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Abstract
Identifying driver genes is a central problem in cancer biology, and many methods have

been developed to identify driver genes from somatic mutation data. However, existing methods
either lack explicit statistical models, or rely on very simple models that do not capture complex
features in somatic mutations of driver genes. Here, we present driverMAPS (Model-based
Analysis of Positive Selection), a more comprehensive model-based approach to driver gene
identification. This new method explicitly models, at the single-base level, the effects of positive
selection in cancer driver genes as well as highly heterogeneous background mutational process. Its
selection model captures elevated mutation rates in functionally important sites using multiple
external annotations, as well as spatial clustering of mutations. Its background mutation model
accounts for both known covariates and unexplained local variation. Simulations under realistic
evolutionary models demonstrate that driverMAPS greatly improves the power of driver gene
detection over state-of-the-art approaches. Applying driverMAPS to TCGA data across 20 tumor
types identified 159 new potential driver genes. Cross-referencing this list with data from external
sources strongly supports these findings. The novel genes include the mRNA methytransferases
METTL3-METTL14, and we experimentally validated METTL3 as a potential tumor suppressor
gene in bladder cancer. Our results thus provide strong support to the emerging hypothesis that

mRNA modification is an important biological process underlying tumorigenesis.
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Introduction

Cancer is caused by somatic mutations that confer a selective advantage to cells. Analyses
of somatic mutation data from tumors can therefore help identify cancer-related (“driver”) genes,
and this is a major motivation for recent large-scale cancer cohort sequencing projects'. Indeed,
such analyses have already identified hundreds of driver genes across many cancer types'”.
Nonetheless, many important driver genes likely remain undiscovered®, especially in cancers with
low sample sizes. Here we develop and apply new, more powerful, statistical methods to address
this problem.

The basic idea underlying somatic mutation analyses is that genes exhibiting a high rate of
somatic mutations are potential driver genes. However, mutation and repair processes are often
significantly perturbed in cancer, so somatic mutations may also occur at a high rate in non-driver
genes. Furthermore, somatic mutation rates vary substantially across genomic regions and across
tumors. The challenge is to accurately distinguish driver genes against this complex background.
Several main ideas have been developed to address this challenge. One idea is to carefully model
the background somatic mutation process, by leveraging features that correlate with somatic
mutation rate, such as replication timing®. Another idea is to utilize distinctive features of somatic
mutations in driver genes: notably, mutations in driver genes tend to be more deleterious (“function
bias”), and sometimes show a distinctive spatial pattern, tending to cluster together (e.g. in substrate
binding sites)’. Methods that leverage one or more of these ideas include MuSiC®, MADGIC’, the
Oncodrive suite®'* and TUSON'".

Despite this progress, most existing methods do not explicitly model the process that
generates the observed somatic mutations, namely, the interactions of mutational process and

13,14
% and

natural selection'”. Indeed, tumorigenesis is well recognized as an evolutionary process
explicit modeling of mutation and selection is likely to be highly beneficial for analyzing somatic
mutations in cancer'>">""". Many methods described above construct a null model for non-driver
genes which lacks selection, and derive test statistics to reject this null model, without modeling of

the alternative. Even recent, evolutionarily motivated models'®"’

capture only the most basic impact
of selection: differences in observed rates of nonsynonymous vs. synonymous mutations. Our
approach, driverMAPS, is based on a much richer statistical model, which captures selection at the
basepair level, and allows the strength of selection to depend on measures of functional importance

such as conservation scores, SiFT'® and PolyPhen'. In addition, we use a Hidden Markov Model to
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capture potential spatial clustering of somatic mutations into “hotspots”. Our approach also
introduces other innovative features: a detailed model of the background mutation processes, which
accounts for known genomic features and variation across genes not captured by these features; and
the use of a Bayesian hierarchical model to combine information across cancer types and hence
improve parameter estimates.

Both simulations and application on TCGA data demonstrate the power of our approach.
The explicit statistical models of driver and non-driver genes allow us to perform realistic
simulations to assess methods, which was largely impossible in the past. We found that not all
existing methods properly control the False Discovery Rate (FDR) for driver gene discovery, and
among those with reasonable FDR control, driverMAPS has significantly higher power than
existing ones. We applied driverMAPS to TCGA exome sequencing data from 20 cancer types. The
results suggest that driverMAPS is better able to detect previously known driver genes than existing
methods, without excessive false positives. In addition, driverMAPS identified 159 new potential
driver genes not identified by other methods. Both literature survey and extensive computational
validation suggest that many of these genes are likely to be true driver genes. The novel potential
driver genes included both METTL3 and METTL14, which together form a key enzyme for RNA
methylation. We experimentally validated the functional relevance of somatic mutations in
METTL3, providing further support for both the effectiveness of our method, and for the potential
importance of RNA methylation in cancer. We believe that our methods and results will facilitate

the future discovery and validation of many more driver genes from cancer sequencing data.

Results

driverMAPS: a probabilistic model of somatic mutation selection patterns

Our approach is outlined in Figure 1. In brief, we model aggregated exonic somatic
mutation counts from many tumor samples (e.g. as obtained from a normal-tumor paired
sequencing cohort). Let Y, denote the mutation count data in gene g. We develop models for Y,
under three different hypotheses: that the gene is a “non- driver gene” (Hy), an “oncogene” (Hog) or
a “tumor suppressor gene” (Hrsg). Each model has two parts, a background mutation model
(BMM), which models the background mutation process, and a selection mutation model (SMM)),
which models how selection acts on functional mutations. The rate of observed mutation at a

position is the product of the background mutation rate (from BMM) and a coefficient reflecting the
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99 effect of position-specific selection (from SMM). We note that the coefficient can be related to the
100  selection coefficient of the mutation and effective population size under a simplified population
101  genetic model'®. If the coefficient is greater than 1, it indicates positive selection and if it is less
102  than 1, negative selection. The BMM parameters are shared by all three hypotheses, reflecting the
103  assumption that background mutation processes are the same for cancer driver and non-driver
104  genes. In contrast the SMM parameters are hypothesis-specific, to capture the different selection
105  pressures in oncogenes Vs tumor suppressor genes vs non-driver genes. We fit the hypothesis-
106  specific parameters using training sets of known oncogenes' (Hog), known TSGs' (Hrsg), and all
107  other genes (Hy). (This last set will contain some -- as yet unidentified -- driver genes, which will
108 tend to make our methods conservative in terms of identifying new driver genes.) To combine
109 information across tumor types we first estimate parameters separately in each tumor type, and then
110  stabilize these estimates using Empirical Bayes shrinkage™.

111 Having fit these models, we use them to identify genes whose mutation data are most
112 consistent with the driver genes models (Hog and Hrsg). Specifically, for each gene g, we measure
113 the overall evidence for g to be a driver gene by the Bayes Factor (likelihood ratio), BF,, defined as:
114 BF, :=0.5 [Pr(Y, | Hog) + Pr(Y, | Hrsg)] / Pr(Y, | Ho).

115  Large values of BF, indicate strong evidence for g being a driver gene, and at any given threshold
116  we can estimate the Bayesian FDR. For results reported here we chose the threshold by requiring
117  FDR<O0.1.

118

119  driverMAPS effectively captures factors influencing somatic mutations

120 We used a total of 734,754 somatic mutations from 20 tumor types in the TCGA project as
121 our input data®'. We focused on single nucleotide somatic variations and extensively filtered input
122 mutation lists to ensure data quality (see Methods). Figure S1 summarizes mutation counts and
123 cohort sizes.

124 The first step of our method is to estimate parameters of the Background Mutation Model
125 (BMM) using data on synonymous mutations. These parameters capture how mutation rates depend
126  on various “background features” (Table S1), which include mutation type (C>T, A>G, etc), CpG
127  dinucleotide context, expression level, replication timing and chromatin conformation (HiC
128  sequencing)’. The signs and values of estimated parameters were generally similar across tumor

129  types, and consistent with previous evidence for each feature’s effect on somatic mutation rate. For
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example, the estimated effect of the feature “expression level” was negative for almost all tumors,
consistent with transcriptional coupled repair mechanisms effectively reducing mutation rate
(Figure S2).

Our BMM also estimates gene-specific effects, using synonymous mutations of a gene, to
allow for local variation in somatic mutation rate not captured by measured features. Intuitively, the
gene-specific effect adjusts a gene’s estimated mutation rate downward if the gene has fewer
synonymous mutations than expected based on its known features, and upwards if it has more
synonymous mutations than expected. A challenge here is that the small number of mutations per
gene (particularly in small genes) could make these estimates inaccurate. Here we address this using
Empirical Bayes methods to improve accuracy, and avoid outlying estimates at short genes that
have few potential synonymous mutations (Figure 2a). Effectively, this adjusts a gene’s rate only
when the gene provides sufficient information to do so reliably (sufficiently many potential
synonymous mutations). To demonstrate the reliability of the resulting estimates we use a
procedure similar to cross-validation: we estimated each gene’s gene-specific effect using its
synonymous mutations, and then test the accuracy of the estimate (compared to no gene-specific
effect) in predicting the number of nonsynonymous mutations. We assume that for the vast majority
of genes, their mutational counts are dominated by background mutation processes, rather than
selection. Figure 2b shows results for SKCM tumors: without gene-specific effect the correlation of
observed and expected number of nonsynonymous mutations across genes was 0.56; with gene-
specific adjustment the correlation increased to 0.88. Similar improvements were seen for other
tumors (Figure S3).

The next step is to estimate parameters of the Selection Mutation Models (SMM), using data
on non-synonymous mutations. These parameters capture how the rate of non-synonymous somatic
mutations depend on various “functional features” (Table S2-S4), including loss-of-function (LoF)
status, conservation scores, efc. Signs and values of estimated parameters were generally similar
across tumor types, and consistent with their expected impact on gene function (Figure 2c). For
example, the estimated effect of the “LoF” feature was positive for Hrsg and negative for Hog,
indicating that loss-of-function mutations are enriched in TSGs and depleted in OGs, as expected
from their respective roles in cancer. The intercept terms for both TSG and OG are positive,

suggesting that somatic mutations are enriched in both types of cancer driver genes.
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The final step is to estimate parameters of the spatial model (HMM, Figure 1), which are
designed to capture how somatic mutations may cluster together in “hotspots” in driver genes.
Preliminary investigations showed that spatial clustering is generally stronger in known OGs than
in known TSGs, and so we fit the spatial model separately for OGs and TSGs in each tumor type
(Table S5). Our model identified some tumor types (e.g. BLCA and LUSC, Figure 2d) with strong
spatial clustering. In BLCA, the estimated hotspots are very short (mean 1.4bp) and are primarily
capturing an excess in recurrent mutations (independent mutations at the same base) compared with
expectations (Figure 2d). In LUSC, the clustering extends over slightly longer regions (mean

5.6bp), but still the primary signal is an excess of recurrent mutations (Figure 2d).

Simulations demonstrate that driverMAPS improves detection of driver genes

While many methods have been developed for driver gene identification, it is difficult to
compare them on real data where the true status of each gene is often unknown. Simulations are
extremely valuable in such situations, and have been used in many fields, including population
genetics™, statistical genetics® and single-cell transcriptomics®*. Here we exploit our explicit
statistical model to perform realistic simulations based on parameters inferred from real data (here,
the TCGA UCS cohort).

We first assess a common strategy used in the field: Fisher’s method to combine p-values of
a gene, each capturing a single feature of positive selection. We simulated somatic mutations in a
positively selected gene with both increased nonsynonymous mutation rates and mutational
hotspots. We ran two simple tests -- a dN/dS test to detect enrichment of functional mutations and
another to detect spatial clustering (see Methods) -- and then combined p values using Fisher’s
method. Perhaps unexpectedly, the combined test has lower power than the dN/dS test alone
(Figure 3a). We believe that this is because spatial clustering is a relatively weak feature in our
simulations (as in real data) and so the spatial test has much less power than the dN/dS test.
Consequently the spatial test adds more noise than signal, decreasing power. This result highlights a
weakness of methods based on combining p values; model-based approaches, such as ours, avoid
this problem by automatically weighting different features of the data based on their
informativeness.

We next used simulations to compare driverMAPS with six existing algorithms: MutSigCV,

OncodriveFML’, OncodriveFM'’, OncodriveCLUST®, dNdScv'® and CBaSE'". We performed
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simulations of all genes in the genome where 324 genes are randomly chosen as oncogenes or
tumor suppressor genes. We found that, for distinguishing driver vs non-driver genes, driverMAPS
outperformed all other methods (Figure 3b). Furthermore, only driverMAPS and MutSigCV
consistently control FDR across all sample sizes (Figure 3c). Excluding three methods with obvious
problems of FDR control (OncodriveFM, OncodriveCLUST, CBaSE), driverMAPS identifies the
most driver genes at FDR < 0.1 (Figure 3d). Overall we found the power of driverMAPS to
discover novel driver genes can be double that of other leading methods (and even more in smaller

samples).

Application of driverMAPS on TCGA data

We next compared results from driverMAPS and other algorithms for predicting driver gene
using TCGA data (see Methods). Besides the full implementation of driverMAPS, we also tried a
“basic” version that looks only for an excess of nonsynonymous somatic mutations (without any
functional features or spatial model), and a “+feature” version with functional features but not the
spatial model. We applied all methods to the same somatic mutation data and compared the genes
they identified with a list of “known driver genes” (713 genes) compiled as the union of COSMIC
CGC list (version 76)*, Pan-Cancer project driver gene list* and list from Vogelstein B (2013)" (see
Supplementary Note). To avoid overfitting of driverMAPS to the training data, we trained
driverMAPS with a leave-one-out strategy in these assessments.

For each method we computed both the total number of genes detected (at FDR=0.1)
(Figure 4a) and the “precision” -- the fraction that are on the list of known driver genes (Figure 4b).
All versions of driverMAPS identified more driver genes than either MutSigCV, dNdScv or
OncodriveFML, while maintaining a similarly high precision. The full version of driverMAPS
(with the spatial and functional features) identified nearly twice more genes. Furthermore, this
higher detection rate of driverMAPS was consistent across tumor types (Figure 4c). The other
methods, OncodriveFM, OncodriveCLUST and CBaSE, behaved quite differently, identifying
thousands of driver genes but with much lower precision, consistent with poor FDR control in
simulations (Figure 3c). For OncodriveFM and OncodriveCLUST, the lowest precision was in the
tumor types with the highest mutation rates (e.g. BLCA, LUSC, LUAD), suggesting the accuracy of
these methods may be affected by mutation rates (Figure S4). While precision of OncodriveFM and
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221  OncodriveCLUST showed a negative correlation with mutation rate (Pearson r = -0.44 and -0.56),
222 the precision of driverMAPS showed negligible correlation (Pearson r = 0.05).

223

224 Evaluation of potential novel drivers identified by driverMAPS

225 Summing across all 20 tumor types, at FDR 0.1, driverMAPS identified 255 known driver
226 genes and 170 putatively novel driver genes (159 unique genes across the 20 tumor types; 70
227  classified as TSGs and 100 as OGs; Figure 5a, Table S7). Almost half of these putative novel genes
228 were not called by MutSigCV, OncodriveFML or dNdScv. Ten novel genes were found
229  independently in at least two tumor types (Table 1). This is unlikely to happen by chance
230  (permutation test, p < le™), so these genes seem especially good candidates for being genuine
231  driver genes.

232 Since it is impractical to functionally validate all 170 putative novel genes, we sought other
233 data to support these genes likely being involved in cancer. We first selected three common cancers
234 -- breast, lung and prostate -- and conducted an extensive literature survey for each novel gene
235  identified in these tumor types. Among a total of 22 novel genes, we found clear support in the
236  literature for 20 being involved with cancer biology, either directly implicated as oncogenes or
237  tumor suppressor genes (but not in the list of “known driver genes”) or linked to well-established
238  cancer pathways (Table S8).

239 We next assessed whether the novel genes were enriched for features often associated with
240  driver genes. Previous studies reported that driver genes tend to be highly expressed® compared
241  with other genes, and indeed we found that, collectively, the novel genes showed significantly
242 higher expression than randomly sampled genes in the corresponding tissues®' (p<le™) (Figure 5b).

243 Previous studies have also reported that driver genes tend to show enrichment and depletion
244  for different copy-number-variation (CNV) events, depending on their role in cancer. Specifically,
245  OGs are enriched for CNV gains and depleted for CNV loss, whereas TSGs show enrichment for
246 loss and depletion for gains. Consistent with this, we found novel genes identified as OGs are
247  enriched for CNV gain events (p<le™*) while novel TSGs are depleted (p=3¢~). CNV loss events
248  for novel OGs are depleted compared to novel TSGs and to other genes (p= 0.04) (Figure 5c).

249 We also compared our novel genes with a “cancer dependency map” of 769 genes identified
250  from a large-scale RNAi screening study across 501 human cancer cell lines*®. These are genes

251  whose knockdown affects cell growth differently across cancer cell lines, thus likely representing
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genes that are critical for tumorigenesis, but not universally essential genes. We found 16 novel
driver genes overlapped with this gene list, a significant enrichment compared with random
sampling (odds ratio 2.9, p=3.7¢"*) (Figure 5d and Table S9).

To test whether our novel genes are functionally related to known cancer driver genes we
examined the connectivity of these two sets of genes in the HumanNet®’ gene network, which is
built from multiple data sources including protein-protein interactions and gene co-expression. On
average, each novel gene is connected to 3.8 known driver genes, significantly higher than expected
by chance (p = 0.001). We obtained a similarly significant result using a different gene network,
GeneMania®®, which is constructed primarily from co-expression (p = 0.008) (Figure 5¢).

Finally, we identified enriched functional categories in our novel genes using GO

230 analysis (by geneSCF’'). Significant GO terms (FDR < 0.1, Figure 5f) include many

enrichment
molecular processes directly implicated in cancer, such as transcription initiation and regulation.
The significant terms also include several that have not been previously implicated in cancer. Genes
NAA25, NAAI6 and NAA30 (GO: 0004596) are peptide N-terminal amino acid
acetyltransferases’”. NATs are dysregulated in many types of cancer, and knockdown of the NatC
complex (NAA12-NAA30) leads to p53-dependent apoptosis in colon and uterine cell lines™.
OGDH and OGDHL (GO:0004591) have oxoglutarate dehydrogenase activities and part of the
tricarboxylic acid (TCA) cycle®*. METTL3 and METTL14 (GO: 0016422) form the heterodimer
N6-methyltransferase complex, and are responsible for methylation of mRNA (m°A
modification)’>. This form of RNA modification may influence RNA stability, export and
translation, and has been shown to be important for important biological processes such as stem cell

differentiation. Our results suggest that this RNA methylation pathway may also play a key role in

tumorigenesis, and so we examined the results for these genes in more detail.

METTLS3 is a potential TSG in bladder cancer

driverMAPS identified the genes METTL3 and METTL14 as driver genes in the cohorts
BLCA (bladder cancer) and UCEC (uterine cancer) respectively. These two genes had relatively
low mutation frequencies (4% and 2%) and were not detected by MutSigCV, dNdScv or
OncodriveFML (those with reasonable FDR control). Inspecting the mutations in these two genes,
we found many to be “functional” as predicted by annotations, and showed spatial clustering

patterns in the MTase domain (Figure 6a). Furthermore METTL3 contained a single synonymous


https://doi.org/10.1101/366823
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/366823; this version posted October 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

aCC-BY-NC-ND 4.0 International license.

mutation, and METTL14 contained none, suggesting low baseline mutation rates at the two genes.
While this manuscript was in preparation, METTL14 was independently identified as a novel TSG
in endometrial cancer (Chuan He, to appear). We thus focused on METTL3 in bladder cancer.

To gain further insights into the potential impact of the somatic mutations in METTL3, we
performed structural analysis. By mapping mutations in the MTase domain of METTL3 to its
crystal structure®®, we found them to be concentrated in two regions: one close to the binding site of
S-Adenosyl methionine (AdoMet, donor of the methyl group) and the other in the putative RNA
binding groove at the interface between METTL3 and METTL14 (Figure 6b). The region close to
the AdoMet binding site contains seven mutations: E532K, E532Q, E516K, D515Y, P514T,
H512Q and E506K. Position E532 has been reported to form direct water-mediated interactions
with AdoMet™®. The other mutations map to gate loop 2 (E506K and E516K map to the start and
end; the other three mutations are inside the loop) which is known to undergo significant
conformational change before and after AdoMet binding. Thus all these mutations are good
candidates for affecting adenosine recognition. The second region, in the METTL3-METTL14
interface, contains mutations R471H, R468Q and E454K, and so these mutations are good
candidates for disrupting METTL3-METTL14 interaction. In further support of this, the highly
recurrent R298P mutation in METTL14 lies in the binding groove of the METTL14 gene.

We performed functional experiments to test whether mutations (n=7) in the first region
affect METTL3 function. In an in vitro assay, most mutations reduced methyltransferase activity of
METTL3 (Figure S5, see methods) and we chose four mutations (at three positions) for further cell
line experiments. In two bladder cell lines (“5637” and “T24”), knock down of METTL3 by siRNA
significantly reduced m6A methyltransferase activity (Figure 6¢ for “5637”, Figure S6a for “T24”).
When we tried to rescue this phenotype by transfection of METTL3 mutants, all of the mutations,
E532K/Q, E516K and P514T failed to restore methyltransferase activity to original levels (Figure
6¢, Figure S6a), suggesting that they are loss-of-function mutations.

We next examined whether disruption of METTL3 is associated with tumor progression.
Indeed, knockdown of METTL3 significantly increased cell proliferation. Wild type METTL3
successfully restored the cells to their normal growth rate but none of the mutants could (Figure 6d,

Figure S6b).

10
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These results show that somatic mutations in METTL3 may promote cancer cell growth by
disrupting the RNA methylation process, and invite further characterization of the role of METTL3

and RNA methylation in tumorigenesis by in vivo experiments.

Discussion

We have developed an integrated statistical model-based method, driverMAPS, to identify
driver genes from patterns of somatic mutation. By applying this method to data from multiple
tumor types from TCGA, we detected 159 novel potential driver genes. We experimentally
validated the function of mutations in one gene, METTL3. The remaining genes (Table 1, Table S8-
9) are enriched for many biological features relevant to cancer, and appear promising candidates for
further investigation.

Compared with previous methods for detecting driver genes, a key feature of driverMAPS is
that it models mutation rates at the base-pair level. This allows us to explicitly model how selection
strength varies based on site-level functional annotations, e.g. conservation and loss-of-function
status. This model-based approach can be thought of as a powerful extension of methods that detect
driver genes by testing for an excess of non-synonymous vs synonymous somatic mutations (Nik-
Zainal et al’’, Martincorena et al'®), similar to the dN/dS test in comparative genomics. Indeed, the
stripped-down version of driverMAPS that uses no functional annotation or spatial model is
conceptually a dN/dS test (driverMAPS-basic in Figure 4). The full version of driverMAPS, by
incorporating additional functional annotations and spatial modeling, allows that some non-
synonymous mutations may be more informative than others in identifying driver genes.
Furthermore, by estimating parameters in a single integrated model, our approach learns how to
weigh and combine the many different sources of information. The results in Figures 3 and 4
demonstrate the increased power that comes from these extensions.

Our statistical and experimental results for the mRNA methyltransferase METTL3 add to
the growing evidence of links between mRNA methylation and cancer. Indeed, a recent study in
myeloid leukemia cell lines®, found that depletion of METTL3 also leads to a cancer-related
phenotype. And extensive functional studies of METTL14 in uterine cancer (Chuan He, to appear)
support a role for this gene in cancer etiology. However, intriguingly, our results on METTL3 in
bladder cancer, and the METTLI14 results in uterine cancer suggest that they act as tumor

suppressor genes, whereas the data on METTL3 in myeloid leukemia cell lines are more consistent
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with an oncogenic role, with depletion inducing cell differentiation and apoptosis’". Further studies
in multiple tumor types therefore seem necessary to properly characterize the role of mRNA
methylation in cancer.

Although our model incorporates many features not considered by existing methods, it
would likely benefit from incorporating still more features. For example, it may be useful to
incorporate data on protein structure, which affects the functional importance of amino acid
residues. Further, whereas we currently use the same mutation model for all individuals, it could be
helpful to incorporate individual-specific effects such as smoking-induced mutational signatures.
Finally, it could be useful to extend the model to incorporate information on non-coding variation,
which has been shown to be important for many human diseases including cancer. Although
identifying functional non-coding variation remains a major general challenge, extending our model
to incorporate features from studies of epigenetic factors such as methylation or open chromatin,

has the potential to detect novel driver genes affected by non-coding somatic mutations.
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370 Methods

371  Data preparation

372 We downloaded somatic single-nucleotide mutations identified in whole exome sequencing
373  (WES) studies for 20 tumor types from TCGA GDAC Firehose (https://gdac.broadinstitute.org/).
374  We obtained the MAF files using firchose get (version 0.4.6)
375  (https://confluence.broadinstitute.org/display/ GDAC/Download) and extracted position and
376  nucleotide change information for all single-nucleotide somatic mutations. See Supplementary
377  notes for the 20 tumor types and abbreviations.

378 We excluded mutations from hypermutated tumors as they likely reflect distinct underlying
379 mutational processes. We also performed extensive filtering to exclude likely false positive
380 mutations. For each tumor type we then generated a mutation count file that contains mutation
381 counts (aggregated across all individuals in the tumor cohort) of all possible mutations at all
382  sufficiently sequenced positions (see Supplementary notes). For a tumor type with 30 million bases
383  sequenced this produces 90 million possible mutations in the mutation count file (since each
384  nucleotide can mutate to 3 other nucleotides). The majority of counts for these possible mutations
385  areOs.

386 For each possible mutation, we annotated it with type and gene information, mutational
387  features and functional features. We defined 9 mutation types based on nucleotide change type
388  (such as A>T, G>A , efc) and genomic context (such as if inside CpG) (see Supplementary notes
389  for definitions). We categorized mutations as Synonymous (S) or non-synonymous (NS) as
390 described in “parameter estimation” section below. The mutational features we used include gene
391  expression, replication timing and HiC sequencing downloaded from
392  http://archive.broadinstitute.org/cancer/cga/mutsig. We selected 5 functional features describing
393  mutation impact. See Supplementary notes for feature details. The features were added to the

394  mutation count file by ANNOVAR™.

395 Model description
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We model each tumor type separately, so here we describe the model for a single tumor
type. Let Y, denote the number of mutations of type ¢ (defined by base substitution) at sequenced
position i, across all samples in a cohort. Let NS denote the set of non-synonymous mutations.
That is, NS is the set of pairs (i,t) such that a mutation of type ¢ at sequence position i would be
non-synonymous. (We also include synonymous mutation with a high splicing impact score in NS’;
see Supplementary notes.) Similarly, let S denote the remaining (synonymous) (i,t) pairs.
Background Mutation model

For synonymous mutations we assume the following “background mutation model”:
Y |H ~ Pmsson(,u”lg(i)) [for (i,t) € S}, (1)

where 1 represents a background mutation rate (BMR) for mutation type # at position 7, and ),g(i)
represents a gene-specific effect for the gene g(i) that contains sequence position 7. Note that the
parameters of this BMM do not depend on the model m, so P(Y % | H ) is the same for all m.

We allow the BMRs to depend on mutational features (e.g. the expression level of the gene)

using a log-linear model:

logu, = B, + Y x!B!, @)
J

where x;’, denotes the ;-th background feature of position i (not dependent on mutation type), ﬁobt
controls the baseline mutation rate of type ¢, and ij is the coefficient of the j-th feature. The
values x;’, are observed, and the parameters 8° are to be estimated. To indicate the dependence of
U, on parameters B’ we write ‘uit( ﬁb)

We assume that the gene-specific effects A4, have a gamma distribution across genes:
lg ~ Gamma(a,(x), (3)

where o is a hyperparameter to be estimated.
Selection Mutation model

For non-synonymous mutations we introduce additional model-specific parameters: v’
representing a selection effect (SE) for mutation type ¢ at position i under model m and 6"

representing a spatial effect for position i under model m:
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Y |H ~ Pmsson(u A ’"9’”) [for (i,t)eNS] 4)

()lll

For the null model, H,, we assume no selection or spatial effect: y? =6 =1.
For other models, m = OG,TSG, we allow the selection effect to depend on functional features

(e.g. the assessed deleteriousness of the mutation), using a log-linear model:

logy! = ,Bf’"+z Uft o (5)

where xlj/t denotes the ;-th functional feature of position i (this depends on mutation type; e.g. at
the same position, some mutations may be more deleterious than others), ﬁj " is the coefficient of
the j-th functional feature and the intercept ﬂ({ " captures the overall change of mutation rate at
NS sites regardless of functional impact. To indicate the dependence of y;" on parameters B/ we
write yit(ﬁf”’").

To model the spatial effects, we use a Hidden Markov Model (HMM) with parameters ©™,

0" ~ frm (1©”): (6)

In brief, this HMM allows for the presence of mutation “hotspots” -- contiguous base-pairs with a
higher rate of mutation -- and the parameters include the average hotspot length and intensity of
selection (p). See Supplementary note for details.
Parameter estimation
Background mutation model

To simplify inference we took a sequential approach to parameter estimation. First we infer
parameters 3°,a of the BMM using the synonymous mutation data at all genes. Let S, denote the

subset of synonymous mutations S in gene g, and ¥ denote the corresponding observed counts:
S .
Y :{Yit:(z,t)eSg}. (7)
Based on the synonymous mutation data, the likelihood for gene g is:

P(Y* | B 0)=| HP( 1,(B").4,)p(A, |)da,, (8)

which has a closed form (see Supplementary note). Assuming independence across genes yields the

likelihood for synonymous mutations:
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447 r(pra)=T]P*" B (9)

448  We maximize this likelihood, using numerical optimization, to obtain estimates [/3\[’ ,a for B°,oc.
449 By ignoring the non-synonymous mutation data when fitting the BMM we may lose some
450 efficiency in principle, but we gain considerable simplification in practice.

451  Selection mutation model

452 We next estimate the model-specific parameters /" . For m = OG,TSG . During this step
453  we ignore the HMM model (i.e. we set 8" =1), motivated by the fact that spatially-clustered
454  mutations are relatively rare and so should not significantly impact the estimates of /"

455 For m=OG we estimate 8/ using the non-synonymous mutation data from a curated list
456 G, of 53 OGs. Estimation for B/ is identical except that we replace this list with a curated list

457 G, of 71 TSGs. Let G, denote these sets of training genes. Let ¥ "™ denote the counts of non-

SG¢

458  synonymous mutations in gene g .

459 Assuming independence across genes, the likelihood for B/ is:
460 L(B")=TTP™ .Y’ | By e [T PO 1B, (10)
geG,, geG,,

461  where the second line follows because P(Y % | B/") does not depend on B’". The term in this
462  likelihood for gene g is given by:
S m S ., m S A
463 Py |y =] T PO, Iui,(ﬁ”),n(ﬁ” ) A)P(A, Y, 6)dA,. (a1
i,teNSg

464 It can be shown that
465 A, 1Y% .6 ~ Gamma(d + y5 .+ ), (12)

466  where ,u: and ys are, respectively, the expected (considering only mutational features) and
467  observed number of synonyrpoussmutations in gene g (see Supplementary notes). The conditional
o+
468  mean of this distribution is — y‘i , soif yg > ,ug , then E()pg | Ysg,o?) >1.
+

o
469 We obtained the MLE of 3/ by maximizing the likelihood (Equation 10) numerically, and

470  obtain corresponding estimated standard errors using the curvature of the likelihood (see
471  Supplementary notes). In tumor types with low mutation rates or sample sizes, these standard errors

472  can be relatively large, so we borrow information from other tumor types to ‘’stabilize’” these
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estimates. Specifically we use the adaptive shrinkage method”® to “shrink” estimated values of
B’ in each tumor type towards the mean across all tumor types . This shrinkage effect is strongest
for tumor types with large standard errors (Figure S7).
HMM parameters

Having estimated 3”,oc and B/, we fix their values and estimate the HMM parameters
O" for m= OG,TSG . The likelihood function involves marginalization of the hidden states of the
Markov chain, which can be performed efficiently using standard methods for HMMs. We estimate
O" by maximizing this likelihood numerically. See Supplementary note for details.
Gene classification

Having estimated the model parameters as above, for each gene g, we compute its Bayes

Factor for being a driver gene as:

NS Sg NSg Sg
F::O.SP(Yg Y |H, )+05P(Y Y IHTSG). (13)

NS

P(Y™,Y" | H,)
The equal weights in the numerator of this BF assume that OGs and TSGs are equally common.

This BF simplifies to

" 0.5P(Y" |V H, )+ 0.5P(Y"™ | Y™ H, ) (14

P(Y™ Y% H) ’
because P(Y'* |H,) is the same for every m. Computing the terms P(Y" |Y Sg,Hm) is performed
using (Equation 11) above, substituting the estimated model parameters for each model m (see
Supplementary notes).

After obtaining the BFs, we can compute the posterior probability of being a driver gene
(either OG or TSG) for every gene, and estimate the Bayesian FDR*' for any given BF threshold.
This step requires estimation of the proportion of driver genes, which we do by maximum
likelihood (see Supplementary notes).

Simulations

For power analysis shown in Figure 3(a), we randomly picked a gene (ERBB3) and for a
given number of samples, we simulated mutations under positive selection and assessed the power
of detecting this gene as positively selected using different methods. We simulate synonymous

mutations at predefined background mutation rates (BMRs); we simulate positively selected

mutations at elevated mutation rates for nonsynonymous sites and hotspot sites (generated by a
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Markov chain). This simulation procedure was performed many times and each time we obtained p
value for each method. Power is defined as the fraction of simulations with significant p values (p <
0.05). The test statistics for “dN/dS” method is the likelihood ratio of between Poisson models
under elevated mutation rates and BMRs. The test statistics for “cluster” method is the maximum
number of mutations within 3bp windows normalized by overall mutation rates. Null distributions
of test statistics are obtained by simulations with mutation rates for all sites equal to BMRs. p value
for “combined” method is obtained by combining p values of “dN/dS” and “cluster” using Fisher’s
method.

For simulation performed in Figure 3(b) and (c), we simulated positively selected mutations
for 324 genes and neutral mutations for the rest genes. 124 out of the 324 genes are known TSGs or
OGs, the same as the training set for driverMAPS. The rest 200 genes were randomly sampled from
all genes. The 71 TSGs used for training and 120 out of the 200 randomly sampled genes were
simulated under H.,,. The 53 OGs used for training and 80 out of the 200 randomly sampled genes
were simulated under H... For neural genes and synonymous sites in positively selected genes, we
simulated mutations at predefined BMRs; for nonsynonymous in positively selected genes, we
simulated mutations at increased rates based on its functional annotations and hotspot status
generated by Markov Chain. We removed the 124 genes used as the training set for driverMAPS
from results in all methods and only the rest 200 genes were used as the true set for the ROC curve
to ensure fair comparisons.

For all simulations, the predefined BMRs, effect sizes for functional annotations and spatial
clustering hotspot rated parameters were estimates by driverMAPS using UCS data (Table S1-S5,
UCS parameters). We re-estimated these parameters when running driverMAPS.

Comparison of gene prediction results from different methods

When comparing methods, we used the same mutation data (after filtering) and the same
nominal FDR threshold (0.1) for each method. Because driverMAPS used 124 known cancer genes
as a training set, to avoid bias towards this subset of genes when computing precision or power for
driverMAPS, we ran MAPs using a leave-one-out strategy. We perform 124 runs, each time
omitting one TSG/OG from the training set and estimating model parameters from the remaining
genes, and then count the omitted gene as “significant” only if this TSG/OG is significant

(FDR<0.1) in this run. We then calculate precision as the percentage of significant known cancer

18


https://doi.org/10.1101/366823
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/366823; this version posted October 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

aCC-BY-NC-ND 4.0 International license.

genes of all significant genes. All data related to driverMAPS (basic, +feature and full version)
presented in Figure 3 were obtained in this way. In fact, estimated model parameters are quite stable
across runs, and so the overall result is similar to a single run not using this “leave-one-out”
strategy.
Cell lines, siRNA knockdown and plasmid transfection

The T24 cells used in this study were purchased from ATCC (HTB-4) and grown in
McCoy’s 5SA medium (Gibco, 16600) supplemented with 10% FBS (Gibco), and 1% Penicillin-
Streptomycin (Gibco, 15140). The 5637 cells used in this study were purchased from ATCC (HTB-
9) and grown in RPMI-1640 medium (Gibco, 11875) supplemented with 10% FBS and 1%
Penicillin-Streptomycin. Construction of the pcDNA3 plasmids for the expression of METTL3 in
mammalian cells was described previously. All siRNAs were ordered from QIAGEN. Allstars
negative control siRNA (1027281) was used as siRNA control. Sequences METTL3 is 5’-
CGTCAGTATCTTGGGCAAGTT-3’. Transfection was achieved by using Lipofectamine
RNAIMAX (Invitrogen) for siRNA, or Lipofectamine 2000 (Invitrogen) for the plasmids following
manufacturer’s protocols.
In vitro assay for m°A methyltransferase activity

The recombinant, His-tagged proteins METTL14 with wildtype or mutant METTL3 were
expressed in 1 LB Ecoli expression system and purified through Ni-NTA affinity column according
to a previously published procedure®. Protein purity was assessed by SDS-PAGE, and protein
concentration was determined by UV absorbance at 280 nm. We performed an in vitro
methyltransferase activity assay in a 50 u L reaction mixture containing the following components:
0.15 nmol RNA probe, 0.15 nmol each fresh recombinant protein (METTL14 combination with an
equimolar ratio of METTL3 or mutant METTL3), 0.8 mM d3-SAM, 80 mM KCl, 1.5 mM MgCl,,
0.2 U puL-1 RNasin, 10 mM DTT, 4% glycerol and 15 mM HEPES (pH 7.9). The reaction was
incubated for 12 h at 16 °C, RNA was recovered by phenol/chloroform (low pH) extraction
followed by ethanol precipitation and was digested by nuclease P1 and alkaline phosphatase for
LC-MS/MS detection. The nucleosides were quantified by using the nucleoside-to-base ion mass
transitions of 285 to 153 (d3-m°A) and 284 to 152 (G).
RNA isolation
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Total RNA was isolated with TRIZOL reagent (Invitrogen). mRNA was extracted from the
total RNA using the Dynabeads” mRNA Purification Kit (Invitrogen), followed by removal of
contaminating rRNA with the RiboMinus transcriptome isolation kit (Invitrogen). mRNA
concentration was measured by UV absorbance at 260 nm.

LC-MS/MS quantification of m°A in poly(A)-mRNA

100-200 ng of mRNA was digested by nuclease P1 (2 U) in 25 uL of buffer containing 25
mM of NaCl, and 2.5 mM of ZnCl, at 42 °C for 2 h, followed by the addition of NH4HCOs (1 M, 3
uL) and alkaline phosphatase (0.5 U) and incubation at 37 °C for 2 h. The sample was then filtered
(0.22 m pore size, 4 mm diameter, Millipore), and 5 L of the solution was injected into the LC-
MS/MS. The nucleosides were separated by reverse phase ultra-performance liquid
chromatography on a C18 column with online mass spectrometry detection using Agilent 6410
QQQ triple-quadrupole LC mass spectrometer in positive electrospray ionization mode. The
nucleosides were quantified by using the nucleoside to base ion mass transitions of 282 to 150
(m®A), and 268 to 136 (A). Quantification was performed by comparison with a standard curve
obtained from pure nucleoside standards run with the same batch of samples. The ratio of m°A to A
was calculated based on the calibrated concentrations.

Cell proliferation assay.

5000 cells were seeded per well in a 96-well plate. The cell proliferation was assessed by
assaying the cells at various time points using the CellTiter 96 Aqueous One Solution Cell
Proliferation Assay (Promega) following the manufacturer’s protocols. For each cell line tested, the

signal from the MTS assay was normalized to the value observed ~24 hours after seeding.
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683  Figure 1 Overview of the model-based framework driverMAPS for cancer driver gene discovery
684  (a) Base-level Bayesian statistical modeling of mutation count data in driverMAPS. For positions
685  without selection, the observed mutation rate is modeled by Background Mutation Model (BMM).
686  Under BMM, the Background Mutation Rate (BMR)(y;) is determined by the log-linear model that
687  takes into account known mutational features and further adjusted by gene-specific effect (14) to get
688  gene-specific BMR (u;4,4). For positions under selection, the observed mutation rate is modeled as
689  gene-specific BMR adjusted by selection effect (Selection Mutation Model, SMM). The selection effect
690  has two components: functional effect (y;) takes into account functional features of the position by the
691 log-linear model and spatial effect (6;) takes into account the spatial pattern of mutations by Hidden
692 Markov Model. For both BMM and SMM, given the mutation rate, the observed mutation count data is
693  modeled by Poisson distribution. Note: we simplify the model to only show mutation rate at position i,
694  ignoring allele specific effect for illustration purposes. See Methods for full parameterization. (b) Gene
695  classification workflow. Parameters in BMM are estimated using synonymous mutations from all
696  genes. This set of parameters is fixed when inferring parameters in SMM. To infer parameters in SMM,
697  we use nonsynonymous mutations from known OGs or TSGs. driverMAPS then performs model
698  selection by computing gene-level Bayes Factors to prioritize cancer genes.
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Figure 2 Parameter estimation results for gene-specific, functional and spatial effects

(a) Schematic representation of how fitting synonymous mutation data affects estimation of gene-
specific effect (44). Note the difference between the prior and posterior distributions of 4;. ais a
hyperparameter, ygs and ,ui are the observed and expected number of synonymous mutations in gene g,
respectively. (b) Improved fitting of observed number of nonsynonymous mutations in genes with gene-
specific effect adjustment. Data from tumor type SKCM was used. The adiustment here is the posterior
mean of A, fitting synonymous mutation data (2

—=). Each dot represents one gene. Grey lines indicate
upper and lower bounds of 99% confidence interval from Poisson test. The diagonal line has slope =1 and
R2was calculated using this as the regression line. (c) Effect sizes for five functional features and average
increased mutation rate for TSGs (top), OGs (middle) and non-driver genes (bottom). Each dot
represents an estimate from one tumor type. Horizontal bars represent mean values after shrinkage.
All features are binarily coded. LoF, loss-of-function (nonsense or splice site) mutations or not. CONS,,
amino acid conservation; SiFT, PhyloP and MA, predictions from software SiFT18, PhyloP43 and
MutationAssessor44, respectively; intercept, average increased mutation rate. (d) Fraction of
mutations that has the nearest mutation 0,1,2,.. bp away, where 0bp means recurrent mutations. Data
from tumor type BLCA and LUSC was used. The test statistics y2 and p values were obtained in the
spatial model selection procedure (see method, Table S6). Inferred parameters related to the spatial
model are shown on the right.
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721  Figure 3 driverMAPS predicts driver genes with high accuracy and increased power in

722  simulations.

723  (a) Combining p values from methods that use only one feature of positive selection a time will lose
724  power. We simulated mutations of a gene under positive selection under various sample sizes, then
725  assessed the power of detecting this gene as positively selected. “dN/dS” only captures the excess of
726  nonsynonymous mutations, “cluster” only captures spatial clustering pattern of mutation, “combined”
727  combines p values from “dN/dS” and “cluster” using Fisher’s method. (b) Receiver Operating
728  Characteristic (ROC) curves of several methods applied to genome-wide simulation data. 324 genes
729  are chosen to be positively selected (191 TSGs and 133 0OGs) and the rest of genes are neutral. We used
730 124 out of the 324 genes as training set for driverMAPS and used the rest 200 genes as the test set to
731  generate ROC curves. Area Under an ROC Curve (AUROC) values are shown in parentheses. (c) False
732 positive rate at FDR cutoff 0.1 on the simulated data. (d) Number of true positive and false positive
733  genes at FDR<0.1. We did not count the 124 training genes (for driverMAPS) to ensure a fair
734  comparison among methods.
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Figure 4 Gene prediction using TCGA somatic mutation data

(a) Total number of predicted driver genes aggregating across all cancer types. driverMAPS (Basic),
driverMAPS with no functional features information and no modeling of spatial pattern; driverMAPS
(+ feature), driverMAPS with all five functional features in Figure 2, no modeling of spatial pattern;
driverMAPS (+feature + HMM), complete version of driverMAPS with all five functional features and
spatial pattern. (b) Percentage of known cancer genes among predicted driver genes aggregating
across all cancer types. () Number of significant genes at FDR<0.1 stratified by tumor type. For all
“Unknown” genes included here, we verified mutations by visual inspection of aligned reads using files
from Genomic Data Commons (see Supplementary notes). Total numbers of known and unknown
significant genes aggregating across all cancer types are summarized topright.
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Figure 5 Evaluation of novel cancer genes predicted by driverMAPS

(a) Overview of predicted novel cancer genes. Top, number of novel genes in each cancer type. Bottom,
heatmap of Bayes factors (BF) for recurrent novel genes across tumor types. Significant Bayes factors are
highlighted by red boxes. (b-d) Predicted novel cancer genes show known cancer gene features. For each
feature, quantification of the feature level in the novel cancer gene set was compared to the non-driver
(neither known or predicted) gene set. The features are gene expression levels2! stratified by tumor types
the novel genes were identified from (b), similarly stratified copy number gain/loss frequencies?! (c) and
fraction of genes identified in a siRNA screen study?¢ (d). In (b) and (c), the center line, median; box
limits, upper and lower quartiles. (e) Enriched connectivity of a predicted gene with 713 known cancer
genes (Y-axis) compared to with all genes (n=19,512, X-axis). Connectivity of a selected gene with a gene
set is defined as the number of connections between the gene and gene set found in a network database
divided by the size of the gene set. Each dot represents one of the 159 novel genes with 10 most enriched
ones labeled. Color of dots indicates two-sided Fisher exact p value for enrichment. (f) Significantly
enriched GO-term gene sets (FDR < 0.1, “molecular function” domain) in predicted novel cancer genes.
GO-term?2930 gene sets are indicated by distinct background colors. Links among genes represent
interaction based on STRING network database#> with darker color indicating stronger evidence.
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Figure 6 Functional validation of METTL3 as a TSG in bladder cancer

(a) Features of mutations in METTL3 and its heterodimerization partner METTL14. We show
schematic representations of protein domain information and mark mutation positions by “lollipops”.
Recurrent mutations are labeled above. Start and end of domain residues are labeled below. Dark blue
bars in aligned annotation tracks indicate the mutation is predicted as “functional”. Track “Hotspot” is
the indicator of whether the mutation is in hotspot or not in driverMAPS’s spatial effect model (See
supplementary note). (b) Structural context of METTL3 mutations revealed two regional clusters.
Top, structure of METTL3 (residues 369-570) and METTL14 (residues 117-402) complex (PDB ID:
5IL0) with mutated residues in stick presentation. Bottom, zoom-in views of the two regions with
mutated residues labeled. (c) Impaired méA RNA methyltransferase activity of mutant METTL3 in
bladder cancer cell line “5637”. LC-MS/MS quantification of the m6A/A ratio in polyA-RNA in METTL3
or Control knockdown cells, rescued by overexpression of wildtype or mutant METTL3 is shown. (d)
Mutant METTL3 decreased proliferation of “5637” cells. Proliferation of METTL3 or Control
knockdown cells, rescued by overexpression of wildtype or mutant METTL3 in MTS assays is shown.
Cell proliferation is calculated as the MTS signal at the tested time point normalized to the MTS
signal ~ 24 hours after cell seeding. For all experiments in (c-d), number of biological replicates is
3 and error bars indicate mean * s.em. * p < 0.05; **, p < 0.01 by two sided t-test. Legend is
shared between (c) and (d).
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808  Table 1 Novel significant drivers found in at least two tissue types

Gene #Missense  #LoF #Silent log(BF Tumor Function
C3orf70 14/3 1/1 0/0 9.3/3.8 BLCA/CESC Unknown
COL11A1 7/13 4/2 0/0 2.2/2.2 KIRC/PRAD Collagen formation, expression associated

with colorectal, ovarian cancers, etc
(23934190, 11375892)

CULS3 15/8/4 5/4/0  1/0/0 3.5/3.8/  HNSC/KIRP/  Core component of E3 ubiquitin ligase
2.6 PRAD complex, with many downstream targets
affecting carcinogenesis, like NRF2
(24142871)
LZTR1 9/10 0/1 0/2 2.9/2.1 GBM/UCEC Adaptor of CUL3-containing E3 ligase

complexes, inactivation drives glioma self
renewal and growth (23917401)

MAPK1 9/7 0/1 0/0 15.1/ CESC/HNSC  MAP kinase. The MAPK/ERK cascade has
12.8 important well characterized and important
roles in cancer (17496922)
MGA 35/11 16/5 5/3 3.8/2.7  LUAD/UCEC Dual-specificity transcription factor, can
inhibit MY C-dependent cell transformation
(10601024)
SOS1 12/7 1/0 3/0 3.5/7.0  LUAD/UCEC  Guanine nucleotide exchange factor for RAS

proteins, which are well-known for roles in
cell proliferation (17486115)

ZBTB7B 11/5 /1 0/0 6.2/2.3 BLCA/UCS Transcriptional regulator of lineage
commitment of immature T-cell precursors
(17878336)

ZFP36L1 12/11 4/3 1/0 3.4/5.2 BLCA/LUAD Involved in mRNA degradation. Deletion
leads to T lymphoblastic leukemia (20622884)

ZNF750 17/13 3/7 2/1 3.4/5.1 BLCA/HNSC  An essential regulator of epidermal

differentiation. Depletion promotes cell
proliferation in ESCA (24686850)

809  We use “/” to separate data obtained from different tumor types as indicated in the “Tumor”
810  column. A brief description of the gene’s function and its known role in cancer is provided in the

811  “Function” column. Reference PMIDs are given in parentheses.
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