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« Abstract:

5 Bayesian models of behavior suggest that organisms represent uncertainty as-
6 sociated with sensory variables. However, the neural code of uncertainty re-
7 mains elusive. A central hypothesis is that uncertainty is encoded in the pop-
8 ulation activity of cortical neurons in the form of likelihood functions. We
9 studied the neural code of uncertainty by simultaneously recording popula-
10 tion activity from the primate visual cortex during a visual categorization task

1 in which trial-to-trial uncertainty about stimulus orientation was relevant for
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12 the decision. We decoded the likelihood function from the trial-to-trial popula-

13 tion activity and found that it predicted decisions better than a point estimate

14 of orientation. This remained true when we conditioned on the true orienta-

15 tion, suggesting that internal fluctuations in neural activity drive behaviorally

16 meaningful variations in the likelihood function. Our results establish the role

17 of population-encoded likelihood functions in mediating behavior, and provide

18 a neural underpinning for Bayesian models of perception.

19 When making perceptual decisions, organisms often benefit from representing uncertainty

20 about sensory variables. More specifically, the theory that the brain performs Bayesian inference—
21 which has roots in the work of Laplace'’ and von Helmholtz?—has been widely used to explain
22 human and animal perception”®. At its core lies the assumption that the brain maintains a sta-
23 tistical model of the world and when confronted with incomplete and imperfect information,
2« makes inferences by computing probability distributions over task-relevant world state vari-
25 ables (e.g. direction of motion of a stimulus). In spite of the prevalence of Bayesian theories
26 in neuroscience, evidence to support them stems primarily from behavioral studies (e.g.”%).
27 Consequently, the manner in which probability distributions are encoded in the brain remains
2s unclear, and, thus, the neural code of uncertainty is unknown.

29 It has been hypothesized that a critical feature of the neural code of uncertainty, which
s0 1s shared throughout the sensory processing chain in the neocortex, is that the same neurons
31 that encode a specific world state variable (e.g. stimulus orientation in V1) also encode the
2 uncertainty about that variable (Fig. [Tp). Therefore neurons multiplex both a point estimate
s of a sensory variable and the associated uncertainty about it®1”, Specifically, according to the
s« probabilistic population coding (PPC) hypothesis®!?, inference in the brain is performed by
35 inverting a generative model of neural population activity. Under this coding scheme, neural

s populations in V1, for example, that encode stimulus orientation also encode the associated

2
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Figure 1: Alternative models of uncertainty information encoding. a, The recorded cortical
population r responding to sensory stimulus s encodes stimulus estimate and uncertainty si-
multaneously in the form of likelihood function £ which is subsequently used in making a
decision C' as the subject performs a visual classification task. b, The recorded cortical popula-
tion only encodes a point estimate of the stimulus s while an estimate of the sensory uncertainty
is made by other (unrecorded) cortical populations. The information is subsequently combined
to lead to the subject’s decision C.
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37 uncertainty in the form of the sensory likelihood function—the probability of observing a given
ss pattern of neural activity across hypothesized stimulus values®'2, The form of the likelihood
s9 function is related to the probability distribution describing neural variability (“noise”) for a
w given stimulus. A sensory likelihood function is often unimodal™*"#, and its width could in
41 principle serve as a measure of the sensory uncertainty about the stimulus. Whether the brain
22 uses this particular uncertainty quantity in its decisions is unknown. Alternatively, it may be
s the case that the neural population that encodes an estimate of a sensory variable (e.g. stimulus
s+ orientation in V1) does not carry information about the associated uncertainty (Fig. [Ip).

45 We recorded the activity of V1 cortical populations while monkeys performed a visual clas-
s sification task in which the trial-by-trial uncertainty information is beneficial to the animal'>.
47 To decode the trial-by-trial likelihood functions from the V1 population responses, we devel-

16117

ss oped a novel technique based on deep learning"®*. Importantly, we performed all analyses

a9 conditioned on the contrast—an overt driver of uncertainty—and performed further orientation-
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so conditioned analyses to isolate the effect of random fluctuations in the decoded likelihood func-
s tion on behavior. We found that using the trial-to-trial changes in the shape of the likelihood
s2  function allowed us to better predict the behavior than using a likelihood function with a fixed
s3 shape shifted by a point estimate. Therefore, we provide the first evidence that in perceptual
s« decision-making, the same cortical population that encodes a sensory variable also encodes its
55 trial-by-trial sensory uncertainty information, which is used to mediate perceptual decisions,

ss consistent with the theory of PPC.

s Results

s Behavior

ss. 'Two Rhesus macaques (Macacca mulatta) were trained on an orientation classification task
s designed such that the optimal performance required the use of trial-by-trial uncertainty. On
st each trial, one of two stimulus classes (C' = 1 or C' = 2) was chosen at random with equal
s2 probability. Each class was defined by a Gaussian probability distribution over the orientation.
s The two distributions shared the same mean but had different standard deviations (Fig. 2h).
s¢ An orientation was drawn from the distribution belonging to the selected class, and a drifting
es grating stimulus with that orientation was then presented to the animal (Fig. 2b). In a given
e recording session, at least three distinct contrasts were selected at the beginning of the session,
e7 and on each trial, one of these values was randomly selected.

68 In our previous study’?, we designed this task so that an optimal Bayesian observer would
eo incorporate the trial-by-trial sensory uncertainty about stimulus orientation in making classifi-
70 cation decisions. Indeed, decisions of both humans and monkeys seemed to utilize trial-by-trial
71 uncertainty about the stimulus orientation. In the current study, one of the two monkeys (Mon-
72 key L) was the same monkey that participated in the previous study and thus has been shown

73 to have learned the task well. A second monkey (Monkey T) was also trained on the task and

4
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Figure 2: Behavioral task. a, The stimulus orientation distributions for the two classes. The two
distributions shared the same mean (¢ = 0°) but differed in their standard deviations (o; = 3°
and 0, = 15°). b, Time course of a single trial. The subject fixated onto the fixation target for
300 ms before a drifting grating stimulus was shown. After 500 ms of stimulus presentation,
the subject broke fixation and saccaded to one of the two colored targets to indicate their class
decision (color matches class color in a). The left-right configuration of the colored targets
was chosen at random for each trial. ¢, Performance of the two monkeys on the task across
stimulus contrast. “Theoretical limit” corresponds to the performance of an ideal observer with
no observation noise. d, Psychometric curves. Each curve shows the proportion of trials on
which the monkey reported C' = 1 as a function of stimulus orientation, computed from all
trials within a single contrast bin. All data points are means and error bars indicate standard
error of the means. e, Class-conditioned responses. For each subject, the proportions of C' = 1
reports is shown across contrasts, conditioned on the ground-truth class: C' = 1 (red) and C' = 2
(blue). The symbols have the same meaning as in c.
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74 closely matched the performance of Monkey L (Fig. [2c). Both animals had psychometric curves
75 displaying the expected strong dependence on both contrast and orientation (Fig. [2ld.e).
76 In our analyses, we grouped the trials with the same contrast within the same session and

77 refer to such a group as a “contrast-session”.

s Decoding likelihood function from V1

7o Each monkey was implanted with a chronic multi-electrode (Utah) array in the parafoveal pri-
so mary visual cortex (V1) to record the simultaneous cortical population activity as the subjects
s» performed the orientation classification task (Fig. [3p).

82 A total of 61 and 71 sessions were analyzed from Monkey L and Monkey T for a total of
ss 110,695 and 192,631 trials, respectively (Supplementary Fig. 1). In each recording session,
s« up to 96 channels were recorded. On each trial and for each channel, we computed the to-
ss tal number of spikes that occurred during the 500 ms of stimulus presentation preceding the
ss decision-making cue (Fig. [3p), yielding a vector of population responses r used in the subse-
7 quent analyses (Fig. 3b).

88 Existing computational methods for decoding the trial-by-trial likelihood function from the
so cortical population activities typically make strong parametric assumptions about the stimulus
90 conditioned distribution of the population response (i.e. the generative model of the population
91 response). For example, population responses to a stimulus can be modeled as an independent
o2 Poisson distribution, allowing each recorded unit to be characterized by a simple tuning curve
s (which may be further parameterized)'#1%*22 While this simplifying assumption makes com-
9« puting the trial-by-trial likelihood function straightforward, disregarding potential correlations
95 among the units in population responses (i.e. noise correlations and internal brain state fluctu-
e ations®**?%) can lead to biased estimates of the likelihood function and limits the generality of

o7 this approach. While more generic parametric models—such as Poisson-like distributions—of
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Figure 3: Encoding and decoding of the stimulus orientation. a, An example of 96 channels
spike traces from a single trial (Monkey T). The vector of spike counts, r, was accumulated
over the pre-saccade stimulus presentation period (time 0-500 ms, green shade). b, The popu-
lation response for the selected trials from a single contrast-session (Monkey T, 64% contrast).
Column: a population response r on a trial randomly drawn from the trials falling into a specific
orientation bin. Row: a response from a single channel. For visibility, the channel’s responses
are normalized to the maximum response across all trials. The channels were sorted by the
preferred orientation of the channel. Subject’s class decision is indicated by red and blue color
patches for C=1landC =2, respectively. ¢, A schematic of a DNN for the Full-Likelihood
decoder, mapping r to the decoded likelihood function L. All likelihood functions are area-
normalized. d, Two models of likelihood decoder M. In the Full-Likelihood decoder, the
likelihood L was decoded without any constraints on the shape. In the Fixed-Uncertainty de-
coder, all decoded likelihood functions shared the same shape but differed in the location of the
center based on the population response.
For both decoders, the resulting likelihood functions were fed into parameterized Bayesian
decision models to yield the decision prediction p(C' = 1|r, M).
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¢ population distributions have been proposed® 112222130

, they still impose restrictive assumptions.
99 We devised a technique based on deep learning to decode the trial-by-trial likelihood func-
100 tion from the V1 population response. This neural network-based likelihood decoder allows us
101 to approximate the information that can be extracted about the stimulus orientation from the
102 cortical population responses. The network was not used as a model of how the rest of the brain
103 extracts and processes the information present in the population, but rather to decode it and
104 demonstrate that it is used behaviorally.

10 We trained a fully connected deep neural network (DNN) to predict the per-trial likelihood
16 function £(0) = p(r|#) over stimulus orientation € from the vectorized population response r
107 (Fig. [Bk; for details on the network architecture, training objective, and hyperparameter se-
10s lection see Methods and Supplementary Table [I). A separate network was trained for each
100 contrast-session and no behavioral data were utilized in training the DNN.

110 Using a DNN to decode the likelihood function avoids the restrictive parametric assumptions
111 described above and provides a strictly more flexible method, often capturing decoding under
112 known distributions as a special case (Supplementary Fig. 2). We demonstrate this by showing
113 the DNN can recover the ground-truth likelihood function from simulated responses sampled
112 from known distributions (Supplementary Fig. 3; refer to Methods for the simulation details).
115 The likelihood functions decoded by the DNNs exhibited the expected dependencies on the
116 overt drivers of uncertainty such as contrast (Fig. @a-c): the width of the likelihood function is

117 higher at lower contrast (Fig. [d).

s Trial to trial uncertainty improves behavioral predictions

119 To assess whether the uncertainty decoded from population responses in the form of sensory
120 likelihood functions mediate the behavioral outcome (perceptual decision) as we hypothesized,

121 it is critical that we appropriately condition the analysis on the stimulus. To illustrate the impor-
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Figure 4: Likelihood functions decoded by the trained neural networks. a-¢, Example decoded
likelihood functions from three contrast-sessions from Monkey T. Each row represents the de-
coded likelihood function over the hypothesized orientation for a randomly selected trial within
the specific orientation bin. All likelihood functions are area-normalized. Brighter colors cor-
respond to higher values of the likelihood function. d, Average likelihood function by contrast.
On each trial, the likelihood function was shifted such that the mean orientation of the normal-
ized likelihood function occurred at 0°. The centered likelihood functions were then averaged
across all trials within the same contrast bin.
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122 tance of conditioning on the stimulus to determine if the decoded likelihood function mediates
123 perceptual decisions, consider a typical perceptual decision-making task (like ours) (Supple-
124 mentary Fig. 4) where the subject views a stimulus s, which elicits a population response r, for
125 example in V1. Here, by “stimulus”, we refer collectively to all aspects of a visual stimulus,
126 such as its contrast and orientation. Stimulus information is eventually relayed to decision-
127 making areas (e.g. prefrontal cortex), leading the animal to make a classification decision C.
128 We decode the likelihood function £ from the recorded population activity r. Because variation
120 1n the stimulus (e.g. orientation or contrast) across trials can drive variation both in the decoded
130 likelihood function and in the animal’s decision, one may find a significant relationship between
w L and C, even if the likelihood function estimated from the recorded population r does not me-
132 diate the decision. When the stimulus is fixed, random fluctuations in the population response
133 can still result in variations in L. If the likelihood function truly mediates the decision, we
134 expect that such variation in £ would account for variation in C'. Therefore, to demonstrate that
s the likelihood £ mediates the decision C , it is imperative to show a correlation between £ and
s (' conditioned on the stimulus s.

137 As we varied the stimulus contrast from trial to trial in our task, the expected uncertainty
138 about the stimulus orientation varied, and one would expect the monkeys to represent and make
139 use of their trial-by-trial sensory uncertainty in making decisions. However, we make a much
140 stronger claim here: even at a fixed contrast, because of random fluctuations in the population

141 response=12

, we predict (1) the uncertainty encoded in the population, that is, the likelihood
122 function, will still fluctuate from trial to trial, and (2) the effect of such fluctuations will manifest
1.3 1n the monkey’s decisions on a trial-by-trial basis.

144 We tested this prediction by fitting, separately for each contrast-session, the following two

15 decision models and comparing their performance in predicting the monkey’s trial-by-trial de-

146 cisions: (1) a Full-Likelihood Model, which utilizes the trial-by-trial uncertainty information

10
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147 decoded from the population response in the form of the likelihood function obtained from the
s neural-network based likelihood decoder (Full-Likelihood decoder) described above (Fig. 3[d),
149 and (2) a Fixed-Uncertainty Model, which utilizes an alternative neural-network based likeli-
150 hood decoder (Fixed-Uncertainty decoder) that learns a single, fixed-shape likelihood function
151 whose location is shifted from trial to trial based on the population response (Supplementary
152 Fig. 5). The Fixed-Uncertainty Model captures the alternative hypothesis in which the recorded
153 sensory population only encodes a point estimate of the sensory variable (i.e. mean of the like-
154 lthood function) and the estimate of the sensory uncertainty is encoded elsewhere, signified
155 by the fixed shape of the likelihood function fitted for each contrast-session under this model
156 (Fig. [Ib). Generally, the likelihood function decoded by Fixed-Uncertainty decoder closely
157 approximated the likelihood function decoded by the Full-Likelihood decoder (Supplementary
158 Fig. 5). We use the term decoder for the DNN that returns estimated likelihood functions, and
159 the term decision model for the mapping from likelihood function to decision.)

160 In both models, the decoded likelihood functions were fed into the Bayesian decision maker
61 to yield trial-by-trial predictions of the subject’s decision in the form of p(C|r, M), or the
162 likelihood of subject’s decisions C' conditioned on the population response r and the decision
1sa model M. The Bayesian decision maker computed the posterior probability of each class and
16« used these to produce a stochastic decision. The means of the class distributions assumed by
15 the observer, the class priors, the lapse rate, and a parameter to adjust the exact decision-making
166 strategy were used as free parameters (Supplementary Fig. [6] refer to Methods for details). The
1e7 model parameters were fitted by maximizing the total log likelihood over all trials for each
1es  contrast-session 3. log p(Ci|r;, M). The fitness of the models was assessed through cross-
160 validation, and we reported mean and total log likelihood of the models across all trials in the
170 test set.

171 Both models incorporated trial-by-trial changes in the point estimate of the stimulus orien-

11
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172 tation (e.g. the mean of the likelihood function) and only differed in whether they contained
173 additional uncertainty information about the stimulus orientation carried by the trial-by-trial
174 fluctuations in the shape of the likelihood function decoded from the same population that en-
175 coded the point estimate. We use the term “shape” to refer to all aspects of the likelihood
176 function besides its mean, including its width. If the fluctuations in the shape of the likelihood
177 function truly captured the fluctuations in the sensory uncertainty as represented and utilized by
178 the animal, one would expect the Full-Likelihood Model to yield better trial-by-trial predictions
179 of the monkey’s decisions than the Fixed-Uncertainty Model.

180 We observed that both models predicted the monkey’s behavior well across all contrasts
181 (Supplementary Fig. 7), reaching up to 90% accuracy. We also observed that the performance
1.2 of the decision models using likelihood functions that were decoded by the neural networks was
183 superior to the models using likelihood functions that were decoded with more traditional para-
18« metric generative models (independent Poisson distribution and Poisson-like distribution) (Sup-
185 plementary Fig. [8] refer to Methods for details). The Full-Likelihood Model consistently out-
1es performed the Fixed-Uncertainty Model across contrasts and for both monkeys (Fig. [Sh,b; trial
1e7  log likelihood differences between the Full-Likelihood and Fixed-Uncertainty Model: Mon-
s key L: paired t-test, £(110694) = 11.06, p < 0.001, dioq = 11.0 x 10* and Monkey T:
s 1(192610) = 11.03, p < 0.001, S = 11.3 x 10%; i is the total log likelihood differ-
190 ence across all trials). This result shows that the trial-by-trial fluctuations in the shape of the
191 likelihood function are informative about the monkey’s trial-by-trial decisions, demonstrating
122 that decision-relevant sensory uncertainty information is contained in population responses that
193 can be captured by the shape of the full likelihood function. This finding in turn strongly sup-
194 ports the hypothesis that visual cortex encodes stimulus uncertainty through the shape of the
155 full likelihood function on a trial-by-trial basis.

196 We repeated this analysis after splitting the data into the first and second 250ms of stimulus

12
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Figure 5: Model performance. a, Average trial-by-trial performance of the Full-Likelihood
Model relative to the Fixed-Uncertainty Model across contrasts, measured as the average trial
difference in the log likelihood. The results for the original (unshuffled) and the shuffled data
are shown in solid and dashed lines, respectively. The squares and triangles mark Monkey L and
T, respectively. b, Relative model performance summarized across all contrasts. Performance
on the original and the shuffled data is shown individually for both monkeys. The difference
between the Full-Likelihood and Fixed-Uncertainty Models was significant with p < 0.001
for both monkeys, and on both the original and the shuffled data. Furthermore, the difference
between the Full-Likelihood Model on the original and the shuffled data was significant (p <
0.001 for both monkeys). For a and b, all data points are means, and error bar/shaded area
indicate standard error of the means. ¢, Shuffling scheme for three example trials drawn from
the same stimulus orientation bin. Shuffling maintains the means but swaps the shapes of the
likelihood functions.
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1e7  presentation. We found a similar improvement for the Full-Likelihood model over the Fixed-
196 Uncertainty model in both periods (Supplementary Fig.[9).

199 We next asked how meaningful our effect sizes (model performance differences) are. To an-
200 swer this question, we simulated the monkey’s responses across all trials and contrast-sessions
201 taking the trained Full-Likelihood Model to be the ground truth, and then retrained the Bayesian
202 decision makers in the Full-Likelihood Model and the Fixed-Uncertainty Model from scratch
203 on the simulated data. This approach yields a theoretical upper bound on the observable differ-
204 ence between the two models if the Full-Likelihood Model was the true model of the monkeys’
205 decision-making process.

206 We observed that the expected total upper bound log likelihood differences between the Full-
207 Likelihood Model and the Fixed-Uncertainty Model of (37.1 £ 1.5) x 10% and (36.0 + 1.3) x
208 10% based on the simulations (representing mean =+ standard deviation across 5 repetitions of
200 simulation for Monkey L and T, respectively) were larger but in the same order of the magnitude
210 as the observed model performance differences (11.0 x 10% and 11.3 x 10 total log likelihood
211 differences across all trials for Monkey L and T, respectively), suggesting that our effect sizes
212 are meaningful and that the Full-Likelihood Model is a reasonable approximate description of

213 the monkey’s true decision-making process (Supplementary Fig. [10).

2« Stimulus dependent changes in uncertainty

215 We observed that for some contrast-sessions, the average width of the likelihood function
215 showed a dependence on the stimulus orientation (Supplementary Figure. [I1)). By design, the
217 Fixed-Uncertainty Model cannot capture this stimulus dependent change in uncertainty, which
218 could contribute to it under-performing the Full-Likelihood Model (Supplementary Fig. 4).

219 To rule this out, we shuffled the shapes of the decoded likelihood functions across trials

220 within the same orientation bin, separately for each contrast-session. This shuffling preserves
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221 the average stimulus-dependent change in uncertainty and trial-by-trial correlation between the
22 mean of the likelihood function and the decision (Fig. [5k), while removing the trial-by-trial
223 correlation between the shape of the likelihood function and the behavioral decision conditioned
224 on the stimulus orientation.

225 By design, the Fixed-Uncertainty Model makes identical predictions on the original and the
226 shuffled data. If the Full-Likelihood Model outperformed the Fixed-Uncertainty Model sim-
227 ply because it captured spurious correlations between the stimulus orientation and the shape of
228 the likelihood function, then it should outperform the Fixed-Uncertainty model by the same
229 amount on the shuffled data. However, if the better behavioral predictions come from the
230 trial-by-trial fluctuations in the likelihood shape as we hypothesized, one would expect this
231 difference to disappear on the shuffled data. Indeed, the shuffling of the likelihood function
232 shapes abolished the improvement in prediction performance that the Full-Likelihood Model
233 had over the Fixed-Uncertainty Model. In fact, the Full-Likelihood Model consistently un-
24 derperformed the Fixed-Uncertainty Model on the shuffled data (Fig. [Sp,b; trial log likelihood
235 difference between the Full-Likelihood Model and the Fixed-Uncertainty Model on the shuf-
236 fled data: Monkey L: paired t-test £(110694) = —18.44, p < 0.001, dos = —20.9 x 10? and
27 Monkey T: £(192610) = —20.15, p < 0.001, diorq = —25.9 x 10%; o is the total log like-
238 lihood difference across all trials). Therefore, there were significant performance differences
239 1n Full-Likelihood Model between the unshuffled and shuffled data (trial log likelihood differ-
20 ence: Monkey L: paired t-test £(110694) = 33.34, p < 0.001, dior = 31.9 x 10? and Monkey
2t T: £(192610) = 34.52, p < 0.001, Sy = 37.2 X 102).

242 To confirm our effect sizes were appropriate, we again compared these values to those ob-
243 tained from simulations in which we took the Full-Likelihood Model to be the ground truth
2e4  (Supplementary Fig. 10). The simulations yielded total log likelihood differences of the Full-

25 Likelihood Model between the unshuffled and shuffled data of (36.2 & 2.2) x 10> (Monkey L)
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216 and (40.7 4 1.5) x 10* (Monkey T) (mean = standard deviation across 5 repetitions), similar in
247 magnitude to the observed values.

248 Taken together, the shuffling analyses show that the better prediction performance of the
2e9  Full-Likelihood Model is not due to the confound between the stimulus and the likelihood
250 shape. We conclude that the trial-by-trial likelihood function decoded from the population
251 represents behaviorally relevant stimulus uncertainty information, even when conditioned on

252 the stimulus.

2ss  Attribution analysis

254 To assess whether the same population encoding the best point estimate (i.e. mean of the likeli-
255 hood function) also encoded the uncertainty regarding that estimate (i.e. shape of the likelihood
26 function), as we hypothesized to be the case, we performed attribution analysis® on the trained
257 Full-Likelihood decoder. Through this analysis, we ask how much of the changes in either (1)
258 the mean of the likelihood 1, (i.e. surrogate for the best point estimate) or (2) the standard devi-
259 ation of the likelihood function o, (i.e. surrogate measure of the uncertainty) can be attributed
20 back to each input multiunit, yielding attribution A, and A, respectively. The question of fea-
261 ture attribution is a very active field of research in machine learning, and multiple methods of
262 attribution computation exist>*>. Here we have selected three different methods of computing
263 attribution scores: saliency maps=*, gradient x input®?, and DeepLIFT=” (refer to Methods for
264 the details of attribution computation).

265 We observed that across all three attribution methods, multiunits with high g, attribution
266 tended to have high o attribution, and vice versa, giving rise to high degree of correlation
267 between A, and A, (Fig.[6p). If distinct subpopulations were involved in encoding the point
26 estimate and the uncertainty as found in the likelihood function, we would have expected mul-

260 tiunits with a high p;, attribution score to have a low o, attribution score, and vice versa, there-
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Figure 6: Attribution analysis for means and standard deviations of the likelihood functions.
a, Attribution of 96 input multiunits to the likelihood mean A, syjiency V. standard deviation
A saliency computed based on saliency maps for an example contrast session (Monkey T, 32%
contrast). b-d, Distribution of correlation coefficients between A, and A, for multi units across
all contrast sessions for both monkeys, computed based on different attribution methods.
20 fore leading to negative correlation between A,, and A,. However, we observed that across all
271 contrast-sessions from both monkeys, A,, was strongly positively correlated with A, regardless
272 of the exact attribution method used, suggesting that the highly overlapping subpopulations are

273 involved in encoding both the point estimate and the uncertainty of the likelihood function, as

22+ we hypothesized would be the case (Fig. [op-d).
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-5 DIscussion

276 Given the stochastic nature of the brain, repeated presentations of identical stimuli elicit vari-
277 able responses. The covariation between neuronal activity fluctuations and perceptual choice
27 has been studied extensively at the level of single neurons, originating with the pioneering work
27e - of Campbell & Kulikowski=® and Britten et al.*”. Here, we go beyond this literature by examin-
250 ing the hypothesis that the brain takes into account knowledge of the form of neural variability
281 1n order to build a belief over the stimulus of interest on each trial. This belief is captured by
252 the likelihood function and the associated sensory uncertainty, both of which vary from trial to
283 trial with the neural activity. To test this hypothesis, we decoded trial-to-trial likelithood func-
28+ tions from the population activity in visual cortex and used them in conjunction with a highly
285 constrained, theoretically motivated decision model (the Bayesian model) to predict behavior.
286 We found that a model utilizing the full likelihood function predicted the monkeys’ choices
257 better than alternative models that ignore variations in the shape of the likelihood function. Our
288 results provide the first population-level evidence in support of the theoretical framework of
289 probabilistic population coding, where the same neurons that encode specific world state vari-
200 ables also encode the uncertainty about those variables. Importantly, under this framework the
201 brain performs Bayesian inference under a generative model of the neural activity.

292 Our findings were made possible by recording from a large population simultaneously and
203 by using a task in which uncertainty is relevant to the animal. In addition, we decoded likelihood
204 functions using a deep neural network that does not rely on the strong parametric assumptions
205 about the underlying generative model of the population that have dominated previous work.
206 Importantly, we conditioned our analyses on the stimulus to rule out a confounding effect of the
207 stimulus on the observed relationship between the decoded likelihood function and the subject’s

208 decision. This approach is critical because previous behavioral studies on cue combination and
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209 Bayesian integration, for instance, always relied on varying stimulus features (e.g. contrast,
s00  blur, motion coherence) to manipulate uncertainty”®%%38, As a result, these studies cannot rule
st out that any observed correlation between a proposed method of encoding uncertainty and a sub-
302 ject’s behavior may be confounded by the stimulus (Supplementary Fig. 4), and they therefore
a3 fail to provide a sufficiently rigorous assessment on the representation of uncertainty. Carefully
so4 controlling for the effect of stimulus fluctuations allowed us to present rigorous evidence that
a5 the trial-by-trial fluctuations in the likelihood functions carry behaviorally relevant stimulus
306 uncertainty information.

307 After showing that this likelihood function is used behaviorally, what more can we say about
ss the neural encoding of perceptual uncertainty? First, our network learns the log-likelihood of s,
a9 i.e.log L(s) = logp(r|s) + b(r) as a function of s. We never commit to a particular generative
a0 model p(r|s) as a function of r, as the DNN has an arbitrary offset as a function of r (Eq. [1|in
st Methods). Second, we had to move away from Poisson-like variability to better characterize the
a2 responses at the cost of analytic forms and easy interpretability. We see this as a necessary evil;
a3 namely, we have shown that making the Poisson-like assumption leads to worse predictions of
a4 behavior. That being said, the DNN extends what we know about generative models in visual
315 cortex (e.g. tuning curves, contrast gain); in particular, it allows for rich correlation among units
a6 1n the population. Third, we would like to stress that we do not believe that the DNN that we use
317 to decode the likelihood is literally implemented in the brain. It remains an important question,
as and avenue for future research, what kind of transformation, if any, the brain performs in order
a9 to utilize and compute with this information.

320 While the sensory likelihood function is a crucial building block for probabilistic computa-
321 tion in the brain, fundamental questions remain regarding the nature of such computation. First,
322 how do downstream areas process the information contained in sensory likelihood functions

323 to make better decisions? Previous work has manually constructed neural networks for down-
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s24 Stream computation that relied heavily on the assumption of Poisson-like variability?1%121321

35 However, more recent work has demonstrated that training generic shallow networks accom-
s26 plishes the same goal without the need for task-specific manual construction*?. Second, does
327 each area in a feedforward chain of computation encode a likelihood function over its own vari-
a2s able, with the computation propagating the uncertainty information from one variable to the
a0 next? For example, in our task, it is conceivable that prefrontal cortex encodes a likelihood
a0 function over class that is derived from a likelihood function over orientation coming in from
s V1. Third, what are the relative contributions of feedforward, recurrent, and feedback con-
32 nections to the trial-to-trial population activity and the resulting decoded likelihood functions?
s Some work has argued strongly for a role of feedback®****; in the present work, we are agnos-
a4 tic to this issue. While answering these questions will require major efforts, we expect that our
a5  findings will help put those efforts on a more solid footing. In the meantime, our results ele-
s vate the standing of Bayesian models of perception from frameworks to describe optimal input-
s7  Tesponse mappings®“® to process models whose internal building blocks—Ilikelihood functions

s and probability distributions—are more concretely instantiated in neuronal activity©+/45,
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= VMethods

s« Experimental model and subject details

a1 All behavioral and electrophysiological data were obtained from two healthy, male rhesus
a2 macaque (Macaca mulatta) monkeys (L and T) aged 10 and 7 years and weighting 9.5 and
a3 15.1 kg, respectively. All experimental procedures complied with guidelines of the NIH and
a4 were approved by the Baylor College of Medicine Institutional Animal Care and Use Commit-
a5 tee (permit number: AN-4367). Animals were housed individually in a room located adjacent to
as the training facility on a 12h light/dark cycle, along with around ten other monkeys permitting
a7 rich visual, olfactory, and auditory social interactions. Regular veterinary care and monitoring,
as  balanced nutrition and environmental enrichment were provided by the Center for Comparative
as  Medicine of Baylor College of Medicine. Surgical procedures on monkeys were conducted

sso under general anesthesia following standard aseptic techniques.

1 Stimulus presentation

32 Each visual stimulus was a single drifting oriented sinusoidal grating (spatial frequency: 2.79
a3 cycles/degree visual angle, drifting speed: 3.89 cycles/s) presented through a circular aperture
ss4  situated at the center of the screen. The size of the aperture was adjusted to cover receptive
355 fields of the recorded populations, extending 2.14° and 2.86° of visual angle for Monkey L and
sss  Monkey T, respectively. The orientation and contrast of the stimulus were adjusted on a trial-
357 by-trial basis as will be described later. The stimulus was presented on a CRT monitor (at a
sss  distance of 100 cm; resolution: 1600 x 1200 pixels; refresh rate: 100 Hz) using Psychophysics
9 Toolbox*?. The monitor was gamma-corrected to have a linear luminance response profile.
0 Video cameras (DALSA genie HM640; frame rate 200Hz) with custom video eye tracking

st software developed in LabVIEW were used to monitor eye movements.
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s« Behavioral paradigm

s On a given trial, the monkey viewed a drifting oriented grating with orientation ¢, drawn from
s« one of two classes, each defined by a Gaussian probability distribution. Both distributions
ss have a mean of 0° (grating drifting horizontally rightward, positive orientation corresponding to
a6 counter-clockwise rotation), but their standard deviations differed: o4 = 3° forclass 1 (C' = 1)
s7 and oo = 15° for class 2 (C' = 2). On each trial, the class was chosen randomly with equal
ses probability, with the orientation of the stimulus then drawn from the corresponding distribution,
sws p(0|C). At the beginning of each recording session, at least three distinct values of contrasts
s were selected, and one of these values was chosen at random on each trial. Unlike more typical
snt two-category tasks using distributions with identical variances but different means, optimal
sz decision-making in our task requires the use of sensory uncertainty on a trial-by-trial basis™.

373 Each trial proceeded as follows. A trial was initiated by a beeping sound and the appearance
a74 of a fixation target (0.15° visual angle) in the center of the screen. The monkey fixated on the
a7s  fixation target for 300 ms within 0.5°—1° visual angle. The stimulus then appeared at the center
are  of the screen. After 500 ms, two colored targets (red and green) appeared to the left and the
a7 right of the grating stimulus (horizontal offset of 4.29° from the center with the target diameter
azs of 0.71° visual angle), at which point the monkey saccaded to one of the targets to indicate their
are  choice of class. For Monkey L, the grating stimulus was removed from the screen when the
a0 saccade target appeared, while for Monkey T, the grating stimulus remained on the screen until
ss1  the subject completed the task by saccading to the target. The left-right configuration of the
a2 colored targets were varied randomly for each trial. Through training, the monkey learned to
as3  associate the red and the green targets with the narrow (C' = 1) and the wide (C' = 2) class
ss« distributions, respectively. For illustrative clarity, we used blue to indicate C' = 2 throughout
sss this document. The monkey received a juice reward for each correct response (0.10-0.15 mL).

386 During the training, the monkeys were first trained to perform the colored version of the
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a7 task, where the grating stimulus was colored to match the correct class C for that trial (red for
sss (' = 1 and green for C' = 2). Under this arrangement, the monkey simply learned to saccade to
sse the target matching the color of the grating stimulus, although the grating stimulus orientation
a0 information was always present. As the training proceeded, we gradually removed the color
so1 from the stimulus, encouraging the monkey to make use of the orientation information in the
sz  stimulus to perform the task. Eventually, the color was completely removed, and at that point

a3 the monkey was performing the full version of the task.

s« Surgical Methods

ses  Our surgical procedures followed a previously established approach#®=Y=!1

. Briefly, a custom-
ses built titanium cranial headpost was first implanted for head stabilization under general anes-
se7 thesia using aseptic conditions in a dedicated operating room. After premedication with Dex-
ses amethasone (0.25-0.5 mg/kg; 48 h, 24 h and on the day of the procedure) and atropine (0.05
a9 mg/kg prior to sedation), animals were sedated with a mixture of ketamine (10 mg/kg) and xy-
a0 lazine (0.5 mg/kg). During the surgery, anesthesia was maintained using isoflurane (0.5-2%).
st After the monkey was fully trained, we implanted a 96-electrode microelectrode array (Utah
a2 array, Blackrock Microsystems, Salt Lake City, UT, USA) with a shaft length of 1 mm over
a3 parafoveal area V1 on the right hemisphere. This surgery was performed under identical con-

s04 ditions as described for headpost implantation. To ameliorate pain, analgesics were given for 7

a5 days following a surgery.

«s Electrophysiological recording and data processing

a7 The neural signals were pre-amplified at the head stage by unity gain preamplifiers (HS-27,
a8 Neuralynx, Bozeman MT, USA). These signals were then digitized by 24-bit analog data ac-

a9 quisition cards with 30 dB onboard gain (PXI-4498, National Instruments, Austin, TX) and
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a0 sampled at 32 kHz. Broadband signals (0.5 Hz to 16 kHz) were continuously recorded us-
411 ing custom-built LabVIEW software for the duration of the experiment. Eye positions were
412 tracked at 200 Hz using video cameras (DALSA genie HM640) with custom video eye track-
a3 ing software developed in LabVIEW. The spike detection was performed offline according

ms to a previously described method20/28-0

. Briefly, a spike was detected when the signal on a
415 given electrode crossed a threshold of five times the standard deviation of the correspond-
s6 ing electrode. To avoid artificial inflation of the threshold in the presence of a large num-
«7 ber of high-amplitude spikes, we used a robust estimator of the standard deviation®, given
se by median(|z|)/0.6745. Spikes were aligned to the center of mass of the continuous wave-
419 form segment above half the peak amplitude. Code for spike detection is available online at
20 https://github.com/atlab/spikedetection. In this study, the term “multiunit”
a1 refers to the set of all spikes detected from a single channel (i.e. electrode) of the Utah array,
s22 and all analyses in the main text were performed on multiunits. For each multiunit, the total
w23 number of spikes during the 500 ms of pre-target stimulus presentation, ; for the ™ unit, was

224 used as the measure of the multiunit’s response for a single trial. The population response r is

a5 the vector of spike counts for all 96 multiunits.

«»s Dataset and inclusion criteria.

227 We recorded a total of 61 and 71 sessions from Monkey L and T, for a total of 112,072 and
a8 193,629 trials, respectively. We removed any trials with electrophysiology recordings contam-
229 1nated by noise in the recording devices (e.g. poor grounding connector resulting in movement

a0 noise) or equipment failures. To do so, we established the following trial inclusion criteria:

431 1. The total spike counts 7, = ) . r; across all channels should fall within the 40,4 from
432 the median total spike counts across all trials from a single session. o,q; is the standard de-
433 viation of the total spike count distribution robustly approximated using the interquartile
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434 range IQR as follows: 0,4j = %

435 2. For at least 50% of all units, the observed i™ unit spike count r; for the trial should fall
436 within a range defined as: |r; — MED;| < 1.5 - IQR,;, where MED; and IQR, are the
437 median and interquartile ranges of the ™ unit spike counts distribution throughout the
438 session, respectively.

439 We only included trials that satisfied both of the above criteria in our analysis. Empirically,

a0 we found the above criteria to be effective in catching obvious anomalies in the spike data while
a1 introducing minimal bias into the data. After the application of the criteria, we were left with
a2 110,695 and 192,631 trials for Monkey L and T, thus retaining 98.77% and 99.48% of the total
a3 trials, respectively. While this selection criteria allowed us to remove apparent anomaly in the
a4 data, we found that the main findings described in this paper were not sensitive to the precise
45 definition of the inclusion criteria.

446 During each recording session, stimuli were presented under three or more contrast values.
a7 In all analyses to follow, we studied the trials from distinct contrast separately for each recording

s session, and we refer to this grouping as a “contrast-session”.

«s  Receptive field mapping

a0 On the first recording session for each monkey, the receptive field was mapped using spike-
a5t triggered averaging of the multiunit responses to a white noise random dot stimulus. The white
a2 noise stimulus consisted of square dots of size 0.29° of visual angle presented on a uniform
ss3  gray background, with randomly varying location and color (black or white) every 30 ms for
ss4 1 second. We adjusted the size of the grating stimulus as necessary to ensure that the stimulus

455 covers the population receptive field entirely.
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s Full-Likelihood decoder

ss7 - Given the population activity r in response to an orientation 6, we aimed to decode uncertainty
sss  information in the form of a likelihood function £(6) = p(r|6), as a function of §. This may
159 be computed through the knowledge of the generative relation leading from 6 to r—that is,
s0 by describing the underlying orientation conditioned probability distribution over r, p(r|6).
st This procedure is typically approximated by making rather strong assumptions about the form
w2 of the density function, for example by assuming that neurons fire independently and each
w3 neuron fires according to the Poisson distribution”. Under this approach, the expected firing
w4 tates (i.e. tuning curves) of the 7™ neuron E[r;|0] = f;(6) must be approximated as well, for
s example by fitting a parametric function (e.g. von Mises tuning curves>?) or employing kernel
w5 regression’?. While these approaches have proven useful, the effect of the strong and likely
se7 1naccurate assumptions on the decoded likelihood function remains unclear. Ideally, we can
s more directly estimate the likelihood function £(#) without having to make strong assumptions
a0 about the underlying conditional probability distribution over r.

470 To this end, we employed a deep neural network (DNN)"® to directly approximate the like-
a71 lihood function over the stimulus orientation, ¢, from the recorded population response r. Here
a2 we present a brief derivation that serves as the basis of the network design and training objective.
473 Let us assume that m multiunits were recorded simultaneously in a single recording session, so
a4 that r € R™. To make the problem tractable, we bin the stimulus orientation # into n distinct
a5 values, 6; to 0, (the derivation holds in general for arbitrarily fine binning of the orientation).
76 With this, the likelihood function can be captured by a vector L € R™ where L, = £(6;). Let
477 us assume that we can train some DNN to learn a mapping f from the population response r to

a8 the log of the likelihood function L up to a constant offset b. That is, f : R™ — R",

r— f(r) =logL + b(r) = log p(r|f) + b(r) (1)

26


https://doi.org/10.1101/365973
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/365973; this version posted April 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

479
a0 for some scalar function b € R. As the experimenter, we know the distribution of the stimulus
481 orientation, pg € R™, where pg; = p(6;). We combine f(r) and py to compute the log posterior

ss2  over stimulus orientation ¢ up to some scalar value O'(r),

z(r) = logpy + f(r) = log p(f]r) + V'(r) 2)

483
s« We finally take the softmax of z(r), and recover the normalized posterior function q(r) =

s softmax(z(r)) where,

ezi(r)
qi(r) = W (3)

B eb'(r)p(ﬁ = 6;|r)
S, pl0 = ) @
= p(6 = by|r) (5)

486

7 Overall, g(r) = softmax(log py + f(r)).

4

©

488 The goal then is to train the DNN f(r) such that the overall function q(r) matches the
489 posterior over the stimulus, p(r) where p;(r) = p(f = 0;|r) based on the available data. This
s0 in turn allows the network output f(r) to approach the log of the likelihood function L, up to
491 a constant b(r). For 1-out-of-n classification problems, minimizing the cross-entropy between
sz (r) and the stimulus orientation 6 for a given r lets the overall function q(r) approach the true

4

©

s posterior p(r), as desired>**>. To show this, let us start by minimizing the difference between
44 the model estimated posterior q(r) and the true posterior p(r) over the distribution of r. We do

495 this by minimizing the loss L defined as the expected value of the Kullback-Leibler divergence®
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a6 between the two posteriors:

L(W) =E, [Dkr(pllq)] (6)
B p(Or)
= . B s 505 | 7
_ p(Or)
= e |log s, ®
— —E,4[logq(0]r, W)] — H(0]r) 9)

497
w8 where p(6 = 0;]r) = p;(r), q(0 = 0;]r, W) = q;(r, W), W is a collection of all trainable
w99 parameters in the network, and H (f|r) is the conditional entropy of ¢ conditioned on r, which
so0 1S an unknown but a fixed quantity with respect to 11" and the data distribution. Here we used
sot the notation q(r, W) to highlight the dependence of the network estimated posterior q(r) on
so2 the network parameters W. We can redefine the loss, L*, only leaving the terms that depends
s0s on the trainable parameters ¥/, and then apply a Monte Carlo method®” to approximate the loss

so4 from samples:

L*(W) = —Er [log g(0]r, W) (10)

1 . )
~ —NZIqu(H(’”r(Z),W) (11)

505
sc  where (07, 1() are samples drawn from a training set for the network. Eq. [11|is precisely the
so7 definition of the cross-entropy as we set out to show.

508 Therefore, by optimizing the overall function (r) to match the posterior distribution through
s09 the use of cross-entropy loss, the network output f(r) can approximate the log of the likelihood

sio function £(0) for each r up to an unknown constant b(r). Because we do not know the value of
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s11 b(r), the network will not learn to recover the underlying generative function linking from 6 to
si2 1, p(r]d).

513 As an example, consider a neural population with responses that follows a Poisson-like
s1+  distribution (i.e. a version of the exponential distribution with linear sufficient statistics?1").
si5 Learning a decoder for such population responses occurs as a special case of training a DNN-
si6  based likelihood decoder. For Poisson-like variability, the stimulus-conditioned distribution
s over ris p(r|d) = ¢(r)e? @r. The log likelihood function is then log L = log ¢(r) + H'r,
sis  where H is a matrix whose i column is h(6;). If we let f(r) = H'r, then f(r) = log L + b(r)
s19  as desired, for b(r) = — log ¢(r). Hence, if we used a simple fully connected network, training
s20 the network is equivalent to fitting the kernel function h(#) of the Poisson-like distribution.

521 In this work, we modeled the mapping f(r) as a DNN with two hidden layers'?, consisting
s22  of two repeating blocks of a fully connected layer of size IV, followed by a rectified linear
s2s  unit (ReLU)'® and a drop-out layer® with dropout rate d,., and a fully connected readout layer
s« with no output nonlinearity (Fig. [3c). To encourage smoother likelihood functions, we added

s2s an Lo regularizer on log L filtered with a Laplacian filter of the form h = [—0.25,0.5, —0.25].

s Therefore, the training loss included the term:

R:'yZu? (12)

s27 for u = (log L) x h, where x denotes convolution operation, u; is the i" element of the filtered
s2s log likelihood function u, and - is the weight on the smoothness regularizer.

529 We trained a separate instance of the network for each contrast-session, and referred to this
ss0 class of DNN based likelihood decoder as the Full-Likelihood decoder to differentiate from
ss1  alternative decoders described later.

532 During the training, each contrast-session was randomly split in proportions of 80% / 20%

ssa to yield the training set and the validation set, respectively. The stimulus orientation 6 was
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s3«  binned into integers in the range [—45°,45°], and we excluded trials with orientations outside
ss5  this range. This led to the exclusion of 157 out of 110,695 trials (0.14%) and 254 out of 192,631
ss6  trials (0.13%) for Monkey L and T data, respectively. The network was trained on the training
sa7  set, starting with initial learning rate of Ay and its performance on the validation set was moni-
s3s tored to perform early stopping®”, and subsequently hyperparameter selection. For early stop-
ss9  ping, we computed the mean squared error (MSE) between the maximum-a-posteriori (MAP)
ss0 readout of the network output posterior q and the stimulus orientation # on the validation set,
s«1 and the training under a particular learning rate was terminated (early-stopped) if MSE failed
se2  to improve over 400 consecutive epochs, where each epoch is defined as one full pass through
se3  the training set. Upon early stopping, the parameter set that yielded the best validation set MSE
ss4  during the course of the training was restored. The restored network was then trained again but
sss  with an updated learning rate \; = %)\i,l, employing the same early stopping criteria. This pro-
ss6  cedure was repeated 4 times, therefore training the network under the 4 sequentially decreasing
se7 learning rate schedule of \g, %)\0, é)\o and %)\0. Once the training was complete, the trained
sss network was evaluated on the validation set to yield the final score, which served as the basis
ss9 for our hyperparameter selections. The values of hyperparameters for the networks, includ-
sso ing the size of the hidden layers N, the initial learning rate )y, the weight on the likelihood
ss1 function smoothness regularizer 7, and the drop-out rate d, during the training were selected
ss2 by performing a random grid search over candidate values to find the combination that yielded
ss3  the best validation set score for each contrast-session instance of the network (Supplementary
s« Table [I). We observed that all possible values of hyperparameters were found among the best

s55  selected hyperparameter networks across all contrast-sessions and all types of networks trained.
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Symbol Description Possible Values
Ny, number of hidden units per layer {400, 600, 800, 1000}
Ao initial learning rate {0.01,0.03,0.6}

ol Laplacian L2 regularizer weight {3,30,300}

d, dropout rate {0.2,0.5,0.9}

Supplementary Table 1: Possible values of hyperparameters during model selection.

s Decoding likelihood functions from known response distributions

557 'To assess the effectiveness of the DNN-based likelihood decoding method described above, we
sss  simulated neural population responses with known noise distributions, trained DNN decoders
ss9  on the simulated population responses, and compared the decoded likelihood functions to the
sso ground-truth likelihood functions obtained by inverting the known generative model for the
se1  responses. We also compared the quality of the DNN-decoded likelihood functions to those
se2 decoded by assuming independent Poisson distribution on the population responses, as done in
s63  previous work #18H122122

564 We simulated the activities of a population of 96 multiunits rg, responding to the stimulus

ses orientation 6 drawn from the the distribution defined for our task such that:

p(0) = %N (6;0,07) + %N (6;0,03) (13)

ses where 07 = 3° and 09 = 15°.
567 We modeled the expected response of i™ unit to —that is, the tuning function f;()—with

ses a Gaussian function:

2
_ (Gfusim,i)

fi() = Ae o (14)

569

s7o For the simulation, we have set A = 6 and o, = 21°. We let the mean of the Gaussian tuning
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s71 - curves for the 96 units to uniformly tile the stimulus orientation between —40° and 40°. In other

J

572 WOTI dS,

fisimi = —40 + 13(2 ~1) (15)
573
s.4 fori € [1,96].
575 For any given trial with a drawn orientation 6, the population response ry;,, was then gener-

s76 ated under two distinct models of distributions. In the first case, the population responses were

577 drawn from an independent Poisson distribution as is commonly assumed in many works:

p(rsim|0) = HPOlss Tsim,i3 Ji(0)) (16)
f rslm e fz )
= 1
H T@lml ( 7)

578
s79 In the second case, the population responses were drawn from a multivariate Gaussian distribu-
ss0 tion with covariance matrix X € R*9 that scales with the mean response of the population.

ss1 That is:

P(Tsim]0) = N (rgm; £(6), X(0)) (18)

582

ses  for

¥(0) = diag(f*/2(9)) " C diag(f'/*(9)) (19)
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584
s where £1/2(0) € R% such that £/%(8) = /fi(6), and C € R%*% is a correlation matrix.
sss  Under this distribution, the variance of any unit’s response scales linearly with its mean just
se7 as in the case of the Poisson distribution, but the population responses can be highly correlated
sss depending on the choice of the correlation matrix C'. For the simulation, we randomly generated
ss9  a correlation matrix with the average units correlation of 0.227.

590 For each case of the distribution, we simulated population responses for the total of 1200 tri-
sor als. Among these, 200 trials were set aside as the test set. We trained the DNN-based likelihood
se2 decoder on the remaining 1000 trials, splitting them further into 800 and 200 trials as the train-
ses 1ng and validation set, respectively. We followed the exact DNN training and hyperparameter
se4 selection procedure as described earlier.

595 For comparison, we also decoded the likelihood function from the population response rgy,
ses under the assumption of independent Poisson variability, regardless of the “true” distribution.
se7  Each unit’s responses over the 1000 trials were fitted separately with a Gaussian tuning curve
s (Eq. Ef[) The parameters of the tuning curve A;, u; and o, ; were obtained by minimizing the
s90 least square difference between the Gaussian tuning curve and the observed i unit’s responses
s00 (6, 7sm;) using least_squares function from Python SciPy optimization library.

601 The ground-truth likelihood function p(rg,|6)) was computed for each simulated trial ac-
02 cording to the definition of the distribution as found in Eq. for the independent Poisson
s0s population or Eq.[I8]for the mean scaled correlated Gaussian population.

604 We then assessed the quality of the decoded likelihood functions under the independent
s0s Poisson model Lpss(#) and under the DNN model Lpyy by computing their Kullback-Leibler
eos (KL) divergence™® from the ground-truth likelihood function Ly (), giving rise to Dpyss and
s7  Dpnn, respectively. All continuous likelihood functions (L, and Lpyss) were sampled at orien-

s0s tation § where § € Z and 6 € [—45°,45°], giving rise to discretized likelihood functions L, and
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09 Lipyiss matching the dimensionality of the discretized likelihood function Lpyy computed by the

sto  DNN. We then computed the KL divergence as:

Ly,
and
Dpay = Y _log belp 21)
. LDNN,i

611
sz We computed the KL divergence for both models across all 200 trials in the test set for both
s13  simulated population distributions (Supplementary Fig. 3). When the simulated population
s14 distribution was independent Poisson, then Dpys < Dpnn for all test set trials, indicating that
615 Lipyiss better approximated Ly, overall than Lpny. However, Lipny still closely approximated L.
616 When the simulated population distribution was mean scaled correlated Gaussian, Lpnn
s17 better approximated Ly than Lpis on the majority of the trials. Furthermore, Lpy;ss provided
s1s qualitatively worse fit to the Ly for the simulated correlated Gaussian distribution compared to
s19 the fit of Lpnn to Ly for the simulated independent Poisson distribution.

620 Overall, the simulation results suggest that (1) when the form of the underlying population
e21 distribution is known (such as in the case of independent Poisson population), more accurate
s22 likelihood functions can be decoded by directly using the knowledge of the population distribu-
e2s tion than through the DNN-based likelihood decoder, but (2) when the form of the underlying
e24 distribution is unknown (such as in the case of the mean scaled correlated Gaussian distribu-
e2s tion), then a DNN-based likelihood decoder can yield much more accurate likelihood functions
e2s than if one was to employ a wrong assumption about the underlying distribution in decoding

e27 likelihood functions, and (3) a DNN-based likelihood decoder can provide reasonable estimate
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e2s  Of the likelihood function across wide range of underlying distributions. Because the true un-
s20 derlying population distribution is hardly ever known to the experimenter, we believe that our
ss0 DNN-based likelihood decoder stands as the most flexible method in decoding likelihood func-

ea1 tions from the population responses to stimuli.

<2 Fixed-Uncertainty likelihood decoder

sss To test whether the trial-by-trial fluctuations in the shape of the likelihood function convey
s« behaviorally relevant information, we developed the Fixed-Uncertainty likelihood decoder —
ess a neural network based likelihood decoder that learns a fixed shape likelihood function whose
s36 location is shifted based on the input population response.

637 The Fixed-Uncertainty decoder network consisted of two parts: a learned fixed shape like-
sss lithood function Ly and a DNN that reads out a single scalar value A, corresponding to the shift
s30 that is applied to Ly (Supplementary Fig. [S)) to yield the final likelihood function L. The DNN
ss0 consisted of two repeating blocks of a fully connected layer followed by ReLLU and a drop-out
ss1 layer, and a final fully connected readout layer with no output nonlinearity, much like the DNN
sz used for the Full-Likelihood decoder. The log L was shifted by A utilizing linear interpolation
s43 based grid-sampling® to shift the log-likelihood function in a manner that allows for the gradi-
sas ent of the loss to flow back to both the shift value As (and therefore to the DNN parameters) as
sss  well as to the likelihood function shape L.

646 The output shifted log-likelihood function was then trained in an identical manner to the
sa7 full-likelihood decoder described earlier, utilizing the same set of training paradigm with early

sss  stopping and regularizers, and explored the same range of hyperparameters.
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s Likelihood functions based on Poisson-like and independent Poisson distri-
0 butions

es1 1o serve as a comparison, for each contrast-session, we decoded likelihood functions from
es2 the population response assuming Poisson-like or independent Poisson distribution for p(r|6)
es3  (Supplementary Fig. [2)).

654 As was noted above, decoding likelihood function under the Poisson-like distribution is a
ess special case of the Full-Likelihood decoder but using entirely linear DNN (i.e. no nonlinearity
ess utilized in the network). Therefore, to decode likelihood functions under the assumption of the
es7 Poisson-like distribution, for each contrast-session, we trained a DNN with two hidden layers
ess consisting of two repeating blocks of a fully connected layer followed by a drop-out layer=*
ess but with no nonlinear activation functions, and a fully connected readout layer with no output
ss0 nonlinearity. The rest of the training and model selection procedure was identical to that of the
st Full-Likelihood or the Fixed-Uncertainty decoder described earlier.

662 To decode likelihood function under the independent Poisson distribution assumption, we
ee3 first fitted tuning curves f;(#) for each multiunit’s responses to stimulus orientations ¢ within a
es4 single contrast session. Tuning curves were computed using Gaussian process regression® with
e6s squared-exponential covariance function cov(f(6;), f(62)) = exp(—i(@l — 6,)%) and a fixed
ess observational noise o, using values of o, = 20 and o, = 2 selected based on the cross valida-
es7 tion performance on multiunit’s response prediction on a dataset not included elsewhere in the
ess analysis. Once tuning curves were computed, the likelihood function over stimulus orientations

eso was computed from the population response r as follows:

Ti!

()i fi(0)
2o =TTwtrio) = 1205 @
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e Mean and standard deviation of likelihood function

e71 For uses in the subsequent analyses, we computed the mean and the standard deviation of the

ez likelihood function by treating the likelihood function as an unnormalized probability distribu-

673 tion:
JoL(o)ds
=t 23
S (0 — pi)*L(0) db
= 24
oL \/ TL(0)do %)
674 We took the 117, and o, to be the point estimate of the stimulus orientation and the measure of

e7s the spread of the likelihood function, respectively, used in all subsequent analyses. Although not
76 presented here, we performed the following analyses with other point estimates of the stimulus
e77 orientation such as the orientation at the maximum of the likelihood function and the median of
e7s the likelihood functions, and observed that models with mean of the likelihood function as the

e79 point estimate performed the best.

s0 Attribution analysis

es1 10 assess whether the same members of the population simulatenously encode the best point
se2 estimate (i.e. in the form of the mean of the likelihood function ;) and uncertainty (i.e. in the
sss form of the width of the likelihood function o), we computed the attribution of each multiunit
ss« input of the trained Full-Likelihood decoder to the mean of the likelihood p;, and the standard
ess deviation of the likelihood function o, giving rise to the attribution A4, A, € R™, respectively,
ess where m is the number of multiunits in the input to the network. Among numerous meth-

33H35162:

es7 0ds of computing attribution , we have selected three popular gradient based attribution

ess methods®: saliency maps=%, gradient x input®?, and DeepLift"> and compared their results.
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689 Given a collection of input population responses and computed likelihood functions {r( L®},
s0 where the superscript denotes the i'" trial in the contrast session, we compute the mean and the
so1 standard deviation of the likelihood function according to Eq.[23|and Eq.[24] respectively, giving
e92 Tise to u(Li) and a(Li). Given a target feature S € {p, 0} that can be computed from the input
ses units r through a differentiable function, we compute the attribution of the input units to the
sos target S for each trial according to each attribution method, yielding a,(S'IfI)nethod’ where a € R™.
eos The sign of the attribution indicates whether increasing the unit tends to increase or decrease
sos the target feature. Since we are interested more in how much each unit contribute to the target

eo7 feature rather than in which direction, we take the absolute value of per trial attribution and

s compute the average across all trials to yield the final attribution of the input units:

k
AS,method = Z |a59,r)11eth0d (25)
k
699 For the saliency maps based method=?, the attribution is computed as the partial derivative

700 of the feature S with respect to the input units r:

08
aliency — 5 26
A Saliency = 7 (26)
701 which can be computed rather straightforwardly on a DNN implemented using any of the

702 modern neural network libraries equipped with automatic gradient computation.
703 For Gradient x Input (GI) method, the attribution is computed as the gradient of the feature

704 with respect to the input (as in saliency maps) multiplied with the input r:

08
ascr= 4 OT 27
or
705 Finally, we computed DeepLIFT attribution by using modified gradient computation for

706  ReLU units in the network defined as:
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0"ReLU(z) ReLU(z) — ReLU(xo)
ox B T — T

(28)

707 where x represents the input into the ReLLU nonlinearity when a reference input ro was used as
708 the input into the network. Here, we have defined the reference network input to be the average
70 population response across all trials (refer to Ref*** for details).

710 Using the above modified gradient computation for ReLU nonlinearity in the backpropaga-
711 tion to compute the partial derivative of the target feature with respect to the input units yield the

712 modified partial derivative 2= which is finally used to compute the DeepLIFT (DL) attribution

or
713 AS:
omsS
a =—@O(r—r 29
5oL = 5 O (r — o) 29)
714 For each contrast session and each attribution method, we computed the attribution of the

715 input units to both iy, and oy, yielding vectors A, and A,, and we computed the Pearson

716 correlation coefficient between the two scores across the units (Fig. [6).

77 Decision-making models

718 Given the hypothesized representation of the stimulus and its uncertainty in the form of the
79 likelihood function £(0) = p(r|6), the monkey’s trial-by-trial decisions were modeled based
720 on the assumption that the monkey computes the posterior probability over the two classes
721 C' = 1 and C' = 2, and utilizes this information in making decisions—that is, in accordance
722 to a model of a Bayesian decision maker. The orientation distributions for the two classes are
s p(A|C = 1) = N(0;u,0%) and p(0|C = 2) = N(0;u,03) with 4 = 0 and oy = 3° and
724 09 = 15° where N (0; i, 0%) denotes a Gaussian distribution over # with mean y and variance

725 02. The posterior ratio p for the two classes is:
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p(C = 2Jr)
=— (30)
F T pC=1p)
_p(C=2) [ p(r|0)p(0]C = 2)db 3D
p(C' =1) [ p(r|0)p(d|C =1)db
-~ p(C=1) [LON(O; p,07) A
726 A Bayes-optimal observer should select the class with the higher probability—a strategy
727 known as maximum-a-posteriori (MAP) decision-making:
C = argmax p(C|r) (33)
c

728
7o where C is the subject’s decision. However, according to the posterior probability matching

63164

730 strategy™ ¥, the decision of subjects on certain tasks are better modeled as sampling from the

731 posterior probability:

p(C) = p(C = Cr) (34)

732
733 To capture either decision-making strategy, we modeled the subject’s classification decision

73 probability ratio as follows:

mé—a>:(mc—2m>“:(y 35
o_1 — p (335)

735
76 where o € R, When a = 1, the decision-making strategy corresponds to the posterior prob-

737 ability matching while @ = oo corresponds to the MAP strategy®*. We fitted the value of «
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738 for each contrast-session during the model fitting to capture any variation of the strategy. Fur-
730 thermore, we incorporated a lapse rate A, a fraction of trials on which the subject does not pay
720 attention and makes a random decision. Hence, the final probability that the subject selects the

741 class C = 1 was modeled as:

p(C=1)=(1-2)) T 0.5 (36)
B p(C =2) [ LON(0;p,03)dO\*]
== {1 " (p(C =1) [ LON(0; 1, 0) d9) } 02 G7

o (1—p(C = 1)) [ LON(O; p,03)dO\*]
_(1 /\) {1+( p(Ozl)fL’(H)N(G;u,a%)dG ) } + 0.5\ (38)

742 For each contrast-session, we fitted the above Bayesian decision model to the monkey’s
743 decisions by fitting the four parameters: p, p(C' = 1), «v, and A. Fitting p (the center of stimulus
744 orientation distributions) and p(C' = 1) (prior over class) allowed us to capture the bias in the
725 stimulation distribution that the subject may have acquired errorneously during the training, and
726 fitting o and A allowed for the model to match the decision-making strategy employed by the
747 subject.

748 Utilizing the likelihood function £(6) decoded from the V1 population response via the Full-
749 Likelihood decoder network in Eq. [38] gave rise to the Full-Likelihood Model that made use of
750 all information including the trial-by-trial uncertainty information as captured by the trial-by-
751 trial fluctuations in the shape of the likelihood function. Alternatively, utilizing the likelihood
752 function decoded by the trained Fixed-Uncertainty decoder gave rise to the Fixed-Uncertainty
753 Model. The Fixed-Uncertainty Model effectively ignores all trial-by-trial fluctuations in the
75 uncertainty that would be captured by the flucutations in the shape of the likelihood function, but
755 captures the trial-by-trial point estimate of the stimulus orientation 0 by shifting the leaned fixed

756 shape likelihood function over orientation. For each contrast-session, different fixed likelihood
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757 shape was learned, allowing the overt measure of uncertainty such as contrast to modulate the
758 expected level of uncertainty.

759 For comparison, we have also tested the performance of the trial-by-trial decision prediction
760 utilizing likelihood functions decoded based on Poisson-like or independent Poisson population
761 distribution assumptions, giving rise to the Poisson-like Model and the Independent Poisson

762 Model for predicting trial-by-trial decisions, respectively.

s IVModel fitting and model comparison

76+  We used 10-fold cross-validation to fit and evaluate both decision models, separately for each
765 contrast-session. We divided all trials from a given contrast-session randomly into 10 equally
76 sized subsets, By, By, ..., B;, ..., Big where B; is the i™ subset. We then held out a single
767 subset B; as the test set, and trained the decision-making model on the remaining 9 subsets
768 combined together, serving as the training set. The predictions and the performance of the
760 trained model on the held out test set 3; was then reported. We repeated this 10 times, iterating
770 through each subset as the test set, training on the remaining subsets.

771 The decision models were trained to minimize the negative log likelihood on the subject’s

772 decision across all trials in the training set:

© = argmin | — long(C' = Cy|M, ©) (39)
© i
= argmin | — Z logp(é' = C'Z|M, 0) (40)
©

i
773
772 where O is the collection of the parameters for the decision-making model M and C; is the

s subject’s decision on the i™ trial in the training set. The term p(C|M, ©) is given by the Eq.

7

N

7

J

s with either the unmodified £(#) in the Full-Likelihood Model or a Gaussian approximation to
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777 L£(#) in the Fixed-Uncertainty Model.

778 The optimizations were performed using three algorithms: fmincon and ga from MAT-
779 LAB’s optimization toolbox and Bayesian Adaptive Direct Search (BADS)®. When applicable,
750 the optimization was repeated with 50 or more random parameter initializations. For each cross-
7s1  validation fold, we retained the parameter combination O that yielded the best training set score
752 (i.e. lowest negative log likelihood) among all optimization runs across different algorithms
783 and parameter initializations. We subsequently tested the model M with the best training set
784 parameter © and reported the score on the test set. For each contrast-session, all analyses on

785 the trained model presented in the main text were performed on the aggregated test sets scores.

7 Likelihood shuffling analysis

787 'To assess the contribution of the trial-by-trial fluctuations in the decoded likelihood functions
788 1n predicting the animal’s decisions under the Full-Likelihood Model, for each contrast-session
789 we shuffled the likelihood functions among trials in the same stimulus orientation bin, while
790 Maintaining the trial to trial relationship between the point estimate of the stimulus orientation
791 (i.e. mean of the normalized likelihood) and the perceptual decision. Specifically, we binned
792 trials to the nearest orientation degree such that each bin was centered at an integer degree (i.e.
703 bin center € 7Z) with the bin width of 1°. We then shuffled the likelihood functions among
794 trials in the same orientation bin. This effectively removed the stimulus orientation conditioned
705 correlation between the likelihood function and the subject’s classification C, while preserving
796 the expected likelihood function for each stimulus orientation.

797 However, we were specifically interested in decoupling the uncertainty information con-
7s tained in the shape of the likelihood function from the decision while minimally disrupting the
799 trial-by-trial correlation between the point estimate of the stimulus orientation and the subject’s

soo classification decision. To achieve this, for each trial, the newly assigned likelihood function
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sor  was shifted such that the mean of the normalized likelihood function, p;, (Eq. [23), remained
sz the same for each trial before and after the likelihood shuffling (Fig. [Sk). This allowed us to
sos specifically assess the effect of distorting the shape of the likelihood function conditioned on
so« both the (binned) stimulus orientation and the point estimate of the stimulus orientation (i.e.
sos  pu7) (Fig.[5k). To ensure that both models can take the full advantage of any information that
sos remains in the shuffled likelihood functions, we trained both the Full-Likelihood Model and the
so7 Fixed-Uncertainty Model from scratch on the shuffled data. Aside from the difference in the
sos dataset, we followed the exact procedure used when training on the original (unshuffled) data,

soo evaluating the performance through cross-validation on the test sets.

g0 Classification simulation

st We computed the expected effect size of the model fit difference between the Full-Likelihood
sz Model and the Fixed-Uncertainty Model by generating simulated data using the trained Full-
s13  Likelihood Model as the ground truth. Specifically, for each trial for each contrast-session,
s« we computed the probability of responding C = 1 from Eq. utilizing the full decoded
st likelihood function £(f) for the given trial, and sampled a classification decision from that
st probability. This procedure yielded simulated data where all monkeys’ decisions were replaced
s17 by decisions made by the trained Full-Likelihood Models. We repeated this procedure 5 times,
sis thereby producing 5 sets of simulated data. For each set of simulated data, we trained the
s19  two decision-making models (Full-Likelihood Model and Fixed-Uncertainty Model) on each
s20 contrast-session with 10-fold cross-validation, and reported the aggregated test set scores as

g2t was done for the original data.
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22 Code availability

g3 Code used for modeling and training the deep neural networks as well as for figure generation
g2« Will be made available for view and download athttps://github.com/eywalker/v1__
g5 likelihood. All other code used for analysis including data selection and decision model
26 fitting will be placed at https://github.com/eywalker/v1_project. Finally, code
s27 used for elecrophysiology data processing can already be found in the Tolias lab GitHub orga-

s28 nization https://github.com/atlabl

0 Data availability

a0 All figures except for Figure [T] and Supplementary Figure ] were generated from raw data or
st processed data. The data generated and/or analyzed during the current study are available from
sz the corresponding author upon reasonable request. No publicly available data was used in this

sz study.

saa  Statistics

sss  All statistical tests used were two-tailed paired two-sample t-test, unless specified otherwise.

s3s Wherever reported, data are means and error bars indicate standard error of the means com-

g

vn

ss unless specified otherwise. Exact p values less than 0.001 were reported as p <0.001. When

s puted as where o is the standard deviation and n is the size of the sample within the bin,

ss9 appropriate, p values were corrected for multiple comparisons and the corrected p value was

sa0 reported.
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Supplementary Figure 1: Number of trials per contrast-session. Each point corresponds to a
single contrast-session, depicting the number of trials performed at the particular contrast.
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Supplementary Figure 2: Example decoded likelihood functions. Example decoded likeli-
hood functions under Full-Likelihood, Poisson-like and Independent-Poisson based decoders
are shown for randomly selected trials from three distinct contrast-sessions from Monkey T.
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Supplementary Figure 3: Performance of the likelihood functions decoded by DNN-based de-
coders. a-b, Results on independent Poisson population responses. a, KL divergence between
the ground truth likelihood function and likelihood function decoded with: a trained DNN Dpnn
vs. independent Poisson distribution assumption Dpy;ss. Each point is a single trial in the test
set. The distributions of Dpny and Dp,ss are shown at the top and right margins, respectively.
The distribution of pair-wise difference between Dpny and Dpgigs 1S shown on the diagonal. b,
Example likelihood functions. The ground truth (solid blue), independent-Poisson based (dot-
ted orange), and DNN-based (dashed green) likelihood functions are shown for selected trials
from the test set. Four random samples (columns) were drawn from the top, middle and bot-
tom 1/3 of trials sorted by the Dpny (rows). ¢-d, Same as in a-b but for simulated population
responses with correlated Gaussian distribution where variance is scaled by the mean.
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Supplementary Figure 4: Alternative relationships between the likelihood function and the de-
cision. Possible relationships between variables in the model are indicated by black arrows.
We consider two scenarios: a, ¢ the likelihood function £ mediates the decision C’, b, d the
likelihood function does not mediate the decision. The gray arrow represents the trial-by-trial
fluctuations in the subject’s decisions C as predicted by the variable. a, b, When not condition-
ing on the stimulus s, the stimulus can drive correlation among all variables, making it difficult
to distinguish the two scenarios. ¢, d, When conditioning on the stimulus, we expect correlation
between C' and £ only when £ mediates the decision, allowing us to distinguish the two sce-
narios. The variable r represents the recorded cortical population and r,; represents responses
of all recorded and unrecorded neurons.
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Supplementary Figure 5: Fixed-Uncertainty decoder. a, A schematic of a DNN for the Fixed-
Uncertainty decoder mapping r to the decoded likelihood function L. For each contrast-session,
the Fixed-Uncertainty decoder learns a single fixed-shape likelihood function L and a network
that shifts Ly based on the population response. Therefore, all resulting likelihood functions
share the same shape (uncertainty) but differ in the center location from trial to trail. b, Example
decoded likelihood functions from randomly selected trials from a single contrast session for
both the Fixed-Uncertainty decoder and Full-Likelihood decoder.
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Supplementary Figure 6: Fitted Bayesian decision model parameters. Each point corresponds to
a single contrast-session, depicting the average fitted parameter value across 10 cross-validation
training sets plotted against the contrast of the contrast-session. The solid line and error

bars/shaded area depicts the mean and the standard error of the mean of the parameter value
for binned contrast values, respectively.
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Supplementary Figure 7: Model performance on decision predictions. a-b, Model performance
measured in proportions of trials correctly predicted by the model as a function of contrast for
four decision models based on different likelihood decoders. On each trial, the class decision
that would maximize the posterior p(é |r) was chosen to yield a concrete classification predic-
tion. c-d, Same as in a-b but with performance measured as the trial-averaged log likelihood of
the model. For a-b and c-d, dashed lines indicate the performance at chance (50% and In(0.5),
respectively).
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Supplementary Figure 8: Performance of Poisson-like and Independent Poisson Models. For
each monkey, the average trial-by-trial performance of the Full-Likelihood, Poisson-like and In-
dependent Poisson Models are shown relative to the Fixed-Uncertainty Model across contrasts,
measured as the average trial difference in the log likelihood.
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Supplementary Figure 9: Model performance based on population responses to different stim-
ulus windows. a, ¢, Average trial-by-trial performance of the Full-Likelihood Model relative to
the Fixed-Uncertainty Model across contrasts, measured as the average trial difference in the
log likelihood. The models were trained and evaluated on the population response to (a) the
first half (0-250 ms) or (¢) the second half (250-500 ms) of the stimulus presentation. The
results for the original (unshuffled) and the shuffled data are shown in solid and dashed lines,
respectively. The squares and triangles mark Monkey L and T, respectively. b, d, Relative
model performance summarized across all contrasts based on models trained as described in (a,
¢). Performance on the original and the shuffled data is shown individually for both monkeys.
The difference between the Full-Likelihood and Fixed-Uncertainty Models was significant with
p < 0.001 for both stimulus windows, and on both the original and the shuffled data for both
monkeys, except for the shuffled dataset on 0-250ms for Monkey L, for which there was no
significant difference between the two models (p = 0.17). The difference between the Full-
Likelihood Model on the original and the shuffled data was significant (p < 0.001 for both
monkeys for both stimulus windows). For a-d, all data points are means, and error bar/shaded
area indicate standard error of the means.
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Supplementary Figure 10: Expected model performance on simulated data using the trained
Full-Likelihood Model as the ground truth. a, Average trial-by-trial performance of the Full-
Likelihood Model relative to the Fixed-Uncertainty Model across contrasts on the simulated
data, measured as the trial-averaged difference in the log likelihood. The results for the un-
shuffled and the shuffled simulated data are shown in solid and dashed lines, respectively. The
squares and triangles mark Monkey L and T, respectively. b, Relative model performance sum-
marized across all contrasts. Results are shown for each monkey and for unshuffled and shuffled
simulated data. For a and b, all data points are the means and error bar/shaded area indicate the
standard deviation across the 5 simulation repetitions.
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Supplementary Figure 11: Dependence of average likelihood width on the stimulus orientation.
The dependence of the width of the likelihood function o, on the stimulus orientation is de-
picted for an example contrast-session (Monkey T, 8% contrast) on the original and the shuffled
data. The shuffling procedure preserves the relationship between the average likelihood width
and the stimulus orientation as desired.
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