

1 Model-based analysis of positive selection significantly expands the list 2 of cancer driver genes, including RNA methyltransferases

3
4
5 Siming Zhao¹, Jun Liu², Pranav Nanga³, Yuwen Liu¹, A. Ercument Cicek⁴, Nicholas Knoblauch¹, Chuan
6 He², Matthew Stephens^{1,5,*}, and Xin He^{1,*}

7
8 ¹*Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA*

9 ²*Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical
10 Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL, 60637, USA*

11 ³*Department of Computer Science, University of Chicago, Chicago, IL, 60637, USA*

12 ⁴*Computer Engineering Department, Bilkent University, Ankara 06800, Turkey, Computational Biology
13 Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA*

14 ⁵*Department of Statistics, University of Chicago, Chicago, IL, 60637, USA*

15 ^{*}*Correspondence should be addressed to M.S. (email: mstephens@uchicago.edu) or to X.H. (email:
16 xinhe@uchicago.edu)*

17
18
19 **Abstract**

20 Identifying driver genes is a central problem in cancer biology, and many methods have
21 been developed to identify driver genes from somatic mutation data. However, existing methods
22 either lack explicit statistical models, or rely on very simple models that do not capture complex
23 features in somatic mutations of driver genes. Here, we present driverMAPS (Model-based
24 Analysis of Positive Selection), a more comprehensive model-based approach to driver gene
25 identification. This new method explicitly models, at the single-base level, the effects of positive
26 selection in cancer driver genes as well as highly heterogeneous background mutational process. Its
27 selection model captures elevated mutation rates in functionally important sites using multiple
28 external annotations, as well as spatial clustering of mutations. Its background mutation model
29 accounts for both known covariates and unexplained local variation. Simulations under realistic
30 evolutionary models demonstrate that driverMAPS greatly improves the power of driver gene
31 detection over state-of-the-art approaches. Applying driverMAPS to TCGA data across 20 tumor
32 types identified 159 new potential driver genes. Cross-referencing this list with data from external
33 sources strongly supports these findings. The novel genes include the mRNA methyltransferases
34 METTL3-METTL14, and we experimentally validated METTL3 as a potential tumor suppressor
35 gene in bladder cancer. Our results thus provide strong support to the emerging hypothesis that
36 mRNA modification is an important biological process underlying tumorigenesis.

37

38 Introduction

39 Cancer is caused by somatic mutations that confer a selective advantage to cells. Analyses
40 of somatic mutation data from tumors can therefore help identify cancer-related (“driver”) genes,
41 and this is a major motivation for recent large-scale cancer cohort sequencing projects¹. Indeed,
42 such analyses have already identified hundreds of driver genes across many cancer types^{1,2}.
43 Nonetheless, many important driver genes likely remain undiscovered³, especially in cancers with
44 low sample sizes. Here we develop and apply new, more powerful, statistical methods to address
45 this problem.

46 The basic idea underlying somatic mutation analyses is that genes exhibiting a high rate of
47 somatic mutations are potential driver genes. However, mutation and repair processes are often
48 significantly perturbed in cancer, so somatic mutations may also occur at a high rate in non-driver
49 genes. Furthermore, somatic mutation rates vary substantially across genomic regions and across
50 tumors. The challenge is to accurately distinguish driver genes against this complex background.
51 Several main ideas have been developed to address this challenge. One idea is to carefully model
52 the background somatic mutation process, by leveraging features that correlate with somatic
53 mutation rate, such as replication timing⁴. Another idea is to utilize distinctive features of somatic
54 mutations in driver genes: notably, mutations in driver genes tend to be more deleterious (“function
55 bias”), and sometimes show a distinctive spatial pattern, tending to cluster together (e.g. in substrate
56 binding sites)⁵. Methods that leverage one or more of these ideas include MuSiC⁶, MADGiC⁷, the
57 Oncodrive suite^{8–10} and TUSON¹¹.

58 Despite this progress, most existing methods do not explicitly model the process that
59 generates the observed somatic mutations, namely, the interactions of mutational process and
60 natural selection¹². Indeed, tumorigenesis is well recognized as an evolutionary process^{13,14}, and
61 explicit modeling of mutation and selection is likely to be highly beneficial for analyzing somatic
62 mutations in cancer^{12,15–17}. Many methods described above construct a null model for non-driver
63 genes which lacks selection, and derive test statistics to reject this null model, without modeling of
64 the alternative. Even recent, evolutionarily motivated models^{16,17} capture only the most basic impact
65 of selection: differences in observed rates of nonsynonymous vs. synonymous mutations. Our
66 approach, driverMAPS, is based on a much richer statistical model, which captures selection at the
67 basepair level, and allows the strength of selection to depend on measures of functional importance
68 such as conservation scores, SiFT¹⁸ and PolyPhen¹⁹. In addition, we use a Hidden Markov Model to

69 capture potential spatial clustering of somatic mutations into “hotspots”. Our approach also
70 introduces other innovative features: a detailed model of the background mutation processes, which
71 accounts for known genomic features and variation across genes not captured by these features; and
72 the use of a Bayesian hierarchical model to combine information across cancer types and hence
73 improve parameter estimates.

74 Both simulations and application on TCGA data demonstrate the power of our approach.
75 The explicit statistical models of driver and non-driver genes allow us to perform realistic
76 simulations to assess methods, which was largely impossible in the past. We found that not all
77 existing methods properly control the False Discovery Rate (FDR) for driver gene discovery, and
78 among those with reasonable FDR control, driverMAPS has significantly higher power than
79 existing ones. We applied driverMAPS to TCGA exome sequencing data from 20 cancer types. The
80 results suggest that driverMAPS is better able to detect previously known driver genes than existing
81 methods, without excessive false positives. In addition, driverMAPS identified 159 new potential
82 driver genes not identified by other methods. Both literature survey and extensive computational
83 validation suggest that many of these genes are likely to be true driver genes. The novel potential
84 driver genes included both METTL3 and METTL14, which together form a key enzyme for RNA
85 methylation. We experimentally validated the functional relevance of somatic mutations in
86 METTL3, providing further support for both the effectiveness of our method, and for the potential
87 importance of RNA methylation in cancer. We believe that our methods and results will facilitate
88 the future discovery and validation of many more driver genes from cancer sequencing data.

89 **Results**

90 **driverMAPS: a probabilistic model of somatic mutation selection patterns**

91 Our approach is outlined in Figure 1. In brief, we model aggregated exonic somatic
92 mutation counts from many tumor samples (e.g. as obtained from a normal-tumor paired
93 sequencing cohort). Let Y_g denote the mutation count data in gene g . We develop models for Y_g
94 under three different hypotheses: that the gene is a “non- driver gene” (H_0), an “oncogene” (H_{OG}) or
95 a “tumor suppressor gene” (H_{TSG}). Each model has two parts, a background mutation model
96 (BMM), which models the background mutation process, and a selection mutation model (SMM),
97 which models how selection acts on functional mutations. The rate of observed mutation at a
98 position is the product of the background mutation rate (from BMM) and a coefficient reflecting the

99 effect of position-specific selection (from SMM). We note that the coefficient can be related to the
100 selection coefficient of the mutation and effective population size under a simplified population
101 genetic model¹². If the coefficient is greater than 1, it indicates positive selection and if it is less
102 than 1, negative selection. The BMM parameters are shared by all three hypotheses, reflecting the
103 assumption that background mutation processes are the same for cancer driver and non-driver
104 genes. In contrast the SMM parameters are hypothesis-specific, to capture the different selection
105 pressures in oncogenes vs tumor suppressor genes vs non-driver genes. We fit the hypothesis-
106 specific parameters using training sets of known oncogenes¹ (H_{OG}), known TSGs¹ (H_{TSG}), and all
107 other genes (H_0). (This last set will contain some -- as yet unidentified -- driver genes, which will
108 tend to make our methods conservative in terms of identifying new driver genes.) To combine
109 information across tumor types we first estimate parameters separately in each tumor type, and then
110 stabilize these estimates using Empirical Bayes shrinkage²⁰.

111 Having fit these models, we use them to identify genes whose mutation data are most
112 consistent with the driver genes models (H_{OG} and H_{TSG}). Specifically, for each gene g , we measure
113 the overall evidence for g to be a driver gene by the Bayes Factor (likelihood ratio), BF_g , defined as:

$$114 \quad BF_g := 0.5 [\Pr(Y_g | H_{OG}) + \Pr(Y_g | H_{TSG})] / \Pr(Y_g | H_0).$$

115 Large values of BF_g indicate strong evidence for g being a driver gene, and at any given threshold
116 we can estimate the Bayesian FDR. For results reported here we chose the threshold by requiring
117 $FDR < 0.1$.

118

119 **driverMAPS effectively captures factors influencing somatic mutations**

120 We used a total of 734,754 somatic mutations from 20 tumor types in the TCGA project as
121 our input data²¹. We focused on single nucleotide somatic variations and extensively filtered input
122 mutation lists to ensure data quality (see Methods). Figure S1 summarizes mutation counts and
123 cohort sizes.

124 The first step of our method is to estimate parameters of the Background Mutation Model
125 (BMM) using data on synonymous mutations. These parameters capture how mutation rates depend
126 on various “background features” (Table S1), which include mutation type (C>T, A>G, *etc*), CpG
127 dinucleotide context, expression level, replication timing and chromatin conformation (HiC
128 sequencing)⁴. The signs and values of estimated parameters were generally similar across tumor
129 types, and consistent with previous evidence for each feature’s effect on somatic mutation rate. For

130 example, the estimated effect of the feature “expression level” was negative for almost all tumors,
131 consistent with transcriptional coupled repair mechanisms effectively reducing mutation rate
132 (Figure S2).

133 Our BMM also estimates gene-specific effects, using synonymous mutations of a gene, to
134 allow for local variation in somatic mutation rate not captured by measured features. Intuitively, the
135 gene-specific effect adjusts a gene’s estimated mutation rate downward if the gene has fewer
136 synonymous mutations than expected based on its known features, and upwards if it has more
137 synonymous mutations than expected. A challenge here is that the small number of mutations per
138 gene (particularly in small genes) could make these estimates inaccurate. Here we address this using
139 Empirical Bayes methods to improve accuracy, and avoid outlying estimates at short genes that
140 have few potential synonymous mutations (Figure 2a). Effectively, this adjusts a gene’s rate only
141 when the gene provides sufficient information to do so reliably (sufficiently many potential
142 synonymous mutations). To demonstrate the reliability of the resulting estimates we use a
143 procedure similar to cross-validation: we estimated each gene’s gene-specific effect using its
144 synonymous mutations, and then test the accuracy of the estimate (compared to no gene-specific
145 effect) in predicting the number of nonsynonymous mutations. We assume that for the vast majority
146 of genes, their mutational counts are dominated by background mutation processes, rather than
147 selection. Figure 2b shows results for SKCM tumors: without gene-specific effect the correlation of
148 observed and expected number of nonsynonymous mutations across genes was 0.56; with gene-
149 specific adjustment the correlation increased to 0.88. Similar improvements were seen for other
150 tumors (Figure S3).

151 The next step is to estimate parameters of the Selection Mutation Models (SMM), using data
152 on non-synonymous mutations. These parameters capture how the rate of non-synonymous somatic
153 mutations depend on various “functional features” (Table S2-S4), including loss-of-function (LoF)
154 status, conservation scores, *etc.* Signs and values of estimated parameters were generally similar
155 across tumor types, and consistent with their expected impact on gene function (Figure 2c). For
156 example, the estimated effect of the “LoF” feature was positive for H_{TSG} and negative for H_{OG} ,
157 indicating that loss-of-function mutations are enriched in TSGs and depleted in OGs, as expected
158 from their respective roles in cancer. The intercept terms for both TSG and OG are positive,
159 suggesting that somatic mutations are enriched in both types of cancer driver genes.

160 The final step is to estimate parameters of the spatial model (HMM, Figure 1), which are
161 designed to capture how somatic mutations may cluster together in “hotspots” in driver genes.
162 Preliminary investigations showed that spatial clustering is generally stronger in known OGs than
163 in known TSGs, and so we fit the spatial model separately for OGs and TSGs in each tumor type
164 (Table S5). Our model identified some tumor types (e.g. BLCA and LUSC, Figure 2d) with strong
165 spatial clustering. In BLCA, the estimated hotspots are very short (mean 1.4bp) and are primarily
166 capturing an excess in recurrent mutations (independent mutations at the same base) compared with
167 expectations (Figure 2d). In LUSC, the clustering extends over slightly longer regions (mean
168 5.6bp), but still the primary signal is an excess of recurrent mutations (Figure 2d).

169

170 **Simulations demonstrate that driverMAPS improves detection of driver genes**

171 While many methods have been developed for driver gene identification, it is difficult to
172 compare them on real data where the true status of each gene is often unknown. Simulations are
173 extremely valuable in such situations, and have been used in many fields, including population
174 genetics²², statistical genetics²³ and single-cell transcriptomics²⁴. Here we exploit our explicit
175 statistical model to perform realistic simulations based on parameters inferred from real data (here,
176 the TCGA UCS cohort).

177 We first assess a common strategy used in the field: Fisher’s method to combine p-values of
178 a gene, each capturing a single feature of positive selection. We simulated somatic mutations in a
179 positively selected gene with both increased nonsynonymous mutation rates and mutational
180 hotspots. We ran two simple tests -- a dN/dS test to detect enrichment of functional mutations and
181 another to detect spatial clustering (see Methods) -- and then combined *p* values using Fisher’s
182 method. Perhaps unexpectedly, the combined test has lower power than the dN/dS test alone
183 (Figure 3a). We believe that this is because spatial clustering is a relatively weak feature in our
184 simulations (as in real data) and so the spatial test has much less power than the dN/dS test.
185 Consequently the spatial test adds more noise than signal, decreasing power. This result highlights a
186 weakness of methods based on combining *p* values; model-based approaches, such as ours, avoid
187 this problem by automatically weighting different features of the data based on their
188 informativeness.

189 We next used simulations to compare driverMAPS with six existing algorithms: MutSigCV,
190 OncodriveFML⁹, OncodriveFM¹⁰, OncodriveCLUST⁸, dNdScv¹⁶ and CBaSE¹⁷. We performed

191 simulations of all genes in the genome where 324 genes are randomly chosen as oncogenes or
192 tumor suppressor genes. We found that, for distinguishing driver vs non-driver genes, driverMAPS
193 outperformed all other methods (Figure 3b). Furthermore, only driverMAPS and MutSigCV
194 consistently control FDR across all sample sizes (Figure 3c). Excluding three methods with obvious
195 problems of FDR control (OncodriveFM, OncodriveCLUST, CBaSE), driverMAPS identifies the
196 most driver genes at $FDR < 0.1$ (Figure 3d). Overall we found the power of driverMAPS to
197 discover novel driver genes can be double that of other leading methods (and even more in smaller
198 samples).

199

200 **Application of driverMAPS on TCGA data**

201 We next compared results from driverMAPS and other algorithms for predicting driver gene
202 using TCGA data (see Methods). Besides the full implementation of driverMAPS, we also tried a
203 “basic” version that looks only for an excess of nonsynonymous somatic mutations (without any
204 functional features or spatial model), and a “+feature” version with functional features but not the
205 spatial model. We applied all methods to the same somatic mutation data and compared the genes
206 they identified with a list of “known driver genes” (713 genes) compiled as the union of COSMIC
207 CGC list (version 76)²⁵, Pan-Cancer project driver gene list² and list from Vogelstein B (2013)¹ (see
208 Supplementary Note). To avoid overfitting of driverMAPS to the training data, we trained
209 driverMAPS with a leave-one-out strategy in these assessments.

210 For each method we computed both the total number of genes detected (at $FDR=0.1$)
211 (Figure 4a) and the “precision” -- the fraction that are on the list of known driver genes (Figure 4b).
212 All versions of driverMAPS identified more driver genes than either MutSigCV, dNdScv or
213 OncodriveFML, while maintaining a similarly high precision. The full version of driverMAPS
214 (with the spatial and functional features) identified nearly twice more genes. Furthermore, this
215 higher detection rate of driverMAPS was consistent across tumor types (Figure 4c). The other
216 methods, OncodriveFM, OncodriveCLUST and CBaSE, behaved quite differently, identifying
217 thousands of driver genes but with much lower precision, consistent with poor FDR control in
218 simulations (Figure 3c). For OncodriveFM and OncodriveCLUST, the lowest precision was in the
219 tumor types with the highest mutation rates (e.g. BLCA, LUSC, LUAD), suggesting the accuracy of
220 these methods may be affected by mutation rates (Figure S4). While precision of OncodriveFM and

221 OncodriveCLUST showed a negative correlation with mutation rate (Pearson $r = -0.44$ and -0.56),
222 the precision of driverMAPS showed negligible correlation (Pearson $r = 0.05$).

223

224 **Evaluation of potential novel drivers identified by driverMAPS**

225 Summing across all 20 tumor types, at FDR 0.1, driverMAPS identified 255 known driver
226 genes and 170 putatively novel driver genes (159 unique genes across the 20 tumor types; 70
227 classified as TSGs and 100 as OGs; Figure 5a, Table S7). Almost half of these putative novel genes
228 were not called by MutSigCV, OncodriveFML or dNdScv. Ten novel genes were found
229 independently in at least two tumor types (Table 1). This is unlikely to happen by chance
230 (permutation test, $p < 1e^{-4}$), so these genes seem especially good candidates for being genuine
231 driver genes.

232 Since it is impractical to functionally validate all 170 putative novel genes, we sought other
233 data to support these genes likely being involved in cancer. We first selected three common cancers
234 -- breast, lung and prostate -- and conducted an extensive literature survey for each novel gene
235 identified in these tumor types. Among a total of 22 novel genes, we found clear support in the
236 literature for 20 being involved with cancer biology, either directly implicated as oncogenes or
237 tumor suppressor genes (but not in the list of “known driver genes”) or linked to well-established
238 cancer pathways (Table S8).

239 We next assessed whether the novel genes were enriched for features often associated with
240 driver genes. Previous studies reported that driver genes tend to be highly expressed⁴ compared
241 with other genes, and indeed we found that, collectively, the novel genes showed significantly
242 higher expression than randomly sampled genes in the corresponding tissues²¹ ($p < 1e^{-4}$) (Figure 5b).

243 Previous studies have also reported that driver genes tend to show enrichment and depletion
244 for different copy-number-variation (CNV) events, depending on their role in cancer. Specifically,
245 OGs are enriched for CNV gains and depleted for CNV loss, whereas TSGs show enrichment for
246 loss and depletion for gains. Consistent with this, we found novel genes identified as OGs are
247 enriched for CNV gain events ($p < 1e^{-4}$) while novel TSGs are depleted ($p = 3e^{-3}$). CNV loss events
248 for novel OGs are depleted compared to novel TSGs and to other genes ($p = 0.04$) (Figure 5c).

249 We also compared our novel genes with a “cancer dependency map” of 769 genes identified
250 from a large-scale RNAi screening study across 501 human cancer cell lines²⁶. These are genes
251 whose knockdown affects cell growth differently across cancer cell lines, thus likely representing

252 genes that are critical for tumorigenesis, but not universally essential genes. We found 16 novel
253 driver genes overlapped with this gene list, a significant enrichment compared with random
254 sampling (odds ratio 2.9, $p=3.7e^{-4}$) (Figure 5d and Table S9).

255 To test whether our novel genes are functionally related to known cancer driver genes we
256 examined the connectivity of these two sets of genes in the HumanNet²⁷ gene network, which is
257 built from multiple data sources including protein-protein interactions and gene co-expression. On
258 average, each novel gene is connected to 3.8 known driver genes, significantly higher than expected
259 by chance ($p = 0.001$). We obtained a similarly significant result using a different gene network,
260 GeneMania²⁸, which is constructed primarily from co-expression ($p = 0.008$) (Figure 5e).

261 Finally, we identified enriched functional categories in our novel genes using GO
262 enrichment^{29,30} analysis (by geneSCF³¹). Significant GO terms (FDR < 0.1, Figure 5f) include many
263 molecular processes directly implicated in cancer, such as transcription initiation and regulation.
264 The significant terms also include several that have not been previously implicated in cancer. Genes
265 NAA25, NAA16 and NAA30 (GO: 0004596) are peptide N-terminal amino acid
266 acetyltransferases³². NATs are dysregulated in many types of cancer, and knockdown of the NatC
267 complex (NAA12-NAA30) leads to p53-dependent apoptosis in colon and uterine cell lines³³.
268 OGDH and OGDHL (GO:0004591) have oxoglutarate dehydrogenase activities and part of the
269 tricarboxylic acid (TCA) cycle³⁴. METTL3 and METTL14 (GO: 0016422) form the heterodimer
270 N6-methyltransferase complex, and are responsible for methylation of mRNA (m⁶A
271 modification)³⁵. This form of RNA modification may influence RNA stability, export and
272 translation, and has been shown to be important for important biological processes such as stem cell
273 differentiation. Our results suggest that this RNA methylation pathway may also play a key role in
274 tumorigenesis, and so we examined the results for these genes in more detail.

275

276 **METTL3 is a potential TSG in bladder cancer**

277 driverMAPS identified the genes METTL3 and METTL14 as driver genes in the cohorts
278 BLCA (bladder cancer) and UCEC (uterine cancer) respectively. These two genes had relatively
279 low mutation frequencies (4% and 2%) and were not detected by MutSigCV, dNdScv or
280 OncodriveFML (those with reasonable FDR control). Inspecting the mutations in these two genes,
281 we found many to be “functional” as predicted by annotations, and showed spatial clustering
282 patterns in the MTase domain (Figure 6a). Furthermore METTL3 contained a single synonymous

283 mutation, and METTL14 contained none, suggesting low baseline mutation rates at the two genes.
284 While this manuscript was in preparation, METTL14 was independently identified as a novel TSG
285 in endometrial cancer (Chuan He, to appear). We thus focused on METTL3 in bladder cancer.

286 To gain further insights into the potential impact of the somatic mutations in METTL3, we
287 performed structural analysis. By mapping mutations in the MTase domain of METTL3 to its
288 crystal structure³⁶, we found them to be concentrated in two regions: one close to the binding site of
289 S-Adenosyl methionine (AdoMet, donor of the methyl group) and the other in the putative RNA
290 binding groove at the interface between METTL3 and METTL14 (Figure 6b). The region close to
291 the AdoMet binding site contains seven mutations: E532K, E532Q, E516K, D515Y, P514T,
292 H512Q and E506K. Position E532 has been reported to form direct water-mediated interactions
293 with AdoMet³⁶. The other mutations map to gate loop 2 (E506K and E516K map to the start and
294 end; the other three mutations are inside the loop) which is known to undergo significant
295 conformational change before and after AdoMet binding. Thus all these mutations are good
296 candidates for affecting adenosine recognition. The second region, in the METTL3-METTL14
297 interface, contains mutations R471H, R468Q and E454K, and so these mutations are good
298 candidates for disrupting METTL3-METTL14 interaction. In further support of this, the highly
299 recurrent R298P mutation in METTL14 lies in the binding groove of the METTL14 gene.

300 We performed functional experiments to test whether mutations (n=7) in the first region
301 affect METTL3 function. In an *in vitro* assay, most mutations reduced methyltransferase activity of
302 METTL3 (Figure S5, see methods) and we chose four mutations (at three positions) for further cell
303 line experiments. In two bladder cell lines (“5637” and “T24”), knock down of METTL3 by siRNA
304 significantly reduced m6A methyltransferase activity (Figure 6c for “5637”, Figure S6a for “T24”).
305 When we tried to rescue this phenotype by transfection of METTL3 mutants, all of the mutations,
306 E532K/Q, E516K and P514T failed to restore methyltransferase activity to original levels (Figure
307 6c, Figure S6a), suggesting that they are loss-of-function mutations.

308 We next examined whether disruption of METTL3 is associated with tumor progression.
309 Indeed, knockdown of METTL3 significantly increased cell proliferation. Wild type METTL3
310 successfully restored the cells to their normal growth rate but none of the mutants could (Figure 6d,
311 Figure S6b).

312 These results show that somatic mutations in METTL3 may promote cancer cell growth by
313 disrupting the RNA methylation process, and invite further characterization of the role of METTL3
314 and RNA methylation in tumorigenesis by *in vivo* experiments.

315 **Discussion**

316 We have developed an integrated statistical model-based method, driverMAPS, to identify
317 driver genes from patterns of somatic mutation. By applying this method to data from multiple
318 tumor types from TCGA, we detected 159 novel potential driver genes. We experimentally
319 validated the function of mutations in one gene, METTL3. The remaining genes (Table 1, Table S8-
320 9) are enriched for many biological features relevant to cancer, and appear promising candidates for
321 further investigation.

322 Compared with previous methods for detecting driver genes, a key feature of driverMAPS is
323 that it models mutation rates at the base-pair level. This allows us to explicitly model how selection
324 strength varies based on site-level functional annotations, e.g. conservation and loss-of-function
325 status. This model-based approach can be thought of as a powerful extension of methods that detect
326 driver genes by testing for an excess of non-synonymous vs synonymous somatic mutations (Nik-
327 Zainal *et al*³⁷, Martincorena *et al*¹⁶), similar to the dN/dS test in comparative genomics. Indeed, the
328 stripped-down version of driverMAPS that uses no functional annotation or spatial model is
329 conceptually a dN/dS test (driverMAPS-basic in Figure 4). The full version of driverMAPS, by
330 incorporating additional functional annotations and spatial modeling, allows that some non-
331 synonymous mutations may be more informative than others in identifying driver genes.
332 Furthermore, by estimating parameters in a single integrated model, our approach learns how to
333 weigh and combine the many different sources of information. The results in Figures 3 and 4
334 demonstrate the increased power that comes from these extensions.

335 Our statistical and experimental results for the mRNA methyltransferase METTL3 add to
336 the growing evidence of links between mRNA methylation and cancer. Indeed, a recent study in
337 myeloid leukemia cell lines³⁸, found that depletion of METTL3 also leads to a cancer-related
338 phenotype. And extensive functional studies of METTL14 in uterine cancer (Chuan He, to appear)
339 support a role for this gene in cancer etiology. However, intriguingly, our results on METTL3 in
340 bladder cancer, and the METTL14 results in uterine cancer suggest that they act as tumor
341 suppressor genes, whereas the data on METTL3 in myeloid leukemia cell lines are more consistent

342 with an oncogenic role, with depletion inducing cell differentiation and apoptosis³⁸. Further studies
343 in multiple tumor types therefore seem necessary to properly characterize the role of mRNA
344 methylation in cancer.

345 Although our model incorporates many features not considered by existing methods, it
346 would likely benefit from incorporating still more features. For example, it may be useful to
347 incorporate data on protein structure, which affects the functional importance of amino acid
348 residues. Further, whereas we currently use the same mutation model for all individuals, it could be
349 helpful to incorporate individual-specific effects such as smoking-induced mutational signatures.
350 Finally, it could be useful to extend the model to incorporate information on non-coding variation,
351 which has been shown to be important for many human diseases including cancer. Although
352 identifying functional non-coding variation remains a major general challenge, extending our model
353 to incorporate features from studies of epigenetic factors such as methylation or open chromatin,
354 has the potential to detect novel driver genes affected by non-coding somatic mutations.

355 **Acknowledgements**

356 We thank Wei Du for helpful discussion and Megan McNerney for critical comments of the
357 manuscript. We thank Peter Carbonetto for helping with software development. We also thank
358 members of Stephens' and He's labs for many feedbacks during the course of this project. This
359 work was supported by National Institutes of Health (NIH) grants MH110531 (to XH) and
360 HG002585 (to MS).

361 **Code availability**

362 driverMAPS software and procedures to reproduce the results reported in the paper can be
363 accessed through the software website: [https://szhao06.bitbucket.io/driverMAPS-
364 documentation/docs/index.html](https://szhao06.bitbucket.io/driverMAPS-documentation/docs/index.html).

365

366 **Data availability**

367 The filtered somatic mutation lists from 20 tumor types that used as input files for
368 driverMAPS and other comparator software are available in Zenodo (DOI:
369 10.5281/zenodo.1209411)³⁹.

370 **Methods**

371 **Data preparation**

372 We downloaded somatic single-nucleotide mutations identified in whole exome sequencing
373 (WES) studies for 20 tumor types from TCGA GDAC Firehose (<https://gdac.broadinstitute.org/>).
374 We obtained the MAF files using firehose_get (version 0.4.6)
375 (<https://confluence.broadinstitute.org/display/GDAC/Download>) and extracted position and
376 nucleotide change information for all single-nucleotide somatic mutations. See Supplementary
377 notes for the 20 tumor types and abbreviations.

378 We excluded mutations from hypermutated tumors as they likely reflect distinct underlying
379 mutational processes. We also performed extensive filtering to exclude likely false positive
380 mutations. For each tumor type we then generated a mutation count file that contains mutation
381 counts (aggregated across all individuals in the tumor cohort) of all possible mutations at all
382 sufficiently sequenced positions (see Supplementary notes). For a tumor type with 30 million bases
383 sequenced this produces 90 million possible mutations in the mutation count file (since each
384 nucleotide can mutate to 3 other nucleotides). The majority of counts for these possible mutations
385 are 0s.

386 For each possible mutation, we annotated it with type and gene information, mutational
387 features and functional features. We defined 9 mutation types based on nucleotide change type
388 (such as A>T, G>A, *etc*) and genomic context (such as if inside CpG) (see Supplementary notes
389 for definitions). We categorized mutations as Synonymous (S) or non-synonymous (NS) as
390 described in “parameter estimation” section below. The mutational features we used include gene
391 expression, replication timing and HiC sequencing downloaded from
392 <http://archive.broadinstitute.org/cancer/cga/mutsig>. We selected 5 functional features describing
393 mutation impact. See Supplementary notes for feature details. The features were added to the
394 mutation count file by ANNOVAR⁴⁰.

395 **Model description**

396 We model each tumor type separately, so here we describe the model for a single tumor
 397 type. Let Y_{it} denote the number of mutations of type t (defined by base substitution) at sequenced
 398 position i , across all samples in a cohort. Let NS denote the set of non-synonymous mutations.
 399 That is, NS is the set of pairs (i, t) such that a mutation of type t at sequence position i would be
 400 non-synonymous. (We also include synonymous mutation with a high splicing impact score in NS ;
 401 see Supplementary notes.) Similarly, let S denote the remaining (synonymous) (i, t) pairs.

402 *Background Mutation model*

403 For synonymous mutations we assume the following “background mutation model”:

404
$$Y_{it} | H_m \sim \text{Poisson}(\mu_{it} \lambda_{g(i)}) \quad [\text{for } (i, t) \in S], \quad (1)$$

405 where μ_{it} represents a background mutation rate (BMR) for mutation type t at position i , and $\lambda_{g(i)}$
 406 represents a gene-specific effect for the gene $g(i)$ that contains sequence position i . Note that the
 407 parameters of this BMM do not depend on the model m , so $P(Y_{it}^S | H_m)$ is the same for all m .

408 We allow the BMRs to depend on mutational features (e.g. the expression level of the gene)
 409 using a log-linear model:

410
$$\log \mu_{it} = \beta_{0t}^b + \sum_j x_{ij}^b \beta_j^b, \quad (2)$$

411 where x_{ij}^b denotes the j -th background feature of position i (not dependent on mutation type), β_{0t}^b
 412 controls the baseline mutation rate of type t , and β_j^b is the coefficient of the j -th feature. The
 413 values x_{ij}^b are observed, and the parameters β^b are to be estimated. To indicate the dependence of
 414 μ_{it} on parameters β^b we write $\mu_{it}(\beta^b)$.

415 We assume that the gene-specific effects λ_g have a gamma distribution across genes:

416
$$\lambda_g \sim \text{Gamma}(\alpha, \alpha), \quad (3)$$

417 where α is a hyperparameter to be estimated.

418 *Selection Mutation model*

419 For non-synonymous mutations we introduce additional model-specific parameters: γ_{it}^m
 420 representing a selection effect (SE) for mutation type t at position i under model m and θ_i^m
 421 representing a spatial effect for position i under model m :

422
$$Y_{it} | H_m \sim \text{Poisson}\left(\mu_{it} \lambda_{g(i)} \gamma_{it}^m \theta_i^m\right) \left[\text{for } (i, t) \in NS \right]. \quad (4)$$

423 For the null model, H_0 , we assume no selection or spatial effect: $\gamma_{it}^0 = \theta_i^0 = 1$.

424 For other models, $m = OG, TSG$, we allow the selection effect to depend on functional features
425 (e.g. the assessed deleteriousness of the mutation), using a log-linear model:

426
$$\log \gamma_{it}^m = \beta_0^{f,m} + \sum_j x_{ijt}^f \beta_j^{f,m}, \quad (5)$$

427 where x_{ijt}^f denotes the j -th functional feature of position i (this depends on mutation type; e.g. at
428 the same position, some mutations may be more deleterious than others), $\beta_j^{f,m}$ is the coefficient of
429 the j -th functional feature and the intercept $\beta_0^{f,m}$ captures the overall change of mutation rate at
430 NS sites regardless of functional impact. To indicate the dependence of γ_{it}^m on parameters $\beta^{f,m}$ we
431 write $\gamma_{it}(\beta^{f,m})$.

432 To model the spatial effects, we use a Hidden Markov Model (HMM) with parameters Θ^m ,

433
$$\theta^m \sim f_{\text{HMM}}(\cdot; \Theta^m), \quad (6)$$

434 In brief, this HMM allows for the presence of mutation “hotspots” -- contiguous base-pairs with a
435 higher rate of mutation -- and the parameters include the average hotspot length and intensity of
436 selection (ρ). See Supplementary note for details.

437 Parameter estimation

438 Background mutation model

439 To simplify inference we took a sequential approach to parameter estimation. First we infer
440 parameters β^b, α of the BMM using the synonymous mutation data at all genes. Let S_g denote the
441 subset of synonymous mutations S in gene g , and Y^{S_g} denote the corresponding observed counts:

442
$$Y^{S_g} = \left\{ Y_{it} : (i, t) \in S_g \right\}. \quad (7)$$

443 Based on the synonymous mutation data, the likelihood for gene g is:

444
$$P(Y^{S_g} | \beta^b, \alpha) = \int \prod_{i, t \in S_g} P(Y_{it} | \mu_{it}(\beta^b), \lambda_g) p(\lambda_g | \alpha) d\lambda_g, \quad (8)$$

445 which has a closed form (see Supplementary note). Assuming independence across genes yields the
446 likelihood for synonymous mutations:

447
$$L^S(\beta^b, \alpha) = \prod_g P(Y^{S_g} | \beta^b, \alpha). \quad (9)$$

448 We maximize this likelihood, using numerical optimization, to obtain estimates $\widehat{\beta}^b, \widehat{\alpha}$ for β^b, α .
 449 By ignoring the non-synonymous mutation data when fitting the BMM we may lose some
 450 efficiency in principle, but we gain considerable simplification in practice.

451 *Selection mutation model*

452 We next estimate the model-specific parameters $\beta^{f,m}$. For $m = OG, TSG$. During this step
 453 we ignore the HMM model (i.e. we set $\theta_i^m = 1$), motivated by the fact that spatially-clustered
 454 mutations are relatively rare and so should not significantly impact the estimates of $\beta^{f,m}$

455 For $m = OG$ we estimate $\beta^{f,m}$ using the non-synonymous mutation data from a curated list
 456 G_{OG} of 53 OGs. Estimation for $\beta^{f,TSG}$ is identical except that we replace this list with a curated list
 457 G_{TSG} of 71 TSGs. Let G_m denote these sets of training genes. Let Y^{NS_g} denote the counts of non-
 458 synonymous mutations in gene g .

459 Assuming independence across genes, the likelihood for $\beta^{f,m}$ is:

460
$$L(\beta^{f,m}) = \prod_{g \in G_m} P(Y^{NS_g}, Y^{S_g} | \beta^{f,m}) \propto \prod_{g \in G_m} P(Y^{NS_g} | \beta^{f,m}, Y^{S_g}) \quad (10)$$

461 where the second line follows because $P(Y^{S_g} | \beta^{f,m})$ does not depend on $\beta^{f,m}$. The term in this
 462 likelihood for gene g is given by:

463
$$P(Y^{NS_g} | \beta^{f,m}, Y^{S_g}) = \int \prod_{i,t \in NS_g} P(Y_{it} | \mu_{it}(\widehat{\beta}^b), \gamma_{it}(\beta^{f,m}), \lambda_g) P(\lambda_g | Y^{S_g}, \widehat{\alpha}) d\lambda_g. \quad (11)$$

464 It can be shown that

465
$$\lambda_g | Y^{S_g}, \widehat{\alpha} \sim \text{Gamma}(\widehat{\alpha} + y_g^S, \widehat{\alpha} + \mu_g^S), \quad (12)$$

466 where μ_g^S and y_g^S are, respectively, the expected (considering only mutational features) and
 467 observed number of synonymous mutations in gene g (see Supplementary notes). The conditional
 468 mean of this distribution is $\frac{\widehat{\alpha} + y_g^S}{\widehat{\alpha} + \mu_g^S}$, so if $y_g^S > \mu_g^S$, then $E(\lambda_g | Y^{S_g}, \widehat{\alpha}) > 1$.

469 We obtained the MLE of $\beta^{f,m}$ by maximizing the likelihood (Equation 10) numerically, and
 470 obtain corresponding estimated standard errors using the curvature of the likelihood (see
 471 Supplementary notes). In tumor types with low mutation rates or sample sizes, these standard errors
 472 can be relatively large, so we borrow information from other tumor types to ‘‘stabilize’’ these

473 estimates. Specifically we use the adaptive shrinkage method²⁰ to “shrink” estimated values of
474 $\beta^{f,m}$ in each tumor type towards the mean across all tumor types. This shrinkage effect is strongest
475 for tumor types with large standard errors (Figure S7).

476 **HMM parameters**

477 Having estimated β^b, α and $\beta^{f,m}$, we fix their values and estimate the HMM parameters
478 Θ^m for $m = OG, TSG$. The likelihood function involves marginalization of the hidden states of the
479 Markov chain, which can be performed efficiently using standard methods for HMMs. We estimate
480 Θ^m by maximizing this likelihood numerically. See Supplementary note for details.

481 **Gene classification**

482 Having estimated the model parameters as above, for each gene g , we compute its Bayes
483 Factor for being a driver gene as:

$$484 BF := \frac{0.5P(Y_g^{NS}, Y_g^S | H_{OG}) + 0.5P(Y_g^{NS}, Y_g^S | H_{TSG})}{P(Y_g^{NS}, Y_g^S | H_0)}. \quad (13)$$

485 The equal weights in the numerator of this BF assume that OGs and TSGs are equally common.

486 This BF simplifies to

$$487 BF = \frac{0.5P(Y_g^{NS} | Y_g^S, H_{OG}) + 0.5P(Y_g^{NS} | Y_g^S, H_{TSG})}{P(Y_g^{NS} | Y_g^S, H_0)}, \quad (14)$$

488 because $P(Y_g^S | H_m)$ is the same for every m . Computing the terms $P(Y_g^{NS} | Y_g^S, H_m)$ is performed
489 using (Equation 11) above, substituting the estimated model parameters for each model m (see
490 Supplementary notes).

491 After obtaining the BFs, we can compute the posterior probability of being a driver gene
492 (either *OG* or *TSG*) for every gene, and estimate the Bayesian FDR⁴¹ for any given BF threshold.
493 This step requires estimation of the proportion of driver genes, which we do by maximum
494 likelihood (see Supplementary notes).

495 **Simulations**

496 For power analysis shown in Figure 3(a), we randomly picked a gene (*ERBB3*) and for a
497 given number of samples, we simulated mutations under positive selection and assessed the power
498 of detecting this gene as positively selected using different methods. We simulate synonymous
499 mutations at predefined background mutation rates (BMRs); we simulate positively selected
500 mutations at elevated mutation rates for nonsynonymous sites and hotspot sites (generated by a

501 Markov chain). This simulation procedure was performed many times and each time we obtained p
502 value for each method. Power is defined as the fraction of simulations with significant p values ($p <$
503 0.05). The test statistics for “dN/dS” method is the likelihood ratio of between Poisson models
504 under elevated mutation rates and BMRs. The test statistics for “cluster” method is the maximum
505 number of mutations within 3bp windows normalized by overall mutation rates. Null distributions
506 of test statistics are obtained by simulations with mutation rates for all sites equal to BMRs. p value
507 for “combined” method is obtained by combining p values of “dN/dS” and “cluster” using Fisher’s
508 method.

509 For simulation performed in Figure 3(b) and (c), we simulated positively selected mutations
510 for 324 genes and neutral mutations for the rest genes. 124 out of the 324 genes are known TSGs or
511 OGs, the same as the training set for driverMAPS. The rest 200 genes were randomly sampled from
512 all genes. The 71 TSGs used for training and 120 out of the 200 randomly sampled genes were
513 simulated under H_{TSG} . The 53 OGs used for training and 80 out of the 200 randomly sampled genes
514 were simulated under H_{OG} . For neural genes and synonymous sites in positively selected genes, we
515 simulated mutations at predefined BMRs; for nonsynonymous in positively selected genes, we
516 simulated mutations at increased rates based on its functional annotations and hotspot status
517 generated by Markov Chain. We removed the 124 genes used as the training set for driverMAPS
518 from results in all methods and only the rest 200 genes were used as the true set for the ROC curve
519 to ensure fair comparisons.

520 For all simulations, the predefined BMRs, effect sizes for functional annotations and spatial
521 clustering hotspot rated parameters were estimates by driverMAPS using UCS data (Table S1-S5,
522 UCS parameters). We re-estimated these parameters when running driverMAPS.

523 Comparison of gene prediction results from different methods

524 When comparing methods, we used the same mutation data (after filtering) and the same
525 nominal FDR threshold (0.1) for each method. Because driverMAPS used 124 known cancer genes
526 as a training set, to avoid bias towards this subset of genes when computing precision or power for
527 driverMAPS, we ran MAPs using a leave-one-out strategy. We perform 124 runs, each time
528 omitting one TSG/OG from the training set and estimating model parameters from the remaining
529 genes, and then count the omitted gene as “significant” only if this TSG/OG is significant
530 (FDR<0.1) in this run. We then calculate precision as the percentage of significant known cancer

531 genes of all significant genes. All data related to driverMAPS (basic, +feature and full version)
532 presented in Figure 3 were obtained in this way. In fact, estimated model parameters are quite stable
533 across runs, and so the overall result is similar to a single run not using this “leave-one-out”
534 strategy.

535 **Cell lines, siRNA knockdown and plasmid transfection**

536 The T24 cells used in this study were purchased from ATCC (HTB-4) and grown in
537 McCoy’s 5A medium (Gibco, 16600) supplemented with 10% FBS (Gibco), and 1% Penicillin-
538 Streptomycin (Gibco, 15140). The 5637 cells used in this study were purchased from ATCC (HTB-
539 9) and grown in RPMI-1640 medium (Gibco, 11875) supplemented with 10% FBS and 1%
540 Penicillin-Streptomycin. Construction of the pcDNA3 plasmids for the expression of METTL3 in
541 mammalian cells was described previously. All siRNAs were ordered from QIAGEN. Allstars
542 negative control siRNA (1027281) was used as siRNA control. Sequences METTL3 is 5’-
543 CGTCAGTATCTGGGCAAGTT-3’. Transfection was achieved by using Lipofectamine
544 RNAiMAX (Invitrogen) for siRNA, or Lipofectamine 2000 (Invitrogen) for the plasmids following
545 manufacturer’s protocols.

546 ***In vitro* assay for m⁶A methyltransferase activity**

547 The recombinant, His-tagged proteins METTL14 with wildtype or mutant METTL3 were
548 expressed in 1 LB Ecoli expression system and purified through Ni-NTA affinity column according
549 to a previously published procedure⁴². Protein purity was assessed by SDS-PAGE, and protein
550 concentration was determined by UV absorbance at 280 nm. We performed an *in vitro*
551 methyltransferase activity assay in a 50 μ L reaction mixture containing the following components:
552 0.15 nmol RNA probe, 0.15 nmol each fresh recombinant protein (METTL14 combination with an
553 equimolar ratio of METTL3 or mutant METTL3), 0.8 mM *d*3-SAM, 80 mM KCl, 1.5 mM MgCl₂,
554 0.2 U μ L-1 RNasin, 10 mM DTT, 4% glycerol and 15 mM HEPES (pH 7.9). The reaction was
555 incubated for 12 h at 16 °C, RNA was recovered by phenol/chloroform (low pH) extraction
556 followed by ethanol precipitation and was digested by nuclease P1 and alkaline phosphatase for
557 LC-MS/MS detection. The nucleosides were quantified by using the nucleoside-to-base ion mass
558 transitions of 285 to 153 (*d*3-m⁶A) and 284 to 152 (G).

559 **RNA isolation**

560 Total RNA was isolated with TRIZOL reagent (Invitrogen). mRNA was extracted from the
561 total RNA using the Dynabeads® mRNA Purification Kit (Invitrogen), followed by removal of
562 contaminating rRNA with the RiboMinus transcriptome isolation kit (Invitrogen). mRNA
563 concentration was measured by UV absorbance at 260 nm.

564 **LC-MS/MS quantification of m⁶A in poly(A)-mRNA**

565 100-200 ng of mRNA was digested by nuclease P1 (2 U) in 25 μ L of buffer containing 25
566 mM of NaCl, and 2.5 mM of ZnCl₂ at 42 °C for 2 h, followed by the addition of NH₄HCO₃ (1 M, 3
567 μ L) and alkaline phosphatase (0.5 U) and incubation at 37 °C for 2 h. The sample was then filtered
568 (0.22 μ m pore size, 4 mm diameter, Millipore), and 5 μ L of the solution was injected into the LC-
569 MS/MS. The nucleosides were separated by reverse phase ultra-performance liquid
570 chromatography on a C18 column with online mass spectrometry detection using Agilent 6410
571 QQQ triple-quadrupole LC mass spectrometer in positive electrospray ionization mode. The
572 nucleosides were quantified by using the nucleoside to base ion mass transitions of 282 to 150
573 (m⁶A), and 268 to 136 (A). Quantification was performed by comparison with a standard curve
574 obtained from pure nucleoside standards run with the same batch of samples. The ratio of m⁶A to A
575 was calculated based on the calibrated concentrations.

576 **Cell proliferation assay.**

577 5000 cells were seeded per well in a 96-well plate. The cell proliferation was assessed by
578 assaying the cells at various time points using the CellTiter 96® Aqueous One Solution Cell
579 Proliferation Assay (Promega) following the manufacturer's protocols. For each cell line tested, the
580 signal from the MTS assay was normalized to the value observed ~24 hours after seeding.

581

582 **References**

- 583 1. Vogelstein, B. *et al.* Cancer Genome Landscapes. *Science* (80-.). **339**, 1546 LP-1558 (2013).
- 584 2. Network, T. C. G. A. R. *et al.* The Cancer Genome Atlas Pan-Cancer analysis project. *Nat Genet* **45**, 1113–1120 (2013).
- 585 3. Lawrence, M. S. *et al.* Discovery and saturation analysis of cancer genes across 21 tumour
587 types. *Nature* **505**, 495–501 (2014).
- 588 4. Lawrence, M. S. *et al.* Mutational heterogeneity in cancer and the search for new cancer-
589 associated genes. *Nature* **499**, 214–8 (2013).
- 590 5. Cannataro, V. L. *et al.* Heterogeneity and mutation in KRAS and associated oncogenes:
591 evaluating the potential for the evolution of resistance to targeting of KRAS G12C.
592 *Oncogene* **37**, 2444–2455 (2018).
- 593 6. Dees, N. D. *et al.* MuSiC: Identifying mutational significance in cancer genomes. *Genome*

594 7. *Res.* **22**, 1589–1598 (2012).

595 7. Korthauer, K. D. & Kendziorski, C. MADGiC: a model-based approach for identifying
596 driver genes in cancer. *Bioinformatics* **31**, 1526–1535 (2015).

597 8. Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N. OncodriveCLUST: exploiting the
598 positional clustering of somatic mutations to identify cancer genes. *Bioinformatics* **29**, 2238–
599 2244 (2013).

600 9. Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A. & López-Bigas, N.
601 OncodriveFML: a general framework to identify coding and non-coding regions with cancer
602 driver mutations. *Genome Biol.* **17**, 128 (2016).

603 10. Gonzalez-Perez, A. & Lopez-Bigas, N. Functional impact bias reveals cancer drivers.
604 *Nucleic Acids Res.* **40**, (2012).

605 11. Davoli, T. *et al.* Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy
606 Patterns and Shape the Cancer Genome. *Cell* **155**, 948–962 (2013).

607 12. Wu, C.-I., Wang, H.-Y., Ling, S. & Lu, X. The Ecology and Evolution of Cancer: The Ultra-
608 Microevolutionary Process. *Annu. Rev. Genet.* **50**, 347–369 (2016).

609 13. McGranahan, N. & Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present,
610 and the Future. *Cell* **168**, 613–628 (2017).

611 14. Lipinski, K. A. *et al.* Cancer Evolution and the Limits of Predictability in Precision Cancer
612 Medicine. *Trends in Cancer* **2**, 49–63 (2016).

613 15. Ostrow, S. L., Barshir, R., DeGregori, J., Yeger-Lotem, E. & Hershberg, R. Cancer
614 Evolution Is Associated with Pervasive Positive Selection on Globally Expressed Genes.
615 *PLoS Genet.* **10**, 16–20 (2014).

616 16. Martincorena, I. *et al.* Universal Patterns of Selection in Cancer and Somatic Tissues. *Cell*
617 **171**, 1029–1041.e21 (2017).

618 17. Weghorn, D. & Sunyaev, S. Bayesian inference of negative and positive selection in human
619 cancers. *Nat. Genet.* **49**, 1785–1788 (2017).

620 18. Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function.
621 *Nucleic Acids Res.* **31**, 3812–3814 (2003).

622 19. Adzhubei, I. a *et al.* A method and server for predicting damaging missense mutations. *Nat.*
623 *Methods* **7**, 248–9 (2010).

624 20. Stephens, M. False discovery rates: a new deal. *Biostatistics* **18**, 275–294 (2017).

625 21. Broad Institute TCGA Genome Data Analysis Center. *Analysis-ready standardized TCGA*
626 *data from Broad GDAC Firehose stddata_2015_06_01 run. Broad Institute of MIT and*
627 *Harvard* (2016). doi:10.7908/C1251HBG

628 22. Su, Z., Marchini, J. & Donnelly, P. HAPGEN2: simulation of multiple disease SNPs.
629 *Bioinformatics* **27**, 2304–2305 (2011).

630 23. Evans, L. M. *et al.* Comparison of methods that use whole genome data to estimate the
631 heritability and genetic architecture of complex traits. *Nat. Genet.* **50**, 737–745 (2018).

632 24. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing
633 data. *Genome Biol.* **18**, 174 (2017).

634 25. Forbes, S. A. *et al.* COSMIC: somatic cancer genetics at high-resolution. *Nucleic Acids Res.*
635 **45**, D777–D783 (2017).

636 26. Tsherniak, A. *et al.* Defining a Cancer Dependency Map. *Cell* **170**, 564–576.e16 (2017).

637 27. Lee, I., Blom, U. M., Wang, P. I., Shim, J. E. & Marcotte, E. M. Prioritizing candidate
638 disease genes by network-based boosting of genome-wide association data. *Genome Res.* **21**,
639 1109–1121 (2011).

640 28. Warde-Farley, D. *et al.* The GeneMANIA prediction server: biological network integration
641 for gene prioritization and predicting gene function. *Nucleic Acids Res.* **38**, W214–W220
642 (2010).

643 29. Ashburner, M. *et al.* Gene Ontology: tool for the unification of biology. *Nat. Genet.* **25**, 25
644 (2000).

645 30. Consortium, G. O. Expansion of the Gene Ontology knowledgebase and resources. *Nucleic
646 Acids Res.* **45**, D331–D338 (2016).

647 31. Subhash, S. & Kanduri, C. GeneSCF: a real-time based functional enrichment tool with
648 support for multiple organisms. *BMC Bioinformatics* **17**, 365 (2016).

649 32. Polevoda, B., Arnesen, T. & Sherman, F. A synopsis of eukaryotic N α -terminal
650 acetyltransferases: nomenclature, subunits and substrates. in *BMC proceedings* **3**, S2
651 (BioMed Central, 2009).

652 33. Mughal, A. A. *et al.* Knockdown of NAT12/NAA30 reduces tumorigenic features of
653 glioblastoma-initiating cells. *Mol. Cancer* **14**, 160 (2015).

654 34. Bunik, V. I. & Degtyarev, D. Structure–function relationships in the 2-oxo acid
655 dehydrogenase family: Substrate-specific signatures and functional predictions for the 2-
656 oxoglutarate dehydrogenase-like proteins. *Proteins Struct. Funct. Bioinforma.* **71**, 874–890
657 (2008).

658 35. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene
659 expression regulation. *Cell* **169**, 1187–1200 (2017).

660 36. Wang, X. *et al.* Structural basis of N6-adenosine methylation by the METTL3–METTL14
661 complex. *Nature* **534**, 575 (2016).

662 37. Nik-Zainal, S. *et al.* Landscape of somatic mutations in 560 breast cancer whole-genome
663 sequences. *Nature* **534**, 47 (2016).

664 38. Vu, L. P. *et al.* The N 6-methyladenosine (m 6 A)-forming enzyme METTL3 controls
665 myeloid differentiation of normal hematopoietic and leukemia cells. *Nat. Med.* **23**, 1369
666 (2017).

667 39. Zhao, S. TCGA filtered dataset used in driverMAPS paper. (2018).
668 doi:10.5281/ZENODO.1209412

669 40. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants
670 from high-throughput sequencing data. *Nucleic Acids Res.* **38**, e164–e164 (2010).

671 41. Newton, M. A., Noueiry, A., Sarkar, D. & Ahlquist, P. Detecting differential gene expression
672 with a semiparametric hierarchical mixture method. *Biostatistics* **5**, 155–176 (2004).

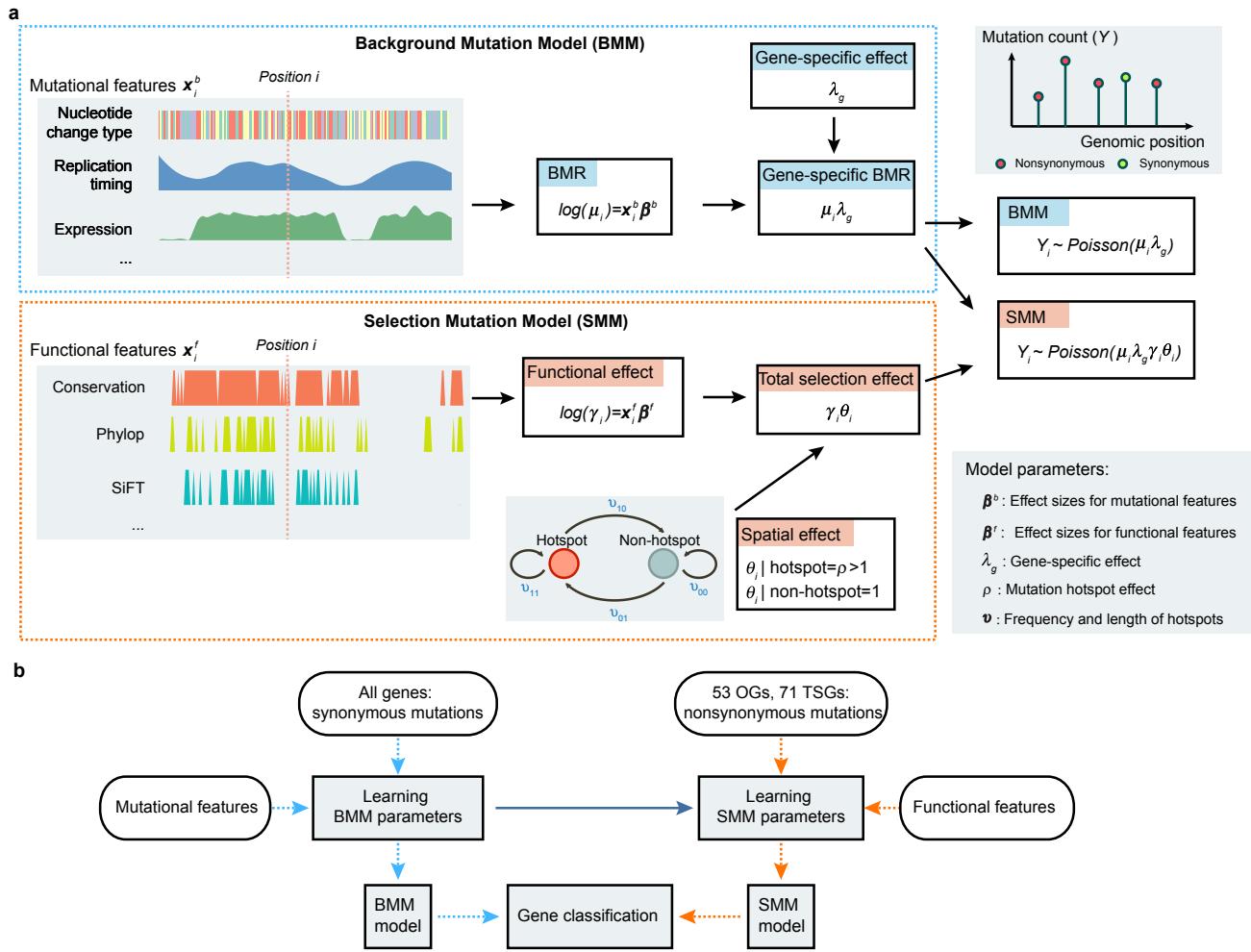
673 42. Wang, P., Doxtader, K. A. & Nam, Y. Structural basis for cooperative function of Mettl3 and
674 Mettl14 methyltransferases. *Mol. Cell* **63**, 306–317 (2016).

675 43. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral
676 substitution rates on mammalian phylogenies. *Genome Res.* **20**, 110–121 (2010).

677 44. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations:
678 application to cancer genomics. *Nucleic Acids Res.* **39**, e118–e118 (2011).

679 45. Von Mering, C. *et al.* STRING: known and predicted protein–protein associations, integrated
680 and transferred across organisms. *Nucleic Acids Res.* **33**, D433–D437 (2005).

681

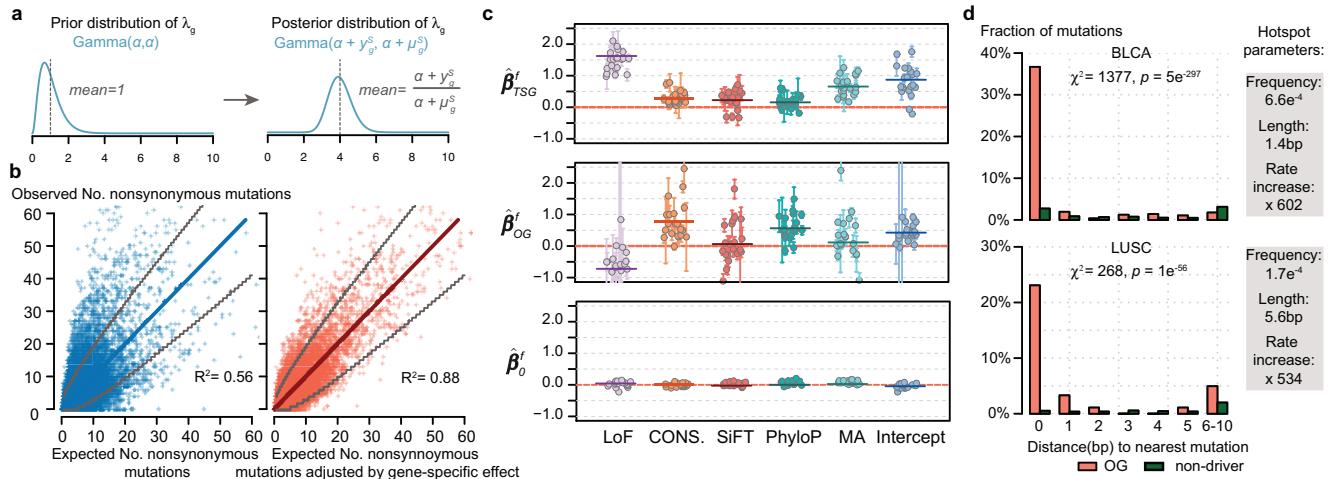


682

683

Figure 1 Overview of the model-based framework driverMAPS for cancer driver gene discovery

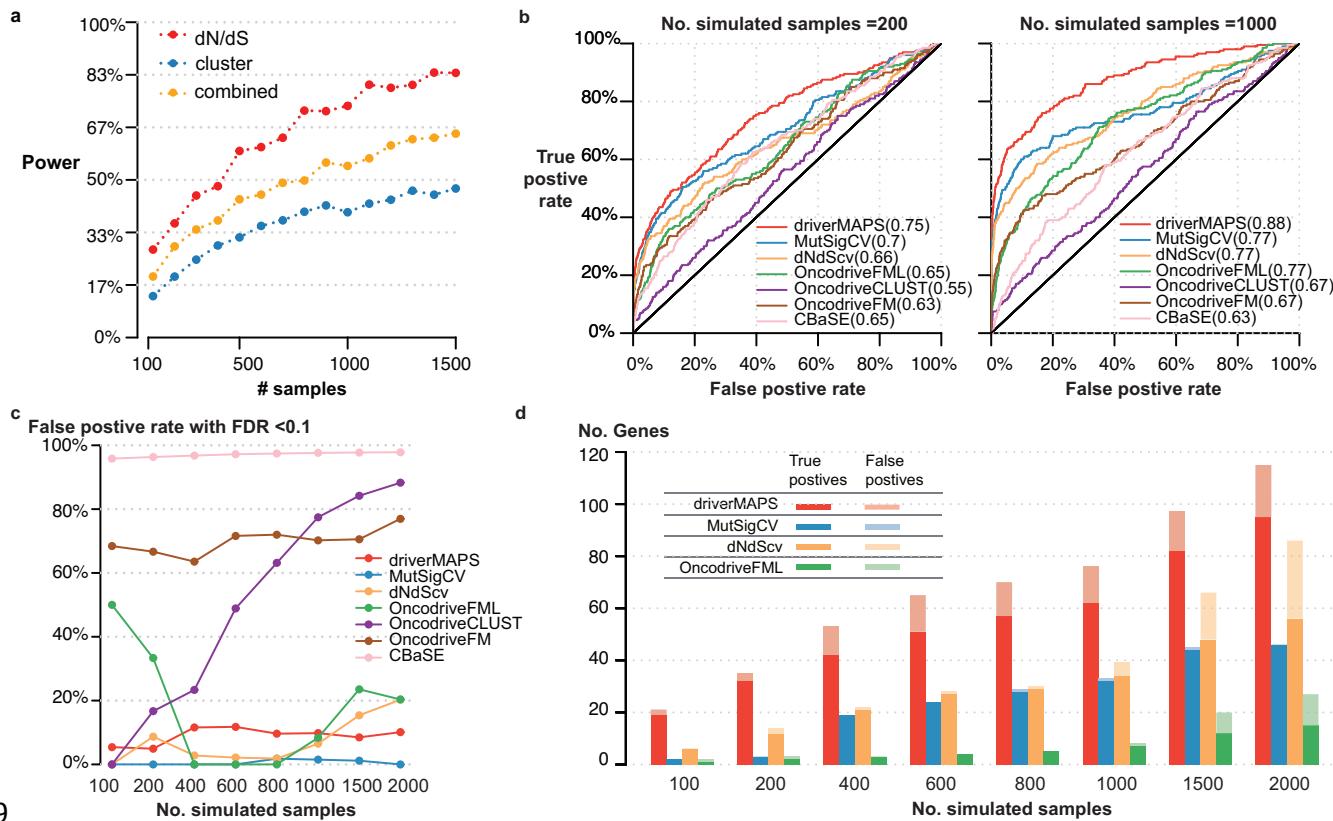
684 (a) Base-level Bayesian statistical modeling of mutation count data in driverMAPS. For positions
 685 without selection, the observed mutation rate is modeled by Background Mutation Model (BMM).
 686 Under BMM, the Background Mutation Rate (BMR) (μ_i) is determined by the log-linear model that
 687 takes into account known mutational features and further adjusted by gene-specific effect (λ_g) to get
 688 gene-specific BMR ($\mu_i \lambda_g$). For positions under selection, the observed mutation rate is modeled as
 689 Selection Mutation Model (SMM). The selection effect has two components: functional effect (γ_i) takes into
 690 account functional features of the position by the log-linear model and spatial effect (θ_i) takes into
 691 account the spatial pattern of mutations by Hidden Markov Model. For both BMM and SMM, given the
 692 mutation rate, the observed mutation count data is modeled by Poisson distribution. Note: we simplify the
 693 model to only show mutation rate at position i , ignoring allele specific effect for illustration purposes.
 694 See Methods for full parameterization. (b) Gene classification workflow. Parameters in BMM are
 695 estimated using synonymous mutations from all genes. This set of parameters is fixed when inferring
 696 parameters in SMM. To infer parameters in SMM, we use nonsynonymous mutations from known
 697 OGs or TSGs. driverMAPS then performs model selection by computing gene-level Bayes Factors to
 698 prioritize cancer genes.



699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718

Figure 2 Parameter estimation results for gene-specific, functional and spatial effects

(a) Schematic representation of how fitting synonymous mutation data affects estimation of gene-specific effect (λ_g). Note the difference between the prior and posterior distributions of λ_g . α is a hyperparameter, y_g^S and μ_g^S are the observed and expected number of synonymous mutations in gene g , respectively. **(b)** Improved fitting of observed number of nonsynonymous mutations in genes with gene-specific effect adjustment. Data from tumor type SKCM was used. The adjustment here is the posterior mean of λ_g fitting synonymous mutation data ($\frac{\alpha + y_g^S}{\alpha + \mu_g^S}$). Each dot represents one gene. Grey lines indicate upper and lower bounds of 99% confidence interval from Poisson test. The diagonal line has slope =1 and R^2 was calculated using this as the regression line. **(c)** Effect sizes for five functional features and average increased mutation rate for TSGs (top), OGs (middle) and non-driver genes (bottom). Each dot represents an estimate from one tumor type. Horizontal bars represent mean values after shrinkage. All features are binarily coded. LoF, loss-of-function (nonsense or splice site) mutations or not. CONS., amino acid conservation; SiFT, PhyloP and MA, predictions from software SiFT¹⁸, PhyloP⁴³ and MutationAssessor⁴⁴, respectively; intercept, average increased mutation rate. **(d)** Fraction of mutations that has the nearest mutation 0,1,2,... bp away, where 0bp means recurrent mutations. Data from tumor type BLCA and LUSC was used. The test statistics χ^2 and p values were obtained in the spatial model selection procedure (see method, Table S6). Inferred parameters related to the spatial model are shown on the right.



719

720

721 **Figure 3 driverMAPS predicts driver genes with high accuracy and increased power in**
722 **simulations.**

723 (a) Combining p values from methods that use only one feature of positive selection at a time will lose
724 power. We simulated mutations of a gene under positive selection under various sample sizes, then
725 assessed the power of detecting this gene as positively selected. “dN/dS” only captures the excess of
726 nonsynonymous mutations, “cluster” only captures spatial clustering pattern of mutation, “combined”
727 combines p values from “dN/dS” and “cluster” using Fisher’s method. (b) Receiver Operating
728 Characteristic (ROC) curves of several methods applied to genome-wide simulation data. 324 genes
729 are chosen to be positively selected (191 TSGs and 133 OGs) and the rest of genes are neutral. We used
730 124 out of the 324 genes as training set for driverMAPS and used the rest 200 genes as the test set to
731 generate ROC curves. Area Under an ROC Curve (AUROC) values are shown in parentheses. (c) False
732 positive rate at FDR cutoff 0.1 on the simulated data. (d) Number of true positive and false positive
733 genes at FDR<0.1. We did not count the 124 training genes (for driverMAPS) to ensure a fair
734 comparison among methods.

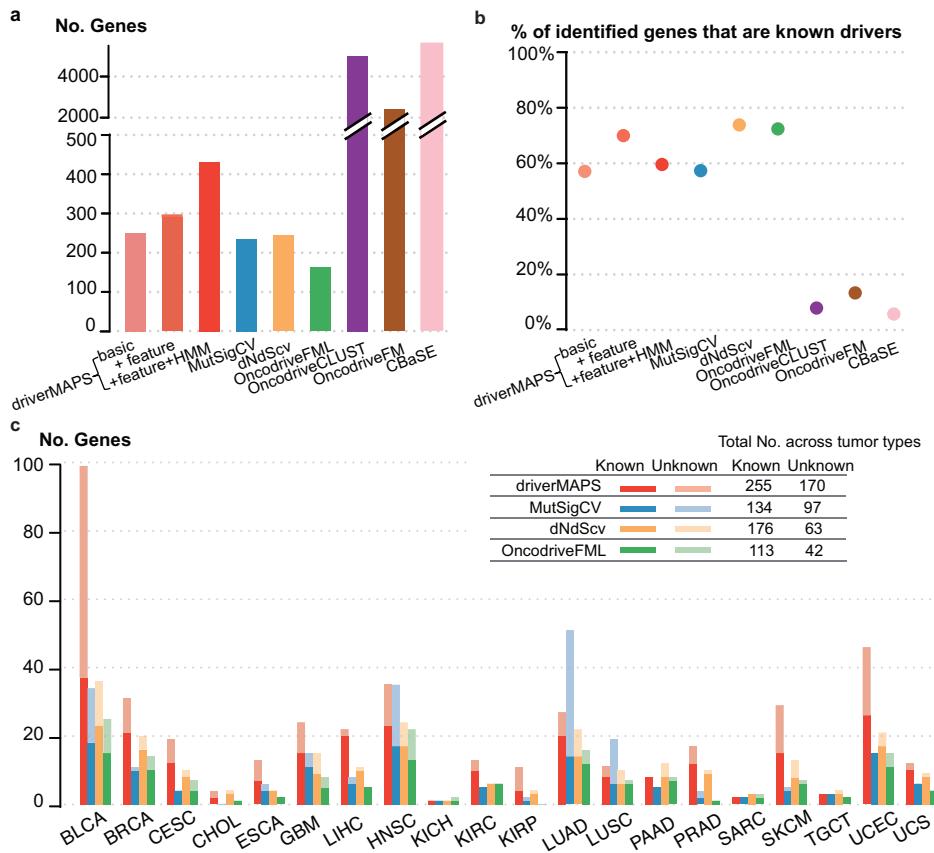
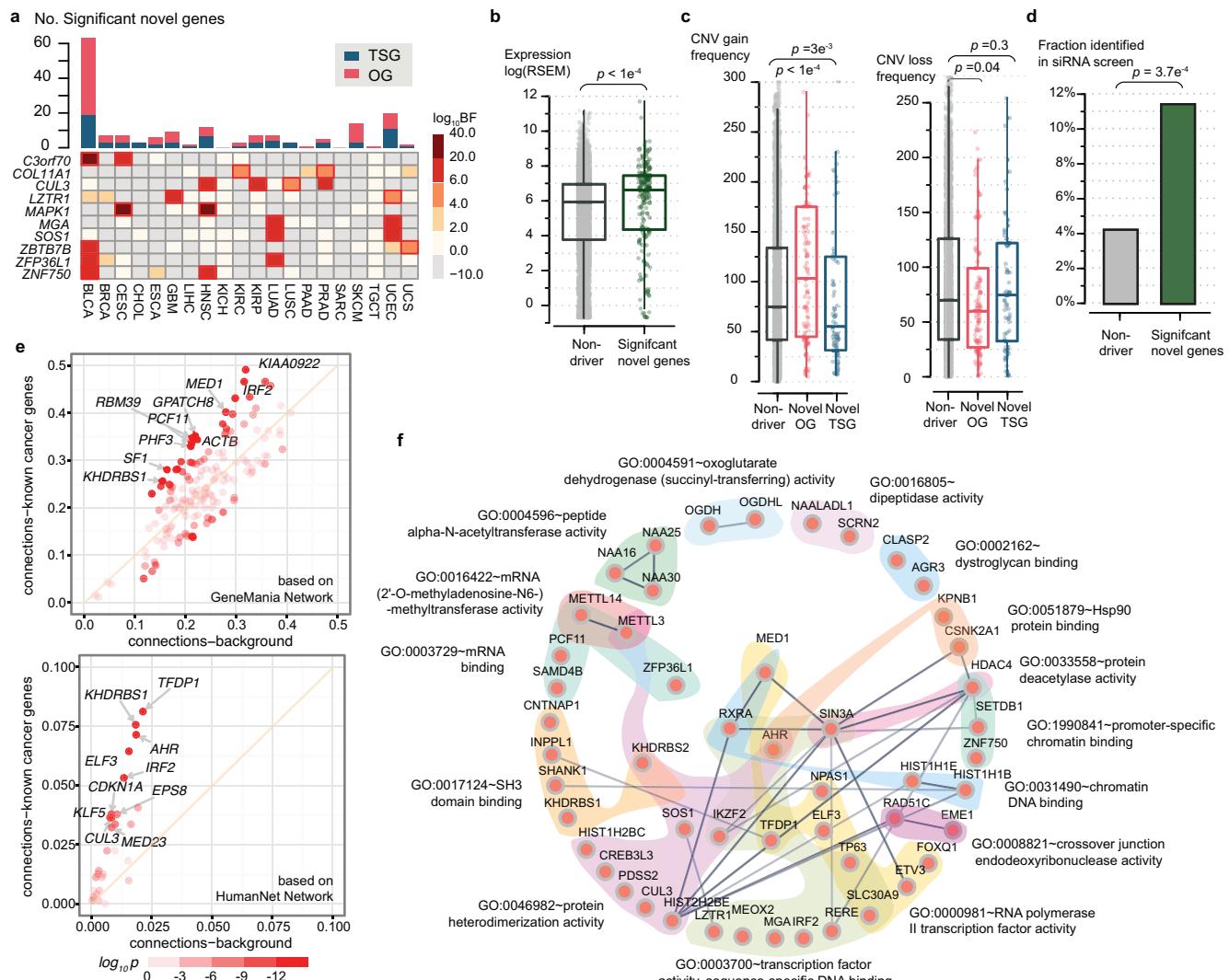


Figure 4 Gene prediction using TCGA somatic mutation data

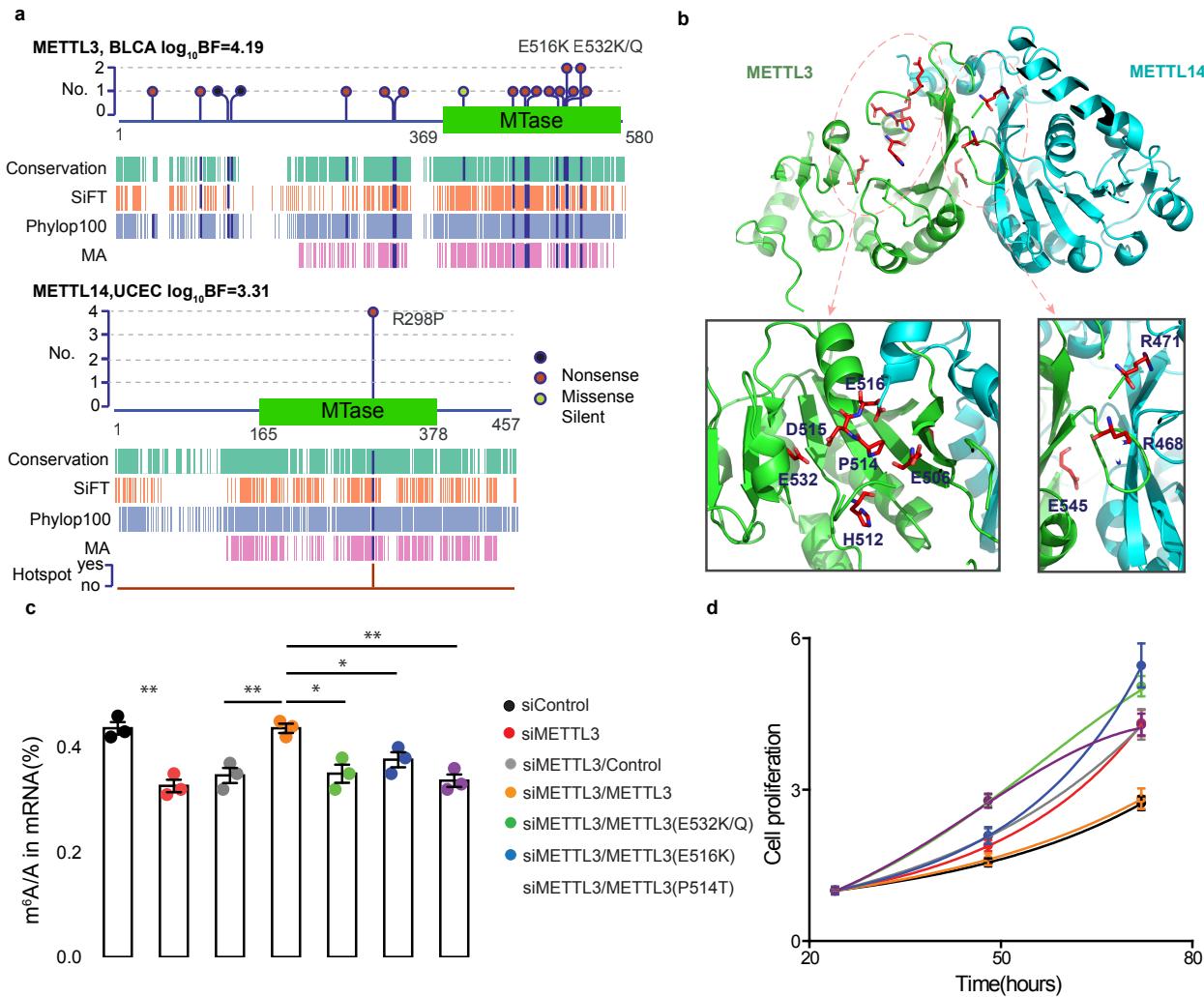
(a) Total number of predicted driver genes aggregating across all cancer types. driverMAPS (Basic), driverMAPS with no functional features information and no modeling of spatial pattern; driverMAPS (+ feature), driverMAPS with all five functional features in Figure 2, no modeling of spatial pattern; driverMAPS (+feature + HMM), complete version of driverMAPS with all five functional features and spatial pattern. **(b)** Percentage of known cancer genes among predicted driver genes aggregating across all cancer types. **(c)** Number of significant genes at FDR<0.1 stratified by tumor type. For all “Unknown” genes included here, we verified mutations by visual inspection of aligned reads using files from Genomic Data Commons (see Supplementary notes). Total numbers of known and unknown significant genes aggregating across all cancer types are summarized top right.



772
773

774 **Figure 5 Evaluation of novel cancer genes predicted by driverMAPS**

775 **(a)** Overview of predicted novel cancer genes. Top, number of novel genes in each cancer type. Bottom,
776 heatmap of Bayes factors (BF) for recurrent novel genes across tumor types. Significant Bayes factors are
777 highlighted by red boxes. **(b-d)** Predicted novel cancer genes show known cancer gene features. For each
778 feature, quantification of the feature level in the novel cancer gene set was compared to the non-driver
779 (neither known or predicted) gene set. The features are gene expression levels²¹ stratified by tumor types
780 the novel genes were identified from (b), similarly stratified copy number gain/loss frequencies²¹ (c) and
781 fraction of genes identified in a siRNA screen study²⁶ (d). In (b) and (c), the center line, median; box
782 limits, upper and lower quartiles. **(e)** Enriched connectivity of a predicted gene with 713 known cancer
783 genes (Y-axis) compared to with all genes (n=19,512, X-axis). Connectivity of a selected gene with a gene
784 set is defined as the number of connections between the gene and gene set found in a network database
785 divided by the size of the gene set. Each dot represents one of the 159 novel genes with 10 most enriched
786 ones labeled. Color of dots indicates two-sided Fisher exact p value for enrichment. **(f)** Significantly
787 enriched GO-term gene sets (FDR < 0.1, “molecular function” domain) in predicted novel cancer genes.
788 GO-term^{29,30} gene sets are indicated by distinct background colors. Links among genes represent
789 interaction based on STRING network database⁴⁵ with darker color indicating stronger evidence.



790 **Figure 6 Functional validation of METTL3 as a TSG in bladder cancer**
791 (a) Features of mutations in METTL3 and its heterodimerization partner METTL14. We show
792 schematic representations of protein domain information and mark mutation positions by "lollipops".
793 Recurrent mutations are labeled above. Start and end of domain residues are labeled below. Dark blue
794 bars in aligned annotation tracks indicate the mutation is predicted as "functional". Track "Hotspot" is
795 the indicator of whether the mutation is in hotspot or not in driverMAPS's spatial effect model (See
796 supplementary note). (b) Structural context of METTL3 mutations revealed two regional clusters.
797 Top, structure of METTL3 (residues 369–570) and METTL14 (residues 117–402) complex (PDB ID:
798 5IL0) with mutated residues in stick presentation. Bottom, zoom-in views of the two regions with
799 mutated residues labeled. (c) Impaired m⁶A RNA methyltransferase activity of mutant METTL3 in
800 bladder cancer cell line "5637". LC-MS/MS quantification of the m⁶A/A ratio in polyA-RNA in METTL3
801 or Control knockdown cells, rescued by overexpression of wildtype or mutant METTL3 is shown. (d)
802 Mutant METTL3 decreased proliferation of "5637" cells. Proliferation of METTL3 or Control
803 knockdown cells, rescued by overexpression of wildtype or mutant METTL3 in MTS assays is shown.
804 Cell proliferation is calculated as the MTS signal at the tested time point normalized to the MTS
805 signal ~ 24 hours after cell seeding. For all experiments in (c-d), number of biological replicates is
806 3 and error bars indicate mean ± s.e.m. *, p < 0.05; **, p < 0.01 by two sided t-test. Legend is
807 shared between (c) and (d).

808 **Table 1 Novel significant drivers found in at least two tissue types**

Gene	#Missense	#LoF	#Silent	$\log_{10}BF$	Tumor	Function
C3orf70	14/3	1/1	0/0	9.3/3.8	BLCA/CESC	Unknown
COL11A1	7/13	4/2	0/0	2.2/2.2	KIRC/PRAD	Collagen formation, expression associated with colorectal, ovarian cancers, etc (23934190, 11375892)
CUL3	15/8/4	5/4/0	1/0/0	3.5/3.8/ 2.6	HNSC/KIRP/ PRAD	Core component of E3 ubiquitin ligase complex, with many downstream targets affecting carcinogenesis, like NRF2 (24142871)
LZTR1	9/10	0/1	0/2	2.9/2.1	GBM/UCEC	Adaptor of CUL3-containing E3 ligase complexes, inactivation drives glioma self renewal and growth (23917401)
MAPK1	9/7	0/1	0/0	15.1/ 12.8	CESC/HNSC	MAP kinase. The MAPK/ERK cascade has important well characterized and important roles in cancer (17496922)
MGA	35/11	16/5	5/3	3.8/2.7	LUAD/UCEC	Dual-specificity transcription factor, can inhibit MYC-dependent cell transformation (10601024)
SOS1	12/7	1/0	3/0	3.5/7.0	LUAD/UCEC	Guanine nucleotide exchange factor for RAS proteins, which are well-known for roles in cell proliferation (17486115)
ZBTB7B	11/5	1/1	0/0	6.2/2.3	BLCA/UCS	Transcriptional regulator of lineage commitment of immature T-cell precursors (17878336)
ZFP36L1	12/11	4/3	1/0	3.4/5.2	BLCA/LUAD	Involved in mRNA degradation. Deletion leads to T lymphoblastic leukemia (20622884)
ZNF750	17/13	3/7	2/1	3.4/5.1	BLCA/HNSC	An essential regulator of epidermal differentiation. Depletion promotes cell proliferation in ESCA (24686850)

809 We use “/” to separate data obtained from different tumor types as indicated in the “Tumor”
810 column. A brief description of the gene’s function and its known role in cancer is provided in the
811 “Function” column. Reference PMIDs are given in parentheses.