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Abstract 19	

Identifying driver genes is a central problem in cancer biology, and many methods have 20	

been developed to identify driver genes from somatic mutation data. However, existing methods 21	

either lack explicit statistical models, or rely on very simple models that do not capture complex 22	

features in somatic mutations of driver genes. Here, we present driverMAPS (Model-based 23	

Analysis of Positive Selection), a more comprehensive model-based approach to driver gene 24	

identification. This new method explicitly models, at the single-base level, the effects of positive 25	

selection in cancer driver genes as well as highly heterogeneous background mutational process. Its 26	

selection model captures elevated mutation rates in functionally important sites using multiple 27	

external annotations, as well as spatial clustering of mutations. Its background mutation model 28	

accounts for both known covariates and unexplained local variation. Simulations under realistic 29	

evolutionary models demonstrate that driverMAPS greatly improves the power of driver gene 30	

detection over state-of-the-art approaches. Applying driverMAPS to TCGA data across 20 tumor 31	

types identified 159 new potential driver genes. Cross-referencing this list with data from external 32	

sources strongly supports these findings. The novel genes include the mRNA methytransferases 33	

METTL3-METTL14, and we experimentally validated METTL3 as a potential tumor suppressor 34	

gene in bladder cancer. Our results thus provide strong support to the emerging hypothesis that 35	

mRNA modification is an important biological process underlying tumorigenesis.  36	

 37	
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Introduction 38	

Cancer is caused by somatic mutations that confer a selective advantage to cells. Analyses 39	

of somatic mutation data from tumors can therefore help identify cancer-related (“driver”) genes, 40	

and this is a major motivation for recent large-scale cancer cohort sequencing projects1. Indeed, 41	

such analyses have already identified hundreds of driver genes across many cancer types1,2. 42	

Nonetheless, many important driver genes likely remain undiscovered3, especially in cancers with 43	

low sample sizes. Here we develop and apply new, more powerful, statistical methods to address 44	

this problem. 45	

The basic idea underlying somatic mutation analyses is that genes exhibiting a high rate of 46	

somatic mutations are potential driver genes. However, mutation and repair processes are often 47	

significantly perturbed in cancer, so somatic mutations may also occur at a high rate in non-driver 48	

genes. Furthermore, somatic mutation rates vary substantially across genomic regions and across 49	

tumors. The challenge is to accurately distinguish driver genes against this complex background. 50	

Several main ideas have been developed to address this challenge. One idea is to carefully model 51	

the background somatic mutation process, by leveraging features that correlate with somatic 52	

mutation rate, such as replication timing4. Another idea is to utilize distinctive features of somatic 53	

mutations in driver genes: notably, mutations in driver genes tend to be more deleterious (“function 54	

bias”), and sometimes show a distinctive spatial pattern, tending to cluster together (e.g. in substrate 55	

binding sites)5. Methods that leverage one or more of these ideas include MuSiC6, MADGiC7, the 56	

Oncodrive suite8–10 and TUSON11.  57	

Despite this progress, most existing methods do not explicitly model the process that 58	

generates the observed somatic mutations, namely, the interactions of mutational process and 59	

natural selection12. Indeed, tumorigenesis is well recognized as an evolutionary process13,14, and 60	

explicit modeling of mutation and selection is likely to be highly beneficial for analyzing somatic 61	

mutations in cancer12,15–17. Many methods described above construct a null model for non-driver 62	

genes which lacks selection, and derive test statistics to reject this null model, without modeling of 63	

the alternative. Even recent, evolutionarily motivated models16,17 capture only the most basic impact 64	

of selection: differences in observed rates of nonsynonymous vs. synonymous mutations. Our 65	

approach, driverMAPS, is based on a much richer statistical model, which captures selection at the 66	

basepair level, and allows the strength of selection to depend on measures of functional importance 67	

such as conservation scores, SiFT18 and PolyPhen19. In addition, we use a Hidden Markov Model to 68	
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capture potential spatial clustering of somatic mutations into “hotspots”. Our approach also 69	

introduces other innovative features: a detailed model of the background mutation processes, which 70	

accounts for known genomic features and variation across genes not captured by these features; and 71	

the use of a Bayesian hierarchical model to combine information across cancer types and hence 72	

improve parameter estimates. 73	

Both simulations and application on TCGA data demonstrate the power of our approach. 74	

The explicit statistical models of driver and non-driver genes allow us to perform realistic 75	

simulations to assess methods, which was largely impossible in the past. We found that not all 76	

existing methods properly control the False Discovery Rate (FDR) for driver gene discovery, and 77	

among those with reasonable FDR control, driverMAPS has significantly higher power than 78	

existing ones. We applied driverMAPS to TCGA exome sequencing data from 20 cancer types. The 79	

results suggest that driverMAPS is better able to detect previously known driver genes than existing 80	

methods, without excessive false positives. In addition, driverMAPS identified 159 new potential 81	

driver genes not identified by other methods. Both literature survey and extensive computational 82	

validation suggest that many of these genes are likely to be true driver genes. The novel potential 83	

driver genes included both METTL3 and METTL14, which together form a key enzyme for RNA 84	

methylation. We experimentally validated the functional relevance of somatic mutations in 85	

METTL3, providing further support for both the effectiveness of our method, and for the potential 86	

importance of RNA methylation in cancer. We believe that our methods and results will facilitate 87	

the future discovery and validation of many more driver genes from cancer sequencing data. 88	

Results 89	

driverMAPS: a probabilistic model of somatic mutation selection patterns 90	

Our approach is outlined in Figure 1. In brief, we model aggregated exonic somatic 91	

mutation counts from many tumor samples (e.g. as obtained from a normal-tumor paired 92	

sequencing cohort). Let Yg denote the mutation count data in gene g. We develop models for Yg 93	

under three different hypotheses: that the gene is a “non- driver gene” (H0), an “oncogene” (HOG) or 94	

a “tumor suppressor gene” (HTSG). Each model has two parts, a background mutation model 95	

(BMM), which models the background mutation process, and a selection mutation model (SMM), 96	

which models how selection acts on functional mutations. The rate of observed mutation at a 97	

position is the product of the background mutation rate (from BMM) and a coefficient reflecting the 98	
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effect of position-specific selection (from SMM). We note that the coefficient can be related to the 99	

selection coefficient of the mutation and effective population size under a simplified population 100	

genetic model12. If the coefficient is greater than 1, it indicates positive selection and if it is less 101	

than 1, negative selection. The BMM parameters are shared by all three hypotheses, reflecting the 102	

assumption that background mutation processes are the same for cancer driver and non-driver 103	

genes. In contrast the SMM parameters are hypothesis-specific, to capture the different selection 104	

pressures in oncogenes vs tumor suppressor genes vs non-driver genes. We fit the hypothesis-105	

specific parameters using training sets of known oncogenes1 (HOG), known TSGs1 (HTSG), and all 106	

other genes (H0). (This last set will contain some -- as yet unidentified -- driver genes, which will 107	

tend to make our methods conservative in terms of identifying new driver genes.) To combine 108	

information across tumor types we first estimate parameters separately in each tumor type, and then 109	

stabilize these estimates using Empirical Bayes shrinkage20.  110	

Having fit these models, we use them to identify genes whose mutation data are most 111	

consistent with the driver genes models (HOG and HTSG). Specifically, for each gene g, we measure 112	

the overall evidence for g to be a driver gene by the Bayes Factor (likelihood ratio), BFg, defined as: 113	

BFg := 0.5 [Pr(Yg | HOG) + Pr(Yg | HTSG)] / Pr(Yg | H0). 114	

Large values of BFg indicate strong evidence for g being a driver gene, and at any given threshold 115	

we can estimate the Bayesian FDR. For results reported here we chose the threshold by requiring 116	

FDR<0.1. 117	

 118	

driverMAPS effectively captures factors influencing somatic mutations 119	

We used a total of 734,754 somatic mutations from 20 tumor types in the TCGA project as 120	

our input data21. We focused on single nucleotide somatic variations and extensively filtered input 121	

mutation lists to ensure data quality (see Methods). Figure S1 summarizes mutation counts and 122	

cohort sizes.  123	

The first step of our method is to estimate parameters of the Background Mutation Model 124	

(BMM) using data on synonymous mutations. These parameters capture how mutation rates depend 125	

on various “background features” (Table S1), which include mutation type (C>T, A>G, etc), CpG 126	

dinucleotide context, expression level, replication timing and chromatin conformation (HiC 127	

sequencing)4. The signs and values of estimated parameters were generally similar across tumor 128	

types, and consistent with previous evidence for each feature’s effect on somatic mutation rate. For 129	
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example, the estimated effect of the feature “expression level” was negative for almost all tumors, 130	

consistent with transcriptional coupled repair mechanisms effectively reducing mutation rate 131	

(Figure S2).  132	

Our BMM also estimates gene-specific effects, using synonymous mutations of a gene, to 133	

allow for local variation in somatic mutation rate not captured by measured features. Intuitively, the 134	

gene-specific effect adjusts a gene’s estimated mutation rate downward if the gene has fewer 135	

synonymous mutations than expected based on its known features, and upwards if it has more 136	

synonymous mutations than expected. A challenge here is that the small number of mutations per 137	

gene (particularly in small genes) could make these estimates inaccurate. Here we address this using 138	

Empirical Bayes methods to improve accuracy, and avoid outlying estimates at short genes that 139	

have few potential synonymous mutations (Figure 2a). Effectively, this adjusts a gene’s rate only 140	

when the gene provides sufficient information to do so reliably (sufficiently many potential 141	

synonymous mutations). To demonstrate the reliability of the resulting estimates we use a 142	

procedure similar to cross-validation: we estimated each gene’s gene-specific effect using its 143	

synonymous mutations, and then test the accuracy of the estimate (compared to no gene-specific 144	

effect) in predicting the number of nonsynonymous mutations. We assume that for the vast majority 145	

of genes, their mutational counts are dominated by background mutation processes, rather than 146	

selection. Figure 2b shows results for SKCM tumors: without gene-specific effect the correlation of 147	

observed and expected number of nonsynonymous mutations across genes was 0.56; with gene-148	

specific adjustment the correlation increased to 0.88. Similar improvements were seen for other 149	

tumors (Figure S3).  150	

The next step is to estimate parameters of the Selection Mutation Models (SMM), using data 151	

on non-synonymous mutations. These parameters capture how the rate of non-synonymous somatic 152	

mutations depend on various “functional features” (Table S2-S4), including loss-of-function (LoF) 153	

status, conservation scores, etc. Signs and values of estimated parameters were generally similar 154	

across tumor types, and consistent with their expected impact on gene function (Figure 2c). For 155	

example, the estimated effect of the “LoF” feature was positive for HTSG and negative for HOG, 156	

indicating that loss-of-function mutations are enriched in TSGs and depleted in OGs, as expected 157	

from their respective roles in cancer. The intercept terms for both TSG and OG are positive, 158	

suggesting that somatic mutations are enriched in both types of cancer driver genes.  159	
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The final step is to estimate parameters of the spatial model (HMM, Figure 1), which are 160	

designed to capture how somatic mutations may cluster together in “hotspots” in driver genes. 161	

Preliminary investigations showed that spatial clustering is generally stronger in known OGs than 162	

in known TSGs, and so we fit the spatial model separately for OGs and TSGs in each tumor type 163	

(Table S5). Our model identified some tumor types (e.g. BLCA and LUSC, Figure 2d) with strong 164	

spatial clustering. In BLCA, the estimated hotspots are very short (mean 1.4bp) and are primarily 165	

capturing an excess in recurrent mutations (independent mutations at the same base) compared with 166	

expectations (Figure 2d). In LUSC, the clustering extends over slightly longer regions (mean 167	

5.6bp), but still the primary signal is an excess of recurrent mutations (Figure 2d). 168	

 169	

Simulations demonstrate that driverMAPS improves detection of driver genes 170	

 While many methods have been developed for driver gene identification, it is difficult to 171	

compare them on real data where the true status of each gene is often unknown. Simulations are 172	

extremely valuable in such situations, and have been used in many fields, including population 173	

genetics22, statistical genetics23 and single-cell transcriptomics24. Here we exploit our explicit 174	

statistical model to perform realistic simulations based on parameters inferred from real data (here, 175	

the TCGA UCS cohort). 176	

We first assess a common strategy used in the field: Fisher’s method to combine p-values of 177	

a gene, each capturing a single feature of positive selection. We simulated somatic mutations in a 178	

positively selected gene with both increased nonsynonymous mutation rates and mutational 179	

hotspots. We ran two simple tests -- a dN/dS test to detect enrichment of functional mutations and 180	

another to detect spatial clustering (see Methods) -- and then combined p values using Fisher’s 181	

method. Perhaps unexpectedly, the combined test has lower power than the dN/dS test alone 182	

(Figure 3a). We believe that this is because spatial clustering is a relatively weak feature in our 183	

simulations (as in real data) and so the spatial test has much less power than the dN/dS test. 184	

Consequently the spatial test adds more noise than signal, decreasing power. This result highlights a 185	

weakness of methods based on combining p values; model-based approaches, such as ours, avoid 186	

this problem by automatically weighting different features of the data based on their 187	

informativeness. 188	

   We next used simulations to compare driverMAPS with six existing algorithms: MutSigCV, 189	

OncodriveFML9, OncodriveFM10, OncodriveCLUST8, dNdScv16 and CBaSE17. We performed 190	
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simulations of all genes in the genome where 324 genes are randomly chosen as oncogenes or 191	

tumor suppressor genes. We found that, for distinguishing driver vs non-driver genes, driverMAPS 192	

outperformed all other methods (Figure 3b). Furthermore, only driverMAPS and MutSigCV 193	

consistently control FDR across all sample sizes (Figure 3c). Excluding three methods with obvious 194	

problems of FDR control (OncodriveFM, OncodriveCLUST, CBaSE), driverMAPS identifies the 195	

most driver genes at FDR < 0.1 (Figure 3d). Overall we found the power of driverMAPS to 196	

discover novel driver genes can be double that of other leading methods (and even more in smaller 197	

samples).   198	

 199	

Application of driverMAPS on TCGA data 200	

We next compared results from driverMAPS and other algorithms for predicting driver gene 201	

using TCGA data (see Methods).  Besides the full implementation of driverMAPS, we also tried a 202	

“basic” version that looks only for an excess of nonsynonymous somatic mutations (without any 203	

functional features or spatial model), and a “+feature” version with functional features but not the 204	

spatial model. We applied all methods to the same somatic mutation data and compared the genes 205	

they identified with a list of “known driver genes” (713 genes) compiled as the union of COSMIC 206	

CGC list (version 76)25, Pan-Cancer project driver gene list2 and list from Vogelstein B (2013)1 (see 207	

Supplementary Note).  To avoid overfitting of driverMAPS to the training data, we trained 208	

driverMAPS with a leave-one-out strategy in these assessments.  209	

For each method we computed both the total number of genes detected (at FDR=0.1) 210	

(Figure 4a) and the “precision” -- the fraction that are on the list of known driver genes (Figure 4b). 211	

All versions of driverMAPS identified more driver genes than either MutSigCV, dNdScv or 212	

OncodriveFML, while maintaining a similarly high precision. The full version of driverMAPS 213	

(with the spatial and functional features) identified nearly twice more genes. Furthermore, this 214	

higher detection rate of driverMAPS was consistent across tumor types (Figure 4c). The other  215	

methods, OncodriveFM, OncodriveCLUST and CBaSE, behaved quite differently, identifying 216	

thousands of driver genes but with much lower precision, consistent with poor FDR control in 217	

simulations (Figure 3c). For OncodriveFM and OncodriveCLUST, the lowest precision was in the 218	

tumor types with the highest mutation rates (e.g. BLCA, LUSC, LUAD), suggesting the accuracy of 219	

these methods may be affected by mutation rates (Figure S4). While precision of OncodriveFM and 220	
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OncodriveCLUST showed a negative correlation with mutation rate (Pearson r = -0.44 and -0.56), 221	

the precision of driverMAPS showed negligible correlation (Pearson r = 0.05).  222	

 223	

Evaluation of potential novel drivers identified by driverMAPS 224	

Summing across all 20 tumor types, at FDR 0.1, driverMAPS identified 255 known driver 225	

genes and 170 putatively novel driver genes (159 unique genes across the 20 tumor types; 70 226	

classified as TSGs and 100 as OGs; Figure 5a, Table S7). Almost half of these putative novel genes 227	

were not called by MutSigCV, OncodriveFML or dNdScv. Ten novel genes were found 228	

independently in at least two tumor types (Table 1). This is unlikely to happen by chance 229	

(permutation test, p < 1e-4), so these genes seem especially good candidates for being genuine 230	

driver genes.  231	

Since it is impractical to functionally validate all 170 putative novel genes, we sought other 232	

data to support these genes likely being involved in cancer. We first selected three common cancers 233	

-- breast, lung and prostate -- and conducted an extensive literature survey for each novel gene 234	

identified in these tumor types. Among a total of 22 novel genes, we found clear support in the 235	

literature for 20 being involved with cancer biology, either directly implicated as oncogenes or 236	

tumor suppressor genes (but not in the list of “known driver genes”) or linked to well-established 237	

cancer pathways (Table S8).   238	

We next assessed whether the novel genes were enriched for features often associated with 239	

driver genes. Previous studies reported that driver genes tend to be highly expressed4 compared 240	

with other genes, and indeed we found that, collectively, the novel genes showed significantly 241	

higher expression than randomly sampled genes in the corresponding tissues21 (p<1e-4) (Figure 5b).  242	

Previous studies have also reported that driver genes tend to show enrichment and depletion 243	

for different copy-number-variation (CNV) events, depending on their role in cancer. Specifically, 244	

OGs are enriched for CNV gains and depleted for CNV loss, whereas TSGs show enrichment for 245	

loss and depletion for gains. Consistent with this, we found novel genes identified as OGs are 246	

enriched for CNV gain events (p<1e-4) while novel TSGs are depleted (p=3e-3). CNV loss events 247	

for novel OGs are depleted compared to novel TSGs and to other genes (p= 0.04) (Figure 5c).  248	

We also compared our novel genes with a “cancer dependency map” of 769 genes identified 249	

from a large-scale RNAi screening study across 501 human cancer cell lines26. These are genes 250	

whose knockdown affects cell growth differently across cancer cell lines, thus likely representing 251	
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genes that are critical for tumorigenesis, but not universally essential genes. We found 16 novel 252	

driver genes overlapped with this gene list, a significant enrichment compared with random 253	

sampling (odds ratio 2.9, p=3.7e-4) (Figure 5d and Table S9).  254	

To test whether our novel genes are functionally related to known cancer driver genes we 255	

examined the connectivity of these two sets of genes in the HumanNet27 gene network, which is 256	

built from multiple data sources including protein-protein interactions and gene co-expression. On 257	

average, each novel gene is connected to 3.8 known driver genes, significantly higher than expected 258	

by chance (p = 0.001). We obtained a similarly significant result using a different gene network, 259	

GeneMania28, which is constructed primarily from co-expression (p = 0.008) (Figure 5e).  260	

Finally, we identified enriched functional categories in our novel genes using GO 261	

enrichment29,30 analysis (by geneSCF31). Significant GO terms (FDR < 0.1, Figure 5f) include many 262	

molecular processes directly implicated in cancer, such as transcription initiation and regulation. 263	

The significant terms also include several that have not been previously implicated in cancer. Genes 264	

NAA25, NAA16 and NAA30 (GO: 0004596) are peptide N-terminal amino acid 265	

acetyltransferases32. NATs are dysregulated in many types of cancer, and knockdown of the NatC 266	

complex (NAA12-NAA30) leads to p53-dependent apoptosis in colon and uterine cell lines33.  267	

OGDH and OGDHL (GO:0004591) have oxoglutarate dehydrogenase activities and part of the 268	

tricarboxylic acid (TCA) cycle34. METTL3 and METTL14 (GO: 0016422) form the heterodimer 269	

N6-methyltransferase complex, and are responsible for methylation of mRNA (m6A 270	

modification)35. This form of RNA modification may influence RNA stability, export and 271	

translation, and has been shown to be important for important biological processes such as stem cell 272	

differentiation. Our results suggest that this RNA methylation pathway may also play a key role in 273	

tumorigenesis, and so we examined the results for these genes in more detail. 274	

 275	

METTL3 is a potential TSG in bladder cancer 276	

driverMAPS identified the genes METTL3 and METTL14 as driver genes in the cohorts 277	

BLCA (bladder cancer) and UCEC (uterine cancer) respectively. These two genes had relatively 278	

low mutation frequencies (4% and 2%) and were not detected by MutSigCV, dNdScv or 279	

OncodriveFML (those with reasonable FDR control). Inspecting the mutations in these two genes, 280	

we found many to be “functional” as predicted by annotations, and showed spatial clustering 281	

patterns in the MTase domain (Figure 6a). Furthermore METTL3 contained a single synonymous 282	
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mutation, and METTL14 contained none, suggesting low baseline mutation rates at the two genes. 283	

While this manuscript was in preparation, METTL14 was independently identified as a novel TSG 284	

in endometrial cancer (Chuan He, to appear). We thus focused on METTL3 in bladder cancer.  285	

To gain further insights into the potential impact of the somatic mutations in METTL3, we 286	

performed structural analysis. By mapping mutations in the MTase domain of METTL3 to its 287	

crystal structure36, we found them to be concentrated in two regions: one close to the binding site of 288	

S-Adenosyl methionine (AdoMet, donor of the methyl group) and the other in the putative RNA 289	

binding groove at the interface between METTL3 and METTL14 (Figure 6b). The region close to 290	

the AdoMet binding site contains seven mutations: E532K, E532Q, E516K, D515Y, P514T, 291	

H512Q and E506K. Position E532 has been reported to form direct water-mediated interactions 292	

with AdoMet36. The other mutations map to gate loop 2 (E506K and E516K map to the start and 293	

end; the other three mutations are inside the loop) which is known to undergo significant 294	

conformational change before and after AdoMet binding. Thus all these mutations are good 295	

candidates for affecting adenosine recognition. The second region, in the METTL3-METTL14 296	

interface, contains mutations R471H, R468Q and E454K, and so these mutations are good 297	

candidates for disrupting METTL3-METTL14 interaction. In further support of this, the highly 298	

recurrent R298P mutation in METTL14 lies in the binding groove of the METTL14 gene.  299	

We performed functional experiments to test whether mutations (n=7) in the first region 300	

affect METTL3 function. In an in vitro assay, most mutations reduced methyltransferase activity of 301	

METTL3 (Figure S5, see methods) and we chose four mutations (at three positions) for further cell 302	

line experiments. In two bladder cell lines (“5637” and “T24”), knock down of METTL3 by siRNA 303	

significantly reduced m6A methyltransferase activity (Figure 6c for “5637”, Figure S6a for “T24”). 304	

When we tried to rescue this phenotype by transfection of METTL3 mutants, all of the mutations, 305	

E532K/Q, E516K and P514T failed to restore methyltransferase activity to original levels (Figure 306	

6c, Figure S6a), suggesting that they are loss-of-function mutations.  307	

We next examined whether disruption of METTL3 is associated with tumor progression. 308	

Indeed, knockdown of METTL3 significantly increased cell proliferation. Wild type METTL3 309	

successfully restored the cells to their normal growth rate but none of the mutants could (Figure 6d, 310	

Figure S6b).  311	
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These results show that somatic mutations in METTL3 may promote cancer cell growth by 312	

disrupting the RNA methylation process, and invite further characterization of the role of METTL3 313	

and RNA methylation in tumorigenesis by in vivo experiments. 314	

Discussion  315	

We have developed an integrated statistical model-based method, driverMAPS, to identify 316	

driver genes from patterns of somatic mutation. By applying this method to data from multiple 317	

tumor types from TCGA, we detected 159 novel potential driver genes. We experimentally 318	

validated the function of mutations in one gene, METTL3. The remaining genes (Table 1, Table S8-319	

9) are enriched for many biological features relevant to cancer, and appear promising candidates for 320	

further investigation. 321	

Compared with previous methods for detecting driver genes, a key feature of driverMAPS is 322	

that it models mutation rates at the base-pair level. This allows us to explicitly model how selection 323	

strength varies based on site-level functional annotations, e.g. conservation and loss-of-function 324	

status. This model-based approach can be thought of as a powerful extension of methods that detect 325	

driver genes by testing for an excess of non-synonymous vs synonymous somatic mutations (Nik-326	

Zainal et al37, Martincorena et al16), similar to the dN/dS test in comparative genomics. Indeed, the 327	

stripped-down version of driverMAPS that uses no functional annotation or spatial model is 328	

conceptually a dN/dS test (driverMAPS-basic in Figure 4). The full version of driverMAPS, by 329	

incorporating additional functional annotations and spatial modeling, allows that some non-330	

synonymous mutations may be more informative than others in identifying driver genes. 331	

Furthermore, by estimating parameters in a single integrated model, our approach learns how to 332	

weigh and combine the many different sources of information. The results in Figures 3 and 4 333	

demonstrate the increased power that comes from these extensions.  334	

Our statistical and experimental results for the mRNA methyltransferase METTL3 add to 335	

the growing evidence of links between mRNA methylation and cancer. Indeed, a recent study in 336	

myeloid leukemia cell lines38, found that depletion of METTL3 also leads to a cancer-related 337	

phenotype. And extensive functional studies of METTL14 in uterine cancer (Chuan He, to appear) 338	

support a role for this gene in cancer etiology. However, intriguingly, our results on METTL3 in 339	

bladder cancer, and the METTL14 results in uterine cancer suggest that they act as tumor 340	

suppressor genes, whereas the data on METTL3 in myeloid leukemia cell lines are more consistent 341	
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with an oncogenic role, with depletion inducing cell differentiation and apoptosis38. Further studies 342	

in multiple tumor types therefore seem necessary to properly characterize the role of mRNA 343	

methylation in cancer.  344	

Although our model incorporates many features not considered by existing methods, it 345	

would likely benefit from incorporating still more features. For example, it may be useful to 346	

incorporate data on protein structure, which affects the functional importance of amino acid 347	

residues. Further, whereas we currently use the same mutation model for all individuals, it could be 348	

helpful to incorporate individual-specific effects such as smoking-induced mutational signatures. 349	

Finally, it could be useful to extend the model to incorporate information on non-coding variation, 350	

which has been shown to be important for many human diseases including cancer. Although 351	

identifying functional non-coding variation remains a major general challenge, extending our model 352	

to incorporate features from studies of epigenetic factors such as methylation or open chromatin, 353	

has the potential to detect novel driver genes affected by non-coding somatic mutations.  354	
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Methods 370	

Data preparation 371	

We downloaded somatic single-nucleotide mutations identified in whole exome sequencing 372	

(WES) studies for 20 tumor types from TCGA GDAC Firehose (https://gdac.broadinstitute.org/). 373	

We obtained the MAF files using firehose_get (version 0.4.6) 374	

(https://confluence.broadinstitute.org/display/GDAC/Download) and extracted position and 375	

nucleotide change information for all single-nucleotide somatic mutations. See Supplementary 376	

notes for the 20 tumor types and abbreviations. 377	

We excluded mutations from hypermutated tumors as they likely reflect distinct underlying 378	

mutational processes. We also performed extensive filtering to exclude likely false positive 379	

mutations. For each tumor type we then generated a mutation count file that contains mutation 380	

counts (aggregated across all individuals in the tumor cohort) of all possible mutations at all 381	

sufficiently sequenced positions (see Supplementary notes). For a tumor type with 30 million bases 382	

sequenced this produces 90 million possible mutations in the mutation count file (since each 383	

nucleotide can mutate to 3 other nucleotides). The majority of counts for these possible mutations 384	

are 0s.  385	

For each possible mutation, we annotated it with type and gene information, mutational 386	

features and functional features. We defined 9 mutation types based on nucleotide change type 387	

(such as A>T, G>A , etc) and genomic context (such as if inside CpG) (see Supplementary notes 388	

for definitions). We categorized mutations as Synonymous (S) or non-synonymous (NS) as 389	

described in “parameter estimation” section below. The mutational features we used include gene 390	

expression, replication timing and HiC sequencing downloaded from 391	

http://archive.broadinstitute.org/cancer/cga/mutsig. We selected 5 functional features describing 392	

mutation impact. See Supplementary notes for feature details. The features were added to the 393	

mutation count file by ANNOVAR40. 394	

Model description 395	
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We model each tumor type separately, so here we describe the model for a single tumor 396	

type. Let  Yit  denote the number of mutations of type  t  (defined by base substitution) at sequenced 397	

position  i , across all samples in a cohort. Let  NS  denote the set of non-synonymous mutations. 398	

That is,  NS  is the set of pairs 
  
i,t( )  such that a mutation of type  t  at sequence position  i  would be 399	

non-synonymous. (We also include synonymous mutation with a high splicing impact score in  NS ; 400	

see Supplementary notes.) Similarly, let  S  denote the remaining (synonymous) 
  
i,t( )  pairs. 401	

Background Mutation model 402	

For synonymous mutations we assume the following “background mutation model”: 403	

 
  
Yit | Hm ∼ Poisson µitλg i( )( )  for i,t( )∈S⎡⎣ ⎤⎦ ,   (1) 404	

where  µit  represents a background mutation rate (BMR) for mutation type  t  at position  i , and 
 
λg i( )  405	

represents a gene-specific effect for the gene  
g i( )  that contains sequence position  i . Note that the 406	

parameters of this BMM do not depend on the model  m , so   P(Y Sg | Hm )  is the same for all  m . 407	

We allow the BMRs to depend on mutational features (e.g. the expression level of the gene) 408	

using a log-linear model: 409	

 
  
logµit = β0t

b +
j
∑xij

bβ j
b ,   (2) 410	

where 
 
xij

b  denotes the  j -th background feature of position  i  (not dependent on mutation type),   β0t
b  411	

controls the baseline mutation rate of type  t , and  
β j

b  is the coefficient of the  j -th feature. The 412	

values 
 
xij

b  are observed, and the parameters  β
b  are to be estimated. To indicate the dependence of 413	

 µit  on parameters  β
b  we write 

 
µit β b( ) . 414	

We assume that the gene-specific effects 
 
λg  have a gamma distribution across genes: 415	

 
  
λg ∼ Gamma α ,α( ),   (3) 416	

where α  is a hyperparameter to be estimated. 417	

Selection Mutation model 418	

For non-synonymous mutations we introduce additional model-specific parameters:  γ it
m  419	

representing a selection effect (SE) for mutation type  t  at position  i  under model  m  and  θ i
m  420	

representing a spatial effect for position  i  under model  m : 421	
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Yit | Hm ∼ Poisson µitλg i( )γ it

mθ i
m( )  for i,t( )∈NS⎡⎣ ⎤⎦.   (4) 422	

For the null model,   H0 , we assume no selection or spatial effect:   γ it
0 = θ i

0 = 1 . 423	

For other models,   m = OG,TSG , we allow the selection effect to depend on functional features 424	

(e.g. the assessed deleteriousness of the mutation), using a log-linear model: 425	

 
  
logγ it

m = β0
f ,m +

j
∑xijt

f β j
f ,m ,   (5) 426	

where 
 
xijt

f  denotes the  j -th functional feature of position  i  (this depends on mutation type; e.g. at 427	

the same position, some mutations may be more deleterious than others), 
  
β j

f ,m  is the coefficient of 428	

the  j -th functional feature and the intercept   β0
f ,m  captures the overall change of mutation rate at 429	

NS sites regardless of functional impact. To indicate the dependence of  γ it
m  on parameters   β

f ,m  we 430	

write 
  
γ it β f ,m( ) . 431	

To model the spatial effects, we use a Hidden Markov Model (HMM) with parameters  Θ
m , 432	

 
  
θ m ∼ fHMM ⋅;Θm( ),   (6) 433	

In brief, this HMM allows for the presence of mutation “hotspots” -- contiguous base-pairs with a 434	

higher rate of mutation -- and the parameters include the average hotspot length and intensity of 435	

selection (ρ). See Supplementary note for details. 436	

Parameter estimation 437	

Background mutation model 438	

To simplify inference we took a sequential approach to parameter estimation. First we infer 439	

parameters   β
b ,α  of the BMM using the synonymous mutation data at all genes. Let 

 
Sg  denote the 440	

subset of synonymous mutations  S  in gene  g , and  Y
Sg  denote the corresponding observed counts: 441	

 
  
Y Sg = Yit : i,t( )∈Sg{ }.   (7) 442	

Based on the synonymous mutation data, the likelihood for gene  g  is: 443	

 
  
P(Y Sg |β b ,α ) = ∫

i,t∈Sg

∏P(Yit |µit β b( ),λg ) p(λg |α )dλg ,   (8) 444	

which has a closed form (see Supplementary note). Assuming independence across genes yields the 445	

likelihood for synonymous mutations: 446	
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LS β b ,α( ) :=

g
∏P(Y Sg |β b ,α ).   (9) 447	

We maximize this likelihood, using numerical optimization, to obtain estimates    β
b! ,α̂  for   β

b ,α . 448	

By ignoring the non-synonymous mutation data when fitting the BMM we may lose some 449	

efficiency in principle, but we gain considerable simplification in practice. 450	

Selection mutation model 451	

We next estimate the model-specific parameters   β
f ,m . For   m = OG,TSG . During this step 452	

we ignore the HMM model (i.e. we set   θ i
m = 1 ), motivated by the fact that spatially-clustered 453	

mutations are relatively rare and so should not significantly impact the estimates of   β
f ,m  454	

For  m = OG  we estimate   β
f ,m  using the non-synonymous mutation data from a curated list 455	

 GOG  of 53 OGs. Estimation for   β
f ,TSG  is identical except that we replace this list with a curated list 456	

 GTSG  of 71 TSGs. Let  Gm  denote these sets of training genes. Let  Y
NSg  denote the counts of non-457	

synonymous mutations in gene  g . 458	

Assuming independence across genes, the likelihood for   β
f ,m  is: 459	

 
  
L β f ,m( ) =

g∈Gm

∏P(Y NSg ,Y Sg |β f ,m ) ∝
g∈Gm

∏P(Y NSg |β f ,m ,Y Sg )   (10) 460	

where the second line follows because   P(Y Sg |β f ,m )  does not depend on   β
f ,m . The term in this 461	

likelihood for gene  g  is given by: 462	

 
   
P(Y NSg |β f ,m ,Y Sg ) = ∫

i,t∈NSg

∏ P(Yit |µit β b!( ),γ it β f ,m( ),λg )P(λg |Y Sg ,α̂ )dλg .   (11) 463	

It can be shown that 464	

 
  
λg |Y Sg ,α̂ ∼ Gamma α̂ + yg

S ,α̂ + µg
S( ),   (12) 465	

where  
µg

S  and  
yg

S  are, respectively, the expected (considering only mutational features) and 466	

observed number of synonymous mutations in gene  g  (see Supplementary notes). The conditional 467	

mean of this distribution is 
  

α̂ + yg
S

α̂ + µg
S , so if  

yg
S > µg

S , then 
  
E(λg |Y Sg ,α̂ ) >1. 468	

We obtained the MLE of   β
f ,m  by maximizing the likelihood (Equation 10) numerically, and 469	

obtain corresponding estimated standard errors using the curvature of the likelihood (see 470	

Supplementary notes). In tumor types with low mutation rates or sample sizes, these standard errors 471	

can be relatively large, so we borrow information from other tumor types to ‘’stabilize’’ these 472	
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estimates. Specifically we use the adaptive shrinkage method20  to “shrink” estimated values of 473	

  β
f ,m  in each tumor type towards the mean across all tumor types . This shrinkage effect is strongest 474	

for tumor types with large standard errors (Figure S7). 475	

HMM parameters 476	

Having estimated   β
b ,α  and   β

f ,m , we fix their values and estimate the HMM parameters 477	

 Θ
m  for   m = OG,TSG . The likelihood function involves marginalization of the hidden states of the 478	

Markov chain, which can be performed efficiently using standard methods for HMMs. We estimate 479	

 Θ
m  by maximizing this likelihood numerically. See Supplementary note for details. 480	

Gene classification 481	

Having estimated the model parameters as above, for each gene  g , we compute its Bayes 482	

Factor for being a driver gene as: 483	

 
  
BF :=

0.5P(Yg
NS ,Y Sg | HOG )+ 0.5P(Y NSg ,Y Sg | HTSG )

P(Y NSg ,Y Sg | H0 )
.   (13) 484	

The equal weights in the numerator of this BF assume that OGs and TSGs are equally common. 485	

This BF simplifies to 486	

 
  
BF =

0.5P(Yg
NS |Y Sg , HOG )+ 0.5P(Y NSg |Y Sg , HTSG )

P(Y NSg |Y Sg , H0 )
,   (14) 487	

because   P(Y Sg | Hm )  is the same for every  m . Computing the terms 
  
P(Yg

NS |Y Sg , Hm )  is performed 488	

using (Equation 11) above, substituting the estimated model parameters for each model  m  (see 489	

Supplementary notes). 490	

After obtaining the BFs, we can compute the posterior probability of being a driver gene 491	

(either  OG  or  TSG ) for every gene, and estimate the Bayesian FDR41 for any given BF threshold. 492	

This step requires estimation of the proportion of driver genes, which we do by maximum 493	

likelihood (see Supplementary notes). 494	

Simulations 495	

For power analysis shown in Figure 3(a), we randomly picked a gene (ERBB3) and for a 496	

given number of samples, we simulated mutations under positive selection and assessed the power 497	

of detecting this gene as positively selected using different methods. We simulate synonymous 498	

mutations at predefined background mutation rates (BMRs); we simulate positively selected 499	

mutations at elevated mutation rates for nonsynonymous sites and hotspot sites (generated by a 500	
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Markov chain). This simulation procedure was performed many times and each time we obtained p 501	

value for each method. Power is defined as the fraction of simulations with significant p values (p < 502	

0.05). The test statistics for “dN/dS” method is the likelihood ratio of between Poisson models 503	

under elevated mutation rates and BMRs. The test statistics for “cluster” method is the maximum 504	

number of mutations within 3bp windows normalized by overall mutation rates. Null distributions 505	

of test statistics are obtained by simulations with mutation rates for all sites equal to BMRs. p value 506	

for “combined” method is obtained by combining p values of “dN/dS” and “cluster” using Fisher’s 507	

method. 508	

For simulation performed in Figure 3(b) and (c), we simulated positively selected mutations 509	

for 324 genes and neutral mutations for the rest genes. 124 out of the 324 genes are known TSGs or 510	

OGs, the same as the training set for driverMAPS. The rest 200 genes were randomly sampled from 511	

all genes. The 71 TSGs used for training and 120 out of the 200 randomly sampled genes were 512	

simulated under HTSG. The 53 OGs used for training and 80 out of the 200 randomly sampled genes 513	

were simulated under HOG. For neural genes and synonymous sites in positively selected genes, we 514	

simulated mutations at predefined BMRs; for nonsynonymous in positively selected genes, we 515	

simulated mutations at increased rates based on its functional annotations and hotspot status 516	

generated by Markov Chain. We removed the 124 genes used as the training set for driverMAPS 517	

from results in all methods and only the rest 200 genes were used as the true set for the ROC curve 518	

to ensure fair comparisons. 519	

For all simulations, the predefined BMRs, effect sizes for functional annotations and spatial 520	

clustering hotspot rated parameters were estimates by driverMAPS using UCS data (Table S1-S5, 521	

UCS parameters). We re-estimated these parameters when running driverMAPS. 522	

Comparison of gene prediction results from different methods 523	

When comparing methods, we used the same mutation data (after filtering) and the same 524	

nominal FDR threshold (0.1) for each method. Because driverMAPS used 124 known cancer genes 525	

as a training set, to avoid bias towards this subset of genes when computing precision or power for 526	

driverMAPS, we ran MAPs using a leave-one-out strategy. We perform 124 runs, each time 527	

omitting one TSG/OG from the training set and estimating model parameters from the remaining 528	

genes, and then count the omitted gene as “significant” only if this TSG/OG is significant 529	

(FDR<0.1) in this run. We then calculate precision as the percentage of significant known cancer 530	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/366823doi: bioRxiv preprint 

https://doi.org/10.1101/366823
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 19 

genes of all significant genes. All data related to driverMAPS (basic, +feature and full version) 531	

presented in Figure 3 were obtained in this way. In fact, estimated model parameters are quite stable 532	

across runs, and so the overall result is similar to a single run not using this “leave-one-out” 533	

strategy. 534	

Cell lines, siRNA knockdown and plasmid transfection 535	

The T24 cells used in this study were purchased from ATCC (HTB-4) and grown in 536	

McCoy’s 5A medium (Gibco, 16600) supplemented with 10% FBS (Gibco), and 1% Penicillin-537	

Streptomycin (Gibco, 15140). The 5637 cells used in this study were purchased from ATCC (HTB-538	

9) and grown in RPMI-1640 medium (Gibco, 11875) supplemented with 10% FBS and 1% 539	

Penicillin-Streptomycin. Construction of the pcDNA3 plasmids for the expression of METTL3 in 540	

mammalian cells was described previously. All siRNAs were ordered from QIAGEN. Allstars 541	

negative control siRNA (1027281) was used as siRNA control. Sequences METTL3 is 5’-542	

CGTCAGTATCTTGGGCAAGTT-3’. Transfection was achieved by using Lipofectamine 543	

RNAiMAX (Invitrogen) for siRNA, or Lipofectamine 2000 (Invitrogen) for the plasmids following 544	

manufacturer’s protocols. 545	

In vitro assay for m6A methyltransferase activity 546	

The recombinant, His-tagged proteins METTL14 with wildtype or mutant METTL3 were 547	

expressed in 1 LB Ecoli expression system and purified through Ni-NTA affinity column according 548	

to a previously published procedure42. Protein purity was assessed by SDS-PAGE, and protein 549	

concentration was determined by UV absorbance at 280 nm. We performed an in vitro 550	

methyltransferase activity assay in a 50 µL reaction mixture containing the following components: 551	

0.15 nmol RNA probe, 0.15 nmol each fresh recombinant protein (METTL14 combination with an 552	

equimolar ratio of METTL3 or mutant METTL3), 0.8 mM d3-SAM, 80 mM KCl, 1.5 mM MgCl2, 553	

0.2 U µL-1 RNasin, 10 mM DTT, 4% glycerol and 15 mM HEPES (pH 7.9). The reaction was 554	

incubated for 12 h at 16 °C, RNA was recovered by phenol/chloroform (low pH) extraction 555	

followed by ethanol precipitation and was digested by nuclease P1 and alkaline phosphatase for 556	

LC-MS/MS detection. The nucleosides were quantified by using the nucleoside-to-base ion mass 557	

transitions of 285 to 153 (d3-m6A) and 284 to 152 (G). 558	

RNA isolation 559	
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Total RNA was isolated with TRIZOL reagent (Invitrogen). mRNA was extracted from the 560	

total RNA using the Dynabeads® mRNA Purification Kit (Invitrogen), followed by removal of 561	

contaminating rRNA with the RiboMinus transcriptome isolation kit (Invitrogen). mRNA 562	

concentration was measured by UV absorbance at 260 nm. 563	

LC-MS/MS quantification of m6A in poly(A)-mRNA 564	

100-200 ng of mRNA was digested by nuclease P1 (2 U) in 25 µL of buffer containing 25 565	

mM of NaCl, and 2.5 mM of ZnCl2 at 42 ºC for 2 h, followed by the addition of NH4HCO3 (1 M, 3 566	

µL) and alkaline phosphatase (0.5 U) and incubation at 37 ºC for 2 h. The sample was then filtered 567	

(0.22 m pore size, 4 mm diameter, Millipore), and 5 µL of the solution was injected into the LC-568	

MS/MS. The nucleosides were separated by reverse phase ultra-performance liquid 569	

chromatography on a C18 column with online mass spectrometry detection using Agilent 6410 570	

QQQ triple-quadrupole LC mass spectrometer in positive electrospray ionization mode. The 571	

nucleosides were quantified by using the nucleoside to base ion mass transitions of 282 to 150 572	

(m6A), and 268 to 136 (A). Quantification was performed by comparison with a standard curve 573	

obtained from pure nucleoside standards run with the same batch of samples. The ratio of m6A to A 574	

was calculated based on the calibrated concentrations. 575	

Cell proliferation assay.  576	

5000 cells were seeded per well in a 96-well plate. The cell proliferation was assessed by 577	

assaying the cells at various time points using the CellTiter 96® Aqueous One Solution Cell 578	

Proliferation Assay (Promega) following the manufacturer’s protocols. For each cell line tested, the 579	

signal from the MTS assay was normalized to the value observed ~24 hours after seeding. 580	

 581	
References 582	

1. Vogelstein, B. et al. Cancer Genome Landscapes. Science (80-. ). 339, 1546 LP-1558 (2013). 583	
2. Network, T. C. G. A. R. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat 584	

Genet 45, 1113–1120 (2013). 585	
3. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour 586	

types. Nature 505, 495–501 (2014). 587	
4. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-588	

associated genes. Nature 499, 214–8 (2013). 589	
5. Cannataro, V. L. et al. Heterogeneity and mutation in KRAS and associated oncogenes: 590	

evaluating the potential for the evolution of resistance to targeting of KRAS G12C. 591	
Oncogene 37, 2444–2455 (2018). 592	

6. Dees, N. D. et al. MuSiC: Identifying mutational significance in cancer genomes. Genome 593	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/366823doi: bioRxiv preprint 

https://doi.org/10.1101/366823
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 21 

Res. 22, 1589–1598 (2012). 594	
7. Korthauer, K. D. & Kendziorski, C. MADGiC: a model-based approach for identifying 595	

driver genes in cancer. Bioinformatics 31, 1526–1535 (2015). 596	
8. Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N. OncodriveCLUST: exploiting the 597	

positional clustering of somatic mutations to identify cancer genes. Bioinformatics 29, 2238–598	
2244 (2013). 599	

9. Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A. & López-Bigas, N. 600	
OncodriveFML: a general framework to identify coding and non-coding regions with cancer 601	
driver mutations. Genome Biol. 17, 128 (2016). 602	

10. Gonzalez-Perez, A. & Lopez-Bigas, N. Functional impact bias reveals cancer drivers. 603	
Nucleic Acids Res. 40, (2012). 604	

11. Davoli, T. et al. Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy 605	
Patterns and Shape the Cancer Genome. Cell 155, 948–962 (2013). 606	

12. Wu, C.-I., Wang, H.-Y., Ling, S. & Lu, X. The Ecology and Evolution of Cancer: The Ultra-607	
Microevolutionary Process. Annu. Rev. Genet. 50, 347–369 (2016). 608	

13. McGranahan, N. & Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, 609	
and the Future. Cell 168, 613–628 (2017). 610	

14. Lipinski, K. A. et al. Cancer Evolution and the Limits of Predictability in Precision Cancer 611	
Medicine. Trends in Cancer 2, 49–63 (2016). 612	

15. Ostrow, S. L., Barshir, R., DeGregori, J., Yeger-Lotem, E. & Hershberg, R. Cancer 613	
Evolution Is Associated with Pervasive Positive Selection on Globally Expressed Genes. 614	
PLoS Genet. 10, 16–20 (2014). 615	

16. Martincorena, I. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 616	
171, 1029–1041.e21 (2017). 617	

17. Weghorn, D. & Sunyaev, S. Bayesian inference of negative and positive selection in human 618	
cancers. Nat. Genet. 49, 1785–1788 (2017). 619	

18. Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. 620	
Nucleic Acids Res. 31, 3812–3814 (2003). 621	

19. Adzhubei, I. a et al. A method and server for predicting damaging missense mutations. Nat. 622	
Methods 7, 248–9 (2010). 623	

20. Stephens, M. False discovery rates: a new deal. Biostatistics 18, 275–294 (2017). 624	
21. Broad Institute TCGA Genome Data Analysis Center. Analysis-ready standardized TCGA 625	

data from Broad GDAC Firehose stddata__2015_06_01 run. Broad Institute of MIT and 626	
Harvard (2016). doi:10.7908/C1251HBG 627	

22. Su, Z., Marchini, J. & Donnelly, P. HAPGEN2: simulation of multiple disease SNPs. 628	
Bioinformatics 27, 2304–2305 (2011). 629	

23. Evans, L. M. et al. Comparison of methods that use whole genome data to estimate the 630	
heritability and genetic architecture of complex traits. Nat. Genet. 50, 737–745 (2018). 631	

24. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing 632	
data. Genome Biol. 18, 174 (2017). 633	

25. Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 634	
45, D777–D783 (2017). 635	

26. Tsherniak, A. et al. Defining a Cancer Dependency Map. Cell 170, 564–576.e16 (2017). 636	
27. Lee, I., Blom, U. M., Wang, P. I., Shim, J. E. & Marcotte, E. M. Prioritizing candidate 637	

disease genes by network-based boosting of genome-wide association data. Genome Res. 21, 638	
1109–1121 (2011). 639	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/366823doi: bioRxiv preprint 

https://doi.org/10.1101/366823
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 22 

28. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration 640	
for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220 641	
(2010). 642	

29. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25 643	
(2000). 644	

30. Consortium, G. O. Expansion of the Gene Ontology knowledgebase and resources. Nucleic 645	
Acids Res. 45, D331–D338 (2016). 646	

31. Subhash, S. & Kanduri, C. GeneSCF: a real-time based functional enrichment tool with 647	
support for multiple organisms. BMC Bioinformatics 17, 365 (2016). 648	

32. Polevoda, B., Arnesen, T. & Sherman, F. A synopsis of eukaryotic N α-terminal 649	
acetyltransferases: nomenclature, subunits and substrates. in BMC proceedings 3, S2 650	
(BioMed Central, 2009). 651	

33. Mughal, A. A. et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of 652	
glioblastoma-initiating cells. Mol. Cancer 14, 160 (2015). 653	

34. Bunik, V. I. & Degtyarev, D. Structure–function relationships in the 2‐oxo acid 654	
dehydrogenase family: Substrate‐specific signatures and functional predictions for the 2‐655	
oxoglutarate dehydrogenase‐like proteins. Proteins Struct. Funct. Bioinforma. 71, 874–890 656	
(2008). 657	

35. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene 658	
expression regulation. Cell 169, 1187–1200 (2017). 659	

36. Wang, X. et al. Structural basis of N6-adenosine methylation by the METTL3–METTL14 660	
complex. Nature 534, 575 (2016). 661	

37. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome 662	
sequences. Nature 534, 47 (2016). 663	

38. Vu, L. P. et al. The N 6-methyladenosine (m 6 A)-forming enzyme METTL3 controls 664	
myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23, 1369 665	
(2017). 666	

39. Zhao, S. TCGA filtered dataset used in driverMAPS paper. (2018). 667	
doi:10.5281/ZENODO.1209412 668	

40. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants 669	
from high-throughput sequencing data. Nucleic Acids Res. 38, e164–e164 (2010). 670	

41. Newton, M. A., Noueiry, A., Sarkar, D. & Ahlquist, P. Detecting differential gene expression 671	
with a semiparametric hierarchical mixture method. Biostatistics 5, 155–176 (2004). 672	

42. Wang, P., Doxtader, K. A. & Nam, Y. Structural basis for cooperative function of Mettl3 and 673	
Mettl14 methyltransferases. Mol. Cell 63, 306–317 (2016). 674	

43. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral 675	
substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010). 676	

44. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: 677	
application to cancer genomics. Nucleic Acids Res. 39, e118–e118 (2011). 678	

45. Von Mering, C. et al. STRING: known and predicted protein–protein associations, integrated 679	
and transferred across organisms. Nucleic Acids Res. 33, D433–D437 (2005). 680	

  681	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/366823doi: bioRxiv preprint 

https://doi.org/10.1101/366823
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 23 

	682	
Figure	1	Overview	of	the	model-based	framework	driverMAPS	for	cancer	driver	gene	discovery	683	
(a)	 Base-level	 Bayesian	 statistical	 modeling	 of	 mutation	 count	 data	 in	 driverMAPS.	 For	 positions	684	
without	 selection,	 the	 observed	 mutation	 rate	 is	 modeled	 by	 Background	 Mutation	 Model	 (BMM).	685	
Under	 BMM,	 the	 Background	 Mutation	 Rate	 (BMR)(𝜇!)	 is	 determined	 by	 the	 log-linear	 model	 that	686	
takes	into	account	known	mutational	features	and	further	adjusted	by	gene-specific	effect	(𝜆!)	to	get	687	
gene-specific	 BMR	 (𝜇!𝜆!).	 For	 positions	 under	 selection,	 the	 observed	mutation	 rate	 is	 modeled	 as	688	
gene-specific	BMR	adjusted	by	selection	effect	(Selection	Mutation	Model,	SMM).	The	selection	effect	689	
has	two	components:	functional	effect	(𝛾!)	takes	into	account	functional	features	of	the	position	by	the	690	
log-linear	model	and	spatial	effect	(𝜃!)	takes	into	account	the	spatial	pattern	of	mutations	by	Hidden	691	
Markov	Model.	For	both	BMM	and	SMM,	given	the	mutation	rate,	the	observed	mutation	count	data	is	692	
modeled	by	Poisson	distribution.	Note:	we	simplify	the	model	to	only	show	mutation	rate	at	position	𝑖,	693	
ignoring	allele	specific	effect	for	illustration	purposes.	See	Methods	for	full	parameterization.	(b)	Gene	694	
classification	 workflow.	 Parameters	 in	 BMM	 are	 estimated	 using	 synonymous	 mutations	 from	 all	695	
genes.	This	set	of	parameters	is	fixed	when	inferring	parameters	in	SMM.	To	infer	parameters	in	SMM,	696	
we	 use	 nonsynonymous	 mutations	 from	 known	 OGs	 or	 TSGs.	 driverMAPS	 then	 performs	 model	697	
selection	by	computing	gene-level	Bayes	Factors	to	prioritize	cancer	genes.		698	
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	699	
Figure	2	Parameter	estimation	results	for	gene-specific,	functional	and	spatial	effects	700	
(a)	 Schematic	 representation	 of	 how	 fitting	 synonymous	mutation	 data	 affects	 estimation	 of	 gene-701	
specific	 effect	 (𝜆!).	 Note	 the	 difference	 between	 the	 prior	 and	 posterior	 distributions	 of	𝜆!.	𝛼	is	 a	702	
hyperparameter,	 	𝑦!!	and	µ!

! 		 are	 the	observed	and	expected	number	of	synonymous	mutations	 in	gene	𝑔,	703	
respectively.	(b)	 Improved	 fitting	of	observed	number	of	nonsynonymous	mutations	 in	genes	with	gene-704	
specific	 effect	 adjustment.	 Data	 from	 tumor	 type	 SKCM	was	 used.	 The	 adjustment	 here	 is	 the	 posterior	705	
mean	of	𝜆!	fitting	synonymous	mutation	data	(

! ! !!!  
! ! !!!

).	 	Each	dot	represents	one	gene.	Grey	lines	indicate	706	
upper	and	lower	bounds	of	99%	confidence	interval	from	Poisson	test.	The	diagonal	line	has	slope	=1	and	707	
R2	was	calculated	using	this	as	the	regression	line.	(c)	Effect	sizes	for	five	functional	features	and	average	708	
increased	 mutation	 rate	 for	 TSGs	 (top),	 OGs	 (middle)	 and	 non-driver	 genes	 (bottom).	 Each	 dot	709	
represents	an	estimate	from	one	tumor	type.	Horizontal	bars	represent	mean	values	after	shrinkage.	710	
All	features	are	binarily	coded.	LoF,	loss-of-function	(nonsense	or	splice	site)	mutations	or	not.	CONS.,	711	
amino	 acid	 conservation;	 SiFT,	 PhyloP	 and	 MA,	 predictions	 from	 software	 SiFT18,	 PhyloP43	 and	712	
MutationAssessor44,	 respectively;	 intercept,	 average	 increased	 mutation	 rate.	 (d)	 Fraction	 of	713	
mutations	that	has	the	nearest	mutation	0,1,2,..	bp	away,	where	0bp	means	recurrent	mutations.	Data	714	
from	 tumor	 type	BLCA	and	LUSC	was	used.	The	 test	 statistics	𝜒!	and	p	 values	were	obtained	 in	 the	715	
spatial	model	selection	procedure	(see	method,	Table	S6).	 Inferred	parameters	related	to	the	spatial	716	
model	are	shown	on	the	right.		717	
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								719	
	720	
Figure	3	driverMAPS	predicts	driver	genes	with	high	accuracy	and	increased	power	in	721	
simulations.		722	
(a)	Combining	p	values	from	methods	that	use	only	one	feature	of	positive	selection	a	time	will	 lose	723	
power.	We	simulated	mutations	of	a	gene	under	positive	 selection	under	various	 sample	 sizes,	 then	724	
assessed	the	power	of	detecting	this	gene	as	positively	selected.	“dN/dS”	only	captures	the	excess	of	725	
nonsynonymous	mutations,	“cluster”	only	captures	spatial	clustering	pattern	of	mutation,	“combined”	726	
combines	 p	 values	 from	 “dN/dS”	 and	 “cluster”	 using	 Fisher’s	 method.	 (b)	 Receiver	 Operating	727	
Characteristic	 (ROC)	 curves	of	 several	methods	 applied	 to	 genome-wide	 simulation	data.	 324	 genes	728	
are	chosen	to	be	positively	selected	(191	TSGs	and	133	OGs)	and	the	rest	of	genes	are	neutral.	We	used	729	
124	out	of	the	324	genes	as	training	set	for	driverMAPS	and	used	the	rest	200	genes	as	the	test	set	to	730	
generate	ROC	curves.	Area	Under	an	ROC	Curve	(AUROC)	values	are	shown	in	parentheses.	(c)	False	731	
positive	rate	at	FDR	cutoff	0.1	on	 the	simulated	data.	(d)	Number	of	 true	positive	and	 false	positive	732	
genes	 at	 FDR<0.1.	 We	 did	 not	 count	 the	 124	 training	 genes	 (for	 driverMAPS)	 to	 ensure	 a	 fair	733	
comparison	among	methods.	734	
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Figure	4	Gene	prediction	using	TCGA	somatic	mutation	data	760	
(a)	Total	number	of	predicted	driver	genes	aggregating	across	all	 cancer	 types.	driverMAPS	(Basic),	761	
driverMAPS	with	no	functional	 features	 information	and	no	modeling	of	spatial	pattern;	driverMAPS	762	
(+	 feature),	 driverMAPS	with	 all	 five	 functional	 features	 in	Figure	2,	 no	modeling	of	 spatial	pattern;	763	
driverMAPS	(+feature	+	HMM),	complete	version	of	driverMAPS	with	all	 five	 functional	 features	and	764	
spatial	 pattern.	 (b)	 Percentage	 of	 known	 cancer	 genes	 among	 predicted	 driver	 genes	 aggregating	765	
across	all	 cancer	 types.	 (c)	Number	of	 significant	genes	at	FDR<0.1	 stratified	by	 tumor	 type.	For	all	766	
“Unknown”	genes	included	here,	we	verified	mutations	by	visual	inspection	of	aligned	reads	using	files	767	
from	 Genomic	 Data	 Commons	 (see	 Supplementary	 notes).	 Total	 numbers	 of	 known	 and	 unknown	768	
significant	genes	aggregating	across	all	cancer	types	are	summarized	topright.	769	
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	772	
	773	
Figure	5	Evaluation	of	novel	cancer	genes	predicted	by	driverMAPS	774	
(a)	Overview	of	predicted	novel	cancer	genes.	Top,	number	of	novel	genes	in	each	cancer	type.	Bottom,	775	
heatmap	of	Bayes	factors	(BF)	for	recurrent	novel	genes	across	tumor	types.	Significant	Bayes	factors	are	776	
highlighted	by	red	boxes.	(b-d)	Predicted	novel	cancer	genes	show	known	cancer	gene	features.	For	each	777	
feature,	quantification	of	the	feature	level	 in	the	novel	cancer	gene	set	was	compared	to	the	non-driver	778	
(neither	known	or	predicted)	gene	set.	The	features	are	gene	expression	levels21	stratified	by	tumor	types	779	
the	novel	genes	were	identified	from	(b),	similarly	stratified	copy	number	gain/loss	frequencies21	(c)	and	780	
fraction	 of	 genes	 identified	 in	 a	 siRNA	 screen	 study26	 (d).	 In	 (b)	 and	 (c),	 the	 center	 line,	median;	 box	781	
limits,	upper	and	lower	quartiles.	(e)	Enriched	connectivity	of	a	predicted	gene	with	713	known	cancer	782	
genes	(Y-axis)	compared	to	with	all	genes	(n=19,512,	X-axis).	Connectivity	of	a	selected	gene	with	a	gene	783	
set	is	defined	as	the	number	of	connections	between	the	gene	and	gene	set	found	in	a	network	database	784	
divided	by	the	size	of	the	gene	set.	Each	dot	represents	one	of	the	159	novel	genes	with	10	most	enriched	785	
ones	 labeled.	 Color	 of	 dots	 indicates	 two-sided	 Fisher	 exact	 p	 value	 for	 enrichment.	 (f)	 Significantly	786	
enriched	GO-term	gene	sets	 (FDR	<	0.1,	 “molecular	 function”	domain)	 in	predicted	novel	 cancer	genes.	787	
GO-term29,30	 gene	 sets	 are	 indicated	 by	 distinct	 background	 colors.	 Links	 among	 genes	 represent	788	
interaction	based	on	STRING	network	database45	with	darker	color	indicating	stronger	evidence.	789	
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Figure	6	Functional	validation	of	METTL3	as	a	TSG	in	bladder	cancer	790	
(a)	 Features	 of	 mutations	 in	 METTL3	 and	 its	 heterodimerization	 partner	 METTL14.	 We	 show	791	
schematic	representations	of	protein	domain	information	and	mark	mutation	positions	by	“lollipops”.	792	
Recurrent	mutations	are	labeled	above.	Start	and	end	of	domain	residues	are	labeled	below.		Dark	blue	793	
bars	in	aligned	annotation	tracks	indicate	the	mutation	is	predicted	as	“functional”.	Track	“Hotspot”	is	794	
the	 indicator	of	whether	 the	mutation	 is	 in	hotspot	or	not	 in	driverMAPS’s	 spatial	effect	model	 (See	795	
supplementary	 note).	 (b)	 Structural	 context	 of	 METTL3	 mutations	 revealed	 two	 regional	 clusters.		796	
Top,	 structure	of	METTL3	 (residues	369–570)	 and	METTL14	 (residues	117–402)	 complex	 (PDB	 ID:	797	
5IL0)	 with	mutated	 residues	 in	 stick	 presentation.	 Bottom,	 zoom-in	 views	 of	 the	 two	 regions	 with	798	
mutated	 residues	 labeled.	 (c)	 Impaired	 m6A	 RNA	 methyltransferase	 activity	 of	 mutant	 METTL3	 in	799	
bladder	cancer	cell	line	“5637”.		LC-MS/MS	quantification	of	the	m6A/A	ratio	in	polyA-RNA	in	METTL3	800	
or	Control	knockdown	cells,	rescued	by	overexpression	of	wildtype	or	mutant	METTL3	is	shown.	(d)	801	
Mutant	 METTL3	 decreased	 proliferation	 of	 “5637”	 cells.	 Proliferation	 of	 METTL3	 or	 Control	802	
knockdown	cells,	rescued	by	overexpression	of	wildtype	or	mutant	METTL3	in	MTS	assays	is	shown.	803	
Cell	proliferation	 is	calculated	as	 the	MTS	signal	at	 the	tested	time	point	normalized	to	the	MTS	804	
signal	~	24	hours	after	cell	seeding.	For	all	experiments	in	(c-d),	number	of	biological	replicates	is	805	
3	 and	 error	 bars	 indicate	mean	 ±	 s.e.m.	 *,	p	<	 0.05;	 **,	 p	<	 0.01	 by	 two	 sided	 t-test.	 Legend	 is	806	
shared	between	(c)	and	(d).	807	
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Table 1 Novel significant drivers found in at least two tissue types 808	
Gene #Missense #LoF #Silent log10BF Tumor Function 

C3orf70 14/3 1/1 0/0 9.3/3.8 BLCA/CESC Unknown 
COL11A1 7/13 4/2 0/0 2.2/2.2 KIRC/PRAD Collagen formation, expression associated 

with colorectal, ovarian cancers, etc 
(23934190,	11375892) 

CUL3 15/8/4 5/4/0 1/0/0 3.5/3.8/
2.6 

HNSC/KIRP/ 
PRAD 

Core component of E3 ubiquitin ligase 
complex, with many downstream targets 
affecting carcinogenesis, like NRF2 
(24142871) 

LZTR1 9/10 0/1 0/2 2.9/2.1 GBM/UCEC Adaptor of CUL3-containing E3 ligase 
complexes, inactivation drives glioma self 
renewal and growth (23917401) 

MAPK1 9/7 0/1 0/0 15.1/ 
12.8 

CESC/HNSC MAP kinase. The MAPK/ERK cascade has 
important well characterized and important 
roles in cancer (17496922) 

MGA 35/11 16/5 5/3 3.8/2.7 LUAD/UCEC Dual-specificity transcription factor, can 
inhibit MYC-dependent cell transformation 
(10601024) 

SOS1 12/7 1/0 3/0 3.5/7.0 LUAD/UCEC Guanine nucleotide exchange factor for RAS 
proteins, which are well-known for roles in 
cell proliferation (17486115) 

ZBTB7B 11/5 1/1 0/0 6.2/2.3 BLCA/UCS Transcriptional regulator of lineage 
commitment of immature T-cell precursors 
(17878336) 

ZFP36L1 12/11 4/3 1/0 3.4/5.2 BLCA/LUAD Involved in mRNA degradation. Deletion 
leads to T lymphoblastic leukemia (20622884) 

ZNF750 17/13 3/7 2/1 3.4/5.1 BLCA/HNSC An essential regulator of epidermal 
differentiation. Depletion promotes cell 
proliferation in ESCA (24686850) 

We use “/” to separate data obtained from different tumor types as indicated in the “Tumor” 809	
column. A brief description of the gene’s function and its known role in cancer is provided in the 810	
“Function” column. Reference PMIDs are given in parentheses. 811	
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