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We present a study of multiple sclerosis segmentation algorithms conducted at
the international MICCAI 2016 challenge. This challenge was operated using a
new open-science computing infrastructure. This allowed for the automatic and
independent evaluation of a large range of algorithms in a fair and completely
automatic manner. This computing infrastructure was used to evaluate thirteen
methods of MS lesions segmentation, exploring a broad range of state-of-the-
art algorithms, against a high-quality database of 53 MS cases coming from
four centers following a common definition of the acquisition protocol. Each
case was annotated manually by an unprecedented number of seven different
experts. Results of the challenge highlighted that automatic algorithms, includ-
ing the recent machine learning methods (random forests, deep learning, . . . ),
are still trailing human expertise on both detection and delineation criteria.
In addition, we demonstrate that computing a statistically robust consensus of
the algorithms performs closer to human expertise on one score (segmentation)
although still trailing on detection scores.

Keywords: Multiple sclerosis, image segmentation, performance evaluation,
computing infrastructure, open science, distributed computing

1. Introduction

Multiple Sclerosis (MS) is a chronic inflammatory disease of the central ner-
vous system affecting around 2.5 million persons worldwide, with a prevalence
rate of 83 per 100000 (higher rates in countries of the northern hemisphere)
and a woman:man ratio of around 2.0 [1]. It is characterized by widespread in-
flammation, focal demyelination, and a variable degree of axonal loss. With the
appearance of new treatment molecules modifying the disease evolution (dis-
ease modifying drugs - DMD), one of the major challenges in treating multiple
sclerosis is now to overcome classical clinical criteria, such as the expanded dis-
ability status scale (EDSS), to go towards more sensitive and specific criteria.
In this context, Magnetic Resonance Imaging (MRI) plays an important role for
the diagnosis [2] and evaluation of the evolution of the disease, thus providing
insights to adapt the treatment to each individual due to the highly variable
nature of the MS disease course [3].

In this context, the number and spread of lesions in the patient’s parenchyma
(and their evolution) [2] has become a crucial information on the patient’s dis-
ease status, which may then be used for validating the patient treatment. This
task however requires the delineation of MS lesions: a tedious, manual opera-
tion performed by the radiologist. In addition, this delineation is prone to inter-
expert variability, especially when the images being used for segmentation differ
from a center to another (in terms of protocols, modalities and intrinsic MRI
quality). Doing this task manually on large databases of patients is therefore al-
most impossible and automatic algorithms, thoroughly validated, have become
a crucial need for the clinical community. To simplify the clinician’s task, a
large literature of automatic segmentation methods has been devised [4, 5, 6]
with a large spectrum of algorithms from classical tissue intensity classification
and lesion modeling to machine learning.

All published approaches are however evaluated on different datasets, usually
not calibrated, and their results are therefore usually not directly comparable,
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making difficult the choice of the most relevant method adapted to a clinical
context. To overcome this issue, competitions (so-called challenges) have been
organized in MS lesion segmentation in the past years. The first one was orga-
nized at the MICCAI 2008 conference [7]. It evaluated nine different methods
on a database of 45 patient images (from two different centers: 20 for training
and 25 for testing), with respect to a ground truth composed of two expert
segmentations for each case. However, no protocol standardization was per-
formed between the two sites, therefore two raters were not enough to handle
the variability in the acquired images and get a sufficiently reliable consensus
manual segmentation. The second major challenge on MS lesion segmentation
was held in 2015 at the IEEE ISBI international conference [8]. It was more
focused on the study of longitudinal lesion evolution with specific evaluation
metrics based on segmentation volume evolution (in addition to the regular seg-
mentation overlap metrics used in 2008). This challenge evaluated 10 different
methods on a dataset composed of five patients images each with an average
of 4.4 time points, each time point being manually delineated by two experts.
As for the MICCAI 2008 challenge, two raters were not enough to account for
disparities in the different raters manual segmentations and get a representa-
tive consensus. The process of evaluation was similar for the two challenges. A
subset of the patient images was provided to the participants with the ground
truth (GT) segmentation to the participants for them to train their respective
methods. In a second step, a testing set was provided (without the ground
truth) to the participants asking them to submit back their results. Evaluation
was then performed on those results using overlap-based metrics.

Several problems may however affect such challenges. First, as a general
comment for all challenges, a lack of fairness may exist between the participants:
since the testing images are provided, some participants may indeed optimize
the parameters of their algorithms on a patient basis to obtain better results.
Doing this illustrates the potential of the method but not its practical usability:
a clinician would prefer to use always the same set of parameters to process each
new or returning patient. In addition, since participants run their algorithm on
their own computing environment, no evaluation relative to computing perfor-
mance (e.g. required memory of computing time) is possible. There is therefore
a need for computing platforms for supporting challenges including data storage,
processing pipelines (i.e. segmentation algorithms work-flow used) integration
and evaluation on stored datasets. Such platforms would provide a truly fair
comparison between fully automatic methods. In addition, such remote com-
puting platforms, able to host a large variety of algorithms, announce what the
future cloud computing services will provide to assist clinicians (radiologists,
neurologists, . . . ) in using computer aided diagnosis solutions. This computing
environment also opens the road to open-science platforms where people will
find solutions to post their data, send or retrieve algorithmic solutions and pro-
vide an independent yet secure environment to compare, assess and combine
various algorithms outcomes and solve clinical problems.

Another issue in segmentation challenges is the number of manual delin-
eations to compute the ground truth. Usually only two are available, which is
insufficient to illustrate the inter-expert variability, particularly when consider-
ing MS lesions segmentation. Finally, and specifically to MS lesions segmenta-
tion, previous challenges considered only segmentation based metrics, ignoring
the number of correctly detected lesions independently of their shape, which
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is an acute criterion to assess the disease evolution [2]. This would be very
beneficial for the clinician, especially when considering MS evolution where the
number of new lesions is critical.

We proposed and organized in 2016 a new generation of segmentation chal-
lenge hosted at the MICCAI international conference (http://www.miccai2016.
org). It aimed at proposing solutions to several of the previously mentioned de-
fects first by gathering an unprecedented database of MS patients, coming from
three different centers (representing four different scanners, one of which was
intentionally hidden at the training phase from the challengers to test their al-
gorithms’ adaptation capabilities) but all following a common consensus proto-
col [9], each patient being delineated by seven experts to evaluate not only auto-
matic methods performance but also inter-expert variability of manual segmen-
tation. We have performed the evaluation on a dedicated computing platform
provided by France Life Imaging (https://www.francelifeimaging.fr/en),
providing pipeline integration, database storage and automatic execution ca-
pabilities. Challenge participants were asked to train their algorithms on a
reduced set (n = 15) and then integrate their pipeline on the platform, requir-
ing no action from them in the latter parts of the evaluation process (n = 38).
We also proposed an evaluation strategy on two separate levels: a segmenta-
tion level where the overlap precision of the segmentation was evaluated; and
a detection level where the number of correctly detected lesions was evaluated,
independently of the precision of their shape.

We present in this article a retrospective analysis of this challenge and the
methods we used to obtain those results. The main outcomes of the challenge
highlighted that automatic algorithms are still trailing human expertise on the
front of MS lesions segmentation and sensitive to unknown images (different
scanners) even with an harmonized acquisition protocol. This happens for all
methods, independently of their category (recent machine learning algorithms
including deep learning or random forests or more classical tissue classification
algorithms). In addition, we demonstrate how using an open-science computing
environment allows for the combination of multiple algorithmic outcomes, and
how combining these algorithms could lead to improvements in detection and
contouring of MS lesions. Together with the computing platform introduced
in this paper, this could lead to tremendous help for the clinicians in the use
of automatic segmentation algorithms to support their diagnosis and treatment
follow-up in MS.

2. Results

2.1. Challenge data, computing platform and participating teams
The first major result of this study is the gathering of a database of 53 mul-

tiple sclerosis patients with “ground truth” of very high-quality. The database
patient scans were following the OFSEP protocol recommendations in [9], which
is currently applied in France for the constitution of the national cohort in MS
(for more details on the protocol, see Section 4.1). Following this approach
has allowed for an evaluation representative of the current imaging protocols
standards and easily usable to characterize the best performing algorithm for
future use. This standardization of imaging protocols announces how the dis-
semination of computer aided diagnosis and imaging biomarkers solutions will
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be implemented in the future. Image processing algorithms indeed need image
normalization and quality control to ensure peak performance. In addition, the
images came from three different sites in France on four different MRI scanners
and different manufacturers (Siemens, Philips and GE) including three 3T and
one 1.5T magnets. For each MS patient case, an unprecedented number of seven
manual delineations was gathered, from trained experts split over the three sites
providing MR images. From these segmentations, a consensus “ground truth”
segmentation was built for evaluation with the LOP STAPLE algorithm [10].
We present in Fig. 1 an example of a patient 3D FLAIR, the seven manual
segmentations of lesions and their consensus segmentation, illustrating the vari-
ability for a representative patient between expert segmentations. Patients de-
mographic data were the following: average age of 45.3 years (± 10.3 years)
with a male:female ratio of 0.4. This database was then split into two sets:
one training set of 15 patients from three scanners (thus intentionally missing
one scanner from the database) given to participants, and one testing set of 38
patients, not seen by the participants, used for evaluation. Demographics of
patients do not vary significantly over the different sitesin terms of age. Some
variations exist in the male:female ratios in some centers. The training and
testing sets have an average age difference of 5 years (training set patients are
5 years younger).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Illustration of an MS patient delineations overlaid on the 3D FLAIR image. (a-
g): individual manual delineations of MS lesions from each of the experts, (h): consensus
segmentation considered as the ground truth.

A total of thirteen teams were evaluated, and the website (http://portal.
fli-iam.irisa.fr/msseg-challenge/), databases and algorithms will remain
open for future use. A summary of the evaluated methods is presented in
Table 1 with a short description of their characteristics (MR sequences used
as input, implementation, main methodology). The algorithms evaluated in
the challenge are representative of a broad range of the available methods in
the recent literature, with unsupervised tissue classification methods, level-sets,
random forests and deep learning (convolutional neural network, artificial neural
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networks). Depending on the challenger team, the image modalities used for the
segmentation varied from just one (usually FLAIR) to all provided modalities.
Most evaluated algorithms ran on regular computer CPU, while two (team 6
and 12) leveraged specific hardware (GPUs) for intensive computation (e.g.
deep learning). The computing infrastructure was able to provide the relevant
computing solution for all requirements.

These teams were evaluated in a distributed Web platform based on soft-
ware containers provided by the France Life Imaging platform, allowing for the
automatic, challenger independent evaluation of the algorithms (see Section 4.3
for more details on the challenge execution platform). Using such a platform,
providing integrated storage and computing facilities for challenges, allowed for
fair comparisons as challengers could not tune their algorithm specifically for
each test patient. Each challenger was indeed asked only to provide a binary
image (i.e. an annotated Docker container image) of their processing pipeline
and the evaluation was later on run automatically on the platform with the
following metrics used.

2.2. Two kinds of performance metrics were set up for evaluation
Clinicians evaluate lesion segmentation in multiple sclerosis with different

criteria. Lesion segmentation precision, i.e. the precision of contours delin-
eated for each lesion, is crucial as the total volume of lesions (total lesion load -
TLL) is part of the criteria to evaluate disease severity [33, 34]. When coming
to pathology evolution or treatment efficiency evaluation however, lesion count
and particularly the number of new lesions independently of their sizes is key.
Moreover, this lesion count is a crucial component of MS diagnosis according
to McDonald criteria [2]. For these tasks, detecting all lesions is more impor-
tant than their precise contours. We have therefore implemented a large set of
evaluation measures for the challenge with the goal of evaluating these different
aspects. Evaluation in the following is therefore split into three major categories
of evaluation metrics:

• Segmentation evaluation: does the algorithm provide a precise delineation
of each lesion? This category includes average surface distance and Dice
overlaps as the main metrics

• Lesion detection evaluation: does the algorithm find all lesions in the
image independently of its precise delineation? This category includes the
F1 score, gathering in one scalar information on the number of lesions
correctly and incorrectly detected

2.3. All methods are outperformed by the experts
We have automatically clustered the average algorithms and experts anno-

tations agreements (with their covariances accounted for) with respect to the
“ground truth” (see Section 4.4 for more details). Results of this clustering, illus-
trated in Fig. 2 for all couples of measures considered in the challenge, highlight
a major result of the challenge: over all patients and all evaluation metrics,
each individual method performs slightly below all experts. On all graphs in
Fig. 2, all experts (and only them) are indeed always grouped in a single cluster
that performs better than all automatic algorithms. Two other clusters are also
distinguished in these graphs, which vary depending on the evaluation metric,
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that regroup better performing and lower performing algorithms for each couple
of evaluation metrics.

(a) (b)

(c)

Figure 2: Graphical results illustration of automatic clustering of average results for each team
and expert into three groups (scatter plots of pairs of two evaluation parameters: (a): Dice and
F1 scores, (b): surface distance and F1 scores, (c): surface distance and Dice scores). Legend:
blue crosses: group 1 (always containing only the seven experts even though the clustering is
automatic), green crosses: group 2 (best performing algorithms), red crosses: group 3 (lower
“quality” algorithms). Team numbers associated with each point on the graph are indicated as
labels. Team fusion indicates a composite segmentation result further discussed in Section 2.5.

In those graphs, we can additionally study the performance of automatic
algorithms with regards to each evaluation metric considered (average surface
distance, Dice score and F1 score). Automatic methods fail much more on
the detection of lesions (F1 score), with a minimum average score of 0.13 and
maximum average of 0.49, while the minimum average score obtained by an
expert is 0.66 (significant difference, Wilcoxon signed rank test, p = 3.7 ×
10−5). This is understandable however as all algorithms are primarily designed
to obtain the best segmentation scores while not considering lesion detection
which is a somewhat different task. However, even on the Dice score, which
is a segmentation metric, the best automatic method performs lower than the
lowest expert average score: it reaches an average of 0.59 while the lowest expert
is on average at 0.67 (significant difference, Wilcoxon signed rank test, p =
2.9× 10−3). The average surface distance is a more balanced metric in terms of
results with the second group of algorithms in each graph reaching the level of
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agreement that the experts do with the consensus.

2.4. Segmentation on an unknown scanner leads to poorer performance
Scanner 3 in the testing database was unknown to the teams participating

to the challenge. On this center, we have evaluated how automatic algorithms
performed without knowing the image characteristics beforehand. The results
of this comparison highlight for a large number of automatic algorithms a slight
decrease in performance when encountering unknown images, even if they come
from a common protocol. This evaluation per center and per evaluation metric
is presented in Fig. 3.

Looking closer at the graphs in Fig. 3, we can observe for the detection metric
(F1 score, Fig. 3.b) a slight decrease for 8 teams among the thirteen evaluated,
leading to an average score over all teams of 0.22 for center 3 while the same
automatic methods range between 0.32 and 0.39 for other centers. The same
trend can be observed for the Dice score segmentation metric (Fig. 3.a) with
a slight decrease in performance for 8 teams as well, and an average score over
all teams of 0.38 while the same algorithms reach a level ranging between 0.48
and 0.50 on other centers. The observations are different for the average surface
distance (Fig. 3.c), where results for center 3 are at the same level as center
8, however the variance in results is much higher, preventing from finding any
statistically significant difference on that metric.

2.5. Combining methods through label fusion improves over individual algo-
rithms

In addition to the individual automatic algorithms, we have evaluated a
composite team named “team fusion”. This method gathered the other thirteen
teams segmentations in a consensus through label fusion using the LOP STA-
PLE algorithm [10]. The goal of this fourteenth method was to evaluate the
capability of such a label fusion method to overpass the individual difficulties
of each method and thus obtain results closer to the ground truth. We present
the results of this evaluation on the different evaluation metrics in Fig. 4.

This composite algorithm improves the average results the average results of
individual automatic algorithms for all metrics, suggesting its ability to incor-
porate the best of each team into a consensus segmentation, better in line with
the experts. These results are confirmed by points “Team fusion” in the cluster-
ing graphs in Fig. 2. However, the results obtained are still not perfect and lag
behind the experts level of agreement with the “ground truth”. More precisely,
the improvement of team fusion over other algorithms is particularly visible on
segmentation metrics (Dice scores and average surface distance) since it provides
segmentation performances similar to the lowest experts. This improvement is
however less important on the detection metric (F1 score). This smaller im-
provement seems logical as the label fusion algorithm used for team fusion is
primarily designed to optimize segmentation performance and not specifically
detection. With that said, the first position of Team fusion among the segmen-
tation methods illustrates how a composite algorithm mixing results of other
teams is able to perform better than each individual automatic method. This
also illustrates the importance to provide an open-science computing platform
able to combine results of independent algorithms.

9

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 13, 2018. ; https://doi.org/10.1101/367557doi: bioRxiv preprint 

https://doi.org/10.1101/367557
http://creativecommons.org/licenses/by/4.0/


(a)

(b)

(c)

Figure 3: Dice scores (a), F1 scores (b) and average surface distances (c) with respect to the
consensus per team for each center and averaged over all centers.
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(a) (b) (c)

Figure 4: Dice scores (a), F1 scores (b) and average surface distances (c) with respect to the
consensus for each center and averaged over all centers for composite Team fusion with respect
to the average experts agreement level.

2.6. Lesion load and lesion size directly influences automatic segmentation qual-
ity

We additionally performed an experiment to evaluate, independently of their
individual behaviors, the algorithms sensitivity to the true amount of lesions in
the “ground truth” for a given patient. To this end, we averaged the Dice scores
(respectively the average surface distances and F1 scores) over all methods for
each patient and plotted in Fig. 5 this average value with respect to either the
number of lesions or the total lesion load in the consensus. On each graph,
we then computed a log-linear regression for which we display the Spearman
squared correlation.

From Fig. 5, it is clear that the worst results are obtained for patients whose
total lesion load is low. This is especially true for segmentation performance
scores: the Dice score (the squared correlation R2 of the regression reaches 0.82)
and the average surface distance (R2 of 0.71). For the F1 score (a detection
metric), the correlation is however weaker than for the total lesion load (R2 of
0.45). From these graphs, the correlation between the number of lesions and the
obtained scores is less clear, all correlations being smaller than with the total
lesion load (R2 of 0.46 with the Dice score, 0.38 with the F1 score, and 0.60
with the average surface distance). This result however seems reasonable since
a patient presenting many small lesions is intuitively more difficult to delineate
than a patient with a small number of large lesions.

Total lesion load in a patient is thus very correlated with segmentation and
detection scores while not with the number of lesions. To further qualify this
fact, we performed an experiment considering detection scores individually for
each lesion in regard of its volume. We have thus computed, for each team and
for each lesion of the “ground truth” of each patient, a binary detection score
telling whether the lesion was detected or not by a specific team. Counting
the number of teams which detected the lesion thus provides us with a rate of
detection for each lesion (a rate of 0% meaning that no team detected the lesion,
and 100% meaning that all teams detected the lesion). Those detection rates
were further binned according to lesion volume. The graph in Fig. 6 illustrates
their relation with respect to lesion volume (in mm3).
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Link between average scores of all methods and number of lesions (first column)
and total lesion load (cm3, second column). First line: Dice score, second line: F1 score, third
line: average surface distance.

Figure 6: Individual lesion detection rate (average over all methods) as a function of lesion
size. X-axis: individual lesion volume on a logarithmic scale. Y-axis: detection rate (in
percentages, number of teams detecting a lesion of this volume over all patients).

From Fig. 6, we can clearly see that not only total lesion load influences seg-
mentation quality, but lesion volume is also clearly linked with lesion detection
(R2 of 0.88 after a logarithmic linear regression). All methods tend to fail (rates
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of detection going to zero) for small lesions, while almost all teams are detecting
the lesions when their volume is sufficiently large.

2.7. Delineating an image with empty consensus
We finally present in Table 2 results obtained by each expert and each eval-

uated pipeline on a specific case, from Center 7, where no lesion was present in
the consensus segmentation. In this specific case, none of the proposed detec-
tion and segmentation measures can be used since they all rely on the fact that
the consensus is not empty. We thus instead defined two specific metrics: the
number of lesions detected (i.e. the number of connected components whose size
is larger than 3 mm3 in the segmentation), and the total lesion load (i.e. the
total volume of the previously extracted connected components) found by each
algorithm. For both metrics, since the consensus contains no lesions, a perfect
value is 0 while the results get worse when the metrics grow.

Lesions volume (cm3) Number of lesions
Expert 1 0.052 2
Expert 2 0.090 2
Expert 3 10.887 8
Expert 4 0 0
Expert 5 0.017 1
Expert 6 0 0
Expert 7 0.029 2
Team 1 8.252 18
Team 2 0 0
Team 3 0 0
Team 4 NA NA
Team 5 28.436 522
Team 6 0.473 7
Team 7 5.990 168
Team 8 0 0
Team 9 2.545 33
Team 10 11.085 31
Team 11 3.436 42
Team 12 0.056 1
Team 13 0.074 4

Table 2: Number of lesions and lesion volume detected by each team and expert on the no
consensus lesion case.

Several observations may be drawn from this table. First of all, among
experts, two delineated no lesions while five actually delineated one or several
lesions (from one to 8 depending on the expert, and from 0.02 to 11 cm3).
The fact that the consensus is empty therefore means that the experts were not
agreeing on the position and extent of lesions, which lead to no lesions in the final
“ground truth”. Among the automatic segmentation pipelines, the results are
also largely varying: depending on the team, the number of lesions delineated
varies from 0 to 522, while the lesion load detected varies from 0 to 28.44 cm3. In
addition, this image caused problems to some algorithms not initially designed
for patients without lesions (team 4). This is an interesting case as it highlights
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the different behaviors of the algorithms on a case for which the pipelines were
not designed. Overall, we can notice that most of the methods behave well in
comparison to the experts.

3. Discussion

We have presented the first challenge based on an integrated computing plat-
form, applied to multiple sclerosis lesions segmentation. The challenge comput-
ing platform was constituted of 1- a database to store the challenge images and
results from the challengers, 2- a computing platform on which the evaluation
was performed independently of the participants who were asked to post their
processing pipelines, and 3- an automatic evaluation of the results against the
“ground truth”. This open-science computing platform has many advantages,
including a fair comparison of the participants algorithms being run on the same
platform and with the same set of parameters for all patients. In addition, the
packaged algorithms may be re-used for other applications or if the validation
database gets extended. As future work, we plan at transitioning to use the
BIDS format (http://bids.neuroimaging.io) to provide a standardized and
more intuitive way of storing both the input data and output results. This would
provide a great improvement in easing the pipeline design and integration in the
platform.

This platform was put together for the specific organization of a challenge
on multiple sclerosis segmentation with a database of 53 patients each with an
unprecedented number of seven manual segmentations from trained experts. A
total of thirteen teams participated, illustrating the variety of algorithms both
in terms of methodology and implementation. All results computed from the
challenge were very insightful and revealed several points worth of discussion.
First of all, despite that methods vary in their results, the point where a single
automatic method is able to perform as well as the consensus of the experts has
not yet been reached. The experts are indeed always slightly better than any
method for all performance measures. More specifically, all methods perform
relatively poorly on detection metrics, which is however an important point
for MS diagnostic and clinical evaluation of the patient evolution. Historically
all methods have been interested in segmenting well the contours of the le-
sions rather than counting well the number of lesions. As a consequence the
detection metrics are not optimal, which explains why results are well below
the experts. On a more positive point, recent methods such as those based on
machine learning (especially deep learning) have made great progress and the
gap is reducing, which leaves hope to reach the same level of agreement than
the experts. In addition, it should be remembered that it is always difficult to
define a “ground truth” for MS lesions segmentation. The experts have indeed
a relatively large variability, which comes from different appreciations of the
image and of the definition of a lesion. Finally on this point, it is also interest-
ing to note that a composite method for segmentation (team fusion) combining
the different automatic methods while rejecting outliers is able to drastically
improve segmentation results and get closer to the ground truth. However, this
happens mainly for segmentation performance metrics and less for detection
performance metrics. This may be due to the inherent design of the label fusion
methods that do not work on a lesion basis but rather on a voxel basis, and
thus favor segmentation based metrics. In addition, since many methods fail
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at delineating well lesions when the total lesion load is small (see Fig. 5), this
composite method is not able to perform a good segmentation for these cases.

We have also illustrated through this challenge the behavior of methods in
several specific cases: testing for scanner dependency of the algorithms, where
we compared the results for four different scanners, one of them being hidden
from the training dataset. This study illustrated that all methods are still sen-
sitive to scanners on which they were not trained for (either training in the
machine learning sense or training in the sense of parameters tuning by a hu-
man being), obtaining lower scores for those images. On the contrary, when the
training set included representative images of different scanners, all algorithms
behaved equally independently of the center or scanner. This suggests the im-
portance of looking for more training independent methods or, meanwhile, to
have enough representative cases to train on (at the high cost of providing mul-
tiple manual image annotations from experts). A second specific case considered
a patient with no lesions in the ground truth provided from the experts. For
that patient, even if some methods had not planned this case, all methods be-
haved globally well even though participants were not told in advance about
this fact.

While not mentioned explicitly in this article, we also looked at the relation
between algorithm performance and preprocessing or modalities used. For both
aspects, there is no clear evidence of a link. Some algorithms perform well
while using only a subset of modalities, while some other that use all modalities
perform less well. However the reverse is also true: some of the best algorithms
use all modalities while some less good ones use a smaller number of modalities.
This is however a crucial aspect as information on this could help in the design
of shorter acquisition protocols in the future, using only those modalities useful
for automatic segmentation. Future works, which have to be in close link with
the challenge participants (but facilitated thanks to our computing platform),
will look at the robustness of results of the individual algorithms with respect to
both preprocessing used and modalities used. This will provide a great insight
into optimal, fast protocol design and optimal preprocessing.

We have clearly demonstrated in Fig. 5 a link between the total lesion load
in a patient and the performance of segmentation methods: the smaller the true
total lesion load, the worse the segmentation results were for every metric. As
mentioned earlier, this is partly linked to the fact that voxel-based performance
metrics are much more sensitive when the number of voxels in the true segmen-
tation is small. However, this is not the only reason: automatic segmentation
methods are indeed behaving slightly worse on these cases and a focus on them
should probably help in designing algorithms adapted to all situations. This
link between performance and lesion load does not generalize to the number of
lesions (also seen in the same figure), which illustrates that there is no clear
sensitivity of the methods to the number of lesions for a patient. However, this
link is clearly related to a correlation between lesion volume and lesion detection
rate, as demonstrated in Fig. 6. This further indicates that lesions are clearly
less well detected or even not at all when they are small, which seems rather
logical as it intuitively seems tougher for an algorithm to properly locate a small
lesion than a larger one.

Evaluation metrics presented in this article are a selection per category (seg-
mentation and detection) of the metrics described in Section 4.4 and computed
for the challenge. We chose them as being representative and most informative
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of the main qualities and defaults of the algorithms. Of course, as illustrated for
more general segmentation evaluation purpose [35], three metrics may not be
enough for describing the behavior of each method in its entirety. As explained
in Section 4, we have complemented these three measures with many other com-
plementary measures, for which we encourage the interested reader to look at the
supplementary materials (http://dx.doi.org/10.5281/zenodo.1307653).

4. Methods

We present in the following the methodological details that allowed us to
draw the results and conclusions previously outlined. This section is split in
several subparts. Sections 4.1 and 4.2 present in more details the evaluation
database used in the challenge and the way in which the manual delineations
were carried out and averaged into a “ground truth”. Section 4.3 then outlines
the computing platform used in the challenge which was necessary to guarantee
a fair comparison of the algorithms. Finally, Section 4.4 presents the evaluation
metrics used in the challenge as well as the analyses plan derived from them in
this article.

4.1. Reference Images Database
In this segmentation evaluation challenge, we relied on a database of images

of 53 multiple sclerosis patients following the OFSEP protocol recommenda-
tions in [9], which is currently applied in France for the constitution of the
national cohort of MS patients. Following this approach allows for an evalua-
tion representative of the current standards and easily usable for newly acquired
images. For our challenge, images came from three different sites in France on
four different MRI scanners from different manufacturers (Siemens, Philips and
GE) including three 3T and on 1.5T magnets. The repartition of the 53 pa-
tients is shown in Table 3. More demographic details on the ages and gender
repartitions into the training and testing groups are provided in supplementary
material (http://dx.doi.org/10.5281/zenodo.1307653). Overall, no signifi-
cant difference of age can be seen between the different centers. While gender
differences exist between some centers (in particular center 8), we believe this
is of little importance with regard to lesion segmentation and detection quality
compared to scanner to scanner differences.

Center
number

Scanner model
and site

Training
cases

Testing
cases

Age
(y.o.)

Gender ratio
M:F

1 Siemens Verio 3T
(University Hospital of Rennes) 5 10 43.6

± 12.6 0.36

3 General Electrics Discovery 3T
(University Hospital of Bordeaux) 0 8 48.9

± 11.5 0.14

7 Siemens Aera 1.5T
(University Hospital of Lyon) 5 10 45.3

± 9.8 0.25

8 Philips Ingenia 3T
(University Hospital of Lyon) 5 10 45.5

± 7.8 0.87

Table 3: Demographics data of multiple sclerosis patients collected for the challenge and their
repartition among training and testing datasets.
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These patients were selected to have variable amounts of lesions both in
volume and number, and from different centers to represent the variability that
may be encountered across sites. For each patient, the following images were
provided for each MS patient (see details of the sequence parameters in Table 4):
a 3D FLAIR sequence, a 3D T1 weighted sequence pre and post-Gadolinium
injection, an axial dual PD-T2 weighted sequence. These patients were then
split (see Table 3) between a training and testing datasets. The testing dataset
was not made available to the challengers and was used to evaluate the different
methods while the training dataset was provided, together with the ground truth
segmentations, for challengers to train their algorithms. Images acquired on one
center (3) were not part of the training dataset, with the goal of evaluating how
much algorithms were dependent on the training set and sensitive to acquisition
settings.

Scanner Modality Matrix Slices Voxel
resolution (mm)

GE Discovery 3T
Sagittal 3D FLAIR 512x512 224 0.47x0.47x0.9
Sagittal 3D T1 512x512 248 0.47x0.47x0.6

Axial 2D PD-T2 512x512 From 28
to 44

0.43x0.43x3
Gap: 0.5

Philips Ingenia 3T
Sagittal 3D FLAIR 336x336 261 0.74x0.74x0.7
Sagittal 3D T1 336x336 200 0.74x0.74x0.85
Axial 2D PD-T2 512x512 46 0.45x0.45x3

Siemens Aera 1.5T
Sagittal 3D FLAIR 256x224 128 1.03x1.03x1.25
Sagittal 3D T1 256x256 176 1.08x1.08x0.9

Axial 2D PD-T2 320x320 25 0.72x0.72x4
Gap: 1.2

Siemens Verio 3T
Sagittal 3D FLAIR 512x512 144 0.5x0.5x1.1
Sagittal 3D T1 256x256 176 1x1x1
Axial 2D PD-T2 240x320 44 0.69x0.69x3

Table 4: Acquisition details for each sequence and each scanner for the training and testing
MS patients databases.

For each patient, the challenge data includes raw datasets, and preprocessed
datasets where the following steps were performed:

• Denoising of each modality using the non local means algorithm [36]

• Rigid registration of each modality on the FLAIR image [37]

• Brain extraction (skull stripping) using the volBrain platform [38], from
the T1-w image and applied to other modalities

• Bias field correction of each modality using the N4 algorithm [39]

4.2. MS Lesions Ground Truth
Based on manual segmentation on our MS database, we first aimed at getting

ground truth segmentations of multiple sclerosis lesions. This task is difficult
and variability exists between experts depending on various factors, even when
they follow common protocol, depending on many factors (image quality, train-
ing, modalities. . . ). We chose to build for this challenge an unprecendented
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set of seven manual delineations for each patient. These delineations were per-
formed manually on the 3D FLAIR image with control on the T2 weighted
image. Each manual segmentation was performed by a trained junior expert,
validated and corrected under the supervision of senior radiologists with a long
experience in multiple sclerosis. More specifically, a first meeting between senior
radiologists and workshop organizers of each site took place to determine the
segmentation strategy and adopt a common tool (ITK-Snap) to perform manual
segmentation. Junior radiologists were then recruited on each site and trained
by the expert radiologists on a separate training set and when their agreement
was above a threshold of 80%, they were allowed to delineate the 53 patient
cases. Each case was segmented in isolation of the other cases to limit possible
bias. Segmentation experts were split between the three sites which provided
the patient images: 4 in Lyon, 2 in Rennes and one in Bordeaux.

MS lesions segmentation is known to be expert- and center-dependent, which
can lead to relatively large discrepancies between individual manual segmenta-
tions. To cope with this problem, we computed for each patient a consensus
segmentation by using the Logarithmic Opinion Pool Based STAPLE (LOP
STAPLE) algorithm proposed by [10]. This algorithm computes iteratively,
using an Expectation-Maximization approach, a consensus segmentation based
on penalties for individual deviations from agreement between manual experts
segmentations. This algorithm has several advantages: it is robust to differ-
ences between manual expert segmentations, and it allows the computation of
agreement scores with respect to the consensus segmentation considered then
as ground truth.

4.3. Computing Architecture for Automatic MS Lesions Segmentation Evalua-
tion

One of the critical aspects in performing an independent challenge and
benchmarking of medical image processing solutions is to provide a unified in-
frastructure able to:

• anonymize and upload the training and testing data in a single place that
all participants can access though the Web

• integrate and execute the image processing algorithms through a web-
based portal where all algorithms are executed on the test dataset in
identical conditions

• host the processed images and make them available to the participants

• provide a cloud-based integrated solution with interoperable distributed
resource management systems

Most of the past and existing challenges in the field of image processing were
able to provide part of these solutions but none of them was able to provide a
computing solution able to perform all of these tasks seamlessly.

We used the France Life Imaging (FLI) - Information Analysis and Man-
agement (IAM) (FLI-IAM in short) computing infrastructure for this challenge.
FLI is a national infrastructure, which aims to coordinate and harmonize the
network of resources on in-vivo imaging in France. Its IAM node represents the
computing node of France Life Imaging (https://www.francelifeimaging.
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fr/en/about/noeuds/iam/). This architecture allows (see Figure 7) the stor-
age and management of preclinical and clinical in vivo imaging data and offers
services of images processing and analysis.

Figure 7: FLI-IAM architecture

FLI-IAM is based on existing, technologically ready software solutions, com-
ing from multiple research teams over France. It proposes a web portal (blue
box in Fig. 7) to unify the access to all resources and tools and provides multiple
solutions for storage and computation on medical images.

To operate this challenge, three components of the entire FLI-IAM portfolio
have been used:

• Web portal

• Shanoir (SHAring NeurOImaging Resources) for the database [40]

• VIP (Virtual Imaging Platform) for the computing platform [41]

In addition to these three major components, additional tools/services have
been developed to provide the required level of interoperability and to finally
integrate all components into one unique workflow.

The web portal has been used as a communication platform with all chal-
lengers. All information concerning the challenge has been distributed there,
e.g. the organizational aspects, dataset descriptions, evaluation details, etc.
Challengers had to subscribe on the portal to participate in the challenge.

Shanoir (SHAring NeurOImaging Resources) served as central database for
all datasets necessary for the challengers, all their processed results and chal-
lenger’s scores. Shanoir is an open source neuro-informatics platform designed
to share, archive, search and visualize neuroimaging data. It provides a user-
friendly secure web access and offers an intuitive workflow to facilitate the collec-
tion and retrieval of neuroimaging data from multiple sources. Shanoir comes
along many features such as anonymization of data, support for multi-center
clinical studies on subjects or group of subjects.
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VIP (Virtual Imaging Platform) provided all necessary resources for the in-
tegration and the execution of all challenger processing pipelines. The pipelines
were provided by challengers as Docker containers and were integrated into VIP
using the Boutiques application repository. Boutiques relies on Linux containers
to solve the problem of application installation in a lightweight manner and it
uses a versatile JSON format to describe command line tools. VIP also ensured
the execution of the challenger pipelines (and the subsequent segmentation per-
formance analysis) on the computing resources available for the challenge.

Figure 8 gives an overview of the integration level between database and
computing platform and describes the workflow that was set up for the hosting
of the challenge.

Figure 8: Workflow for database and computing platform integration.

After the preparation of the challenge data, all source datasets were imported
into Shanoir. The training data were shared with the challengers using the portal
and its file download feature. The testing data was processed by VIP using a
static export folder exported from the database - containing all necessary meta-
data from the database to import results back into the database and attach
them to the source dataset for each challenger.

After the algorithms produced their results, the segmentation performance
analysis (including all measures described in the next section) was run to com-
pare challengers results with the consensus ground truth and calculate the
scores. The continuously running DataTransferModule has been connected to
the results folder of VIP to automatically import back the result datasets into
Shanoir. All result datasets and their corresponding scores have been made
available in Shanoir for challengers. The challenge organization team could
then easily access the scores summary within Shanoir.
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4.4. Challenge Evaluation Strategy and Metrics
Using the computing platform, challengers were asked to provide algorithms

delineating lesions in the FLAIR reference space. This was asked to match the
space in which the manual delineations were carried out and therefore avoid
any unwanted discrepancies due to interpolation of the challengers’ results. To
evaluate these results, we have implemented a large set of evaluation measures
for the challenge with the goal of evaluating the different aspects evaluated by
clinicians when looking at MS patient images. For this reason, we have separated
the evaluation into two major categories of evaluation metrics:

• Segmentation evaluation: does the algorithm provide a precise delineation
of each lesion?

• Lesion detection evaluation: does the algorithm find all lesions in the
image independently of its precise delineation?

Each of these categories may contain several metrics that characterize dif-
ferently the segmentation quality. We describe in more details each of the
chosen metrics for the challenge in the following sections. All evaluation al-
gorithms used for this paper are available open-source as part of the Anima
software (http://github.com/Inria-Visages/Anima-Public). Although not
presented in this article (but available as part of supplementary material (http:
//dx.doi.org/10.5281/zenodo.1307653), we remind the strategy that was
used at the challenge to rank, for each of these metrics, the different methods
on all patients:

• For each patient, compute the selected metric for each algorithm by com-
paring it to the ground truth previously computed

• For each patient, rank the algorithms according to the selected metric
(from 1: best performing to N : worst performing)

• Compute for each algorithm its average ranking over all patients evaluated.
This average rank is used for the final ranking of the methods

We had selected this approach instead of simply averaging the metric scores
for each algorithm to avoid a bias of some methods that would get a few very
good metric scores that would not represent their true behavior. This approach
instead considers as the best method the one that ranks the best on average
for all patients evaluated, thereby discarding this bias problem. Instead in this
work, we focus more on the graphical analysis of the cluster analysis of the
algorithms with respect to the experts who delineated the structures. To this
end, we performed a multi-parametric analysis of the results. For each couple
of metrics presented in the following (average surface distance, Dice score and
F1 score), we computed a 2D scatter representation of the average results on
all testing patients of each of the teams and of the experts. Since different
clusters of results quality may be outlined by such graphs, we then ran for each
combination of metrics a clustering into three groups of the average performance
of the teams and experts. For this clustering to be precise enough however, we
need to account for the variance around the average points. We have therefore
chosen to perform a spectral clustering [42], considering each point of the 2D
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graph not as a mean but as a multivariate Gaussian, using a distance between
multivariate Gaussians as expressed in [43], thus accounting for the covariance
in the individual scores.

4.4.1. Segmentation evaluation
The first category of evaluation metrics is also the most known in the liter-

ature and concerns segmentation evaluation, i.e. are the contours of the lesions
precisely delineated compared to the ground truth. In this group, we distin-
guish two sub-categories, each quantifying the precision of lesions delineation:
overlap-based and surface-based metrics. In the following, we will consider two
binary images representing respectively the lesions consensus (i.e. the ground
truth): G, and the evaluated segmentation (i.e. one algorithm segmentation
result): A, both illustrated in Fig. 9.

Figure 9: Illustration of overlap-based segmentation evaluation: quantities used for measures
computation. A denotes the evaluated segmentation, G the ground truth, and B the image
domain.

Overlap metrics. These measures consider the voxel-based overlap of A and G
based on the quantities illustrated in Fig. 9. Among those measures, we use the
following ones:

• Dice score [44]: D = 2 |A∩G||A|+|G|

• Positive predictive value: P = |A∩G|
|A|

• Sensitivity: Se = |A∩G|
|G|

• Specificity: Sp = |B|−|A∪G|
|B|−|G|

where A∪G is computed from other quantities: A∪G = A∩G+A\G+G\A.
For all formulas in this section, the notation |.| denotes taking the cardinal of a
set of voxels, e.g. |A ∩ G| denotes the number of voxels in that set. As a final
remark for this category, the choice of the size of image B is quite important
as it will influence specificity. A too large region for B could indeed lead all
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specificity values to be very close to 1 by construction and therefore make them
difficult to compare. We therefore chose for the challenge to compute B as
the union of all available segmentations for a patient (automatic and manual),
dilated three times by a 6-connectivity kernel.

Each overlap-based metric varies between 0 and 1, 1 being a perfect result
and 0 the worst result. Each measure is however sensitive to a different phe-
nomenon in the quality of segmentations: positive predictive value and speci-
ficity are influenced by false positives and are therefore sensitive to overly large
segmentations; sensitivity is influenced by false negatives and is thus sensitive
to overly small segmentations. Finally, the Dice score is a composite measure
attempting to summarize all influences into a single scalar measure.

Surface metric. In addition to overlap-based metrics, we have computed the
average symmetric surface distance, also used in MICCAI 2008 challenge on
MS lesions segmentation organized by [7]. Instead of using voxel-based overlaps,
this measure uses contours extracted from the two input segmentations A and
G, denoted respectively AS and GS . This distance is expressed as the following
sum:

S =

∑
i∈AS

d(xi, GS) +
∑

j∈GS
d(xj , AS)

NA +NG
(1)

where d denotes the minimal Euclidean distance between a point of one surface
and the other surface, NA and NG denote the number of points of each surface.

4.4.2. Detection evaluation
As mentioned in the introduction, evaluation of the detection of lesions is

as crucial, if not even more, as segmentation precision as the number of lesions
is used for MS diagnosis. We wanted to evaluate in this category how many
lesions have been (in)correctly detected, independently of the precision of their
contours.

Defining lesion detection. This whole category of measures relies on identifying
individual lesions in the ground truth G and evaluated segmentations. For
this task, we first compute the connected components of G and A (with a 18-
connectivity kernel) and remove all lesions that are smaller in size than 3 mm3.
We therefore get label images G̃ and Ã where each label denotes a specific lesion.

From these two labeled images, two quantities are computed that will be
used to characterize the detection power of an algorithm:

• TPG: the number of lesions among the M lesions in the ground truth G̃
that are correctly detected by Ã

• TPA: the number of lesions among the N lesions in the automatic seg-
mentation Ã that are correctly detected by G̃

Let us consider only the case of TPG, TPA being computed with the same
procedure but reverting the roles of Ã and G̃. We first construct the joint
histogram H of Ã and G̃ where Hi,j corresponds to the number of voxels having
label i ∈ {0 . . .M} in G̃ and label j ∈ {0 . . . N} in Ã. We consider a lesion j in
G̃ (G̃j) to be detected if it respects the following rules:
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• The lesion G̃j is overlapped at least at a rate of α% by lesions of Ã

• Lesions of Ã that contribute the most to the detection of G̃j (summing
up to γ% of the total overlap) do not go outside of G̃j by more than β%.

While the first condition ensures that the lesion to be detected is sufficiently
overlapped, the second condition ensures that the detection is not due to an
overly large segmentation in Ã that would overlap many lesions in G̃ by chance.
These two conditions are implemented in Algorithm 1.

Algorithm 1 TPG computation algorithm
1: Let TPG = 0, construct H
2: for i ∈ {1 . . .M} do
3: Compute Si : Si =

∑
j>0 Hi,j∑
j≥0 Hi,j

4: if Si > α ∈ [0, 1] then
5: Construct a sorting vector p[k] : k ∈ {1 . . . N} → {1 . . . N} so that

Hi,p[k] is sorted in decreasing order
6: Let wSum = 0, k = 0, vAccept = true
7: while wSum < γ ∈ [0, 1] do
8: Compute Tk : Tk =

H0,p[k]∑
l≥0 Hl,p[k]

9: if Tk > β ∈ [0, 1] then
10: vAccept = false
11: Break
12: end if
13: wSum = wSum+

Hi,p[k]∑
l>0 Hi,l

14: k = k + 1
15: end while
16: if vAccept is true then
17: Let TPG = TPG + 1
18: end if
19: end if
20: end for

For the challenge, we used this algorithm with values heuristically defined on
several independent tests to give meaningful values for TPG and TPA: α = 10%,
γ = 65%, β = 70%.

Detection metrics. From the number of lesions M and N respectively in G̃ and
Ã, and the numbers computed above (TPG and TPA), the following detection
metrics are computed, named after their similarity to overlap-based metrics:

• Lesion sensitivity, i.e. the proportion of detected lesions in G̃: SeL = TPG

M

• Lesion positive predictive value, i.e. the proportion of true positive lesions
inside Ã: PL = TPA

N

In addition to these two metrics, we have computed a summary metric to get,
like the Dice score for segmentation metrics, a one-glance idea of the detection
performance of a given method (0 meaning worst performance and 1 meaning
perfect detection performance). This summary metric, the F1 score, considers
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both lesion sensitivity and positive predictive value to compute the score. It is
defined as follows:

F1 = 2
SeLPL

SeL + PL
(2)
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