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Abstract:4

Bayesian models of behavior suggest that organisms represent uncertainty as-5

sociated with sensory variables. However, the neural code of uncertainty re-6

mains elusive. A central hypothesis is that uncertainty is encoded in the pop-7

ulation activity of cortical neurons in the form of likelihood functions. We8

studied the neural code of uncertainty by simultaneously recording popula-9

tion activity from the primate visual cortex during a visual categorization task10

in which trial-to-trial uncertainty about stimulus orientation was relevant for11
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the decision. We decoded the likelihood function from the trial-to-trial popula-12

tion activity and found that it predicted decisions better than a point estimate13

of orientation. This remained true when we conditioned on the true orienta-14

tion, suggesting that internal fluctuations in neural activity drive behaviorally15

meaningful variations in the likelihood function. Our results establish the role16

of population-encoded likelihood functions in mediating behavior, and provide17

a neural underpinning for Bayesian models of perception.18

When making perceptual decisions, organisms often benefit from representing uncertainty19

about sensory variables. More specifically, the theory that the brain performs Bayesian inference—20

which has roots in the work of Laplace1 and von Helmholtz2—has been widely used to explain21

human and animal perception3–6. At its core lies the assumption that the brain maintains a sta-22

tistical model of the world and when confronted with incomplete and imperfect information,23

makes inferences by computing probability distributions over task-relevant world state vari-24

ables (e.g. direction of motion of a stimulus). In spite of the prevalence of Bayesian theories25

in neuroscience, evidence to support them stems primarily from behavioral studies (e.g.7,8).26

Consequently, the manner in which probability distributions are encoded in the brain remains27

unclear, and, thus, the neural code of uncertainty is unknown.28

It has been hypothesized that a critical feature of the neural code of uncertainty, which29

is shared throughout the sensory processing chain in the neocortex, is that the same neurons30

that encode a specific world state variable (e.g. stimulus orientation in V1) also encode the31

uncertainty about that variable (Fig. 1a). Therefore neurons multiplex both a point estimate32

of a sensory variable and the associated uncertainty about it9,10. Specifically, according to the33

probabilistic population coding (PPC) hypothesis9,10, inference in the brain is performed by34

inverting a generative model of neural population activity. Under this coding scheme, neural35

populations in V1, for example, that encode stimulus orientation also encode the associated36
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Figure 1: Alternative models of uncertainty information encoding. a, The recorded cortical
population r responding to sensory stimulus s encodes stimulus estimate and uncertainty si-
multaneously in the form of likelihood function L which is subsequently used in making a
decision Ĉ as the subject performs a visual classification task. b, The recorded cortical popula-
tion only encodes a point estimate of the stimulus ŝ while an estimate of the sensory uncertainty
is made by other (unrecorded) cortical populations. The information is subsequently combined
to lead to the subject’s decision Ĉ.

uncertainty in the form of the sensory likelihood function—the probability of observing a given37

pattern of neural activity across hypothesized stimulus values9,11,12. The form of the likelihood38

function is related to the probability distribution describing neural variability (“noise”) for a39

given stimulus. A sensory likelihood function is often unimodal13,14, and its width could in40

principle serve as a measure of the sensory uncertainty about the stimulus. Whether the brain41

uses this particular uncertainty quantity in its decisions is unknown. Alternatively, it may be42

the case that the neural population that encodes an estimate of a sensory variable (e.g. stimulus43

orientation in V1) does not carry information about the associated uncertainty (Fig. 1b).44

We recorded the activity of V1 cortical populations while monkeys performed a visual clas-45

sification task in which the trial-by-trial uncertainty information is beneficial to the animal15.46

To decode the trial-by-trial likelihood functions from the V1 population responses, we devel-47

oped a novel technique based on deep learning16,17. Importantly, we performed all analyses48

conditioned on the contrast—an overt driver of uncertainty—and performed further orientation-49
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conditioned analyses to isolate the effect of random fluctuations in the decoded likelihood func-50

tion on behavior. We found that using the trial-to-trial changes in the shape of the likelihood51

function allowed us to better predict the behavior than using a likelihood function with a fixed52

shape shifted by a point estimate. Therefore, we provide the first evidence that in perceptual53

decision-making, the same cortical population that encodes a sensory variable also encodes its54

trial-by-trial sensory uncertainty information, which is used to mediate perceptual decisions,55

consistent with the theory of PPC.56

Results57

Behavior58

Two Rhesus macaques (Macacca mulatta) were trained on an orientation classification task59

designed such that the optimal performance required the use of trial-by-trial uncertainty. On60

each trial, one of two stimulus classes (C = 1 or C = 2) was chosen at random with equal61

probability. Each class was defined by a Gaussian probability distribution over the orientation.62

The two distributions shared the same mean but had different standard deviations (Fig. 2a).63

An orientation was drawn from the distribution belonging to the selected class, and a drifting64

grating stimulus with that orientation was then presented to the animal (Fig. 2b). In a given65

recording session, at least three distinct contrasts were selected at the beginning of the session,66

and on each trial, one of these values was randomly selected.67

In our previous study15, we designed this task so that an optimal Bayesian observer would68

incorporate the trial-by-trial sensory uncertainty about stimulus orientation in making classifi-69

cation decisions. Indeed, decisions of both humans and monkeys seemed to utilize trial-by-trial70

uncertainty about the stimulus orientation. In the current study, one of the two monkeys (Mon-71

key L) was the same monkey that participated in the previous study and thus has been shown72

to have learned the task well. A second monkey (Monkey T) was also trained on the task and73
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Figure 2: Behavioral task. a, The stimulus orientation distributions for the two classes. The two
distributions shared the same mean (µ = 0◦) but differed in their standard deviations (σ1 = 3◦

and σ2 = 15◦). b, Time course of a single trial. The subject fixated onto the fixation target for
300 ms before a drifting grating stimulus was shown. After 500 ms of stimulus presentation,
the subject broke fixation and saccaded to one of the two colored targets to indicate their class
decision (color matches class color in a). The left-right configuration of the colored targets
was chosen at random for each trial. c, Performance of the two monkeys on the task across
stimulus contrast. “Theoretical limit” corresponds to the performance of an ideal observer with
no observation noise. d, Psychometric curves. Each curve shows the proportion of trials on
which the monkey reported C = 1 as a function of stimulus orientation, computed from all
trials within a single contrast bin. All data points are means and error bars indicate standard
error of the means. e, Class-conditioned responses. For each subject, the proportions of C = 1
reports is shown across contrasts, conditioned on the ground-truth class: C = 1 (red) and C = 2
(blue). The symbols have the same meaning as in c.
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closely matched the performance of Monkey L (Fig. 2c). Both animals had psychometric curves74

displaying the expected strong dependence on both contrast and orientation (Fig. 2d,e).75

In our analyses, we grouped the trials with the same contrast within the same session and76

refer to such a group as a “contrast-session”.77

Decoding likelihood function from V178

Each monkey was implanted with a chronic multi-electrode (Utah) array in the parafoveal pri-79

mary visual cortex (V1) to record the simultaneous cortical population activity as the subjects80

performed the orientation classification task (Fig. 3a).81

A total of 61 and 71 sessions were analyzed from Monkey L and Monkey T for a total of82

110,695 and 192,631 trials, respectively (Supplementary Fig. 1). In each recording session,83

up to 96 channels were recorded. On each trial and for each channel, we computed the to-84

tal number of spikes that occurred during the 500 ms of stimulus presentation preceding the85

decision-making cue (Fig. 3a), yielding a vector of population responses r used in the subse-86

quent analyses (Fig. 3b).87

Existing computational methods for decoding the trial-by-trial likelihood function from the88

cortical population activities typically make strong parametric assumptions about the stimulus89

conditioned distribution of the population response (i.e. the generative model of the population90

response). For example, population responses to a stimulus can be modeled as an independent91

Poisson distribution, allowing each recorded unit to be characterized by a simple tuning curve92

(which may be further parameterized)14,18–22. While this simplifying assumption makes com-93

puting the trial-by-trial likelihood function straightforward, disregarding potential correlations94

among the units in population responses (i.e. noise correlations and internal brain state fluctu-95

ations23–28) can lead to biased estimates of the likelihood function and limits the generality of96

this approach. While more generic parametric models—such as Poisson-like distributions—of97
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Figure 3: Encoding and decoding of the stimulus orientation. a, An example of 96 channels
spike traces from a single trial (Monkey T). The vector of spike counts, r, was accumulated
over the pre-saccade stimulus presentation period (time 0-500 ms, green shade). b, The popu-
lation response for the selected trials from a single contrast-session (Monkey T, 64% contrast).
Column: a population response r on a trial randomly drawn from the trials falling into a specific
orientation bin. Row: a response from a single channel. For visibility, the channel’s responses
are normalized to the maximum response across all trials. The channels were sorted by the
preferred orientation of the channel. Subject’s class decision is indicated by red and blue color
patches for Ĉ = 1 and Ĉ = 2, respectively. c, A schematic of a DNN for the Full-Likelihood
decoder, mapping r to the decoded likelihood function L. All likelihood functions are area-
normalized. d, Two models of likelihood decoder M . In the Full-Likelihood decoder, the
likelihood L was decoded without any constraints on the shape. In the Fixed-Uncertainty de-
coder, all decoded likelihood functions shared the same shape but differed in the location of the
center based on the population response.

For both decoders, the resulting likelihood functions were fed into parameterized Bayesian
decision models to yield the decision prediction p(Ĉ = 1|r,M).
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population distributions have been proposed9,10,15,29,30, they still impose restrictive assumptions.98

We devised a technique based on deep learning to decode the trial-by-trial likelihood func-99

tion from the V1 population response. This neural network-based likelihood decoder allows us100

to approximate the information that can be extracted about the stimulus orientation from the101

cortical population responses. The network was not used as a model of how the rest of the brain102

extracts and processes the information present in the population, but rather to decode it and103

demonstrate that it is used behaviorally.104

We trained a fully connected deep neural network (DNN)17 to predict the per-trial likelihood105

function L(θ) ≡ p(r|θ) over stimulus orientation θ from the vectorized population response r106

(Fig. 3c; for details on the network architecture, training objective, and hyperparameter se-107

lection see Methods and Supplementary Table 1). A separate network was trained for each108

contrast-session and no behavioral data were utilized in training the DNN.109

Using a DNN to decode the likelihood function avoids the restrictive parametric assumptions110

described above and provides a strictly more flexible method, often capturing decoding under111

known distributions as a special case (Supplementary Fig. 2). We demonstrate this by showing112

the DNN can recover the ground-truth likelihood function from simulated responses sampled113

from known distributions (Supplementary Fig. 3; refer to Methods for the simulation details).114

The likelihood functions decoded by the DNNs exhibited the expected dependencies on the115

overt drivers of uncertainty such as contrast (Fig. 4a-c): the width of the likelihood function is116

higher at lower contrast (Fig. 4d).117

Trial to trial uncertainty improves behavioral predictions118

To assess whether the uncertainty decoded from population responses in the form of sensory119

likelihood functions mediate the behavioral outcome (perceptual decision) as we hypothesized,120

it is critical that we appropriately condition the analysis on the stimulus. To illustrate the impor-121
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Figure 4: Likelihood functions decoded by the trained neural networks. a-c, Example decoded
likelihood functions from three contrast-sessions from Monkey T. Each row represents the de-
coded likelihood function over the hypothesized orientation for a randomly selected trial within
the specific orientation bin. All likelihood functions are area-normalized. Brighter colors cor-
respond to higher values of the likelihood function. d, Average likelihood function by contrast.
On each trial, the likelihood function was shifted such that the mean orientation of the normal-
ized likelihood function occurred at 0◦. The centered likelihood functions were then averaged
across all trials within the same contrast bin.
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tance of conditioning on the stimulus to determine if the decoded likelihood function mediates122

perceptual decisions, consider a typical perceptual decision-making task (like ours) (Supple-123

mentary Fig. 4) where the subject views a stimulus s, which elicits a population response r, for124

example in V1. Here, by “stimulus”, we refer collectively to all aspects of a visual stimulus,125

such as its contrast and orientation. Stimulus information is eventually relayed to decision-126

making areas (e.g. prefrontal cortex), leading the animal to make a classification decision Ĉ.127

We decode the likelihood function L from the recorded population activity r. Because variation128

in the stimulus (e.g. orientation or contrast) across trials can drive variation both in the decoded129

likelihood function and in the animal’s decision, one may find a significant relationship between130

L and Ĉ, even if the likelihood function estimated from the recorded population r does not me-131

diate the decision. When the stimulus is fixed, random fluctuations in the population response132

r can still result in variations in L. If the likelihood function truly mediates the decision, we133

expect that such variation in L would account for variation in Ĉ. Therefore, to demonstrate that134

the likelihood L mediates the decision Ĉ, it is imperative to show a correlation between L and135

Ĉ conditioned on the stimulus s.136

As we varied the stimulus contrast from trial to trial in our task, the expected uncertainty137

about the stimulus orientation varied, and one would expect the monkeys to represent and make138

use of their trial-by-trial sensory uncertainty in making decisions. However, we make a much139

stronger claim here: even at a fixed contrast, because of random fluctuations in the population140

response31,32, we predict (1) the uncertainty encoded in the population, that is, the likelihood141

function, will still fluctuate from trial to trial, and (2) the effect of such fluctuations will manifest142

in the monkey’s decisions on a trial-by-trial basis.143

We tested this prediction by fitting, separately for each contrast-session, the following two144

decision models and comparing their performance in predicting the monkey’s trial-by-trial de-145

cisions: (1) a Full-Likelihood Model, which utilizes the trial-by-trial uncertainty information146
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decoded from the population response in the form of the likelihood function obtained from the147

neural-network based likelihood decoder (Full-Likelihood decoder) described above (Fig. 3d),148

and (2) a Fixed-Uncertainty Model, which utilizes an alternative neural-network based likeli-149

hood decoder (Fixed-Uncertainty decoder) that learns a single, fixed-shape likelihood function150

whose location is shifted from trial to trial based on the population response (Supplementary151

Fig. 5). The Fixed-Uncertainty Model captures the alternative hypothesis in which the recorded152

sensory population only encodes a point estimate of the sensory variable (i.e. mean of the like-153

lihood function) and the estimate of the sensory uncertainty is encoded elsewhere, signified154

by the fixed shape of the likelihood function fitted for each contrast-session under this model155

(Fig. 1b). Generally, the likelihood function decoded by Fixed-Uncertainty decoder closely156

approximated the likelihood function decoded by the Full-Likelihood decoder (Supplementary157

Fig. 5). We use the term decoder for the DNN that returns estimated likelihood functions, and158

the term decision model for the mapping from likelihood function to decision.)159

In both models, the decoded likelihood functions were fed into the Bayesian decision maker160

to yield trial-by-trial predictions of the subject’s decision in the form of p(Ĉ|r,M), or the161

likelihood of subject’s decisions Ĉ conditioned on the population response r and the decision162

model M . The Bayesian decision maker computed the posterior probability of each class and163

used these to produce a stochastic decision. The means of the class distributions assumed by164

the observer, the class priors, the lapse rate, and a parameter to adjust the exact decision-making165

strategy were used as free parameters (Supplementary Fig. 6, refer to Methods for details). The166

model parameters were fitted by maximizing the total log likelihood over all trials for each167

contrast-session
∑

i log p(Ĉi|ri,M). The fitness of the models was assessed through cross-168

validation, and we reported mean and total log likelihood of the models across all trials in the169

test set.170

Both models incorporated trial-by-trial changes in the point estimate of the stimulus orien-171
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tation (e.g. the mean of the likelihood function) and only differed in whether they contained172

additional uncertainty information about the stimulus orientation carried by the trial-by-trial173

fluctuations in the shape of the likelihood function decoded from the same population that en-174

coded the point estimate. We use the term “shape” to refer to all aspects of the likelihood175

function besides its mean, including its width. If the fluctuations in the shape of the likelihood176

function truly captured the fluctuations in the sensory uncertainty as represented and utilized by177

the animal, one would expect the Full-Likelihood Model to yield better trial-by-trial predictions178

of the monkey’s decisions than the Fixed-Uncertainty Model.179

We observed that both models predicted the monkey’s behavior well across all contrasts180

(Supplementary Fig. 7), reaching up to 90% accuracy. We also observed that the performance181

of the decision models using likelihood functions that were decoded by the neural networks was182

superior to the models using likelihood functions that were decoded with more traditional para-183

metric generative models (independent Poisson distribution and Poisson-like distribution) (Sup-184

plementary Fig. 8; refer to Methods for details). The Full-Likelihood Model consistently out-185

performed the Fixed-Uncertainty Model across contrasts and for both monkeys (Fig. 5a,b; trial186

log likelihood differences between the Full-Likelihood and Fixed-Uncertainty Model: Mon-187

key L: paired t-test, t(110694) = 11.06, p < 0.001, δtotal = 11.0 × 102 and Monkey T:188

t(192610) = 11.03, p < 0.001, δtotal = 11.3 × 102; δtotal is the total log likelihood differ-189

ence across all trials). This result shows that the trial-by-trial fluctuations in the shape of the190

likelihood function are informative about the monkey’s trial-by-trial decisions, demonstrating191

that decision-relevant sensory uncertainty information is contained in population responses that192

can be captured by the shape of the full likelihood function. This finding in turn strongly sup-193

ports the hypothesis that visual cortex encodes stimulus uncertainty through the shape of the194

full likelihood function on a trial-by-trial basis.195

We repeated this analysis after splitting the data into the first and second 250ms of stimulus196

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2019. ; https://doi.org/10.1101/365973doi: bioRxiv preprint 

https://doi.org/10.1101/365973
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Model performance. a, Average trial-by-trial performance of the Full-Likelihood
Model relative to the Fixed-Uncertainty Model across contrasts, measured as the average trial
difference in the log likelihood. The results for the original (unshuffled) and the shuffled data
are shown in solid and dashed lines, respectively. The squares and triangles mark Monkey L and
T, respectively. b, Relative model performance summarized across all contrasts. Performance
on the original and the shuffled data is shown individually for both monkeys. The difference
between the Full-Likelihood and Fixed-Uncertainty Models was significant with p < 0.001
for both monkeys, and on both the original and the shuffled data. Furthermore, the difference
between the Full-Likelihood Model on the original and the shuffled data was significant (p <
0.001 for both monkeys). For a and b, all data points are means, and error bar/shaded area
indicate standard error of the means. c, Shuffling scheme for three example trials drawn from
the same stimulus orientation bin. Shuffling maintains the means but swaps the shapes of the
likelihood functions.
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presentation. We found a similar improvement for the Full-Likelihood model over the Fixed-197

Uncertainty model in both periods (Supplementary Fig. 9).198

We next asked how meaningful our effect sizes (model performance differences) are. To an-199

swer this question, we simulated the monkey’s responses across all trials and contrast-sessions200

taking the trained Full-Likelihood Model to be the ground truth, and then retrained the Bayesian201

decision makers in the Full-Likelihood Model and the Fixed-Uncertainty Model from scratch202

on the simulated data. This approach yields a theoretical upper bound on the observable differ-203

ence between the two models if the Full-Likelihood Model was the true model of the monkeys’204

decision-making process.205

We observed that the expected total upper bound log likelihood differences between the Full-206

Likelihood Model and the Fixed-Uncertainty Model of (37.1 ± 1.5) × 102 and (36.0 ± 1.3) ×207

102 based on the simulations (representing mean ± standard deviation across 5 repetitions of208

simulation for Monkey L and T, respectively) were larger but in the same order of the magnitude209

as the observed model performance differences (11.0× 102 and 11.3× 102 total log likelihood210

differences across all trials for Monkey L and T, respectively), suggesting that our effect sizes211

are meaningful and that the Full-Likelihood Model is a reasonable approximate description of212

the monkey’s true decision-making process (Supplementary Fig. 10).213

Stimulus dependent changes in uncertainty214

We observed that for some contrast-sessions, the average width of the likelihood function215

showed a dependence on the stimulus orientation (Supplementary Figure. 11). By design, the216

Fixed-Uncertainty Model cannot capture this stimulus dependent change in uncertainty, which217

could contribute to it under-performing the Full-Likelihood Model (Supplementary Fig. 4).218

To rule this out, we shuffled the shapes of the decoded likelihood functions across trials219

within the same orientation bin, separately for each contrast-session. This shuffling preserves220
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the average stimulus-dependent change in uncertainty and trial-by-trial correlation between the221

mean of the likelihood function and the decision (Fig. 5c), while removing the trial-by-trial222

correlation between the shape of the likelihood function and the behavioral decision conditioned223

on the stimulus orientation.224

By design, the Fixed-Uncertainty Model makes identical predictions on the original and the225

shuffled data. If the Full-Likelihood Model outperformed the Fixed-Uncertainty Model sim-226

ply because it captured spurious correlations between the stimulus orientation and the shape of227

the likelihood function, then it should outperform the Fixed-Uncertainty model by the same228

amount on the shuffled data. However, if the better behavioral predictions come from the229

trial-by-trial fluctuations in the likelihood shape as we hypothesized, one would expect this230

difference to disappear on the shuffled data. Indeed, the shuffling of the likelihood function231

shapes abolished the improvement in prediction performance that the Full-Likelihood Model232

had over the Fixed-Uncertainty Model. In fact, the Full-Likelihood Model consistently un-233

derperformed the Fixed-Uncertainty Model on the shuffled data (Fig. 5a,b; trial log likelihood234

difference between the Full-Likelihood Model and the Fixed-Uncertainty Model on the shuf-235

fled data: Monkey L: paired t-test t(110694) = −18.44, p < 0.001, δtotal = −20.9 × 102 and236

Monkey T: t(192610) = −20.15, p < 0.001, δtotal = −25.9 × 102; δtotal is the total log like-237

lihood difference across all trials). Therefore, there were significant performance differences238

in Full-Likelihood Model between the unshuffled and shuffled data (trial log likelihood differ-239

ence: Monkey L: paired t-test t(110694) = 33.34, p < 0.001, δtotal = 31.9 × 102 and Monkey240

T: t(192610) = 34.52, p < 0.001, δtotal = 37.2× 102).241

To confirm our effect sizes were appropriate, we again compared these values to those ob-242

tained from simulations in which we took the Full-Likelihood Model to be the ground truth243

(Supplementary Fig. 10). The simulations yielded total log likelihood differences of the Full-244

Likelihood Model between the unshuffled and shuffled data of (36.2± 2.2)× 102 (Monkey L)245
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and (40.7± 1.5)× 102 (Monkey T) (mean ± standard deviation across 5 repetitions), similar in246

magnitude to the observed values.247

Taken together, the shuffling analyses show that the better prediction performance of the248

Full-Likelihood Model is not due to the confound between the stimulus and the likelihood249

shape. We conclude that the trial-by-trial likelihood function decoded from the population250

represents behaviorally relevant stimulus uncertainty information, even when conditioned on251

the stimulus.252

Attribution analysis253

To assess whether the same population encoding the best point estimate (i.e. mean of the likeli-254

hood function) also encoded the uncertainty regarding that estimate (i.e. shape of the likelihood255

function), as we hypothesized to be the case, we performed attribution analysis33 on the trained256

Full-Likelihood decoder. Through this analysis, we ask how much of the changes in either (1)257

the mean of the likelihood µL (i.e. surrogate for the best point estimate) or (2) the standard devi-258

ation of the likelihood function σL (i.e. surrogate measure of the uncertainty) can be attributed259

back to each input multiunit, yielding attribution Aµ and Aσ, respectively. The question of fea-260

ture attribution is a very active field of research in machine learning, and multiple methods of261

attribution computation exist33–35. Here we have selected three different methods of computing262

attribution scores: saliency maps34, gradient × input33, and DeepLIFT35 (refer to Methods for263

the details of attribution computation).264

We observed that across all three attribution methods, multiunits with high µL attribution265

tended to have high σL attribution, and vice versa, giving rise to high degree of correlation266

between Aµ and Aσ (Fig. 6a). If distinct subpopulations were involved in encoding the point267

estimate and the uncertainty as found in the likelihood function, we would have expected mul-268

tiunits with a high µL attribution score to have a low σL attribution score, and vice versa, there-269
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Figure 6: Attribution analysis for means and standard deviations of the likelihood functions.
a, Attribution of 96 input multiunits to the likelihood mean Aµ,Saliency vs. standard deviation
Aσ,Saliency computed based on saliency maps for an example contrast session (Monkey T, 32%
contrast). b-d, Distribution of correlation coefficients between Aµ and Aσ for multi units across
all contrast sessions for both monkeys, computed based on different attribution methods.

fore leading to negative correlation between Aµ and Aσ. However, we observed that across all270

contrast-sessions from both monkeys, Aµ was strongly positively correlated with Aσ regardless271

of the exact attribution method used, suggesting that the highly overlapping subpopulations are272

involved in encoding both the point estimate and the uncertainty of the likelihood function, as273

we hypothesized would be the case (Fig. 6b-d).274
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Discussion275

Given the stochastic nature of the brain, repeated presentations of identical stimuli elicit vari-276

able responses. The covariation between neuronal activity fluctuations and perceptual choice277

has been studied extensively at the level of single neurons, originating with the pioneering work278

of Campbell & Kulikowski36 and Britten et al.37. Here, we go beyond this literature by examin-279

ing the hypothesis that the brain takes into account knowledge of the form of neural variability280

in order to build a belief over the stimulus of interest on each trial. This belief is captured by281

the likelihood function and the associated sensory uncertainty, both of which vary from trial to282

trial with the neural activity. To test this hypothesis, we decoded trial-to-trial likelihood func-283

tions from the population activity in visual cortex and used them in conjunction with a highly284

constrained, theoretically motivated decision model (the Bayesian model) to predict behavior.285

We found that a model utilizing the full likelihood function predicted the monkeys’ choices286

better than alternative models that ignore variations in the shape of the likelihood function. Our287

results provide the first population-level evidence in support of the theoretical framework of288

probabilistic population coding, where the same neurons that encode specific world state vari-289

ables also encode the uncertainty about those variables. Importantly, under this framework the290

brain performs Bayesian inference under a generative model of the neural activity.291

Our findings were made possible by recording from a large population simultaneously and292

by using a task in which uncertainty is relevant to the animal. In addition, we decoded likelihood293

functions using a deep neural network that does not rely on the strong parametric assumptions294

about the underlying generative model of the population that have dominated previous work.295

Importantly, we conditioned our analyses on the stimulus to rule out a confounding effect of the296

stimulus on the observed relationship between the decoded likelihood function and the subject’s297

decision. This approach is critical because previous behavioral studies on cue combination and298
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Bayesian integration, for instance, always relied on varying stimulus features (e.g. contrast,299

blur, motion coherence) to manipulate uncertainty7,8,22,38. As a result, these studies cannot rule300

out that any observed correlation between a proposed method of encoding uncertainty and a sub-301

ject’s behavior may be confounded by the stimulus (Supplementary Fig. 4), and they therefore302

fail to provide a sufficiently rigorous assessment on the representation of uncertainty. Carefully303

controlling for the effect of stimulus fluctuations allowed us to present rigorous evidence that304

the trial-by-trial fluctuations in the likelihood functions carry behaviorally relevant stimulus305

uncertainty information.306

After showing that this likelihood function is used behaviorally, what more can we say about307

the neural encoding of perceptual uncertainty? First, our network learns the log-likelihood of s,308

i.e. logL(s) = log p(r|s) + b(r) as a function of s. We never commit to a particular generative309

model p(r|s) as a function of r, as the DNN has an arbitrary offset as a function of r (Eq. 1 in310

Methods). Second, we had to move away from Poisson-like variability to better characterize the311

responses at the cost of analytic forms and easy interpretability. We see this as a necessary evil;312

namely, we have shown that making the Poisson-like assumption leads to worse predictions of313

behavior. That being said, the DNN extends what we know about generative models in visual314

cortex (e.g. tuning curves, contrast gain); in particular, it allows for rich correlation among units315

in the population. Third, we would like to stress that we do not believe that the DNN that we use316

to decode the likelihood is literally implemented in the brain. It remains an important question,317

and avenue for future research, what kind of transformation, if any, the brain performs in order318

to utilize and compute with this information.319

While the sensory likelihood function is a crucial building block for probabilistic computa-320

tion in the brain, fundamental questions remain regarding the nature of such computation. First,321

how do downstream areas process the information contained in sensory likelihood functions322

to make better decisions? Previous work has manually constructed neural networks for down-323
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stream computation that relied heavily on the assumption of Poisson-like variability9,10,15,39–41.324

However, more recent work has demonstrated that training generic shallow networks accom-325

plishes the same goal without the need for task-specific manual construction42. Second, does326

each area in a feedforward chain of computation encode a likelihood function over its own vari-327

able, with the computation propagating the uncertainty information from one variable to the328

next? For example, in our task, it is conceivable that prefrontal cortex encodes a likelihood329

function over class that is derived from a likelihood function over orientation coming in from330

V1. Third, what are the relative contributions of feedforward, recurrent, and feedback con-331

nections to the trial-to-trial population activity and the resulting decoded likelihood functions?332

Some work has argued strongly for a role of feedback28,43,44; in the present work, we are agnos-333

tic to this issue. While answering these questions will require major efforts, we expect that our334

findings will help put those efforts on a more solid footing. In the meantime, our results ele-335

vate the standing of Bayesian models of perception from frameworks to describe optimal input-336

response mappings45,46 to process models whose internal building blocks—likelihood functions337

and probability distributions—are more concretely instantiated in neuronal activity6,47,48.338
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Methods339

Experimental model and subject details340

All behavioral and electrophysiological data were obtained from two healthy, male rhesus341

macaque (Macaca mulatta) monkeys (L and T) aged 10 and 7 years and weighting 9.5 and342

15.1 kg, respectively. All experimental procedures complied with guidelines of the NIH and343

were approved by the Baylor College of Medicine Institutional Animal Care and Use Commit-344

tee (permit number: AN-4367). Animals were housed individually in a room located adjacent to345

the training facility on a 12h light/dark cycle, along with around ten other monkeys permitting346

rich visual, olfactory, and auditory social interactions. Regular veterinary care and monitoring,347

balanced nutrition and environmental enrichment were provided by the Center for Comparative348

Medicine of Baylor College of Medicine. Surgical procedures on monkeys were conducted349

under general anesthesia following standard aseptic techniques.350

Stimulus presentation351

Each visual stimulus was a single drifting oriented sinusoidal grating (spatial frequency: 2.79352

cycles/degree visual angle, drifting speed: 3.89 cycles/s) presented through a circular aperture353

situated at the center of the screen. The size of the aperture was adjusted to cover receptive354

fields of the recorded populations, extending 2.14◦ and 2.86◦ of visual angle for Monkey L and355

Monkey T, respectively. The orientation and contrast of the stimulus were adjusted on a trial-356

by-trial basis as will be described later. The stimulus was presented on a CRT monitor (at a357

distance of 100 cm; resolution: 1600 × 1200 pixels; refresh rate: 100 Hz) using Psychophysics358

Toolbox49. The monitor was gamma-corrected to have a linear luminance response profile.359

Video cameras (DALSA genie HM640; frame rate 200Hz) with custom video eye tracking360

software developed in LabVIEW were used to monitor eye movements.361
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Behavioral paradigm362

On a given trial, the monkey viewed a drifting oriented grating with orientation θ, drawn from363

one of two classes, each defined by a Gaussian probability distribution. Both distributions364

have a mean of 0◦ (grating drifting horizontally rightward, positive orientation corresponding to365

counter-clockwise rotation), but their standard deviations differed: σ1 = 3◦ for class 1 (C = 1)366

and σ2 = 15◦ for class 2 (C = 2). On each trial, the class was chosen randomly with equal367

probability, with the orientation of the stimulus then drawn from the corresponding distribution,368

p(θ|C). At the beginning of each recording session, at least three distinct values of contrasts369

were selected, and one of these values was chosen at random on each trial. Unlike more typical370

two-category tasks using distributions with identical variances but different means, optimal371

decision-making in our task requires the use of sensory uncertainty on a trial-by-trial basis15.372

Each trial proceeded as follows. A trial was initiated by a beeping sound and the appearance373

of a fixation target (0.15◦ visual angle) in the center of the screen. The monkey fixated on the374

fixation target for 300 ms within 0.5◦–1◦ visual angle. The stimulus then appeared at the center375

of the screen. After 500 ms, two colored targets (red and green) appeared to the left and the376

right of the grating stimulus (horizontal offset of 4.29◦ from the center with the target diameter377

of 0.71◦ visual angle), at which point the monkey saccaded to one of the targets to indicate their378

choice of class. For Monkey L, the grating stimulus was removed from the screen when the379

saccade target appeared, while for Monkey T, the grating stimulus remained on the screen until380

the subject completed the task by saccading to the target. The left-right configuration of the381

colored targets were varied randomly for each trial. Through training, the monkey learned to382

associate the red and the green targets with the narrow (C = 1) and the wide (C = 2) class383

distributions, respectively. For illustrative clarity, we used blue to indicate C = 2 throughout384

this document. The monkey received a juice reward for each correct response (0.10–0.15 mL).385

During the training, the monkeys were first trained to perform the colored version of the386
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task, where the grating stimulus was colored to match the correct class C for that trial (red for387

C = 1 and green for C = 2). Under this arrangement, the monkey simply learned to saccade to388

the target matching the color of the grating stimulus, although the grating stimulus orientation389

information was always present. As the training proceeded, we gradually removed the color390

from the stimulus, encouraging the monkey to make use of the orientation information in the391

stimulus to perform the task. Eventually, the color was completely removed, and at that point392

the monkey was performing the full version of the task.393

Surgical Methods394

Our surgical procedures followed a previously established approach28,50,51. Briefly, a custom-395

built titanium cranial headpost was first implanted for head stabilization under general anes-396

thesia using aseptic conditions in a dedicated operating room. After premedication with Dex-397

amethasone (0.25-0.5 mg/kg; 48 h, 24 h and on the day of the procedure) and atropine (0.05398

mg/kg prior to sedation), animals were sedated with a mixture of ketamine (10 mg/kg) and xy-399

lazine (0.5 mg/kg). During the surgery, anesthesia was maintained using isoflurane (0.5-2%).400

After the monkey was fully trained, we implanted a 96-electrode microelectrode array (Utah401

array, Blackrock Microsystems, Salt Lake City, UT, USA) with a shaft length of 1 mm over402

parafoveal area V1 on the right hemisphere. This surgery was performed under identical con-403

ditions as described for headpost implantation. To ameliorate pain, analgesics were given for 7404

days following a surgery.405

Electrophysiological recording and data processing406

The neural signals were pre-amplified at the head stage by unity gain preamplifiers (HS-27,407

Neuralynx, Bozeman MT, USA). These signals were then digitized by 24-bit analog data ac-408

quisition cards with 30 dB onboard gain (PXI-4498, National Instruments, Austin, TX) and409
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sampled at 32 kHz. Broadband signals (0.5 Hz to 16 kHz) were continuously recorded us-410

ing custom-built LabVIEW software for the duration of the experiment. Eye positions were411

tracked at 200 Hz using video cameras (DALSA genie HM640) with custom video eye track-412

ing software developed in LabVIEW. The spike detection was performed offline according413

to a previously described method26,28,50. Briefly, a spike was detected when the signal on a414

given electrode crossed a threshold of five times the standard deviation of the correspond-415

ing electrode. To avoid artificial inflation of the threshold in the presence of a large num-416

ber of high-amplitude spikes, we used a robust estimator of the standard deviation52, given417

by median(|x|)/0.6745. Spikes were aligned to the center of mass of the continuous wave-418

form segment above half the peak amplitude. Code for spike detection is available online at419

https://github.com/atlab/spikedetection. In this study, the term “multiunit”420

refers to the set of all spikes detected from a single channel (i.e. electrode) of the Utah array,421

and all analyses in the main text were performed on multiunits. For each multiunit, the total422

number of spikes during the 500 ms of pre-target stimulus presentation, ri for the ith unit, was423

used as the measure of the multiunit’s response for a single trial. The population response r is424

the vector of spike counts for all 96 multiunits.425

Dataset and inclusion criteria.426

We recorded a total of 61 and 71 sessions from Monkey L and T, for a total of 112,072 and427

193,629 trials, respectively. We removed any trials with electrophysiology recordings contam-428

inated by noise in the recording devices (e.g. poor grounding connector resulting in movement429

noise) or equipment failures. To do so, we established the following trial inclusion criteria:430

1. The total spike counts rt =
∑

i ri across all channels should fall within the ±4σadj from431

the median total spike counts across all trials from a single session. σadj is the standard de-432

viation of the total spike count distribution robustly approximated using the interquartile433
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range IQR as follows: σadj = IQR
1.35

.434

2. For at least 50% of all units, the observed ith unit spike count ri for the trial should fall435

within a range defined as: |ri − MEDi| ≤ 1.5 · IQRi, where MEDi and IQRi are the436

median and interquartile ranges of the ith unit spike counts distribution throughout the437

session, respectively.438

We only included trials that satisfied both of the above criteria in our analysis. Empirically,439

we found the above criteria to be effective in catching obvious anomalies in the spike data while440

introducing minimal bias into the data. After the application of the criteria, we were left with441

110,695 and 192,631 trials for Monkey L and T, thus retaining 98.77% and 99.48% of the total442

trials, respectively. While this selection criteria allowed us to remove apparent anomaly in the443

data, we found that the main findings described in this paper were not sensitive to the precise444

definition of the inclusion criteria.445

During each recording session, stimuli were presented under three or more contrast values.446

In all analyses to follow, we studied the trials from distinct contrast separately for each recording447

session, and we refer to this grouping as a “contrast-session”.448

Receptive field mapping449

On the first recording session for each monkey, the receptive field was mapped using spike-450

triggered averaging of the multiunit responses to a white noise random dot stimulus. The white451

noise stimulus consisted of square dots of size 0.29◦ of visual angle presented on a uniform452

gray background, with randomly varying location and color (black or white) every 30 ms for453

1 second. We adjusted the size of the grating stimulus as necessary to ensure that the stimulus454

covers the population receptive field entirely.455
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Full-Likelihood decoder456

Given the population activity r in response to an orientation θ, we aimed to decode uncertainty457

information in the form of a likelihood function L(θ) ≡ p(r|θ), as a function of θ. This may458

be computed through the knowledge of the generative relation leading from θ to r—that is,459

by describing the underlying orientation conditioned probability distribution over r, p(r|θ).460

This procedure is typically approximated by making rather strong assumptions about the form461

of the density function, for example by assuming that neurons fire independently and each462

neuron fires according to the Poisson distribution19. Under this approach, the expected firing463

rates (i.e. tuning curves) of the ith neuron E[ri|θ] = fi(θ) must be approximated as well, for464

example by fitting a parametric function (e.g. von Mises tuning curves53) or employing kernel465

regression19. While these approaches have proven useful, the effect of the strong and likely466

inaccurate assumptions on the decoded likelihood function remains unclear. Ideally, we can467

more directly estimate the likelihood function L(θ) without having to make strong assumptions468

about the underlying conditional probability distribution over r.469

To this end, we employed a deep neural network (DNN)16 to directly approximate the like-470

lihood function over the stimulus orientation, θ, from the recorded population response r. Here471

we present a brief derivation that serves as the basis of the network design and training objective.472

Let us assume that m multiunits were recorded simultaneously in a single recording session, so473

that r ∈ Rm. To make the problem tractable, we bin the stimulus orientation θ into n distinct474

values, θ1 to θn (the derivation holds in general for arbitrarily fine binning of the orientation).475

With this, the likelihood function can be captured by a vector L ∈ Rn where Li = L(θi). Let476

us assume that we can train some DNN to learn a mapping f from the population response r to477

the log of the likelihood function L up to a constant offset b. That is, f : Rm 7→ Rn,478

r 7→ f(r) = logL + b(r) = log p(r|θ) + b(r) (1)
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479

for some scalar function b ∈ R. As the experimenter, we know the distribution of the stimulus480

orientation, pθ ∈ Rn, where pθ,i = p(θi). We combine f(r) and pθ to compute the log posterior481

over stimulus orientation θ up to some scalar value b′(r),482

z(r) ≡ logpθ + f(r) = log p(θ|r) + b′(r) (2)

483

We finally take the softmax of z(r), and recover the normalized posterior function q(r) ≡484

softmax(z(r)) where,485

qi(r) =
ezi(r)∑
j e

zj(r)
(3)

=
eb
′(r)p(θ = θi|r)

eb′(r)
∑

j p(θ = θj|r)
(4)

= p(θ = θi|r) (5)

486

Overall, q(r) = softmax(logpθ + f(r)).487

The goal then is to train the DNN f(r) such that the overall function q(r) matches the488

posterior over the stimulus, p(r) where pi(r) = p(θ = θi|r) based on the available data. This489

in turn allows the network output f(r) to approach the log of the likelihood function L, up to490

a constant b(r). For 1-out-of-n classification problems, minimizing the cross-entropy between491

q(r) and the stimulus orientation θ for a given r lets the overall function q(r) approach the true492

posterior p(r), as desired54,55. To show this, let us start by minimizing the difference between493

the model estimated posterior q(r) and the true posterior p(r) over the distribution of r. We do494

this by minimizing the lossL defined as the expected value of the Kullback-Leibler divergence56
495
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between the two posteriors:496

L(W ) = Er [DKL(p||q)] (6)

= Er

[
Eθ|r

[
log

p(θ|r)
q(θ|r,W )

]]
(7)

= Er,θ

[
log

p(θ|r)
q(θ|r,W )

]
(8)

= −Er,θ [log q(θ|r,W )]−H(θ|r) (9)

497

where p(θ = θi|r) ≡ pi(r), q(θ = θi|r,W ) ≡ qi(r,W ), W is a collection of all trainable498

parameters in the network, and H(θ|r) is the conditional entropy of θ conditioned on r, which499

is an unknown but a fixed quantity with respect to W and the data distribution. Here we used500

the notation q(r,W ) to highlight the dependence of the network estimated posterior q(r) on501

the network parameters W . We can redefine the loss, L∗, only leaving the terms that depends502

on the trainable parameters W , and then apply a Monte Carlo method57 to approximate the loss503

from samples:504

L∗(W ) = −Er,θ [log q(θ|r,W )] (10)

≈ − 1

N

∑
i

log q(θ(i)|r(i),W ) (11)

505

where
(
θ(i), r(i)

)
are samples drawn from a training set for the network. Eq. 11 is precisely the506

definition of the cross-entropy as we set out to show.507

Therefore, by optimizing the overall function q(r) to match the posterior distribution through508

the use of cross-entropy loss, the network output f(r) can approximate the log of the likelihood509

function L(θ) for each r up to an unknown constant b(r). Because we do not know the value of510
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b(r), the network will not learn to recover the underlying generative function linking from θ to511

r, p(r|θ).512

As an example, consider a neural population with responses that follows a Poisson-like513

distribution (i.e. a version of the exponential distribution with linear sufficient statistics9,10).514

Learning a decoder for such population responses occurs as a special case of training a DNN-515

based likelihood decoder. For Poisson-like variability, the stimulus-conditioned distribution516

over r is p(r|θ) = φ(r)eh
>(θ)r. The log likelihood function is then logL = log φ(r) + H>r,517

where H is a matrix whose ith column is h(θi). If we let f(r) = H>r, then f(r) = logL+ b(r)518

as desired, for b(r) = − log φ(r). Hence, if we used a simple fully connected network, training519

the network is equivalent to fitting the kernel function h(θ) of the Poisson-like distribution.520

In this work, we modeled the mapping f(r) as a DNN with two hidden layers17, consisting521

of two repeating blocks of a fully connected layer of size Nh followed by a rectified linear522

unit (ReLU)16 and a drop-out layer58 with dropout rate dr, and a fully connected readout layer523

with no output nonlinearity (Fig. 3c). To encourage smoother likelihood functions, we added524

an L2 regularizer on logL filtered with a Laplacian filter of the form h = [−0.25, 0.5,−0.25].525

Therefore, the training loss included the term:526

R = γ
∑
i

u2
i (12)

for u = (logL) ∗ h, where ∗ denotes convolution operation, ui is the ith element of the filtered527

log likelihood function u, and γ is the weight on the smoothness regularizer.528

We trained a separate instance of the network for each contrast-session, and referred to this529

class of DNN based likelihood decoder as the Full-Likelihood decoder to differentiate from530

alternative decoders described later.531

During the training, each contrast-session was randomly split in proportions of 80% / 20%532

to yield the training set and the validation set, respectively. The stimulus orientation θ was533
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binned into integers in the range [−45◦, 45◦], and we excluded trials with orientations outside534

this range. This led to the exclusion of 157 out of 110,695 trials (0.14%) and 254 out of 192,631535

trials (0.13%) for Monkey L and T data, respectively. The network was trained on the training536

set, starting with initial learning rate of λ0 and its performance on the validation set was moni-537

tored to perform early stopping59, and subsequently hyperparameter selection. For early stop-538

ping, we computed the mean squared error (MSE) between the maximum-a-posteriori (MAP)539

readout of the network output posterior q and the stimulus orientation θ on the validation set,540

and the training under a particular learning rate was terminated (early-stopped) if MSE failed541

to improve over 400 consecutive epochs, where each epoch is defined as one full pass through542

the training set. Upon early stopping, the parameter set that yielded the best validation set MSE543

during the course of the training was restored. The restored network was then trained again but544

with an updated learning rate λi = 1
3
λi−1, employing the same early stopping criteria. This pro-545

cedure was repeated 4 times, therefore training the network under the 4 sequentially decreasing546

learning rate schedule of λ0, 1
3
λ0, 1

9
λ0 and 1

27
λ0. Once the training was complete, the trained547

network was evaluated on the validation set to yield the final score, which served as the basis548

for our hyperparameter selections. The values of hyperparameters for the networks, includ-549

ing the size of the hidden layers Nh, the initial learning rate λ0, the weight on the likelihood550

function smoothness regularizer γ, and the drop-out rate dr during the training were selected551

by performing a random grid search over candidate values to find the combination that yielded552

the best validation set score for each contrast-session instance of the network (Supplementary553

Table 1). We observed that all possible values of hyperparameters were found among the best554

selected hyperparameter networks across all contrast-sessions and all types of networks trained.555
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Symbol Description Possible Values
Nh number of hidden units per layer {400, 600, 800, 1000}
λ0 initial learning rate {0.01, 0.03, 0.6}
γ Laplacian L2 regularizer weight {3, 30, 300}
dr dropout rate {0.2, 0.5, 0.9}

Supplementary Table 1: Possible values of hyperparameters during model selection.

Decoding likelihood functions from known response distributions556

To assess the effectiveness of the DNN-based likelihood decoding method described above, we557

simulated neural population responses with known noise distributions, trained DNN decoders558

on the simulated population responses, and compared the decoded likelihood functions to the559

ground-truth likelihood functions obtained by inverting the known generative model for the560

responses. We also compared the quality of the DNN-decoded likelihood functions to those561

decoded by assuming independent Poisson distribution on the population responses, as done in562

previous work14,18,19,21,22.563

We simulated the activities of a population of 96 multiunits rsim responding to the stimulus564

orientation θ drawn from the the distribution defined for our task such that:565

p(θ) =
1

2
N (θ; 0, σ2

1) +
1

2
N (θ; 0, σ2

2) (13)

where σ1 = 3◦ and σ2 = 15◦.566

We modeled the expected response of ith unit to θ—that is, the tuning function fi(θ)—with567

a Gaussian function:568

fi(θ) = Ae
−

(θ−µsim,i)
2

2σ2sim (14)

569

For the simulation, we have set A = 6 and σsim = 21◦. We let the mean of the Gaussian tuning570
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curves for the 96 units to uniformly tile the stimulus orientation between−40◦ and 40◦. In other571

words,572

µsim,i = −40 +
16

19
(i− 1) (15)

573

for i ∈ [1, 96].574

For any given trial with a drawn orientation θ, the population response rsim was then gener-575

ated under two distinct models of distributions. In the first case, the population responses were576

drawn from an independent Poisson distribution as is commonly assumed in many works:577

p(rsim|θ) =
∏
i

Poiss(rsim,i; fi(θ)) (16)

=
∏
i

fi(θ)
rsim,ie−fi(θ)

rsim,i!
(17)

578

In the second case, the population responses were drawn from a multivariate Gaussian distribu-579

tion with covariance matrix Σ ∈ R96×96 that scales with the mean response of the population.580

That is:581

p(rsim|θ) = N (rsim; f(θ),Σ(θ)) (18)

582

for583

Σ(θ) = diag(f1/2(θ))>C diag(f1/2(θ)) (19)
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584

where f1/2(θ) ∈ R96 such that f1/2
i (θ) =

√
fi(θ), and C ∈ R96×96 is a correlation matrix.585

Under this distribution, the variance of any unit’s response scales linearly with its mean just586

as in the case of the Poisson distribution, but the population responses can be highly correlated587

depending on the choice of the correlation matrixC. For the simulation, we randomly generated588

a correlation matrix with the average units correlation of 0.227.589

For each case of the distribution, we simulated population responses for the total of 1200 tri-590

als. Among these, 200 trials were set aside as the test set. We trained the DNN-based likelihood591

decoder on the remaining 1000 trials, splitting them further into 800 and 200 trials as the train-592

ing and validation set, respectively. We followed the exact DNN training and hyperparameter593

selection procedure as described earlier.594

For comparison, we also decoded the likelihood function from the population response rsim595

under the assumption of independent Poisson variability, regardless of the “true” distribution.596

Each unit’s responses over the 1000 trials were fitted separately with a Gaussian tuning curve597

(Eq. 14). The parameters of the tuning curve Ai, µi and σsim, i were obtained by minimizing the598

least square difference between the Gaussian tuning curve and the observed ith unit’s responses599

(θ, rsim,i) using least squares function from Python SciPy optimization library.600

The ground-truth likelihood function p(rsim|θ) was computed for each simulated trial ac-601

cording to the definition of the distribution as found in Eq. 16 for the independent Poisson602

population or Eq. 18 for the mean scaled correlated Gaussian population.603

We then assessed the quality of the decoded likelihood functions under the independent604

Poisson model LPoiss(θ) and under the DNN model LDNN by computing their Kullback-Leibler605

(KL) divergence56 from the ground-truth likelihood function Lgt(θ), giving rise to DPoiss and606

DDNN, respectively. All continuous likelihood functions (Lgt and LPoiss) were sampled at orien-607

tation θ where θ ∈ Z and θ ∈ [−45◦, 45◦], giving rise to discretized likelihood functions Lgt and608
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LPoiss matching the dimensionality of the discretized likelihood function LDNN computed by the609

DNN. We then computed the KL divergence as:610

DPoiss =
∑
i

log
Lgt,i

LPoiss,i
Lgt,i (20)

and

DDNN =
∑
i

log
Lgt,i

LDNN,i
Lgt,i (21)

611

We computed the KL divergence for both models across all 200 trials in the test set for both612

simulated population distributions (Supplementary Fig. 3). When the simulated population613

distribution was independent Poisson, then DPoiss < DDNN for all test set trials, indicating that614

LPoiss better approximated Lgt overall than LDNN. However, LDNN still closely approximated Lgt.615

When the simulated population distribution was mean scaled correlated Gaussian, LDNN616

better approximated Lgt than LPoiss on the majority of the trials. Furthermore, LPoiss provided617

qualitatively worse fit to the Lgt for the simulated correlated Gaussian distribution compared to618

the fit of LDNN to Lgt for the simulated independent Poisson distribution.619

Overall, the simulation results suggest that (1) when the form of the underlying population620

distribution is known (such as in the case of independent Poisson population), more accurate621

likelihood functions can be decoded by directly using the knowledge of the population distribu-622

tion than through the DNN-based likelihood decoder, but (2) when the form of the underlying623

distribution is unknown (such as in the case of the mean scaled correlated Gaussian distribu-624

tion), then a DNN-based likelihood decoder can yield much more accurate likelihood functions625

than if one was to employ a wrong assumption about the underlying distribution in decoding626

likelihood functions, and (3) a DNN-based likelihood decoder can provide reasonable estimate627
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of the likelihood function across wide range of underlying distributions. Because the true un-628

derlying population distribution is hardly ever known to the experimenter, we believe that our629

DNN-based likelihood decoder stands as the most flexible method in decoding likelihood func-630

tions from the population responses to stimuli.631

Fixed-Uncertainty likelihood decoder632

To test whether the trial-by-trial fluctuations in the shape of the likelihood function convey633

behaviorally relevant information, we developed the Fixed-Uncertainty likelihood decoder —634

a neural network based likelihood decoder that learns a fixed shape likelihood function whose635

location is shifted based on the input population response.636

The Fixed-Uncertainty decoder network consisted of two parts: a learned fixed shape like-637

lihood function L0 and a DNN that reads out a single scalar value ∆s corresponding to the shift638

that is applied to L0 (Supplementary Fig. 5) to yield the final likelihood function L. The DNN639

consisted of two repeating blocks of a fully connected layer followed by ReLU and a drop-out640

layer, and a final fully connected readout layer with no output nonlinearity, much like the DNN641

used for the Full-Likelihood decoder. The logL0 was shifted by ∆s utilizing linear interpolation642

based grid-sampling60 to shift the log-likelihood function in a manner that allows for the gradi-643

ent of the loss to flow back to both the shift value ∆s (and therefore to the DNN parameters) as644

well as to the likelihood function shape L0.645

The output shifted log-likelihood function was then trained in an identical manner to the646

full-likelihood decoder described earlier, utilizing the same set of training paradigm with early647

stopping and regularizers, and explored the same range of hyperparameters.648
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Likelihood functions based on Poisson-like and independent Poisson distri-649

butions650

To serve as a comparison, for each contrast-session, we decoded likelihood functions from651

the population response assuming Poisson-like or independent Poisson distribution for p(r|θ)652

(Supplementary Fig. 2).653

As was noted above, decoding likelihood function under the Poisson-like distribution is a654

special case of the Full-Likelihood decoder but using entirely linear DNN (i.e. no nonlinearity655

utilized in the network). Therefore, to decode likelihood functions under the assumption of the656

Poisson-like distribution, for each contrast-session, we trained a DNN with two hidden layers657

consisting of two repeating blocks of a fully connected layer followed by a drop-out layer58
658

but with no nonlinear activation functions, and a fully connected readout layer with no output659

nonlinearity. The rest of the training and model selection procedure was identical to that of the660

Full-Likelihood or the Fixed-Uncertainty decoder described earlier.661

To decode likelihood function under the independent Poisson distribution assumption, we662

first fitted tuning curves fi(θ) for each multiunit’s responses to stimulus orientations θ within a663

single contrast session. Tuning curves were computed using Gaussian process regression61 with664

squared-exponential covariance function cov(f(θ1), f(θ2)) = exp(− 1
2σL

(θ1 − θ2)2) and a fixed665

observational noise σo using values of σL = 20 and σo = 2 selected based on the cross valida-666

tion performance on multiunit’s response prediction on a dataset not included elsewhere in the667

analysis. Once tuning curves were computed, the likelihood function over stimulus orientations668

was computed from the population response r as follows:669

L(θ) =
∏
i

p(ri|θ) =
∏
i

fi(θ)
rie−fi(θ)

ri!
(22)
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Mean and standard deviation of likelihood function670

For uses in the subsequent analyses, we computed the mean and the standard deviation of the671

likelihood function by treating the likelihood function as an unnormalized probability distribu-672

tion:673

µL =

∫
θL(θ) dθ∫
L(θ) dθ

(23)

σL =

√∫
(θ − µL)2L(θ) dθ∫

L(θ) dθ
(24)

We took the µL and σL to be the point estimate of the stimulus orientation and the measure of674

the spread of the likelihood function, respectively, used in all subsequent analyses. Although not675

presented here, we performed the following analyses with other point estimates of the stimulus676

orientation such as the orientation at the maximum of the likelihood function and the median of677

the likelihood functions, and observed that models with mean of the likelihood function as the678

point estimate performed the best.679

Attribution analysis680

To assess whether the same members of the population simulatenously encode the best point681

estimate (i.e. in the form of the mean of the likelihood function µL) and uncertainty (i.e. in the682

form of the width of the likelihood function σL), we computed the attribution of each multiunit683

input of the trained Full-Likelihood decoder to the mean of the likelihood µL and the standard684

deviation of the likelihood function σL giving rise to the attribution Aµ, Aσ ∈ Rm, respectively,685

where m is the number of multiunits in the input to the network. Among numerous meth-686

ods of computing attribution33–35,62, we have selected three popular gradient based attribution687

methods33: saliency maps34, gradient × input62, and DeepLift35 and compared their results.688
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Given a collection of input population responses and computed likelihood functions {r(i),L(i)},689

where the superscript denotes the ith trial in the contrast session, we compute the mean and the690

standard deviation of the likelihood function according to Eq. 23 and Eq. 24, respectively, giving691

rise to µ(i)
L and σ(i)

L . Given a target feature S ∈ {µL, σL} that can be computed from the input692

units r through a differentiable function, we compute the attribution of the input units to the693

target S for each trial according to each attribution method, yielding a
(k)
S,method, where a ∈ Rm.694

The sign of the attribution indicates whether increasing the unit tends to increase or decrease695

the target feature. Since we are interested more in how much each unit contribute to the target696

feature rather than in which direction, we take the absolute value of per trial attribution and697

compute the average across all trials to yield the final attribution of the input units:698

AS,method =
∑
k

|a(k)
S,method| (25)

For the saliency maps based method34, the attribution is computed as the partial derivative699

of the feature S with respect to the input units r:700

aS,Saliency =
∂S

∂r
(26)

which can be computed rather straightforwardly on a DNN implemented using any of the701

modern neural network libraries equipped with automatic gradient computation.702

For Gradient × Input (GI) method, the attribution is computed as the gradient of the feature703

with respect to the input (as in saliency maps) multiplied with the input r:704

aS,GI =
∂S

∂r
� r (27)

Finally, we computed DeepLIFT attribution by using modified gradient computation for705

ReLU units in the network defined as:706
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∂mReLU(x)

∂x
=

ReLU(x)− ReLU(x0)

x− x0

(28)

where x0 represents the input into the ReLU nonlinearity when a reference input r0 was used as707

the input into the network. Here, we have defined the reference network input to be the average708

population response across all trials (refer to Ref33,35 for details).709

Using the above modified gradient computation for ReLU nonlinearity in the backpropaga-710

tion to compute the partial derivative of the target feature with respect to the input units yield the711

modified partial derivative ∂mS
∂r

which is finally used to compute the DeepLIFT (DL) attribution712

as:713

aS,DL =
∂mS

∂r
� (r− r0) (29)

For each contrast session and each attribution method, we computed the attribution of the714

input units to both µL and σL, yielding vectors Aµ and Aσ, and we computed the Pearson715

correlation coefficient between the two scores across the units (Fig. 6).716

Decision-making models717

Given the hypothesized representation of the stimulus and its uncertainty in the form of the718

likelihood function L(θ) ≡ p(r|θ), the monkey’s trial-by-trial decisions were modeled based719

on the assumption that the monkey computes the posterior probability over the two classes720

C = 1 and C = 2, and utilizes this information in making decisions—that is, in accordance721

to a model of a Bayesian decision maker. The orientation distributions for the two classes are722

p(θ|C = 1) = N (θ;µ, σ2
1) and p(θ|C = 2) = N (θ;µ, σ2

2) with µ = 0 and σ1 = 3◦ and723

σ2 = 15◦ where N (θ;µ, σ2) denotes a Gaussian distribution over θ with mean µ and variance724

σ2. The posterior ratio ρ for the two classes is:725
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ρ =
p(C = 2|r)
p(C = 1|r)

(30)

=
p(C = 2)

∫
p(r|θ)p(θ|C = 2) dθ

p(C = 1)
∫
p(r|θ)p(θ|C = 1) dθ

(31)

=
p(C = 2)

∫
L(θ)N (θ;µ, σ2

2) dθ

p(C = 1)
∫
L(θ)N (θ;µ, σ2

1) dθ
(32)

A Bayes-optimal observer should select the class with the higher probability—a strategy726

known as maximum-a-posteriori (MAP) decision-making:727

Ĉ = argmax
C

p(C|r) (33)

728

where Ĉ is the subject’s decision. However, according to the posterior probability matching729

strategy63,64, the decision of subjects on certain tasks are better modeled as sampling from the730

posterior probability:731

p(Ĉ) = p(C = Ĉ|r) (34)

732

To capture either decision-making strategy, we modeled the subject’s classification decision733

probability ratio as follows:734

p(Ĉ = 2)

p(Ĉ = 1)
=

(
p(C = 2|r)
p(C = 1|r)

)α
= ρα (35)

735

where α ∈ R+. When α = 1, the decision-making strategy corresponds to the posterior prob-736

ability matching while α = ∞ corresponds to the MAP strategy64. We fitted the value of α737
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for each contrast-session during the model fitting to capture any variation of the strategy. Fur-738

thermore, we incorporated a lapse rate λ, a fraction of trials on which the subject does not pay739

attention and makes a random decision. Hence, the final probability that the subject selects the740

class C = 1 was modeled as:741

p(Ĉ = 1) = (1− λ)
1

1 + ρα
+ 0.5λ (36)

= (1− λ)

[
1 +

(
p(C = 2)

∫
L(θ)N (θ;µ, σ2

2) dθ

p(C = 1)
∫
L(θ)N (θ;µ, σ2

1) dθ

)α]−1

+ 0.5λ (37)

= (1− λ)

[
1 +

(
(1− p(C = 1))

∫
L(θ)N (θ;µ, σ2

2) dθ

p(C = 1)
∫
L(θ)N (θ;µ, σ2

1) dθ

)α]−1

+ 0.5λ (38)

For each contrast-session, we fitted the above Bayesian decision model to the monkey’s742

decisions by fitting the four parameters: µ, p(C = 1), α, and λ. Fitting µ (the center of stimulus743

orientation distributions) and p(C = 1) (prior over class) allowed us to capture the bias in the744

stimulation distribution that the subject may have acquired errorneously during the training, and745

fitting α and λ allowed for the model to match the decision-making strategy employed by the746

subject.747

Utilizing the likelihood functionL(θ) decoded from the V1 population response via the Full-748

Likelihood decoder network in Eq. 38 gave rise to the Full-Likelihood Model that made use of749

all information including the trial-by-trial uncertainty information as captured by the trial-by-750

trial fluctuations in the shape of the likelihood function. Alternatively, utilizing the likelihood751

function decoded by the trained Fixed-Uncertainty decoder gave rise to the Fixed-Uncertainty752

Model. The Fixed-Uncertainty Model effectively ignores all trial-by-trial fluctuations in the753

uncertainty that would be captured by the flucutations in the shape of the likelihood function, but754

captures the trial-by-trial point estimate of the stimulus orientation θ̂ by shifting the leaned fixed755

shape likelihood function over orientation. For each contrast-session, different fixed likelihood756
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shape was learned, allowing the overt measure of uncertainty such as contrast to modulate the757

expected level of uncertainty.758

For comparison, we have also tested the performance of the trial-by-trial decision prediction759

utilizing likelihood functions decoded based on Poisson-like or independent Poisson population760

distribution assumptions, giving rise to the Poisson-like Model and the Independent Poisson761

Model for predicting trial-by-trial decisions, respectively.762

Model fitting and model comparison763

We used 10-fold cross-validation to fit and evaluate both decision models, separately for each764

contrast-session. We divided all trials from a given contrast-session randomly into 10 equally765

sized subsets, B1, B2, . . . , Bi, . . . , B10 where Bi is the ith subset. We then held out a single766

subset Bi as the test set, and trained the decision-making model on the remaining 9 subsets767

combined together, serving as the training set. The predictions and the performance of the768

trained model on the held out test set Bi was then reported. We repeated this 10 times, iterating769

through each subset as the test set, training on the remaining subsets.770

The decision models were trained to minimize the negative log likelihood on the subject’s771

decision across all trials in the training set:772

Θ̂ = argmin
Θ

(
− log

∏
i

p(Ĉ = Ĉi|M,Θ)

)
(39)

= argmin
Θ

(
−
∑
i

log p(Ĉ = Ĉi|M,Θ)

)
(40)

773

where Θ is the collection of the parameters for the decision-making model M and Ĉi is the774

subject’s decision on the ith trial in the training set. The term p(Ĉ|M,Θ) is given by the Eq. 38775

with either the unmodified L(θ) in the Full-Likelihood Model or a Gaussian approximation to776
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L(θ) in the Fixed-Uncertainty Model.777

The optimizations were performed using three algorithms: fmincon and ga from MAT-778

LAB’s optimization toolbox and Bayesian Adaptive Direct Search (BADS)65. When applicable,779

the optimization was repeated with 50 or more random parameter initializations. For each cross-780

validation fold, we retained the parameter combination Θ̂ that yielded the best training set score781

(i.e. lowest negative log likelihood) among all optimization runs across different algorithms782

and parameter initializations. We subsequently tested the model M with the best training set783

parameter Θ̂ and reported the score on the test set. For each contrast-session, all analyses on784

the trained model presented in the main text were performed on the aggregated test sets scores.785

Likelihood shuffling analysis786

To assess the contribution of the trial-by-trial fluctuations in the decoded likelihood functions787

in predicting the animal’s decisions under the Full-Likelihood Model, for each contrast-session788

we shuffled the likelihood functions among trials in the same stimulus orientation bin, while789

maintaining the trial to trial relationship between the point estimate of the stimulus orientation790

(i.e. mean of the normalized likelihood) and the perceptual decision. Specifically, we binned791

trials to the nearest orientation degree such that each bin was centered at an integer degree (i.e.792

bin center ∈ Z) with the bin width of 1◦. We then shuffled the likelihood functions among793

trials in the same orientation bin. This effectively removed the stimulus orientation conditioned794

correlation between the likelihood function and the subject’s classification Ĉ, while preserving795

the expected likelihood function for each stimulus orientation.796

However, we were specifically interested in decoupling the uncertainty information con-797

tained in the shape of the likelihood function from the decision while minimally disrupting the798

trial-by-trial correlation between the point estimate of the stimulus orientation and the subject’s799

classification decision. To achieve this, for each trial, the newly assigned likelihood function800
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was shifted such that the mean of the normalized likelihood function, µL (Eq. 23), remained801

the same for each trial before and after the likelihood shuffling (Fig. 5c). This allowed us to802

specifically assess the effect of distorting the shape of the likelihood function conditioned on803

both the (binned) stimulus orientation and the point estimate of the stimulus orientation (i.e.804

µL) (Fig. 5c). To ensure that both models can take the full advantage of any information that805

remains in the shuffled likelihood functions, we trained both the Full-Likelihood Model and the806

Fixed-Uncertainty Model from scratch on the shuffled data. Aside from the difference in the807

dataset, we followed the exact procedure used when training on the original (unshuffled) data,808

evaluating the performance through cross-validation on the test sets.809

Classification simulation810

We computed the expected effect size of the model fit difference between the Full-Likelihood811

Model and the Fixed-Uncertainty Model by generating simulated data using the trained Full-812

Likelihood Model as the ground truth. Specifically, for each trial for each contrast-session,813

we computed the probability of responding Ĉ = 1 from Eq. 38, utilizing the full decoded814

likelihood function L(θ) for the given trial, and sampled a classification decision from that815

probability. This procedure yielded simulated data where all monkeys’ decisions were replaced816

by decisions made by the trained Full-Likelihood Models. We repeated this procedure 5 times,817

thereby producing 5 sets of simulated data. For each set of simulated data, we trained the818

two decision-making models (Full-Likelihood Model and Fixed-Uncertainty Model) on each819

contrast-session with 10-fold cross-validation, and reported the aggregated test set scores as820

was done for the original data.821
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Code availability822

Code used for modeling and training the deep neural networks as well as for figure generation823

will be made available for view and download at https://github.com/eywalker/v1_824

likelihood. All other code used for analysis including data selection and decision model825

fitting will be placed at https://github.com/eywalker/v1_project. Finally, code826

used for elecrophysiology data processing can already be found in the Tolias lab GitHub orga-827

nization https://github.com/atlab.828

Data availability829

All figures except for Figure 1 and Supplementary Figure 4 were generated from raw data or830

processed data. The data generated and/or analyzed during the current study are available from831

the corresponding author upon reasonable request. No publicly available data was used in this832

study.833

Statistics834

All statistical tests used were two-tailed paired two-sample t-test, unless specified otherwise.835

Wherever reported, data are means and error bars indicate standard error of the means com-836

puted as σ√
n

where σ is the standard deviation and n is the size of the sample within the bin,837

unless specified otherwise. Exact p values less than 0.001 were reported as p <0.001. When838

appropriate, p values were corrected for multiple comparisons and the corrected p value was839

reported.840
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Supplementary Figure 1: Number of trials per contrast-session. Each point corresponds to a
single contrast-session, depicting the number of trials performed at the particular contrast.
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Supplementary Figure 2: Example decoded likelihood functions. Example decoded likeli-
hood functions under Full-Likelihood, Poisson-like and Independent-Poisson based decoders
are shown for randomly selected trials from three distinct contrast-sessions from Monkey T.

55

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2019. ; https://doi.org/10.1101/365973doi: bioRxiv preprint 

https://doi.org/10.1101/365973
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 3: Performance of the likelihood functions decoded by DNN-based de-
coders. a-b, Results on independent Poisson population responses. a, KL divergence between
the ground truth likelihood function and likelihood function decoded with: a trained DNNDDNN

vs. independent Poisson distribution assumption DPoiss. Each point is a single trial in the test
set. The distributions of DDNN and DPoiss are shown at the top and right margins, respectively.
The distribution of pair-wise difference between DDNN and DPoiss is shown on the diagonal. b,
Example likelihood functions. The ground truth (solid blue), independent-Poisson based (dot-
ted orange), and DNN-based (dashed green) likelihood functions are shown for selected trials
from the test set. Four random samples (columns) were drawn from the top, middle and bot-
tom 1/3 of trials sorted by the DDNN (rows). c-d, Same as in a-b but for simulated population
responses with correlated Gaussian distribution where variance is scaled by the mean.
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Supplementary Figure 4: Alternative relationships between the likelihood function and the de-
cision. Possible relationships between variables in the model are indicated by black arrows.
We consider two scenarios: a, c the likelihood function L mediates the decision Ĉ, b, d the
likelihood function does not mediate the decision. The gray arrow represents the trial-by-trial
fluctuations in the subject’s decisions Ĉ as predicted by the variable. a, b, When not condition-
ing on the stimulus s, the stimulus can drive correlation among all variables, making it difficult
to distinguish the two scenarios. c, d, When conditioning on the stimulus, we expect correlation
between Ĉ and L only when L mediates the decision, allowing us to distinguish the two sce-
narios. The variable r represents the recorded cortical population and rall represents responses
of all recorded and unrecorded neurons.
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Supplementary Figure 5: Fixed-Uncertainty decoder. a, A schematic of a DNN for the Fixed-
Uncertainty decoder mapping r to the decoded likelihood function L. For each contrast-session,
the Fixed-Uncertainty decoder learns a single fixed-shape likelihood function L0 and a network
that shifts L0 based on the population response. Therefore, all resulting likelihood functions
share the same shape (uncertainty) but differ in the center location from trial to trail. b, Example
decoded likelihood functions from randomly selected trials from a single contrast session for
both the Fixed-Uncertainty decoder and Full-Likelihood decoder.
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Supplementary Figure 6: Fitted Bayesian decision model parameters. Each point corresponds to
a single contrast-session, depicting the average fitted parameter value across 10 cross-validation
training sets plotted against the contrast of the contrast-session. The solid line and error
bars/shaded area depicts the mean and the standard error of the mean of the parameter value
for binned contrast values, respectively.
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Supplementary Figure 7: Model performance on decision predictions. a-b, Model performance
measured in proportions of trials correctly predicted by the model as a function of contrast for
four decision models based on different likelihood decoders. On each trial, the class decision
that would maximize the posterior p(Ĉ|r) was chosen to yield a concrete classification predic-
tion. c-d, Same as in a-b but with performance measured as the trial-averaged log likelihood of
the model. For a-b and c-d, dashed lines indicate the performance at chance (50% and ln(0.5),
respectively).
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Supplementary Figure 8: Performance of Poisson-like and Independent Poisson Models. For
each monkey, the average trial-by-trial performance of the Full-Likelihood, Poisson-like and In-
dependent Poisson Models are shown relative to the Fixed-Uncertainty Model across contrasts,
measured as the average trial difference in the log likelihood.
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Supplementary Figure 9: Model performance based on population responses to different stim-
ulus windows. a, c, Average trial-by-trial performance of the Full-Likelihood Model relative to
the Fixed-Uncertainty Model across contrasts, measured as the average trial difference in the
log likelihood. The models were trained and evaluated on the population response to (a) the
first half (0–250 ms) or (c) the second half (250–500 ms) of the stimulus presentation. The
results for the original (unshuffled) and the shuffled data are shown in solid and dashed lines,
respectively. The squares and triangles mark Monkey L and T, respectively. b, d, Relative
model performance summarized across all contrasts based on models trained as described in (a,
c). Performance on the original and the shuffled data is shown individually for both monkeys.
The difference between the Full-Likelihood and Fixed-Uncertainty Models was significant with
p < 0.001 for both stimulus windows, and on both the original and the shuffled data for both
monkeys, except for the shuffled dataset on 0–250ms for Monkey L, for which there was no
significant difference between the two models (p = 0.17). The difference between the Full-
Likelihood Model on the original and the shuffled data was significant (p < 0.001 for both
monkeys for both stimulus windows). For a-d, all data points are means, and error bar/shaded
area indicate standard error of the means.
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Supplementary Figure 10: Expected model performance on simulated data using the trained
Full-Likelihood Model as the ground truth. a, Average trial-by-trial performance of the Full-
Likelihood Model relative to the Fixed-Uncertainty Model across contrasts on the simulated
data, measured as the trial-averaged difference in the log likelihood. The results for the un-
shuffled and the shuffled simulated data are shown in solid and dashed lines, respectively. The
squares and triangles mark Monkey L and T, respectively. b, Relative model performance sum-
marized across all contrasts. Results are shown for each monkey and for unshuffled and shuffled
simulated data. For a and b, all data points are the means and error bar/shaded area indicate the
standard deviation across the 5 simulation repetitions.
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Supplementary Figure 11: Dependence of average likelihood width on the stimulus orientation.
The dependence of the width of the likelihood function σL on the stimulus orientation is de-
picted for an example contrast-session (Monkey T, 8% contrast) on the original and the shuffled
data. The shuffling procedure preserves the relationship between the average likelihood width
and the stimulus orientation as desired.
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