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Abstract 

Inferring molecular interaction networks from genomics data is 
important for advancing our understanding of biological processes. 
Whereas considerable research effort has been placed on inferring 
such networks from gene expression data, network estimation from 
DNA methylation data has received very little attention due to the 
substantially higher dimensionality and complications with result 
interpretation for non-genic regions. To combat these challenges, we 
propose here an approach based on sparse latent Gaussian graphical 
model (SLGGM). The core idea is to perform network estimation on 
q latent variables as opposed to d CpG sites, with q<<d. To impose a 
correspondence between the latent variables and genes, we use the 
distance between CpG sites and transcription starting sites of the 
genes to generate a prior on the CpG sites’ latent class membership. 
We evaluate this approach on synthetic data, and show on real data 
that the gene network estimated from DNA methylation data 
significantly explains gene expression patterns in unseen datasets. 

 

1 Introduction 

Uncovering networks of interacting genes provides insights into the biological 
mechanisms that give rise to phenotypes. Under this network perspective, genes 
correspond to nodes with their interactions modeled via weighted edges. Over the 
past decade, gene interaction networks have primarily been constructed from gene 
expression data due to their large abundance [1]. In contrast, less effort has been 
placed on using DNA methylation data, despite their relatively more robust (less 
dynamic) nature and increasing availability for large cohorts. Most studies that do 
use methylation data estimate networks by directly correlating all CpG site pairs, 
with a focus on module detection [2-6]. However, the typical small sample-to-
variable ratio limits the accuracy of the resulting networks [7]. Also, interpreting 
methylation networks is more difficult, since less is known about the functional role 
and gene targets of non-coding regulatory regions. Some studies employ canonical 
correlation analysis (CCA) to combine gene-proximal CpG sites in reducing 
dimensionality and enabling gene level interpretation [8; 9], but CCA cannot 
distinguish direct interactions from indirect interactions. To address the above 
challenges, we propose here an approach based on sparse latent Gaussian graphical 
model (SLGGM) [10]. The idea is to estimate a network between q latent variables 
as opposed to d CpG sites, and tie the latent variables to genes via a prior on the 
CpG-to-gene mapping. This way, the scale of the network estimation problem is 
greatly reduced and gene level interpretation is facilitated. Also, SLGGM inherently 
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estimates partial correlation, which helps isolate direct interactions [11]. We assess 
this approach on synthetic data, and further show that the gene network constructed 
from a large-scale methylation dataset (ROSMAP [12]) significantly explains gene 
expression patterns of unseen datasets from various related tissues (GTEx [13]). 
 
2  Methods 

2.1  Sparse Latent Gaussian Graphical Model  

Given a n×d DNA methylation data matrix, X, where n is the number of samples and 
d is the number of CpG sites, our goal is to learn a q×q sparse inverse covariance 
matrix, K, where q<d and Kij≠0 indicates that genes i and j are conditionally 
associated with each other, i.e. only direct interactions are captured. This problem 
can be formulated as finding a K that maximizes the following distribution [10]: 
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Each column of X, denoted as Xi, is assumed to follow a mixture of Gaussians with 
means L = (L1,…,Lq) and variances Σ = {σ1

2In×n,…,σq
2In×n}. The n×q latent variable 

L is assumed to follow a centered multivariate Gaussian with an inverse covariance 
K having a Laplace prior L(K) to promote sparse K estimation, since n<<q typically. 
Z is a d×q binary matrix, where Zij=1 indicates that Xi belongs to latent class j. Each 
Xi is assumed to belong to only one latent class as required for standard Gaussian 
mixture models. Optimal L, Σ, and K can be found with coordinate ascent [10], i.e. 
alternate between finding L, Σ, and K that maximizes (1). The update procedures for 
L, Σ, and K are described in Sections 2.2, 2.3, and 2.4, respectively. 

To deploy SLGGM for learning a gene network from methylation data, we impose a 
distance-based prior by setting γij = E(Zij) to f(1/Dij), where Dij is the base-pair 
distance between CpG site i and the transcription starting site (TSS) of gene j, and 
f(·) normalizes 1/Dij such that Σj γij=1. The assumption is that CpG sites closer to a 
given gene are more likely to affect that gene, as often observed [14]. In this work, 
we fix γij to retain the correspondence between the genes and the latent variable L, 
and leave updating γij to refine the CpG-to-gene mapping for future work. Also, we 
note that in contrast to methylation values per sample, which tend to be bimodal, the 
distribution of methylation values at each CpG site is by and large unimodal and 
approximately Gaussian in the real data, hence meeting the assumptions of SLGGM. 

2.2  L Update  

By taking the log of (1), retaining terms involving L, and differentiating w.r.t. Lj, 
one can show that the optimal Lj at iteration k+1 is given by: 
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where γ = (γ1,…,γq) is a d×q matrix containing the distance-based prior, nj = Σi γij, 

and j
~ ={1,…,q}\j, i.e. k

j
~L denotes all columns of Lk except the jth and k

jj
~K denotes 

the jth column of Kk excluding the jth element. We initialize L as Xγ. 

2.3  σj
2 Update 

Similarly, differentiating the log of (1) w.r.t. σj
2, the optimal σj

2 is given by: 
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where the noise variance of X is assumed to be the same across the n samples for 
each latent class j. σj

2 is initialized to 1. 

2.4  K update 

Finding K that maximizes (1) is equivalent to solving the following problem [10]: 
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where the first two terms correspond to –log(N(L|0n×q,K
-1)) with constants removed, 

and the last term is the l1 norm of Kij, i≠j, corresponding to –log(L(K)), which 
promotes a sparse K estimate. For solving (6), we employ QUIC [15] and BigQUIC 
[16], depending on q. λ is set to αλmax for different α’s, where λmax=maxij |L

TL|, i≠j. 
 
3  Mater ia ls  

Synthetic data. We created 60 synthetic datasets for three q/n ratios: 1=100/100, 
5=500/100, and 0.5=500/1000, with 20 datasets for each q/n ratio. For each dataset, 
we first generated a random q×q sparse inverse covariance matrix, K, with 10% of 
the elements being non-zero. We then drew a random n×q matrix, L, from N(0n×q, 
K-1). A n×1 vector, Xi, was then drawn from N(Lj,σj

2In×n) for i=1 to d, where the 
choice of j was based on Zij=1. The CpG-to-gene mapping, Z, was established by 
assigning each CpG site to its closest gene based on the real data. On average, 
d≈3,000 and 15,000 CpG sites for q=100 and 500 random genes. The membership 
prior, γij, was set to f(1/Dij), where Dij is the distance between CpG site i and TSS of 
gene j, and f(·) ensures Σj γij=1. Since Z is supposedly unknown, we included Dij of 
all CpG-gene pairs that are within 1Mb from each other in computing γ to emulate 
uncertainty in the CpG-to-gene mapping. These smaller scale problems permit 
rigorous testing of SLGGM within a practical amount of computation time.  

Real data. DNA methylation data (450K Illumina array) were generated from 702 
post-mortem samples of the dorsolateral prefrontal cortex as part of the ROSMAP 
study [12] (available on Synapse). In addition to standard quality control, age at 
death, sex, batch, post mortem interval, and top 10 principal components (PC) from 
the DNA methylation data were regressed out. For method evaluation, we used gene 
expression data (13,484 genes) from 508 individuals of the ROSMAP study [17]. 
Standard quality control was performed, and age at death, sex, batch, post-mortem 
interval, RNA integrity, sequencing depth, genotyping PCs, and top 10 PCs from 
expression data were removed. Only genes and CpG sites within 1Mb from each 
other were retained, resulting in 416,452 CpG sites and 13,004 genes. We also 
downloaded gene networks constructed from expression data of 13 brain tissues 
as well as expression data of 35 peripheral tissues from the GTEx portal [13].  

 
4 Resul ts  and Discuss ion 

Synthetic data. Average precision and recall estimated by applying SLGGM (with 
QUIC), and comparing the sparse edge patterns of the ground truth and estimated 
networks are plotted in Fig. 1. For comparison, we applied SGGM (with QUIC) to 
the ground truth L. The performance of SLGGM applied to X is similar to SGGM 
applied to L for the q/n ratios tested, with SLGGM’s performance being well within 
the standard error of SGGM (not plotted to avoid clutter). If we weight the ground 
truth edges by |Kij| in the precision and recall estimation, both SLGGM and SGGM 
achieved a precision of ~1, indicating that the stronger edges were reliably extracted.  
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Fig. 1: Synthetic data results. For various q/n ratios, applying SLGGM on X (n×d) resulted in similar 
performance as applying SGGM on the ground truth L (n×q), where d>>q. 

Real data. Since no ground truth network is available for real data, we used gene 
networks estimated from ROSMAP and GTEx expression data for assessing 
SLGGM’s performance. With the ROSMAP gene expression data, we applied SGGM 
(BigQUIC, λ=0.5λmax) and stability selection [18] on 100 random subsamples (0.8n 
subjects each). Network edges with selection frequency >0.5, i.e. estimated to be 
non-zero for >50% of the subsamples, were assumed reliable. With the 13 GTEx 
brain tissue-based networks, we assumed edges that were non-zero for >50% of the 
networks were reliable. As a baseline, we compared the reliable network edges 
between ROSMAP and GTEx. With ROSMAP as the reference, the estimated 
precision and recall are 0.023 and 0.061. If we weight the reliable network edges by 
the selection frequency, the weighted precision and recall are 0.917 and 0.062, 
demonstrating that the more reliable edges tend to be extracted. Comparing the 
network edges extracted by SLGGM (BigQUIC, λ=0.2λmax) and the reliable edges in 
the ROSMAP and GTEx expression networks, the precision and recall are 0.001 and 
0.059 for ROSMAP and 0.001 and 0.023 for GTEx. The low precision is likely due 
to the small sample size. Nonetheless, the weighted precisions of SLGGM are 0.920 
for ROSMAP and 0.306 for GTEx, indicating that the more reliable network edges 
are indeed extracted. We note that assessing only the sparse edge patterns neglect the 
information encoded by the edge weights. To capture this information, we applied 
kernel machines [19] with the ROSMAP and GTEx expression data as response and 
K-1 estimated with SLGGM as the kernel. Specifically, we averaged the expression 
values across subjects for each gene but without subject mean removal to retain the 
genome-wide expression pattern. This pattern of average expression values was used 
as the response. The association between the ROSMAP expression pattern and K-1 is 
statistically significant (p=0 to machine precision), demonstrating that K-1 well 
explains the gene expression pattern. Also, over the 35 tissues in the GTEx data, 
stronger associations are observed for brain tissues on average, Fig. 2. 

 

Fig. 2: Real data results. The K-1 estimated by SLGGM well explains the expression pattern of brain 
tissues. Note p-values that are 0 (to machine precision) were set to 10-16 for clearer visualization. 
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