this issue is present across all used tests and should be 249

reduced in larger sample sizes. 250

Furthermore, it is somewhat surprising that the Burden test is unable to outperform 251

SKAT-O and KS-Burden in situations most favorable to it (γ = 1.0). However, it is 252

important to note that even under very unfavorable scenarios both KS and SKAT are 253

able to retain some statistical power which has not been captured by Burden. Hence 254

explaining the superior performance of the two omnibus tests SKAT-O and KS-Burden. 255

In addition to the benefits of the KS-Burden test, our approach has also a number of 256

limitations. As shown, given more than 1 causal cluster the KS test loses statistical 257

power. However, the number of causal cluster depends on the sizes of the genomic 258

region as well as the underlying genetic architecture. Furthermore, the use of the 259

combined KS-Burden test is able to, at least partially, recover these shortcomings. 260

Other limitations of the KS-Burden test include its inability to use non-binary 261

phenotypes and make use of covariates as well as variant annotations. While researchers 262

are able to select variants, based on available biological information, and therefore 263

indirect include variant annotations into the test the inability to include covariates is an 264

important limitation. However, most sequencing based studies contain relative 265

homogeneous samples due to potential differences in sequencing platforms and larger 266

population differences in rare variants. Hence despite these limitations the KS-Burden 267

test is a valuable alternative to currently used statistical approaches. 268
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Conclusion 269

The KS-Burden test provides better statistical power, compared to most commonly 270

used gene based tests, given a single causal cluster. Furthermore, the test is able to 271

maintain appropriate power in scenarios unfavorable to its underlying assumptions. 272

Hence making it a good alternative to current rare variant tests. 273
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