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Abstract

Inferring molecular interaction networks from genomics data is
important for advancing our understanding of biological processes.
Whereas considerable research effort has been placed on inferring
such networks from gene expression data, network estimation from
DNA methylation data has received very little attention due to the
substantially higher dimensionality and complications with result
interpretation for non-genic regions. To combat these challenges, we
propose here an approach based on sparse latent Gaussian graphical
model (SLGGM). The core idea is to perform network estimation on
g latent variables as opposed to d CpG sites, with g<<d. To impose a
correspondence between the latent variables and genes, we use the
distance between CpG sites and transcription starting sites of the
genes to generate a prior on the CpG sites’ latent class membership.
We evaluate this approach on synthetic data, and show on real data
that the gene network estimated from DNA methylation data
significantly explains gene expression patterns in unseen datasets.

1 Introduction

Uncovering networks of interacting genes provides insights into the biological
mechanisms that give rise to phenotypes. Under this network perspective, genes
correspond to nodes with their interactions modeled via weighted edges. Over the
past decade, gene interaction networks have primarily been constructed from gene
expression data due to their large abundance [1]. In contrast, less effort has been
placed on using DNA methylation data, despite their relatively more robust (less
dynamic) nature and increasing availability for large cohorts. Most studies that do
use methylation data estimate networks by directly correlating all CpG site pairs,
with a focus on module detection [2-6]. However, the typical small sample-to-
variable ratio limits the accuracy of the resulting networks [7]. Also, interpreting
methylation networks is more difficult, since less is known about the functional role
and gene targets of non-coding regulatory regions. Some studies employ canonical
correlation analysis (CCA) to combine gene-proximal CpG sites in reducing
dimensionality and enabling gene level interpretation [8; 9], but CCA cannot
distinguish direct interactions from indirect interactions. To address the above
challenges, we propose here an approach based on sparse latent Gaussian graphical
model (SLGGM) [10]. The idea is to estimate a network between ¢ latent variables
as opposed to d CpG sites, and tie the latent variables to genes via a prior on the
CpG-to-gene mapping. This way, the scale of the network estimation problem is
greatly reduced and gene level interpretation is facilitated. Also, SLGGM inherently
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estimates partial correlation, which helps isolate direct interactions [11]. We assess
this approach on synthetic data, and further show that the gene network constructed
from a large-scale methylation dataset (ROSMAP [12]) significantly explains gene
expression patterns of unseen datasets from various related tissues (GTEx [13]).

2 Methods
2.1 Sparse Latent Gaussian Graphical Model

Given a nxd DNA methylation data matrix, X, where n is the number of samples and
d is the number of CpG sites, our goal is to learn a gxg sparse inverse covariance
matrix, K, where ¢g<d and K;#0 indicates that genes i and j are conditionally
associated with each other, i.e. only direct interactions are captured. This problem
can be formulated as finding a K that maximizes the following distribution [10]:

P(X,Z,L,X,K)= P(X| Z,L,X)P(L| K)P(K)p(Z) , (D

PX| ZLE)P(Z) = [TH 720 NX, |1, 020) 0 2)
i=lj=1

P(L|K)P(K) = N(L |0, K" L(K). (3)

Each column of X, denoted as X, is assumed to follow a mixture of Gaussians with
means L = (Li,...,L,) and variances X = {alzlnx,,,...,aqzl,,x,,}. The nxgqg latent variable
L is assumed to follow a centered multivariate Gaussian with an inverse covariance
K having a Laplace prior L(K) to promote sparse K estimation, since n<<gq typically.
Z is a dxq binary matrix, where Z;=1 indicates that X; belongs to latent class j. Each
X; is assumed to belong to only one latent class as required for standard Gaussian
mixture models. Optimal L, X, and K can be found with coordinate ascent [10], i.e.
alternate between finding L, X, and K that maximizes (1). The update procedures for
L, X, and K are described in Sections 2.2, 2.3, and 2.4, respectively.

To deploy SLGGM for learning a gene network from methylation data, we impose a
distance-based prior by setting y; = E(Z;) to f(1/D;), where D, is the base-pair
distance between CpG site i and the transcription starting site (TSS) of gene j, and
f(:) normalizes 1/D;; such that X, y;~=1. The assumption is that CpG sites closer to a
given gene are more likely to affect that gene, as often observed [14]. In this work,
we fix y; to retain the correspondence between the genes and the latent variable L,
and leave updating v, to refine the CpG-to-gene mapping for future work. Also, we
note that in contrast to methylation values per sample, which tend to be bimodal, the
distribution of methylation values at each CpG site is by and large unimodal and
approximately Gaussian in the real data, hence meeting the assumptions of SLGGM.

2.2 L Update

By taking the log of (1), retaining terms involving L, and differentiating w.r.t. L;,
one can show that the optimal L; at iteration k+1 is given by:

k k
k+1 _ 2 kyok 2% vk

where y = (v1,...,Y4) is a dxg matrix containing the distance-based prior, n; = X; vy,

and j={1,...,q}V, i.e. LkN_ denotes all columns of L* except the /™ and K]i” denotes
J i

the /™ column of K* excluding the /™ element. We initialize L as Xy.

2.3 o/ Update

Similarly, differentiating the log of (1) w.r.t. q,-z, the optimal sz is given by:
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2k+1 n d ko2
o;  =lUnxE (X —Lyy) A{lj/nj—a ®))
m=11=1
where the noise variance of X is assumed to be the same across the n samples for
each latent class j. ;" is initialized to 1.

2.4 K update

Finding K that maximizes (1) is equivalent to solving the following problem [10]:

min —In| K |+or(L'LK)+ 2| K ||; » (6)
K>0

where the first two terms correspond to —10g(N(L|0,1Xq,K'1)) with constants removed,
and the last term is the /; norm of Ky, i#j, corresponding to —log(L(K)), which
promotes a sparse K estimate. For solving (6), we employ QUIC [15] and BigQUIC
[16], depending on g. 4 is set to adn. for different a’s, where An—=max;; IL'L|, i#f.

3 Materials

Synthetic data. We created 60 synthetic datasets for three ¢/m ratios: 1=100/100,
5=500/100, and 0.5=500/1000, with 20 datasets for each g/n ratio. For each dataset,
we first generated a random gxg sparse inverse covariance matrix, K, with 10% of
the elements being non-zero. We then drew a random nxq matrix, L, from N(0,x,,
K'l). A nx1 vector, X;, was then drawn from N(Lj,ajzl,,x,,) for i=1 to d, where the
choice of j was based on Z;=1. The CpG-to-gene mapping, Z, was established by
assigning each CpG site to its closest gene based on the real data. On average,
d=3,000 and 15,000 CpG sites for g=100 and 500 random genes. The membership
prior, y;, was set to f{1/D;;), where D; is the distance between CpG site i and TSS of
gene j, and f{-) ensures X; y;~1. Since Z is supposedly unknown, we included D;; of
all CpG-gene pairs that are within 1Mb from each other in computing y to emulate
uncertainty in the CpG-to-gene mapping. These smaller scale problems permit
rigorous testing of SLGGM within a practical amount of computation time.

Real data. DNA methylation data (450K Illumina array) were generated from 702
post-mortem samples of the dorsolateral prefrontal cortex as part of the ROSMAP
study [12] (available on Synapse). In addition to standard quality control, age at
death, sex, batch, post mortem interval, and top 10 principal components (PC) from
the DNA methylation data were regressed out. For method evaluation, we used gene
expression data (13,484 genes) from 508 individuals of the ROSMAP study [17].
Standard quality control was performed, and age at death, sex, batch, post-mortem
interval, RNA integrity, sequencing depth, genotyping PCs, and top 10 PCs from
expression data were removed. Only genes and CpG sites within 1Mb from each
other were retained, resulting in 416,452 CpG sites and 13,004 genes. We also
downloaded gene networks constructed from expression data of 13 brain tissues
as well as expression data of 35 peripheral tissues from the GTEx portal [13].

4 Results and Discussion

Synthetic data. Average precision and recall estimated by applying SLGGM (with
QUIC), and comparing the sparse edge patterns of the ground truth and estimated
networks are plotted in Fig. 1. For comparison, we applied SGGM (with QUIC) to
the ground truth L. The performance of SLGGM applied to X is similar to SGGM
applied to L for the ¢g/n ratios tested, with SLGGM’s performance being well within
the standard error of SGGM (not plotted to avoid clutter). If we weight the ground
truth edges by |Kj;| in the precision and recall estimation, both SLGGM and SGGM
achieved a precision of ~1, indicating that the stronger edges were reliably extracted.
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Fig. 1: Synthetic data results. For various g/n ratios, applying SLGGM on X (nxd) resulted in similar
performance as applying SGGM on the ground truth L (nxq), where d>>¢.

Real data. Since no ground truth network is available for real data, we used gene
networks estimated from ROSMAP and GTEx expression data for assessing
SLGGM’s performance. With the ROSMAP gene expression data, we applied SGGM
(BigQUIC, 1=0.5211ax) and stability selection [18] on 100 random subsamples (0.8n
subjects each). Network edges with selection frequency >0.5, i.e. estimated to be
non-zero for >50% of the subsamples, were assumed reliable. With the 13 GTEx
brain tissue-based networks, we assumed edges that were non-zero for >50% of the
networks were reliable. As a baseline, we compared the reliable network edges
between ROSMAP and GTEx. With ROSMAP as the reference, the estimated
precision and recall are 0.023 and 0.061. If we weight the reliable network edges by
the selection frequency, the weighted precision and recall are 0.917 and 0.062,
demonstrating that the more reliable edges tend to be extracted. Comparing the
network edges extracted by SLGGM (BigQUIC, 1=0.2,,.x) and the reliable edges in
the ROSMAP and GTEx expression networks, the precision and recall are 0.001 and
0.059 for ROSMAP and 0.001 and 0.023 for GTEx. The low precision is likely due
to the small sample size. Nonetheless, the weighted precisions of SLGGM are 0.920
for ROSMAP and 0.306 for GTEXx, indicating that the more reliable network edges
are indeed extracted. We note that assessing only the sparse edge patterns neglect the
information encoded by the edge weights. To capture this information, we applied
kernel machines [19] with the ROSMAP and GTEx expression data as response and
K estimated with SLGGM as the kernel. Specifically, we averaged the expression
values across subjects for each gene but without subject mean removal to retain the
genome-wide expression pattern. This pattern of average expression values was used
as the response. The association between the ROSMAP expression pattern and K is
statistically significant (p=0 to machine precision), demonstrating that K' well
explains the gene expression pattern. Also, over the 35 tissues in the GTEx data,
stronger associations are observed for brain tissues on average, Fig. 2.
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Fig. 2: Real data results. The K' estimated by SLGGM well explains the expression pattern of brain
tissues. Note p-values that are 0 (to machine precision) were set to 10'® for clearer visualization.
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