

# 1 A neural basis of probabilistic computation in visual 2 cortex

3 Edgar Y. Walker,<sup>1,2†</sup> R. James Cotton,<sup>1,2,3†</sup> Wei Ji Ma,<sup>4‡</sup>  
Andreas S. Tolias<sup>1,2,5‡\*</sup>

<sup>1</sup>Center for Neuroscience and Artificial Intelligence,  
Baylor College of Medicine, TX, USA

<sup>2</sup>Department of Neuroscience, Baylor College of Medicine, TX, USA

<sup>3</sup>Now at: Shirley Ryan AbilityLab, IL, USA

<sup>4</sup>Center for Neural Science and Department of Psychology,  
New York University, NY, USA

<sup>5</sup>Department of Electrical and Computer Engineering,  
Rice University, TX, USA

\*To whom correspondence should be addressed; E-mail: astolias@bcm.edu.

†‡These authors contributed equally to this work

## 4 Abstract:

5 **Bayesian models of behavior suggest that organisms represent uncertainty as-**  
6 **sociated with sensory variables. However, the neural code of uncertainty re-**  
7  **mains elusive. A central hypothesis is that uncertainty is encoded in the pop-**  
8 **ulation activity of cortical neurons in the form of likelihood functions. We**  
9 **studied the neural code of uncertainty by simultaneously recording popula-**  
10 **tion activity from the primate visual cortex during a visual categorization task**  
11 **in which trial-to-trial uncertainty about stimulus orientation was relevant for**

12 **the decision. We decoded the likelihood function from the trial-to-trial popula-**  
13 **tion activity and found that it predicted decisions better than a point estimate**  
14 **of orientation. This remained true when we conditioned on the true orienta-**  
15 **tion, suggesting that internal fluctuations in neural activity drive behaviorally**  
16 **meaningful variations in the likelihood function. Our results establish the role**  
17 **of population-encoded likelihood functions in mediating behavior, and provide**  
18 **a neural underpinning for Bayesian models of perception.**

19 When making perceptual decisions, organisms often benefit from representing uncertainty  
20 about sensory variables. More specifically, the theory that the brain performs Bayesian inference—  
21 which has roots in the work of Laplace<sup>1</sup> and von Helmholtz<sup>2</sup>—has been widely used to explain  
22 human and animal perception<sup>3–6</sup>. At its core lies the assumption that the brain maintains a sta-  
23 tistical model of the world and when confronted with incomplete and imperfect information,  
24 makes inferences by computing probability distributions over task-relevant world state vari-  
25 ables (e.g. direction of motion of a stimulus). In spite of the prevalence of Bayesian theories  
26 in neuroscience, evidence to support them stems primarily from behavioral studies (e.g.<sup>7,8</sup>).  
27 Consequently, the manner in which probability distributions are encoded in the brain remains  
28 unclear, and, thus, the neural code of uncertainty is unknown.

29 It has been hypothesized that a critical feature of the neural code of uncertainty, which  
30 is shared throughout the sensory processing chain in the neocortex, is that the same neurons  
31 that encode a specific world state variable (e.g. stimulus orientation in V1) also encode the  
32 uncertainty about that variable (Fig. 1a). Therefore neurons multiplex both a point estimate  
33 of a sensory variable and the associated uncertainty about it<sup>9,10</sup>. Specifically, according to the  
34 probabilistic population coding (PPC) hypothesis<sup>9,10</sup>, inference in the brain is performed by  
35 inverting a generative model of neural population activity. Under this coding scheme, neural  
36 populations in V1, for example, that encode stimulus orientation also encode the associated

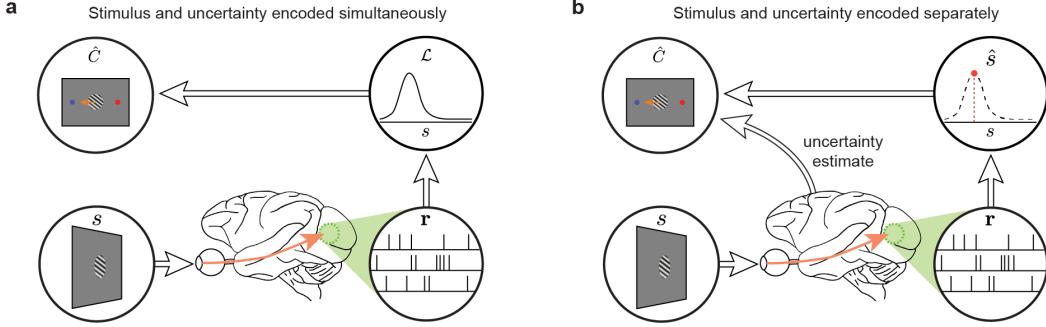


Figure 1: Alternative models of uncertainty information encoding. **a**, The recorded cortical population  $r$  responding to sensory stimulus  $s$  encodes stimulus estimate and uncertainty simultaneously in the form of likelihood function  $\mathcal{L}$  which is subsequently used in making a decision  $\hat{C}$  as the subject performs a visual classification task. **b**, The recorded cortical population only encodes a point estimate of the stimulus  $\hat{s}$  while an estimate of the sensory uncertainty is made by other (unrecorded) cortical populations. The information is subsequently combined to lead to the subject’s decision  $\hat{C}$ .

37 uncertainty in the form of the sensory likelihood function—the probability of observing a given  
 38 pattern of neural activity across hypothesized stimulus values<sup>9,11,12</sup>. The form of the likelihood  
 39 function is related to the probability distribution describing neural variability (“noise”) for a  
 40 given stimulus. A sensory likelihood function is often unimodal<sup>13,14</sup>, and its width could in  
 41 principle serve as a measure of the sensory uncertainty about the stimulus. Whether the brain  
 42 uses this particular uncertainty quantity in its decisions is unknown. Alternatively, it may be  
 43 the case that the neural population that encodes an estimate of a sensory variable (e.g. stimulus  
 44 orientation in V1) does not carry information about the associated uncertainty (Fig. 1b).

45 We recorded the activity of V1 cortical populations while monkeys performed a visual clas-  
 46 sification task in which the trial-by-trial uncertainty information is beneficial to the animal<sup>15</sup>.  
 47 To decode the trial-by-trial likelihood functions from the V1 population responses, we devel-  
 48 oped a novel technique based on deep learning<sup>16,17</sup>. Importantly, we performed all analyses  
 49 conditioned on the contrast—an overt driver of uncertainty—and performed further orientation-

50 conditioned analyses to isolate the effect of random fluctuations in the decoded likelihood func-  
51 tion on behavior. We found that using the trial-to-trial changes in the shape of the likelihood  
52 function allowed us to better predict the behavior than using a likelihood function with a fixed  
53 shape shifted by a point estimate. Therefore, we provide the first evidence that in perceptual  
54 decision-making, the same cortical population that encodes a sensory variable also encodes its  
55 trial-by-trial sensory uncertainty information, which is used to mediate perceptual decisions,  
56 consistent with the theory of PPC.

## 57 **Results**

### 58 **Behavior**

59 Two Rhesus macaques (*Macacca mulatta*) were trained on an orientation classification task  
60 designed such that the optimal performance required the use of trial-by-trial uncertainty. On  
61 each trial, one of two stimulus classes ( $C = 1$  or  $C = 2$ ) was chosen at random with equal  
62 probability. Each class was defined by a Gaussian probability distribution over the orientation.  
63 The two distributions shared the same mean but had different standard deviations (Fig. 2a).  
64 An orientation was drawn from the distribution belonging to the selected class, and a drifting  
65 grating stimulus with that orientation was then presented to the animal (Fig. 2b). In a given  
66 recording session, at least three distinct contrasts were selected at the beginning of the session,  
67 and on each trial, one of these values was randomly selected.

68 In our previous study<sup>15</sup>, we designed this task so that an optimal Bayesian observer would  
69 incorporate the trial-by-trial sensory uncertainty about stimulus orientation in making classifi-  
70 cation decisions. Indeed, decisions of both humans and monkeys seemed to utilize trial-by-trial  
71 uncertainty about the stimulus orientation. In the current study, one of the two monkeys (Mon-  
72 key L) was the same monkey that participated in the previous study and thus has been shown  
73 to have learned the task well. A second monkey (Monkey T) was also trained on the task and

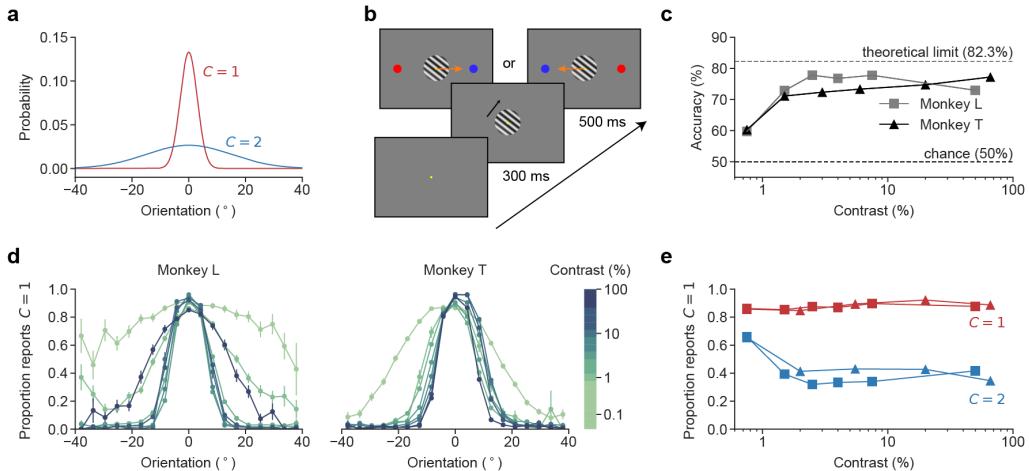


Figure 2: Behavioral task. **a**, The stimulus orientation distributions for the two classes. The two distributions shared the same mean ( $\mu = 0^{\circ}$ ) but differed in their standard deviations ( $\sigma_1 = 3^{\circ}$  and  $\sigma_2 = 15^{\circ}$ ). **b**, Time course of a single trial. The subject fixated onto the fixation target for 300 ms before a drifting grating stimulus was shown. After 500 ms of stimulus presentation, the subject broke fixation and saccaded to one of the two colored targets to indicate their class decision (color matches class color in **a**). The left-right configuration of the colored targets was chosen at random for each trial. **c**, Performance of the two monkeys on the task across stimulus contrast. “Theoretical limit” corresponds to the performance of an ideal observer with no observation noise. **d**, Psychometric curves. Each curve shows the proportion of trials on which the monkey reported  $C = 1$  as a function of stimulus orientation, computed from all trials within a single contrast bin. All data points are means and error bars indicate standard error of the means. **e**, Class-conditioned responses. For each subject, the proportions of  $C = 1$  reports is shown across contrasts, conditioned on the ground-truth class:  $C = 1$  (red) and  $C = 2$  (blue). The symbols have the same meaning as in **c**.

74 closely matched the performance of Monkey L (Fig. 2c). Both animals had psychometric curves  
75 displaying the expected strong dependence on both contrast and orientation (Fig. 2d,e).

76 In our analyses, we grouped the trials with the same contrast within the same session and  
77 refer to such a group as a “contrast-session”.

## 78 **Decoding likelihood function from V1**

79 Each monkey was implanted with a chronic multi-electrode (Utah) array in the parafoveal pri-  
80 mary visual cortex (V1) to record the simultaneous cortical population activity as the subjects  
81 performed the orientation classification task (Fig. 3a).

82 A total of 61 and 71 sessions were analyzed from Monkey L and Monkey T for a total of  
83 110,695 and 192,631 trials, respectively (Supplementary Fig. 1). In each recording session,  
84 up to 96 channels were recorded. On each trial and for each channel, we computed the to-  
85 tal number of spikes that occurred during the 500 ms of stimulus presentation preceding the  
86 decision-making cue (Fig. 3a), yielding a vector of population responses  $r$  used in the subse-  
87 quent analyses (Fig. 3b).

88 Existing computational methods for decoding the trial-by-trial likelihood function from the  
89 cortical population activities typically make strong parametric assumptions about the stimulus  
90 conditioned distribution of the population response (i.e. the generative model of the population  
91 response). For example, population responses to a stimulus can be modeled as an independent  
92 Poisson distribution, allowing each recorded unit to be characterized by a simple tuning curve  
93 (which may be further parameterized)<sup>14,18–22</sup>. While this simplifying assumption makes com-  
94 puting the trial-by-trial likelihood function straightforward, disregarding potential correlations  
95 among the units in population responses (i.e. noise correlations and internal brain state fluctu-  
96 ations<sup>23–28</sup>) can lead to biased estimates of the likelihood function and limits the generality of  
97 this approach. While more generic parametric models—such as Poisson-like distributions—of

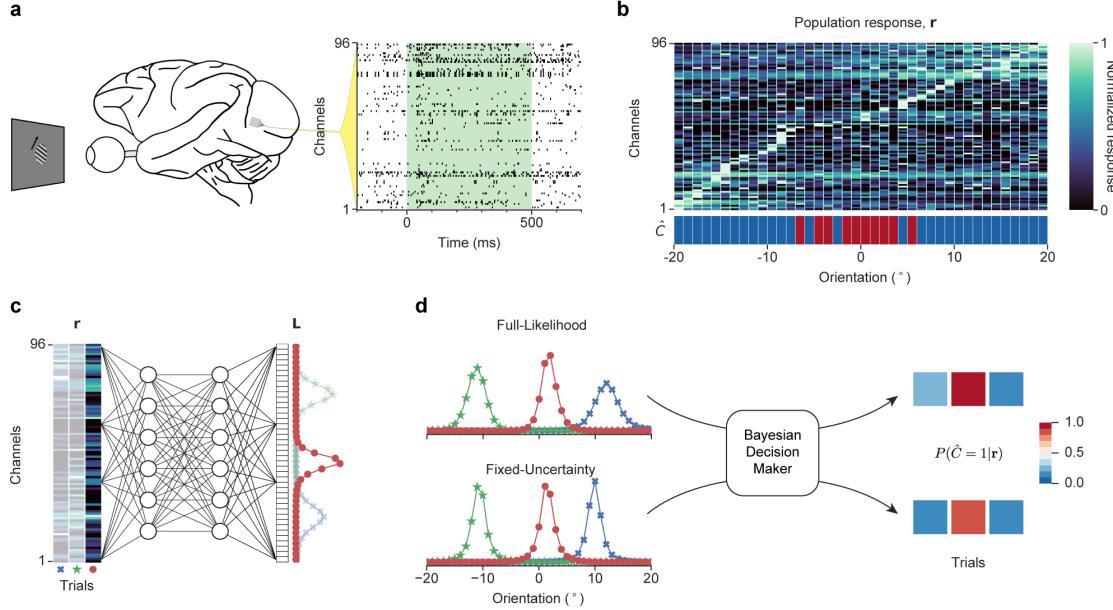


Figure 3: Encoding and decoding of the stimulus orientation. **a**, An example of 96 channels spike traces from a single trial (Monkey T). The vector of spike counts,  $\mathbf{r}$ , was accumulated over the pre-saccade stimulus presentation period (time 0-500 ms, green shade). **b**, The population response for the selected trials from a single contrast-session (Monkey T, 64% contrast). Column: a population response  $\mathbf{r}$  on a trial randomly drawn from the trials falling into a specific orientation bin. Row: a response from a single channel. For visibility, the channel's responses are normalized to the maximum response across all trials. The channels were sorted by the preferred orientation of the channel. Subject's class decision is indicated by red and blue color patches for  $\hat{C} = 1$  and  $\hat{C} = 2$ , respectively. **c**, A schematic of a DNN for the Full-Likelihood decoder, mapping  $\mathbf{r}$  to the decoded likelihood function  $\mathbf{L}$ . All likelihood functions are area-normalized. **d**, Two models of likelihood decoder  $M$ . In the *Full-Likelihood decoder*, the likelihood  $\mathbf{L}$  was decoded without any constraints on the shape. In the *Fixed-Uncertainty decoder*, all decoded likelihood functions shared the same shape but differed in the location of the center based on the population response.

For both decoders, the resulting likelihood functions were fed into parameterized Bayesian decision models to yield the decision prediction  $p(\hat{C} = 1|\mathbf{r}, M)$ .

98 population distributions have been proposed<sup>9,10,15,29,30</sup>, they still impose restrictive assumptions.

99 We devised a technique based on deep learning to decode the trial-by-trial likelihood func-  
100 tion from the V1 population response. This neural network-based likelihood decoder allows us  
101 to approximate the information that can be extracted about the stimulus orientation from the  
102 cortical population responses. The network was *not* used as a model of how the rest of the brain  
103 extracts and processes the information present in the population, but rather to decode it and  
104 demonstrate that it is used behaviorally.

105 We trained a fully connected deep neural network (DNN)<sup>17</sup> to predict the per-trial likelihood  
106 function  $\mathcal{L}(\theta) \equiv p(\mathbf{r}|\theta)$  over stimulus orientation  $\theta$  from the vectorized population response  $\mathbf{r}$   
107 (Fig. 3c; for details on the network architecture, training objective, and hyperparameter se-  
108 lection see Methods and Supplementary Table 1). A separate network was trained for each  
109 contrast-session and no behavioral data were utilized in training the DNN.

110 Using a DNN to decode the likelihood function avoids the restrictive parametric assumptions  
111 described above and provides a strictly more flexible method, often capturing decoding under  
112 known distributions as a special case (Supplementary Fig. 2). We demonstrate this by showing  
113 the DNN can recover the ground-truth likelihood function from simulated responses sampled  
114 from known distributions (Supplementary Fig. 3; refer to Methods for the simulation details).

115 The likelihood functions decoded by the DNNs exhibited the expected dependencies on the  
116 overt drivers of uncertainty such as contrast (Fig. 4a-c): the width of the likelihood function is  
117 higher at lower contrast (Fig. 4d).

## 118 **Trial to trial uncertainty improves behavioral predictions**

119 To assess whether the uncertainty decoded from population responses in the form of sensory  
120 likelihood functions mediate the behavioral outcome (perceptual decision) as we hypothesized,  
121 it is critical that we appropriately condition the analysis on the stimulus. To illustrate the impor-

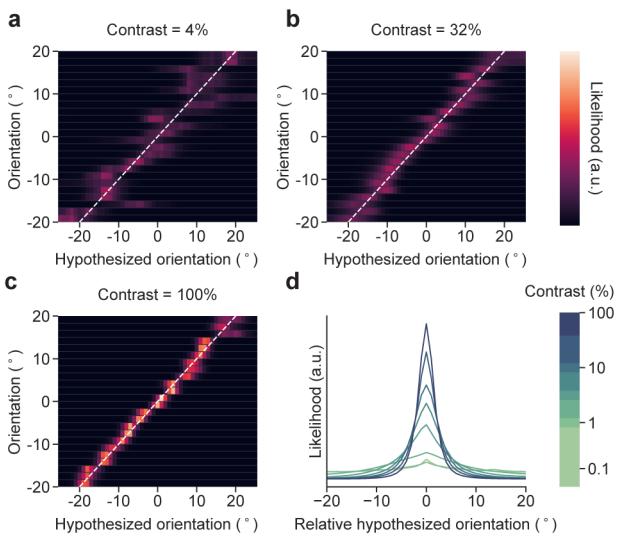


Figure 4: Likelihood functions decoded by the trained neural networks. **a-c**, Example decoded likelihood functions from three contrast-sessions from Monkey T. Each row represents the decoded likelihood function over the hypothesized orientation for a randomly selected trial within the specific orientation bin. All likelihood functions are area-normalized. Brighter colors correspond to higher values of the likelihood function. **d**, Average likelihood function by contrast. On each trial, the likelihood function was shifted such that the mean orientation of the normalized likelihood function occurred at  $0^\circ$ . The centered likelihood functions were then averaged across all trials within the same contrast bin.

122 tance of conditioning on the stimulus to determine if the decoded likelihood function mediates  
123 perceptual decisions, consider a typical perceptual decision-making task (like ours) (Supple-  
124 mentary Fig. 4) where the subject views a stimulus  $s$ , which elicits a population response  $\mathbf{r}$ , for  
125 example in V1. Here, by “stimulus”, we refer collectively to all aspects of a visual stimulus,  
126 such as its contrast and orientation. Stimulus information is eventually relayed to decision-  
127 making areas (e.g. prefrontal cortex), leading the animal to make a classification decision  $\hat{C}$ .  
128 We decode the likelihood function  $\mathcal{L}$  from the recorded population activity  $\mathbf{r}$ . Because variation  
129 in the stimulus (e.g. orientation or contrast) across trials can drive variation both in the decoded  
130 likelihood function and in the animal’s decision, one may find a significant relationship between  
131  $\mathcal{L}$  and  $\hat{C}$ , even if the likelihood function estimated from the recorded population  $\mathbf{r}$  does not me-  
132 diate the decision. When the stimulus is fixed, random fluctuations in the population response  
133  $\mathbf{r}$  can still result in variations in  $\mathcal{L}$ . If the likelihood function truly mediates the decision, we  
134 expect that such variation in  $\mathcal{L}$  would account for variation in  $\hat{C}$ . Therefore, to demonstrate that  
135 the likelihood  $\mathcal{L}$  mediates the decision  $\hat{C}$ , it is imperative to show a correlation between  $\mathcal{L}$  and  
136  $\hat{C}$  conditioned on the stimulus  $s$ .

137 As we varied the stimulus contrast from trial to trial in our task, the expected uncertainty  
138 about the stimulus orientation varied, and one would expect the monkeys to represent and make  
139 use of their trial-by-trial sensory uncertainty in making decisions. However, we make a much  
140 stronger claim here: even at a fixed contrast, because of random fluctuations in the population  
141 response<sup>31,32</sup>, we predict (1) the uncertainty encoded in the population, that is, the likelihood  
142 function, will still fluctuate from trial to trial, and (2) the effect of such fluctuations will manifest  
143 in the monkey’s decisions on a trial-by-trial basis.

144 We tested this prediction by fitting, separately for each contrast-session, the following two  
145 decision models and comparing their performance in predicting the monkey’s trial-by-trial de-  
146 cisions: (1) a Full-Likelihood Model, which utilizes the trial-by-trial uncertainty information

147 decoded from the population response in the form of the likelihood function obtained from the  
148 neural-network based likelihood decoder (Full-Likelihood decoder) described above (Fig. 3d),  
149 and (2) a Fixed-Uncertainty Model, which utilizes an alternative neural-network based likeli-  
150 hood decoder (Fixed-Uncertainty decoder) that learns a single, fixed-shape likelihood function  
151 whose location is shifted from trial to trial based on the population response (Supplementary  
152 Fig. 5). The Fixed-Uncertainty Model captures the alternative hypothesis in which the recorded  
153 sensory population only encodes a point estimate of the sensory variable (i.e. mean of the like-  
154 lihood function) and the estimate of the sensory uncertainty is encoded elsewhere, signified  
155 by the fixed shape of the likelihood function fitted for each contrast-session under this model  
156 (Fig. 1b). Generally, the likelihood function decoded by Fixed-Uncertainty decoder closely  
157 approximated the likelihood function decoded by the Full-Likelihood decoder (Supplementary  
158 Fig. 5). We use the term decoder for the DNN that returns estimated likelihood functions, and  
159 the term decision model for the mapping from likelihood function to decision.)

160 In both models, the decoded likelihood functions were fed into the Bayesian decision maker  
161 to yield trial-by-trial predictions of the subject's decision in the form of  $p(\hat{C}|\mathbf{r}, M)$ , or the  
162 likelihood of subject's decisions  $\hat{C}$  conditioned on the population response  $\mathbf{r}$  and the decision  
163 model  $M$ . The Bayesian decision maker computed the posterior probability of each class and  
164 used these to produce a stochastic decision. The means of the class distributions assumed by  
165 the observer, the class priors, the lapse rate, and a parameter to adjust the exact decision-making  
166 strategy were used as free parameters (Supplementary Fig. 6, refer to Methods for details). The  
167 model parameters were fitted by maximizing the total log likelihood over all trials for each  
168 contrast-session  $\sum_i \log p(\hat{C}_i|\mathbf{r}_i, M)$ . The fitness of the models was assessed through cross-  
169 validation, and we reported mean and total log likelihood of the models across all trials in the  
170 test set.

171 Both models incorporated trial-by-trial changes in the point estimate of the stimulus orien-

172 tation (e.g. the mean of the likelihood function) and only differed in whether they contained  
173 additional uncertainty information about the stimulus orientation carried by the trial-by-trial  
174 fluctuations in the shape of the likelihood function decoded from the same population that en-  
175 coded the point estimate. We use the term “shape” to refer to all aspects of the likelihood  
176 function besides its mean, including its width. If the fluctuations in the shape of the likelihood  
177 function truly captured the fluctuations in the sensory uncertainty as represented and utilized by  
178 the animal, one would expect the Full-Likelihood Model to yield better trial-by-trial predictions  
179 of the monkey’s decisions than the Fixed-Uncertainty Model.

180 We observed that both models predicted the monkey’s behavior well across all contrasts  
181 (Supplementary Fig. 7), reaching up to 90% accuracy. We also observed that the performance  
182 of the decision models using likelihood functions that were decoded by the neural networks was  
183 superior to the models using likelihood functions that were decoded with more traditional para-  
184 metric generative models (independent Poisson distribution and Poisson-like distribution) (Sup-  
185 plementary Fig. 8; refer to Methods for details). The Full-Likelihood Model consistently out-  
186 performed the Fixed-Uncertainty Model across contrasts and for both monkeys (Fig. 5a,b; trial  
187 log likelihood differences between the Full-Likelihood and Fixed-Uncertainty Model: Mon-  
188 key L: paired t-test,  $t(110694) = 11.06, p < 0.001, \delta_{\text{total}} = 11.0 \times 10^2$  and Monkey T:  
189  $t(192610) = 11.03, p < 0.001, \delta_{\text{total}} = 11.3 \times 10^2$ ;  $\delta_{\text{total}}$  is the total log likelihood differ-  
190 ence across all trials). This result shows that the trial-by-trial fluctuations in the shape of the  
191 likelihood function are informative about the monkey’s trial-by-trial decisions, demonstrating  
192 that decision-relevant sensory uncertainty information is contained in population responses that  
193 can be captured by the shape of the full likelihood function. This finding in turn strongly sup-  
194 ports the hypothesis that visual cortex encodes stimulus uncertainty through the shape of the  
195 full likelihood function on a trial-by-trial basis.

196 We repeated this analysis after splitting the data into the first and second 250ms of stimulus

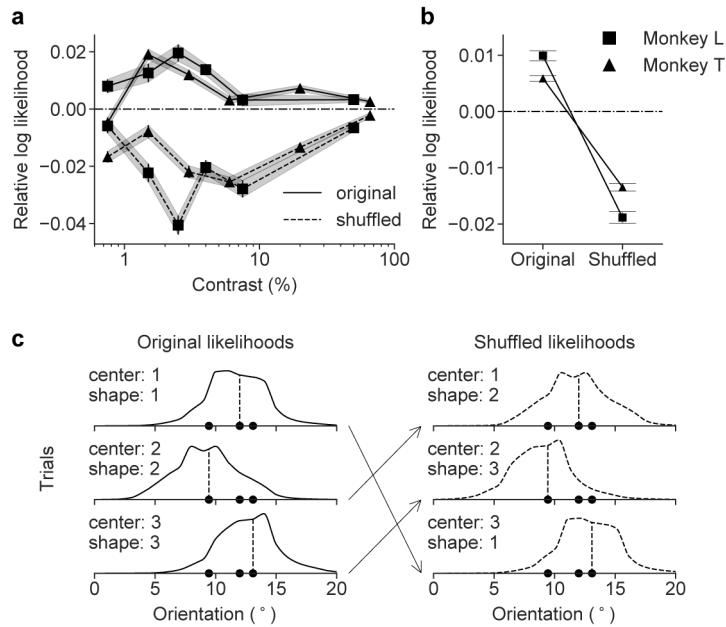


Figure 5: Model performance. **a**, Average trial-by-trial performance of the Full-Likelihood Model relative to the Fixed-Uncertainty Model across contrasts, measured as the average trial difference in the log likelihood. The results for the original (unshuffled) and the shuffled data are shown in solid and dashed lines, respectively. The squares and triangles mark Monkey L and T, respectively. **b**, Relative model performance summarized across all contrasts. Performance on the original and the shuffled data is shown individually for both monkeys. The difference between the Full-Likelihood and Fixed-Uncertainty Models was significant with  $p < 0.001$  for both monkeys, and on both the original and the shuffled data. Furthermore, the difference between the Full-Likelihood Model on the original and the shuffled data was significant ( $p < 0.001$  for both monkeys). For **a** and **b**, all data points are means, and error bar/shaded area indicate standard error of the means. **c**, Shuffling scheme for three example trials drawn from the same stimulus orientation bin. Shuffling maintains the means but swaps the shapes of the likelihood functions.

197 presentation. We found a similar improvement for the Full-Likelihood model over the Fixed-  
198 Uncertainty model in both periods (Supplementary Fig. 9).

199 We next asked how meaningful our effect sizes (model performance differences) are. To an-  
200 swer this question, we simulated the monkey's responses across all trials and contrast-sessions  
201 taking the trained Full-Likelihood Model to be the ground truth, and then retrained the Bayesian  
202 decision makers in the Full-Likelihood Model and the Fixed-Uncertainty Model from scratch  
203 on the simulated data. This approach yields a theoretical upper bound on the observable differ-  
204 ence between the two models if the Full-Likelihood Model was the true model of the monkeys'  
205 decision-making process.

206 We observed that the expected total upper bound log likelihood differences between the Full-  
207 Likelihood Model and the Fixed-Uncertainty Model of  $(37.1 \pm 1.5) \times 10^2$  and  $(36.0 \pm 1.3) \times$   
208  $10^2$  based on the simulations (representing mean  $\pm$  standard deviation across 5 repetitions of  
209 simulation for Monkey L and T, respectively) were larger but in the same order of the magnitude  
210 as the observed model performance differences ( $11.0 \times 10^2$  and  $11.3 \times 10^2$  total log likelihood  
211 differences across all trials for Monkey L and T, respectively), suggesting that our effect sizes  
212 are meaningful and that the Full-Likelihood Model is a reasonable approximate description of  
213 the monkey's true decision-making process (Supplementary Fig. 10).

## 214 **Stimulus dependent changes in uncertainty**

215 We observed that for some contrast-sessions, the average width of the likelihood function  
216 showed a dependence on the stimulus orientation (Supplementary Figure. 11). By design, the  
217 Fixed-Uncertainty Model cannot capture this stimulus dependent change in uncertainty, which  
218 could contribute to it under-performing the Full-Likelihood Model (Supplementary Fig. 4).

219 To rule this out, we shuffled the shapes of the decoded likelihood functions across trials  
220 within the same orientation bin, separately for each contrast-session. This shuffling preserves

221 the average stimulus-dependent change in uncertainty and trial-by-trial correlation between the  
222 mean of the likelihood function and the decision (Fig. 5c), while removing the trial-by-trial  
223 correlation between the shape of the likelihood function and the behavioral decision conditioned  
224 on the stimulus orientation.

225 By design, the Fixed-Uncertainty Model makes identical predictions on the original and the  
226 shuffled data. If the Full-Likelihood Model outperformed the Fixed-Uncertainty Model sim-  
227 ply because it captured spurious correlations between the stimulus orientation and the shape of  
228 the likelihood function, then it should outperform the Fixed-Uncertainty model by the same  
229 amount on the shuffled data. However, if the better behavioral predictions come from the  
230 trial-by-trial fluctuations in the likelihood shape as we hypothesized, one would expect this  
231 difference to disappear on the shuffled data. Indeed, the shuffling of the likelihood function  
232 shapes abolished the improvement in prediction performance that the Full-Likelihood Model  
233 had over the Fixed-Uncertainty Model. In fact, the Full-Likelihood Model consistently un-  
234 derperformed the Fixed-Uncertainty Model on the shuffled data (Fig. 5a,b; trial log likelihood  
235 difference between the Full-Likelihood Model and the Fixed-Uncertainty Model on the shuf-  
236 fled data: Monkey L: paired t-test  $t(110694) = -18.44, p < 0.001, \delta_{\text{total}} = -20.9 \times 10^2$  and  
237 Monkey T:  $t(192610) = -20.15, p < 0.001, \delta_{\text{total}} = -25.9 \times 10^2$ ;  $\delta_{\text{total}}$  is the total log like-  
238 lihood difference across all trials). Therefore, there were significant performance differences  
239 in Full-Likelihood Model between the unshuffled and shuffled data (trial log likelihood differ-  
240 ence: Monkey L: paired t-test  $t(110694) = 33.34, p < 0.001, \delta_{\text{total}} = 31.9 \times 10^2$  and Monkey  
241 T:  $t(192610) = 34.52, p < 0.001, \delta_{\text{total}} = 37.2 \times 10^2$ ).

242 To confirm our effect sizes were appropriate, we again compared these values to those ob-  
243 tained from simulations in which we took the Full-Likelihood Model to be the ground truth  
244 (Supplementary Fig. 10). The simulations yielded total log likelihood differences of the Full-  
245 Likelihood Model between the unshuffled and shuffled data of  $(36.2 \pm 2.2) \times 10^2$  (Monkey L)

246 and  $(40.7 \pm 1.5) \times 10^2$  (Monkey T) (mean  $\pm$  standard deviation across 5 repetitions), similar in  
247 magnitude to the observed values.

248 Taken together, the shuffling analyses show that the better prediction performance of the  
249 Full-Likelihood Model is not due to the confound between the stimulus and the likelihood  
250 shape. We conclude that the trial-by-trial likelihood function decoded from the population  
251 represents behaviorally relevant stimulus uncertainty information, even when conditioned on  
252 the stimulus.

## 253 Attribution analysis

254 To assess whether the same population encoding the best point estimate (i.e. mean of the likeli-  
255 hood function) also encoded the uncertainty regarding that estimate (i.e. shape of the likelihood  
256 function), as we hypothesized to be the case, we performed attribution analysis<sup>33</sup> on the trained  
257 Full-Likelihood decoder. Through this analysis, we ask how much of the changes in either (1)  
258 the mean of the likelihood  $\mu_L$  (i.e. surrogate for the best point estimate) or (2) the standard devi-  
259 ation of the likelihood function  $\sigma_L$  (i.e. surrogate measure of the uncertainty) can be attributed  
260 back to each input multiunit, yielding attribution  $A_\mu$  and  $A_\sigma$ , respectively. The question of fea-  
261 ture attribution is a very active field of research in machine learning, and multiple methods of  
262 attribution computation exist<sup>33–35</sup>. Here we have selected three different methods of computing  
263 attribution scores: saliency maps<sup>34</sup>, gradient  $\times$  input<sup>33</sup>, and DeepLIFT<sup>35</sup> (refer to Methods for  
264 the details of attribution computation).

265 We observed that across all three attribution methods, multiunits with high  $\mu_L$  attribution  
266 tended to have high  $\sigma_L$  attribution, and vice versa, giving rise to high degree of correlation  
267 between  $A_\mu$  and  $A_\sigma$  (Fig. 6a). If distinct subpopulations were involved in encoding the point  
268 estimate and the uncertainty as found in the likelihood function, we would have expected mul-  
269 tiunits with a high  $\mu_L$  attribution score to have a low  $\sigma_L$  attribution score, and vice versa, there-

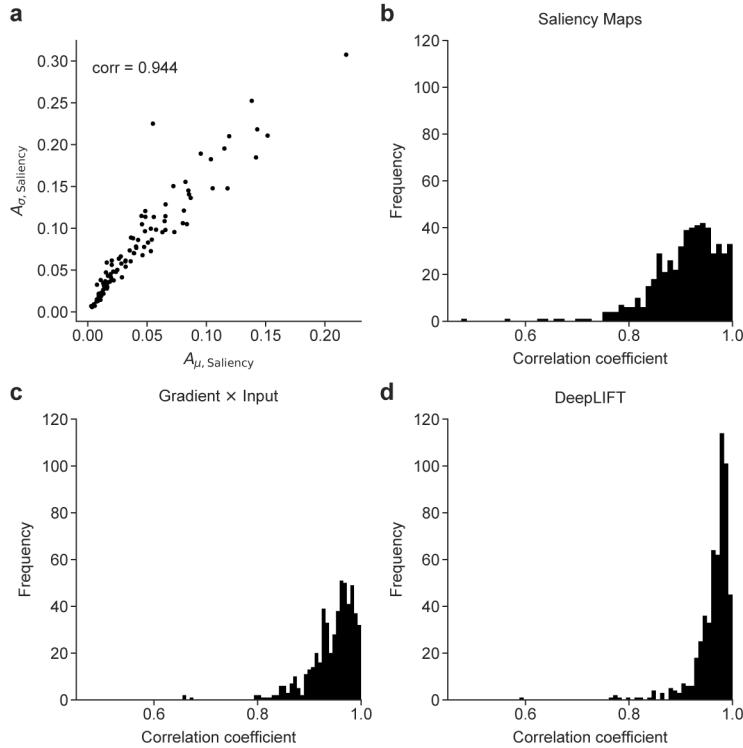


Figure 6: Attribution analysis for means and standard deviations of the likelihood functions. **a**, Attribution of 96 input multiunits to the likelihood mean  $A_{\mu, \text{Saliency}}$  vs. standard deviation  $A_{\sigma, \text{Saliency}}$  computed based on saliency maps for an example contrast session (Monkey T, 32% contrast). **b-d**, Distribution of correlation coefficients between  $A_{\mu}$  and  $A_{\sigma}$  for multi units across all contrast sessions for both monkeys, computed based on different attribution methods.

270 fore leading to negative correlation between  $A_{\mu}$  and  $A_{\sigma}$ . However, we observed that across all  
 271 contrast-sessions from both monkeys,  $A_{\mu}$  was strongly positively correlated with  $A_{\sigma}$  regardless  
 272 of the exact attribution method used, suggesting that the highly overlapping subpopulations are  
 273 involved in encoding both the point estimate and the uncertainty of the likelihood function, as  
 274 we hypothesized would be the case (Fig. 6b-d).

## 275 Discussion

276 Given the stochastic nature of the brain, repeated presentations of identical stimuli elicit vari-  
277 able responses. The covariation between neuronal activity fluctuations and perceptual choice  
278 has been studied extensively at the level of single neurons, originating with the pioneering work  
279 of Campbell & Kulikowski<sup>36</sup> and Britten et al.<sup>37</sup>. Here, we go beyond this literature by examin-  
280 ing the hypothesis that the brain takes into account knowledge of the form of neural variability  
281 in order to build a belief over the stimulus of interest on each trial. This belief is captured by  
282 the likelihood function and the associated sensory uncertainty, both of which vary from trial to  
283 trial with the neural activity. To test this hypothesis, we decoded trial-to-trial likelihood func-  
284 tions from the population activity in visual cortex and used them in conjunction with a highly  
285 constrained, theoretically motivated decision model (the Bayesian model) to predict behavior.  
286 We found that a model utilizing the full likelihood function predicted the monkeys' choices  
287 better than alternative models that ignore variations in the shape of the likelihood function. Our  
288 results provide the first population-level evidence in support of the theoretical framework of  
289 probabilistic population coding, where the same neurons that encode specific world state vari-  
290 ables also encode the uncertainty about those variables. Importantly, under this framework the  
291 brain performs Bayesian inference under a generative model of the neural activity.

292 Our findings were made possible by recording from a large population simultaneously and  
293 by using a task in which uncertainty is relevant to the animal. In addition, we decoded likelihood  
294 functions using a deep neural network that does not rely on the strong parametric assumptions  
295 about the underlying generative model of the population that have dominated previous work.  
296 Importantly, we conditioned our analyses on the stimulus to rule out a confounding effect of the  
297 stimulus on the observed relationship between the decoded likelihood function and the subject's  
298 decision. This approach is critical because previous behavioral studies on cue combination and

299 Bayesian integration, for instance, always relied on varying stimulus features (e.g. contrast,  
300 blur, motion coherence) to manipulate uncertainty<sup>7,8,22,38</sup>. As a result, these studies cannot rule  
301 out that any observed correlation between a proposed method of encoding uncertainty and a sub-  
302 ject's behavior may be confounded by the stimulus (Supplementary Fig. 4), and they therefore  
303 fail to provide a sufficiently rigorous assessment on the representation of uncertainty. Carefully  
304 controlling for the effect of stimulus fluctuations allowed us to present rigorous evidence that  
305 the trial-by-trial fluctuations in the likelihood functions carry behaviorally relevant stimulus  
306 uncertainty information.

307 After showing that this likelihood function is used behaviorally, what more can we say about  
308 the neural encoding of perceptual uncertainty? First, our network learns the *log-likelihood of s*,  
309 i.e.  $\log \mathcal{L}(s) = \log p(\mathbf{r}|s) + b(\mathbf{r})$  as a function of  $s$ . We never commit to a particular generative  
310 model  $p(\mathbf{r}|s)$  as a function of  $\mathbf{r}$ , as the DNN has an arbitrary offset as a function of  $\mathbf{r}$  (Eq. 1 in  
311 Methods). Second, we had to move away from Poisson-like variability to better characterize the  
312 responses at the cost of analytic forms and easy interpretability. We see this as a necessary evil;  
313 namely, we have shown that making the Poisson-like assumption leads to worse predictions of  
314 behavior. That being said, the DNN extends what we know about generative models in visual  
315 cortex (e.g. tuning curves, contrast gain); in particular, it allows for rich correlation among units  
316 in the population. Third, we would like to stress that we do not believe that the DNN that we use  
317 to decode the likelihood is literally implemented in the brain. It remains an important question,  
318 and avenue for future research, what kind of transformation, if any, the brain performs in order  
319 to utilize and compute with this information.

320 While the sensory likelihood function is a crucial building block for probabilistic computa-  
321 tion in the brain, fundamental questions remain regarding the nature of such computation. First,  
322 how do downstream areas process the information contained in sensory likelihood functions  
323 to make better decisions? Previous work has manually constructed neural networks for down-

324 stream computation that relied heavily on the assumption of Poisson-like variability<sup>9,10,15,39–41</sup>.  
325 However, more recent work has demonstrated that training generic shallow networks accom-  
326 plishes the same goal without the need for task-specific manual construction<sup>42</sup>. Second, does  
327 each area in a feedforward chain of computation encode a likelihood function over its own vari-  
328 able, with the computation propagating the uncertainty information from one variable to the  
329 next? For example, in our task, it is conceivable that prefrontal cortex encodes a likelihood  
330 function over class that is derived from a likelihood function over orientation coming in from  
331 V1. Third, what are the relative contributions of feedforward, recurrent, and feedback con-  
332 nections to the trial-to-trial population activity and the resulting decoded likelihood functions?  
333 Some work has argued strongly for a role of feedback<sup>28,43,44</sup>; in the present work, we are agnos-  
334 tic to this issue. While answering these questions will require major efforts, we expect that our  
335 findings will help put those efforts on a more solid footing. In the meantime, our results ele-  
336 vate the standing of Bayesian models of perception from frameworks to describe optimal input-  
337 response mappings<sup>45,46</sup> to process models whose internal building blocks—likelihood functions  
338 and probability distributions—are more concretely instantiated in neuronal activity<sup>6,47,48</sup>.

## 339 **Methods**

### 340 **Experimental model and subject details**

341 All behavioral and electrophysiological data were obtained from two healthy, male rhesus  
342 macaque (*Macaca mulatta*) monkeys (L and T) aged 10 and 7 years and weighting 9.5 and  
343 15.1 kg, respectively. All experimental procedures complied with guidelines of the NIH and  
344 were approved by the Baylor College of Medicine Institutional Animal Care and Use Commit-  
345 tee (permit number: AN-4367). Animals were housed individually in a room located adjacent to  
346 the training facility on a 12h light/dark cycle, along with around ten other monkeys permitting  
347 rich visual, olfactory, and auditory social interactions. Regular veterinary care and monitoring,  
348 balanced nutrition and environmental enrichment were provided by the Center for Comparative  
349 Medicine of Baylor College of Medicine. Surgical procedures on monkeys were conducted  
350 under general anesthesia following standard aseptic techniques.

### 351 **Stimulus presentation**

352 Each visual stimulus was a single drifting oriented sinusoidal grating (spatial frequency: 2.79  
353 cycles/degree visual angle, drifting speed: 3.89 cycles/s) presented through a circular aperture  
354 situated at the center of the screen. The size of the aperture was adjusted to cover receptive  
355 fields of the recorded populations, extending 2.14° and 2.86° of visual angle for Monkey L and  
356 Monkey T, respectively. The orientation and contrast of the stimulus were adjusted on a trial-  
357 by-trial basis as will be described later. The stimulus was presented on a CRT monitor (at a  
358 distance of 100 cm; resolution: 1600 × 1200 pixels; refresh rate: 100 Hz) using Psychophysics  
359 Toolbox<sup>49</sup>. The monitor was gamma-corrected to have a linear luminance response profile.  
360 Video cameras (DALSA genie HM640; frame rate 200Hz) with custom video eye tracking  
361 software developed in LabVIEW were used to monitor eye movements.

## 362 Behavioral paradigm

363 On a given trial, the monkey viewed a drifting oriented grating with orientation  $\theta$ , drawn from  
364 one of two classes, each defined by a Gaussian probability distribution. Both distributions  
365 have a mean of  $0^\circ$  (grating drifting horizontally rightward, positive orientation corresponding to  
366 counter-clockwise rotation), but their standard deviations differed:  $\sigma_1 = 3^\circ$  for class 1 ( $C = 1$ )  
367 and  $\sigma_2 = 15^\circ$  for class 2 ( $C = 2$ ). On each trial, the class was chosen randomly with equal  
368 probability, with the orientation of the stimulus then drawn from the corresponding distribution,  
369  $p(\theta|C)$ . At the beginning of each recording session, at least three distinct values of contrasts  
370 were selected, and one of these values was chosen at random on each trial. Unlike more typical  
371 two-category tasks using distributions with identical variances but different means, optimal  
372 decision-making in our task requires the use of sensory uncertainty on a trial-by-trial basis<sup>15</sup>.

373 Each trial proceeded as follows. A trial was initiated by a beeping sound and the appearance  
374 of a fixation target ( $0.15^\circ$  visual angle) in the center of the screen. The monkey fixated on the  
375 fixation target for 300 ms within  $0.5^\circ$ – $1^\circ$  visual angle. The stimulus then appeared at the center  
376 of the screen. After 500 ms, two colored targets (red and green) appeared to the left and the  
377 right of the grating stimulus (horizontal offset of  $4.29^\circ$  from the center with the target diameter  
378 of  $0.71^\circ$  visual angle), at which point the monkey saccaded to one of the targets to indicate their  
379 choice of class. For Monkey L, the grating stimulus was removed from the screen when the  
380 saccade target appeared, while for Monkey T, the grating stimulus remained on the screen until  
381 the subject completed the task by saccading to the target. The left-right configuration of the  
382 colored targets were varied randomly for each trial. Through training, the monkey learned to  
383 associate the red and the green targets with the narrow ( $C = 1$ ) and the wide ( $C = 2$ ) class  
384 distributions, respectively. For illustrative clarity, we used blue to indicate  $C = 2$  throughout  
385 this document. The monkey received a juice reward for each correct response (0.10–0.15 mL).

386 During the training, the monkeys were first trained to perform the colored version of the

387 task, where the grating stimulus was colored to match the correct class  $C$  for that trial (red for  
388  $C = 1$  and green for  $C = 2$ ). Under this arrangement, the monkey simply learned to saccade to  
389 the target matching the color of the grating stimulus, although the grating stimulus orientation  
390 information was always present. As the training proceeded, we gradually removed the color  
391 from the stimulus, encouraging the monkey to make use of the orientation information in the  
392 stimulus to perform the task. Eventually, the color was completely removed, and at that point  
393 the monkey was performing the full version of the task.

### 394 **Surgical Methods**

395 Our surgical procedures followed a previously established approach<sup>28,50,51</sup>. Briefly, a custom-  
396 built titanium cranial headpost was first implanted for head stabilization under general anes-  
397 thesia using aseptic conditions in a dedicated operating room. After premedication with Dex-  
398 amethasone (0.25-0.5 mg/kg; 48 h, 24 h and on the day of the procedure) and atropine (0.05  
399 mg/kg prior to sedation), animals were sedated with a mixture of ketamine (10 mg/kg) and xy-  
400 lazine (0.5 mg/kg). During the surgery, anesthesia was maintained using isoflurane (0.5-2%).  
401 After the monkey was fully trained, we implanted a 96-electrode microelectrode array (Utah  
402 array, Blackrock Microsystems, Salt Lake City, UT, USA) with a shaft length of 1 mm over  
403 parafoveal area V1 on the right hemisphere. This surgery was performed under identical con-  
404 ditions as described for headpost implantation. To ameliorate pain, analgesics were given for 7  
405 days following a surgery.

### 406 **Electrophysiological recording and data processing**

407 The neural signals were pre-amplified at the head stage by unity gain preamplifiers (HS-27,  
408 Neuralynx, Bozeman MT, USA). These signals were then digitized by 24-bit analog data ac-  
409 quisition cards with 30 dB onboard gain (PXI-4498, National Instruments, Austin, TX) and

410 sampled at 32 kHz. Broadband signals (0.5 Hz to 16 kHz) were continuously recorded us-  
411 ing custom-built LabVIEW software for the duration of the experiment. Eye positions were  
412 tracked at 200 Hz using video cameras (DALSA genie HM640) with custom video eye track-  
413 ing software developed in LabVIEW. The spike detection was performed offline according  
414 to a previously described method<sup>26,28,50</sup>. Briefly, a spike was detected when the signal on a  
415 given electrode crossed a threshold of five times the standard deviation of the correspond-  
416 ing electrode. To avoid artificial inflation of the threshold in the presence of a large num-  
417 ber of high-amplitude spikes, we used a robust estimator of the standard deviation<sup>52</sup>, given  
418 by  $\text{median}(|x|)/0.6745$ . Spikes were aligned to the center of mass of the continuous wave-  
419 form segment above half the peak amplitude. Code for spike detection is available online at  
420 <https://github.com/atlab/spikedetection>. In this study, the term “multiunit”  
421 refers to the set of all spikes detected from a single channel (i.e. electrode) of the Utah array,  
422 and all analyses in the main text were performed on multiunits. For each multiunit, the total  
423 number of spikes during the 500 ms of pre-target stimulus presentation,  $r_i$  for the  $i^{\text{th}}$  unit, was  
424 used as the measure of the multiunit’s response for a single trial. The population response  $r$  is  
425 the vector of spike counts for all 96 multiunits.

426 **Dataset and inclusion criteria.**

427 We recorded a total of 61 and 71 sessions from Monkey L and T, for a total of 112,072 and  
428 193,629 trials, respectively. We removed any trials with electrophysiology recordings contam-  
429 inated by noise in the recording devices (e.g. poor grounding connector resulting in movement  
430 noise) or equipment failures. To do so, we established the following trial inclusion criteria:

431 1. The total spike counts  $r_t = \sum_i r_i$  across all channels should fall within the  $\pm 4\sigma_{\text{adj}}$  from  
432 the median total spike counts across all trials from a single session.  $\sigma_{\text{adj}}$  is the standard de-  
433 viation of the total spike count distribution robustly approximated using the interquartile

434 range IQR as follows:  $\sigma_{\text{adj}} = \frac{\text{IQR}}{1.35}$ .

435 2. For at least 50% of all units, the observed  $i^{\text{th}}$  unit spike count  $r_i$  for the trial should fall  
436 within a range defined as:  $|r_i - \text{MED}_i| \leq 1.5 \cdot \text{IQR}_i$ , where  $\text{MED}_i$  and  $\text{IQR}_i$  are the  
437 median and interquartile ranges of the  $i^{\text{th}}$  unit spike counts distribution throughout the  
438 session, respectively.

439 We only included trials that satisfied both of the above criteria in our analysis. Empirically,  
440 we found the above criteria to be effective in catching obvious anomalies in the spike data while  
441 introducing minimal bias into the data. After the application of the criteria, we were left with  
442 110,695 and 192,631 trials for Monkey L and T, thus retaining 98.77% and 99.48% of the total  
443 trials, respectively. While this selection criteria allowed us to remove apparent anomaly in the  
444 data, we found that the main findings described in this paper were not sensitive to the precise  
445 definition of the inclusion criteria.

446 During each recording session, stimuli were presented under three or more contrast values.  
447 In all analyses to follow, we studied the trials from distinct contrast separately for each recording  
448 session, and we refer to this grouping as a “contrast-session”.

## 449 **Receptive field mapping**

450 On the first recording session for each monkey, the receptive field was mapped using spike-  
451 triggered averaging of the multiunit responses to a white noise random dot stimulus. The white  
452 noise stimulus consisted of square dots of size  $0.29^{\circ}$  of visual angle presented on a uniform  
453 gray background, with randomly varying location and color (black or white) every 30 ms for  
454 1 second. We adjusted the size of the grating stimulus as necessary to ensure that the stimulus  
455 covers the population receptive field entirely.

## 456 Full-Likelihood decoder

457 Given the population activity  $\mathbf{r}$  in response to an orientation  $\theta$ , we aimed to decode uncertainty  
458 information in the form of a likelihood function  $\mathcal{L}(\theta) \equiv p(\mathbf{r}|\theta)$ , as a function of  $\theta$ . This may  
459 be computed through the knowledge of the generative relation leading from  $\theta$  to  $\mathbf{r}$ —that is,  
460 by describing the underlying orientation conditioned probability distribution over  $\mathbf{r}$ ,  $p(\mathbf{r}|\theta)$ .  
461 This procedure is typically approximated by making rather strong assumptions about the form  
462 of the density function, for example by assuming that neurons fire independently and each  
463 neuron fires according to the Poisson distribution<sup>19</sup>. Under this approach, the expected firing  
464 rates (i.e. tuning curves) of the  $i^{\text{th}}$  neuron  $E[r_i|\theta] = f_i(\theta)$  must be approximated as well, for  
465 example by fitting a parametric function (e.g. von Mises tuning curves<sup>53</sup>) or employing kernel  
466 regression<sup>19</sup>. While these approaches have proven useful, the effect of the strong and likely  
467 inaccurate assumptions on the decoded likelihood function remains unclear. Ideally, we can  
468 more directly estimate the likelihood function  $\mathcal{L}(\theta)$  without having to make strong assumptions  
469 about the underlying conditional probability distribution over  $\mathbf{r}$ .

470 To this end, we employed a deep neural network (DNN)<sup>16</sup> to directly approximate the like-  
471 lihood function over the stimulus orientation,  $\theta$ , from the recorded population response  $\mathbf{r}$ . Here  
472 we present a brief derivation that serves as the basis of the network design and training objective.  
473 Let us assume that  $m$  multiunits were recorded simultaneously in a single recording session, so  
474 that  $\mathbf{r} \in \mathbb{R}^m$ . To make the problem tractable, we bin the stimulus orientation  $\theta$  into  $n$  distinct  
475 values,  $\theta_1$  to  $\theta_n$  (the derivation holds in general for arbitrarily fine binning of the orientation).  
476 With this, the likelihood function can be captured by a vector  $\mathbf{L} \in \mathbb{R}^n$  where  $\mathbf{L}_i = \mathcal{L}(\theta_i)$ . Let  
477 us assume that we can train some DNN to learn a mapping  $f$  from the population response  $\mathbf{r}$  to  
478 the log of the likelihood function  $\mathbf{L}$  up to a constant offset  $b$ . That is,  $f : \mathbb{R}^m \mapsto \mathbb{R}^n$ ,

$$\mathbf{r} \mapsto f(\mathbf{r}) = \log \mathbf{L} + b(\mathbf{r}) = \log p(\mathbf{r}|\theta) + b(\mathbf{r}) \quad (1)$$

479

480 for some scalar function  $b \in \mathbb{R}$ . As the experimenter, we know the distribution of the stimulus  
 481 orientation,  $\mathbf{p}_\theta \in \mathbb{R}^n$ , where  $\mathbf{p}_{\theta,i} = p(\theta_i)$ . We combine  $f(\mathbf{r})$  and  $\mathbf{p}_\theta$  to compute the log posterior  
 482 over stimulus orientation  $\theta$  up to some scalar value  $b'(\mathbf{r})$ ,

$$\mathbf{z}(\mathbf{r}) \equiv \log \mathbf{p}_\theta + f(\mathbf{r}) = \log p(\theta|\mathbf{r}) + b'(\mathbf{r}) \quad (2)$$

483

484 We finally take the softmax of  $\mathbf{z}(\mathbf{r})$ , and recover the normalized posterior function  $\mathbf{q}(\mathbf{r}) \equiv$   
 485  $\text{softmax}(\mathbf{z}(\mathbf{r}))$  where,

$$\mathbf{q}_i(\mathbf{r}) = \frac{e^{\mathbf{z}_i(\mathbf{r})}}{\sum_j e^{\mathbf{z}_j(\mathbf{r})}} \quad (3)$$

$$= \frac{e^{b'(\mathbf{r})} p(\theta = \theta_i | \mathbf{r})}{e^{b'(\mathbf{r})} \sum_j p(\theta = \theta_j | \mathbf{r})} \quad (4)$$

$$= p(\theta = \theta_i | \mathbf{r}) \quad (5)$$

486

487 Overall,  $\mathbf{q}(\mathbf{r}) = \text{softmax}(\log \mathbf{p}_\theta + f(\mathbf{r}))$ .

488 The goal then is to train the DNN  $f(\mathbf{r})$  such that the overall function  $\mathbf{q}(\mathbf{r})$  matches the  
 489 posterior over the stimulus,  $\mathbf{p}(\mathbf{r})$  where  $\mathbf{p}_i(\mathbf{r}) = p(\theta = \theta_i | \mathbf{r})$  based on the available data. This  
 490 in turn allows the network output  $f(\mathbf{r})$  to approach the log of the likelihood function  $\mathbf{L}$ , up to  
 491 a constant  $b(\mathbf{r})$ . For 1-out-of- $n$  classification problems, minimizing the cross-entropy between  
 492  $\mathbf{q}(\mathbf{r})$  and the stimulus orientation  $\theta$  for a given  $\mathbf{r}$  lets the overall function  $\mathbf{q}(\mathbf{r})$  approach the true  
 493 posterior  $\mathbf{p}(\mathbf{r})$ , as desired<sup>54,55</sup>. To show this, let us start by minimizing the difference between  
 494 the model estimated posterior  $\mathbf{q}(\mathbf{r})$  and the true posterior  $\mathbf{p}(\mathbf{r})$  over the distribution of  $\mathbf{r}$ . We do  
 495 this by minimizing the loss  $L$  defined as the expected value of the Kullback-Leibler divergence<sup>56</sup>

496 between the two posteriors:

$$L(W) = \mathbb{E}_{\mathbf{r}} [D_{KL}(\mathbf{p} || \mathbf{q})] \quad (6)$$

$$= \mathbb{E}_{\mathbf{r}} \left[ \mathbb{E}_{\theta | \mathbf{r}} \left[ \log \frac{p(\theta | \mathbf{r})}{q(\theta | \mathbf{r}, W)} \right] \right] \quad (7)$$

$$= \mathbb{E}_{\mathbf{r}, \theta} \left[ \log \frac{p(\theta | \mathbf{r})}{q(\theta | \mathbf{r}, W)} \right] \quad (8)$$

$$= -\mathbb{E}_{\mathbf{r}, \theta} [\log q(\theta | \mathbf{r}, W)] - H(\theta | \mathbf{r}) \quad (9)$$

497

498 where  $p(\theta = \theta_i | \mathbf{r}) \equiv \mathbf{p}_i(\mathbf{r})$ ,  $q(\theta = \theta_i | \mathbf{r}, W) \equiv \mathbf{q}_i(\mathbf{r}, W)$ ,  $W$  is a collection of all trainable  
 499 parameters in the network, and  $H(\theta | \mathbf{r})$  is the conditional entropy of  $\theta$  conditioned on  $\mathbf{r}$ , which  
 500 is an unknown but a fixed quantity with respect to  $W$  and the data distribution. Here we used  
 501 the notation  $\mathbf{q}(\mathbf{r}, W)$  to highlight the dependence of the network estimated posterior  $\mathbf{q}(\mathbf{r})$  on  
 502 the network parameters  $W$ . We can redefine the loss,  $L^*$ , only leaving the terms that depends  
 503 on the trainable parameters  $W$ , and then apply a Monte Carlo method<sup>57</sup> to approximate the loss  
 504 from samples:

$$L^*(W) = -\mathbb{E}_{\mathbf{r}, \theta} [\log q(\theta | \mathbf{r}, W)] \quad (10)$$

$$\approx -\frac{1}{N} \sum_i \log q(\theta^{(i)} | \mathbf{r}^{(i)}, W) \quad (11)$$

505

506 where  $(\theta^{(i)}, \mathbf{r}^{(i)})$  are samples drawn from a training set for the network. Eq. 11 is precisely the  
 507 definition of the cross-entropy as we set out to show.

508 Therefore, by optimizing the overall function  $\mathbf{q}(\mathbf{r})$  to match the posterior distribution through  
 509 the use of cross-entropy loss, the network output  $f(\mathbf{r})$  can approximate the log of the likelihood  
 510 function  $\mathcal{L}(\theta)$  for each  $\mathbf{r}$  up to an unknown constant  $b(\mathbf{r})$ . Because we do not know the value of

511  $b(\mathbf{r})$ , the network will not learn to recover the underlying generative function linking from  $\theta$  to  
512  $\mathbf{r}$ ,  $p(\mathbf{r}|\theta)$ .

513 As an example, consider a neural population with responses that follows a Poisson-like  
514 distribution (i.e. a version of the exponential distribution with linear sufficient statistics<sup>9,10</sup>).  
515 Learning a decoder for such population responses occurs as a special case of training a DNN-  
516 based likelihood decoder. For Poisson-like variability, the stimulus-conditioned distribution  
517 over  $\mathbf{r}$  is  $p(\mathbf{r}|\theta) = \phi(\mathbf{r})e^{\mathbf{h}^\top(\theta)\mathbf{r}}$ . The log likelihood function is then  $\log \mathbf{L} = \log \phi(\mathbf{r}) + \mathbf{H}^\top \mathbf{r}$ ,  
518 where  $\mathbf{H}$  is a matrix whose  $i^{\text{th}}$  column is  $\mathbf{h}(\theta_i)$ . If we let  $f(\mathbf{r}) = \mathbf{H}^\top \mathbf{r}$ , then  $f(\mathbf{r}) = \log \mathbf{L} + b(\mathbf{r})$   
519 as desired, for  $b(\mathbf{r}) = -\log \phi(\mathbf{r})$ . Hence, if we used a simple fully connected network, training  
520 the network is equivalent to fitting the kernel function  $\mathbf{h}(\theta)$  of the Poisson-like distribution.

521 In this work, we modeled the mapping  $f(\mathbf{r})$  as a DNN with two hidden layers<sup>17</sup>, consisting  
522 of two repeating blocks of a fully connected layer of size  $N_h$  followed by a rectified linear  
523 unit (ReLU)<sup>16</sup> and a drop-out layer<sup>58</sup> with dropout rate  $d_r$ , and a fully connected readout layer  
524 with no output nonlinearity (Fig. 3c). To encourage smoother likelihood functions, we added  
525 an  $L_2$  regularizer on  $\log \mathbf{L}$  filtered with a Laplacian filter of the form  $\mathbf{h} = [-0.25, 0.5, -0.25]$ .

526 Therefore, the training loss included the term:

$$R = \gamma \sum_i \mathbf{u}_i^2 \quad (12)$$

527 for  $\mathbf{u} = (\log \mathbf{L}) * \mathbf{h}$ , where  $*$  denotes convolution operation,  $\mathbf{u}_i$  is the  $i^{\text{th}}$  element of the filtered  
528 log likelihood function  $\mathbf{u}$ , and  $\gamma$  is the weight on the smoothness regularizer.

529 We trained a separate instance of the network for each contrast-session, and referred to this  
530 class of DNN based likelihood decoder as the Full-Likelihood decoder to differentiate from  
531 alternative decoders described later.

532 During the training, each contrast-session was randomly split in proportions of 80% / 20%  
533 to yield the training set and the validation set, respectively. The stimulus orientation  $\theta$  was

534 binned into integers in the range  $[-45^\circ, 45^\circ]$ , and we excluded trials with orientations outside  
535 this range. This led to the exclusion of 157 out of 110,695 trials (0.14%) and 254 out of 192,631  
536 trials (0.13%) for Monkey L and T data, respectively. The network was trained on the training  
537 set, starting with initial learning rate of  $\lambda_0$  and its performance on the validation set was moni-  
538 tored to perform early stopping<sup>59</sup>, and subsequently hyperparameter selection. For early stop-  
539 ping, we computed the mean squared error (MSE) between the maximum-a-posteriori (MAP)  
540 readout of the network output posterior  $\mathbf{q}$  and the stimulus orientation  $\theta$  on the validation set,  
541 and the training under a particular learning rate was terminated (early-stopped) if MSE failed  
542 to improve over 400 consecutive epochs, where each epoch is defined as one full pass through  
543 the training set. Upon early stopping, the parameter set that yielded the best validation set MSE  
544 during the course of the training was restored. The restored network was then trained again but  
545 with an updated learning rate  $\lambda_i = \frac{1}{3}\lambda_{i-1}$ , employing the same early stopping criteria. This pro-  
546 cedure was repeated 4 times, therefore training the network under the 4 sequentially decreasing  
547 learning rate schedule of  $\lambda_0, \frac{1}{3}\lambda_0, \frac{1}{9}\lambda_0$  and  $\frac{1}{27}\lambda_0$ . Once the training was complete, the trained  
548 network was evaluated on the validation set to yield the final score, which served as the basis  
549 for our hyperparameter selections. The values of hyperparameters for the networks, includ-  
550 ing the size of the hidden layers  $N_h$ , the initial learning rate  $\lambda_0$ , the weight on the likelihood  
551 function smoothness regularizer  $\gamma$ , and the drop-out rate  $d_r$  during the training were selected  
552 by performing a random grid search over candidate values to find the combination that yielded  
553 the best validation set score for each contrast-session instance of the network (Supplementary  
554 Table 1). We observed that all possible values of hyperparameters were found among the best  
555 selected hyperparameter networks across all contrast-sessions and all types of networks trained.

| Symbol      | Description                      | Possible Values       |
|-------------|----------------------------------|-----------------------|
| $N_h$       | number of hidden units per layer | {400, 600, 800, 1000} |
| $\lambda_0$ | initial learning rate            | {0.01, 0.03, 0.6}     |
| $\gamma$    | Laplacian L2 regularizer weight  | {3, 30, 300}          |
| $d_r$       | dropout rate                     | {0.2, 0.5, 0.9}       |

Supplementary Table 1: Possible values of hyperparameters during model selection.

556 **Decoding likelihood functions from known response distributions**

557 To assess the effectiveness of the DNN-based likelihood decoding method described above, we  
 558 simulated neural population responses with known noise distributions, trained DNN decoders  
 559 on the simulated population responses, and compared the decoded likelihood functions to the  
 560 ground-truth likelihood functions obtained by inverting the known generative model for the  
 561 responses. We also compared the quality of the DNN-decoded likelihood functions to those  
 562 decoded by assuming independent Poisson distribution on the population responses, as done in  
 563 previous work<sup>14,18,19,21,22</sup>.

564 We simulated the activities of a population of 96 multiunits  $\mathbf{r}_{\text{sim}}$  responding to the stimulus  
 565 orientation  $\theta$  drawn from the the distribution defined for our task such that:

$$p(\theta) = \frac{1}{2}\mathcal{N}(\theta; 0, \sigma_1^2) + \frac{1}{2}\mathcal{N}(\theta; 0, \sigma_2^2) \quad (13)$$

566 where  $\sigma_1 = 3^\circ$  and  $\sigma_2 = 15^\circ$ .

567 We modeled the expected response of  $i^{\text{th}}$  unit to  $\theta$ —that is, the tuning function  $f_i(\theta)$ —with  
 568 a Gaussian function:

$$f_i(\theta) = Ae^{-\frac{(\theta - \mu_{\text{sim},i})^2}{2\sigma_{\text{sim}}^2}} \quad (14)$$

569

570 For the simulation, we have set  $A = 6$  and  $\sigma_{\text{sim}} = 21^\circ$ . We let the mean of the Gaussian tuning

571 curves for the 96 units to uniformly tile the stimulus orientation between  $-40^\circ$  and  $40^\circ$ . In other  
 572 words,

$$\mu_{\text{sim},i} = -40 + \frac{16}{19}(i - 1) \quad (15)$$

573

574 for  $i \in [1, 96]$ .

575 For any given trial with a drawn orientation  $\theta$ , the population response  $\mathbf{r}_{\text{sim}}$  was then generated  
 576 under two distinct models of distributions. In the first case, the population responses were  
 577 drawn from an independent Poisson distribution as is commonly assumed in many works:

$$p(\mathbf{r}_{\text{sim}}|\theta) = \prod_i \text{Poiss}(r_{\text{sim},i}; f_i(\theta)) \quad (16)$$

$$= \prod_i \frac{f_i(\theta)^{r_{\text{sim},i}} e^{-f_i(\theta)}}{r_{\text{sim},i}!} \quad (17)$$

578

579 In the second case, the population responses were drawn from a multivariate Gaussian distribution  
 580 with covariance matrix  $\Sigma \in \mathbb{R}^{96 \times 96}$  that scales with the mean response of the population.

581 That is:

$$p(\mathbf{r}_{\text{sim}}|\theta) = \mathcal{N}(\mathbf{r}_{\text{sim}}; \mathbf{f}(\theta), \Sigma(\theta)) \quad (18)$$

582

583 for

$$\Sigma(\theta) = \text{diag}(\mathbf{f}^{1/2}(\theta))^\top C \text{diag}(\mathbf{f}^{1/2}(\theta)) \quad (19)$$

584

585 where  $\mathbf{f}^{1/2}(\theta) \in \mathbb{R}^{96}$  such that  $\mathbf{f}_i^{1/2}(\theta) = \sqrt{f_i(\theta)}$ , and  $C \in \mathbb{R}^{96 \times 96}$  is a correlation matrix.  
586 Under this distribution, the variance of any unit's response scales linearly with its mean just  
587 as in the case of the Poisson distribution, but the population responses can be highly correlated  
588 depending on the choice of the correlation matrix  $C$ . For the simulation, we randomly generated  
589 a correlation matrix with the average units correlation of 0.227.

590 For each case of the distribution, we simulated population responses for the total of 1200 tri-  
591 als. Among these, 200 trials were set aside as the test set. We trained the DNN-based likelihood  
592 decoder on the remaining 1000 trials, splitting them further into 800 and 200 trials as the train-  
593 ing and validation set, respectively. We followed the exact DNN training and hyperparameter  
594 selection procedure as described earlier.

595 For comparison, we also decoded the likelihood function from the population response  $\mathbf{r}_{\text{sim}}$   
596 under the assumption of independent Poisson variability, regardless of the “true” distribution.  
597 Each unit's responses over the 1000 trials were fitted separately with a Gaussian tuning curve  
598 (Eq. 14). The parameters of the tuning curve  $A_i$ ,  $\mu_i$  and  $\sigma_{\text{sim},i}$  were obtained by minimizing the  
599 least square difference between the Gaussian tuning curve and the observed  $i^{\text{th}}$  unit's responses  
600 ( $\theta, r_{\text{sim},i}$ ) using `least_squares` function from Python SciPy optimization library.

601 The ground-truth likelihood function  $p(\mathbf{r}_{\text{sim}}|\theta)$  was computed for each simulated trial ac-  
602 cording to the definition of the distribution as found in Eq. 16 for the independent Poisson  
603 population or Eq. 18 for the mean scaled correlated Gaussian population.

604 We then assessed the quality of the decoded likelihood functions under the independent  
605 Poisson model  $\mathcal{L}_{\text{Poiss}}(\theta)$  and under the DNN model  $\mathbf{L}_{\text{DNN}}$  by computing their Kullback-Leibler  
606 (KL) divergence<sup>56</sup> from the ground-truth likelihood function  $\mathcal{L}_{\text{gt}}(\theta)$ , giving rise to  $D_{\text{Poiss}}$  and  
607  $D_{\text{DNN}}$ , respectively. All continuous likelihood functions ( $\mathcal{L}_{\text{gt}}$  and  $\mathcal{L}_{\text{Poiss}}$ ) were sampled at ori-  
608 entation  $\theta$  where  $\theta \in \mathbb{Z}$  and  $\theta \in [-45^\circ, 45^\circ]$ , giving rise to discretized likelihood functions  $\mathbf{L}_{\text{gt}}$  and

609  $\mathbf{L}_{\text{Poiss}}$  matching the dimensionality of the discretized likelihood function  $\mathbf{L}_{\text{DNN}}$  computed by the  
610 DNN. We then computed the KL divergence as:

$$D_{\text{Poiss}} = \sum_i \log \frac{\mathbf{L}_{\text{gt},i}}{\mathbf{L}_{\text{Poiss},i}} \mathbf{L}_{\text{gt},i} \quad (20)$$

and

$$D_{\text{DNN}} = \sum_i \log \frac{\mathbf{L}_{\text{gt},i}}{\mathbf{L}_{\text{DNN},i}} \mathbf{L}_{\text{gt},i} \quad (21)$$

611  
612 We computed the KL divergence for both models across all 200 trials in the test set for both  
613 simulated population distributions (Supplementary Fig. 3). When the simulated population  
614 distribution was independent Poisson, then  $D_{\text{Poiss}} < D_{\text{DNN}}$  for all test set trials, indicating that  
615  $\mathbf{L}_{\text{Poiss}}$  better approximated  $\mathbf{L}_{\text{gt}}$  overall than  $\mathbf{L}_{\text{DNN}}$ . However,  $\mathbf{L}_{\text{DNN}}$  still closely approximated  $\mathbf{L}_{\text{gt}}$ .

616 When the simulated population distribution was mean scaled correlated Gaussian,  $\mathbf{L}_{\text{DNN}}$   
617 better approximated  $\mathbf{L}_{\text{gt}}$  than  $\mathbf{L}_{\text{Poiss}}$  on the majority of the trials. Furthermore,  $\mathbf{L}_{\text{Poiss}}$  provided  
618 qualitatively worse fit to the  $\mathbf{L}_{\text{gt}}$  for the simulated correlated Gaussian distribution compared to  
619 the fit of  $\mathbf{L}_{\text{DNN}}$  to  $\mathbf{L}_{\text{gt}}$  for the simulated independent Poisson distribution.

620 Overall, the simulation results suggest that (1) when the form of the underlying population  
621 distribution is known (such as in the case of independent Poisson population), more accurate  
622 likelihood functions can be decoded by directly using the knowledge of the population distribu-  
623 tion than through the DNN-based likelihood decoder, but (2) when the form of the underlying  
624 distribution is unknown (such as in the case of the mean scaled correlated Gaussian distribu-  
625 tion), then a DNN-based likelihood decoder can yield much more accurate likelihood functions  
626 than if one was to employ a wrong assumption about the underlying distribution in decoding  
627 likelihood functions, and (3) a DNN-based likelihood decoder can provide reasonable estimate

628 of the likelihood function across wide range of underlying distributions. Because the true un-  
629 derlying population distribution is hardly ever known to the experimenter, we believe that our  
630 DNN-based likelihood decoder stands as the most flexible method in decoding likelihood func-  
631 tions from the population responses to stimuli.

632 **Fixed-Uncertainty likelihood decoder**

633 To test whether the trial-by-trial fluctuations in the shape of the likelihood function convey  
634 behaviorally relevant information, we developed the Fixed-Uncertainty likelihood decoder —  
635 a neural network based likelihood decoder that learns a fixed shape likelihood function whose  
636 location is shifted based on the input population response.

637 The Fixed-Uncertainty decoder network consisted of two parts: a learned fixed shape like-  
638 lihood function  $L_0$  and a DNN that reads out a single scalar value  $\Delta_s$  corresponding to the shift  
639 that is applied to  $L_0$  (Supplementary Fig. 5) to yield the final likelihood function  $L$ . The DNN  
640 consisted of two repeating blocks of a fully connected layer followed by ReLU and a drop-out  
641 layer, and a final fully connected readout layer with no output nonlinearity, much like the DNN  
642 used for the Full-Likelihood decoder. The log  $L_0$  was shifted by  $\Delta_s$  utilizing linear interpolation  
643 based grid-sampling<sup>60</sup> to shift the log-likelihood function in a manner that allows for the gradi-  
644 ent of the loss to flow back to both the shift value  $\Delta_s$  (and therefore to the DNN parameters) as  
645 well as to the likelihood function shape  $L_0$ .

646 The output shifted log-likelihood function was then trained in an identical manner to the  
647 full-likelihood decoder described earlier, utilizing the same set of training paradigm with early  
648 stopping and regularizers, and explored the same range of hyperparameters.

649 **Likelihood functions based on Poisson-like and independent Poisson distri-  
650 butions**

651 To serve as a comparison, for each contrast-session, we decoded likelihood functions from  
652 the population response assuming Poisson-like or independent Poisson distribution for  $p(\mathbf{r}|\theta)$   
653 (Supplementary Fig. 2).

654 As was noted above, decoding likelihood function under the Poisson-like distribution is a  
655 special case of the Full-Likelihood decoder but using entirely linear DNN (i.e. no nonlinearity  
656 utilized in the network). Therefore, to decode likelihood functions under the assumption of the  
657 Poisson-like distribution, for each contrast-session, we trained a DNN with two hidden layers  
658 consisting of two repeating blocks of a fully connected layer followed by a drop-out layer<sup>58</sup>  
659 but with no nonlinear activation functions, and a fully connected readout layer with no output  
660 nonlinearity. The rest of the training and model selection procedure was identical to that of the  
661 Full-Likelihood or the Fixed-Uncertainty decoder described earlier.

662 To decode likelihood function under the independent Poisson distribution assumption, we  
663 first fitted tuning curves  $f_i(\theta)$  for each multiunit's responses to stimulus orientations  $\theta$  within a  
664 single contrast session. Tuning curves were computed using Gaussian process regression<sup>61</sup> with  
665 squared-exponential covariance function  $\text{cov}(f(\theta_1), f(\theta_2)) = \exp(-\frac{1}{2\sigma_L}(\theta_1 - \theta_2)^2)$  and a fixed  
666 observational noise  $\sigma_o$  using values of  $\sigma_L = 20$  and  $\sigma_o = 2$  selected based on the cross valida-  
667 tion performance on multiunit's response prediction on a dataset not included elsewhere in the  
668 analysis. Once tuning curves were computed, the likelihood function over stimulus orientations  
669 was computed from the population response  $\mathbf{r}$  as follows:

$$\mathcal{L}(\theta) = \prod_i p(r_i|\theta) = \prod_i \frac{f_i(\theta)^{r_i} e^{-f_i(\theta)}}{r_i!} \quad (22)$$

## 670 Mean and standard deviation of likelihood function

671 For uses in the subsequent analyses, we computed the mean and the standard deviation of the  
672 likelihood function by treating the likelihood function as an unnormalized probability distribu-  
673 tion:

$$\mu_L = \frac{\int \theta \mathcal{L}(\theta) d\theta}{\int \mathcal{L}(\theta) d\theta} \quad (23)$$

$$\sigma_L = \sqrt{\frac{\int (\theta - \mu_L)^2 \mathcal{L}(\theta) d\theta}{\int \mathcal{L}(\theta) d\theta}} \quad (24)$$

674 We took the  $\mu_L$  and  $\sigma_L$  to be the point estimate of the stimulus orientation and the measure of  
675 the spread of the likelihood function, respectively, used in all subsequent analyses. Although not  
676 presented here, we performed the following analyses with other point estimates of the stimulus  
677 orientation such as the orientation at the maximum of the likelihood function and the median of  
678 the likelihood functions, and observed that models with mean of the likelihood function as the  
679 point estimate performed the best.

## 680 Attribution analysis

681 To assess whether the same members of the population simultaneously encode the best point  
682 estimate (i.e. in the form of the mean of the likelihood function  $\mu_L$ ) and uncertainty (i.e. in the  
683 form of the width of the likelihood function  $\sigma_L$ ), we computed the attribution of each multiunit  
684 input of the trained Full-Likelihood decoder to the mean of the likelihood  $\mu_L$  and the standard  
685 deviation of the likelihood function  $\sigma_L$  giving rise to the attribution  $A_\mu, A_\sigma \in \mathbb{R}^m$ , respectively,  
686 where  $m$  is the number of multiunits in the input to the network. Among numerous meth-  
687 ods of computing attribution<sup>33–35,62</sup>, we have selected three popular gradient based attribution  
688 methods<sup>33</sup>: saliency maps<sup>34</sup>, gradient  $\times$  input<sup>62</sup>, and DeepLift<sup>35</sup> and compared their results.

689 Given a collection of input population responses and computed likelihood functions  $\{\mathbf{r}^{(i)}, \mathbf{L}^{(i)}\}$ ,  
 690 where the superscript denotes the  $i^{\text{th}}$  trial in the contrast session, we compute the mean and the  
 691 standard deviation of the likelihood function according to Eq. 23 and Eq. 24, respectively, giving  
 692 rise to  $\mu_L^{(i)}$  and  $\sigma_L^{(i)}$ . Given a target feature  $S \in \{\mu_L, \sigma_L\}$  that can be computed from the input  
 693 units  $\mathbf{r}$  through a differentiable function, we compute the attribution of the input units to the  
 694 target  $S$  for each trial according to each attribution method, yielding  $\mathbf{a}_{S,\text{method}}^{(k)}$ , where  $\mathbf{a} \in \mathbf{R}^m$ .  
 695 The sign of the attribution indicates whether increasing the unit tends to increase or decrease  
 696 the target feature. Since we are interested more in how much each unit contribute to the target  
 697 feature rather than in which direction, we take the absolute value of per trial attribution and  
 698 compute the average across all trials to yield the final attribution of the input units:

$$\mathbf{A}_{S,\text{method}} = \sum_k |a_{S,\text{method}}^{(k)}| \quad (25)$$

699 For the saliency maps based method<sup>34</sup>, the attribution is computed as the partial derivative  
 700 of the feature  $S$  with respect to the input units  $\mathbf{r}$ :

$$\mathbf{a}_{S,\text{Saliency}} = \frac{\partial S}{\partial \mathbf{r}} \quad (26)$$

701 which can be computed rather straightforwardly on a DNN implemented using any of the  
 702 modern neural network libraries equipped with automatic gradient computation.

703 For Gradient  $\times$  Input (GI) method, the attribution is computed as the gradient of the feature  
 704 with respect to the input (as in saliency maps) multiplied with the input  $\mathbf{r}$ :

$$\mathbf{a}_{S,\text{GI}} = \frac{\partial S}{\partial \mathbf{r}} \odot \mathbf{r} \quad (27)$$

705 Finally, we computed DeepLIFT attribution by using modified gradient computation for  
 706 ReLU units in the network defined as:

$$\frac{\partial^m \text{ReLU}(x)}{\partial x} = \frac{\text{ReLU}(x) - \text{ReLU}(x_0)}{x - x_0} \quad (28)$$

707 where  $x_0$  represents the input into the ReLU nonlinearity when a reference input  $\mathbf{r}_0$  was used as  
 708 the input into the network. Here, we have defined the reference network input to be the average  
 709 population response across all trials (refer to Ref<sup>33,35</sup> for details).

710 Using the above modified gradient computation for ReLU nonlinearity in the backpropagation  
 711 to compute the partial derivative of the target feature with respect to the input units yield the  
 712 modified partial derivative  $\frac{\partial^m S}{\partial \mathbf{r}}$  which is finally used to compute the DeepLIFT (DL) attribution  
 713 as:

$$\mathbf{a}_{S,\text{DL}} = \frac{\partial^m S}{\partial \mathbf{r}} \odot (\mathbf{r} - \mathbf{r}_0) \quad (29)$$

714 For each contrast session and each attribution method, we computed the attribution of the  
 715 input units to both  $\mu_L$  and  $\sigma_L$ , yielding vectors  $\mathbf{A}_\mu$  and  $\mathbf{A}_\sigma$ , and we computed the Pearson  
 716 correlation coefficient between the two scores across the units (Fig. 6).

## 717 Decision-making models

718 Given the hypothesized representation of the stimulus and its uncertainty in the form of the  
 719 likelihood function  $\mathcal{L}(\theta) \equiv p(\mathbf{r}|\theta)$ , the monkey's trial-by-trial decisions were modeled based  
 720 on the assumption that the monkey computes the posterior probability over the two classes  
 721  $C = 1$  and  $C = 2$ , and utilizes this information in making decisions—that is, in accordance  
 722 to a model of a Bayesian decision maker. The orientation distributions for the two classes are  
 723  $p(\theta|C = 1) = \mathcal{N}(\theta; \mu, \sigma_1^2)$  and  $p(\theta|C = 2) = \mathcal{N}(\theta; \mu, \sigma_2^2)$  with  $\mu = 0$  and  $\sigma_1 = 3^\circ$  and  
 724  $\sigma_2 = 15^\circ$  where  $\mathcal{N}(\theta; \mu, \sigma^2)$  denotes a Gaussian distribution over  $\theta$  with mean  $\mu$  and variance  
 725  $\sigma^2$ . The posterior ratio  $\rho$  for the two classes is:

$$\rho = \frac{p(C = 2|\mathbf{r})}{p(C = 1|\mathbf{r})} \quad (30)$$

$$= \frac{p(C = 2) \int p(\mathbf{r}|\theta)p(\theta|C = 2) d\theta}{p(C = 1) \int p(\mathbf{r}|\theta)p(\theta|C = 1) d\theta} \quad (31)$$

$$= \frac{p(C = 2) \int \mathcal{L}(\theta)\mathcal{N}(\theta; \mu, \sigma_2^2) d\theta}{p(C = 1) \int \mathcal{L}(\theta)\mathcal{N}(\theta; \mu, \sigma_1^2) d\theta} \quad (32)$$

726 A Bayes-optimal observer should select the class with the higher probability—a strategy  
 727 known as maximum-a-posteriori (MAP) decision-making:

$$\hat{C} = \operatorname{argmax}_C p(C|\mathbf{r}) \quad (33)$$

728  
 729 where  $\hat{C}$  is the subject's decision. However, according to the posterior probability matching  
 730 strategy<sup>63,64</sup>, the decision of subjects on certain tasks are better modeled as sampling from the  
 731 posterior probability:

$$p(\hat{C}) = p(C = \hat{C}|\mathbf{r}) \quad (34)$$

732  
 733 To capture either decision-making strategy, we modeled the subject's classification decision  
 734 probability ratio as follows:

$$\frac{p(\hat{C} = 2)}{p(\hat{C} = 1)} = \left( \frac{p(C = 2|\mathbf{r})}{p(C = 1|\mathbf{r})} \right)^\alpha = \rho^\alpha \quad (35)$$

735  
 736 where  $\alpha \in \mathbb{R}^+$ . When  $\alpha = 1$ , the decision-making strategy corresponds to the posterior prob-  
 737 ability matching while  $\alpha = \infty$  corresponds to the MAP strategy<sup>64</sup>. We fitted the value of  $\alpha$

738 for each contrast-session during the model fitting to capture any variation of the strategy. Fur-  
 739 thermore, we incorporated a lapse rate  $\lambda$ , a fraction of trials on which the subject does not pay  
 740 attention and makes a random decision. Hence, the final probability that the subject selects the  
 741 class  $C = 1$  was modeled as:

$$p(\hat{C} = 1) = (1 - \lambda) \frac{1}{1 + \rho^\alpha} + 0.5\lambda \quad (36)$$

$$= (1 - \lambda) \left[ 1 + \left( \frac{p(C = 2) \int \mathcal{L}(\theta) \mathcal{N}(\theta; \mu, \sigma_2^2) d\theta}{p(C = 1) \int \mathcal{L}(\theta) \mathcal{N}(\theta; \mu, \sigma_1^2) d\theta} \right)^\alpha \right]^{-1} + 0.5\lambda \quad (37)$$

$$= (1 - \lambda) \left[ 1 + \left( \frac{(1 - p(C = 1)) \int \mathcal{L}(\theta) \mathcal{N}(\theta; \mu, \sigma_2^2) d\theta}{p(C = 1) \int \mathcal{L}(\theta) \mathcal{N}(\theta; \mu, \sigma_1^2) d\theta} \right)^\alpha \right]^{-1} + 0.5\lambda \quad (38)$$

742 For each contrast-session, we fitted the above Bayesian decision model to the monkey's  
 743 decisions by fitting the four parameters:  $\mu$ ,  $p(C = 1)$ ,  $\alpha$ , and  $\lambda$ . Fitting  $\mu$  (the center of stimulus  
 744 orientation distributions) and  $p(C = 1)$  (prior over class) allowed us to capture the bias in the  
 745 stimulation distribution that the subject may have acquired erroneously during the training, and  
 746 fitting  $\alpha$  and  $\lambda$  allowed for the model to match the decision-making strategy employed by the  
 747 subject.

748 Utilizing the likelihood function  $\mathcal{L}(\theta)$  decoded from the V1 population response via the Full-  
 749 Likelihood decoder network in Eq. 38 gave rise to the Full-Likelihood Model that made use of  
 750 all information including the trial-by-trial uncertainty information as captured by the trial-by-  
 751 trial fluctuations in the shape of the likelihood function. Alternatively, utilizing the likelihood  
 752 function decoded by the trained Fixed-Uncertainty decoder gave rise to the Fixed-Uncertainty  
 753 Model. The Fixed-Uncertainty Model effectively ignores all trial-by-trial fluctuations in the  
 754 uncertainty that would be captured by the fluctuations in the shape of the likelihood function, but  
 755 captures the trial-by-trial point estimate of the stimulus orientation  $\hat{\theta}$  by shifting the leaned fixed  
 756 shape likelihood function over orientation. For each contrast-session, different fixed likelihood

757 shape was learned, allowing the overt measure of uncertainty such as contrast to modulate the  
758 expected level of uncertainty.

759 For comparison, we have also tested the performance of the trial-by-trial decision prediction  
760 utilizing likelihood functions decoded based on Poisson-like or independent Poisson population  
761 distribution assumptions, giving rise to the Poisson-like Model and the Independent Poisson  
762 Model for predicting trial-by-trial decisions, respectively.

## 763 Model fitting and model comparison

764 We used 10-fold cross-validation to fit and evaluate both decision models, separately for each  
765 contrast-session. We divided all trials from a given contrast-session randomly into 10 equally  
766 sized subsets,  $B_1, B_2, \dots, B_i, \dots, B_{10}$  where  $B_i$  is the  $i^{\text{th}}$  subset. We then held out a single  
767 subset  $B_i$  as the test set, and trained the decision-making model on the remaining 9 subsets  
768 combined together, serving as the training set. The predictions and the performance of the  
769 trained model on the held out test set  $B_i$  was then reported. We repeated this 10 times, iterating  
770 through each subset as the test set, training on the remaining subsets.

771 The decision models were trained to minimize the negative log likelihood on the subject's  
772 decision across all trials in the training set:

$$\hat{\Theta} = \operatorname{argmin}_{\Theta} \left( -\log \prod_i p(\hat{C} = \hat{C}_i | M, \Theta) \right) \quad (39)$$

$$= \operatorname{argmin}_{\Theta} \left( - \sum_i \log p(\hat{C} = \hat{C}_i | M, \Theta) \right) \quad (40)$$

773

774 where  $\Theta$  is the collection of the parameters for the decision-making model  $M$  and  $\hat{C}_i$  is the  
775 subject's decision on the  $i^{\text{th}}$  trial in the training set. The term  $p(\hat{C} | M, \Theta)$  is given by the Eq. 38  
776 with either the unmodified  $\mathcal{L}(\theta)$  in the Full-Likelihood Model or a Gaussian approximation to

777  $\mathcal{L}(\theta)$  in the Fixed-Uncertainty Model.

778 The optimizations were performed using three algorithms: `fmincon` and `ga` from MAT-  
779 LAB’s optimization toolbox and Bayesian Adaptive Direct Search (BADS)<sup>65</sup>. When applicable,  
780 the optimization was repeated with 50 or more random parameter initializations. For each cross-  
781 validation fold, we retained the parameter combination  $\hat{\Theta}$  that yielded the best training set score  
782 (i.e. lowest negative log likelihood) among all optimization runs across different algorithms  
783 and parameter initializations. We subsequently tested the model  $M$  with the best training set  
784 parameter  $\hat{\Theta}$  and reported the score on the test set. For each contrast-session, all analyses on  
785 the trained model presented in the main text were performed on the aggregated test sets scores.

786 **Likelihood shuffling analysis**

787 To assess the contribution of the trial-by-trial fluctuations in the decoded likelihood functions  
788 in predicting the animal’s decisions under the Full-Likelihood Model, for each contrast-session  
789 we shuffled the likelihood functions among trials in the same stimulus orientation bin, while  
790 maintaining the trial to trial relationship between the point estimate of the stimulus orientation  
791 (i.e. mean of the normalized likelihood) and the perceptual decision. Specifically, we binned  
792 trials to the nearest orientation degree such that each bin was centered at an integer degree (i.e.  
793 bin center  $\in \mathbb{Z}$ ) with the bin width of  $1^\circ$ . We then shuffled the likelihood functions among  
794 trials in the same orientation bin. This effectively removed the stimulus orientation conditioned  
795 correlation between the likelihood function and the subject’s classification  $\hat{C}$ , while preserving  
796 the expected likelihood function for each stimulus orientation.

797 However, we were specifically interested in decoupling the uncertainty information con-  
798 tained in the shape of the likelihood function from the decision while minimally disrupting the  
799 trial-by-trial correlation between the point estimate of the stimulus orientation and the subject’s  
800 classification decision. To achieve this, for each trial, the newly assigned likelihood function

801 was shifted such that the mean of the normalized likelihood function,  $\mu_L$  (Eq. 23), remained  
802 the same for each trial before and after the likelihood shuffling (Fig. 5c). This allowed us to  
803 specifically assess the effect of distorting the shape of the likelihood function conditioned on  
804 both the (binned) stimulus orientation and the point estimate of the stimulus orientation (i.e.  
805  $\mu_L$ ) (Fig. 5c). To ensure that both models can take the full advantage of any information that  
806 remains in the shuffled likelihood functions, we trained both the Full-Likelihood Model and the  
807 Fixed-Uncertainty Model from scratch on the shuffled data. Aside from the difference in the  
808 dataset, we followed the exact procedure used when training on the original (unshuffled) data,  
809 evaluating the performance through cross-validation on the test sets.

## 810 Classification simulation

811 We computed the expected effect size of the model fit difference between the Full-Likelihood  
812 Model and the Fixed-Uncertainty Model by generating simulated data using the trained Full-  
813 Likelihood Model as the ground truth. Specifically, for each trial for each contrast-session,  
814 we computed the probability of responding  $\hat{C} = 1$  from Eq. 38, utilizing the full decoded  
815 likelihood function  $\mathcal{L}(\theta)$  for the given trial, and sampled a classification decision from that  
816 probability. This procedure yielded simulated data where all monkeys' decisions were replaced  
817 by decisions made by the trained Full-Likelihood Models. We repeated this procedure 5 times,  
818 thereby producing 5 sets of simulated data. For each set of simulated data, we trained the  
819 two decision-making models (Full-Likelihood Model and Fixed-Uncertainty Model) on each  
820 contrast-session with 10-fold cross-validation, and reported the aggregated test set scores as  
821 was done for the original data.

## 822 **Code availability**

823 Code used for modeling and training the deep neural networks as well as for figure generation  
824 will be made available for view and download at [https://github.com/eywalker/v1\\_likelihood](https://github.com/eywalker/v1_likelihood). All other code used for analysis including data selection and decision model  
825 fitting will be placed at [https://github.com/eywalker/v1\\_project](https://github.com/eywalker/v1_project). Finally, code  
826 used for elecrophysiology data processing can already be found in the Tolias lab GitHub organi-  
827 zation <https://github.com/atlab>.

## 829 **Data availability**

830 All figures except for Figure 1 and Supplementary Figure 4 were generated from raw data or  
831 processed data. The data generated and/or analyzed during the current study are available from  
832 the corresponding author upon reasonable request. No publicly available data was used in this  
833 study.

## 834 **Statistics**

835 All statistical tests used were two-tailed paired two-sample t-test, unless specified otherwise.  
836 Wherever reported, data are means and error bars indicate standard error of the means com-  
837 puted as  $\frac{\sigma}{\sqrt{n}}$  where  $\sigma$  is the standard deviation and  $n$  is the size of the sample within the bin,  
838 unless specified otherwise. Exact p values less than 0.001 were reported as  $p < 0.001$ . When  
839 appropriate, p values were corrected for multiple comparisons and the corrected p value was  
840 reported.

## 841 **Acknowledgments**

842 The research was supported by National Science Foundation Grant IIS-1132009 (to W.J.M.  
843 and A.S.T.), DP1 EY023176 Pioneer Grant (to A.S.T.), F30 EY025510 (to E.Y.W.) and R01

844 EY026927 (to A.S.T and W.J.M.). We thank Fabian Sinz for helpful discussion and suggestions  
845 on the deep neural network fitting to likelihood functions. We also thank Tori Shin for assistance  
846 in monkeys behavioral training and experimental data collection.

847 **Author contributions:**

848 All authors designed the experiments and developed the theoretical framework. R.J.C. trained  
849 the first monkey, and R.J.C. and E.Y.W. recorded data from this monkey. E.Y.W. trained and  
850 recorded from the second monkey. E.Y.W. performed all data analyses. E.Y.W. wrote the  
851 manuscript, with contributions from all authors.

852 **Competing interests:**

853 The authors declare that they have no competing financial interests.

854 **References**

- 855 1. Laplace, P.-S. *Theorie Analytique des Probabilites* (Ve Courcier, Paris, 1812).
- 856 2. von Helmholtz, H. Versuch einer erweiterten Anwendung des Fechnerschen Gesetzes im  
857 farbensystem. *Z. Psychol. Physiol. Sinnesorg* **2**, 1–30 (1891).
- 858 3. Knill, D. C. & Richards, W. (eds.) *Perception As Bayesian Inference* (Cambridge University  
859 Press, New York, NY, USA, 1996).
- 860 4. Kersten, D., Mamassian, P. & Yuille, A. Object perception as Bayesian inference. *Annual  
861 review of psychology* **55**, 271–304 (2004).
- 862 5. Knill, D. C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and  
863 computation. *Trends in Neurosciences* **27**, 712–719 (2004).

864 6. Ma, W. J. & Jazayeri, M. Neural Coding of Uncertainty and Probability. *Annual review of*  
865 *neuroscience* **37**, 205–220 (2014).

866 7. Alais, D. & Burr, D. The ventriloquist effect results from near-optimal bimodal integration.  
867 *Current Biology* **14**, 257–262 (2004).

868 8. Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statisti-  
869 cally optimal fashion. *Nature* **415**, 429–433 (2002). NIHMS150003.

870 9. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic  
871 population codes. *Nature Neuroscience* **9**, 1432–1438 (2006). NIHMS150003.

872 10. Beck, J. M. *et al.* Probabilistic Population Codes for Bayesian Decision Making. *Neuron*  
873 **60**, 1142–1152 (2008). 1507.01561.

874 11. Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. *Nature*  
875 *reviews. Neuroscience* **1**, 125–32 (2000).

876 12. Pouget, A., Dayan, P. & Zemel, R. S. Inference and Computation with Population Codes.  
877 *Annu. Rev. Neurosci* **26**, 381–410 (2003).

878 13. Ma, W. J., Beck, J. M. & Pouget, A. Spiking networks for Bayesian inference and choice.  
879 *Current Opinion in Neurobiology* **18**, 217–222 (2008).

880 14. Graf, A. B. A., Kohn, A., Jazayeri, M. & Movshon, J. A. Decoding the activity of neu-  
881 ronal populations in macaque primary visual cortex. *Nature Publishing Group* **14**, 239–245  
882 (2011).

883 15. Qamar, A. T. *et al.* Trial-to-trial, uncertainty-based adjustment of decision boundaries in  
884 visual categorization. *Proceedings of the National Academy of Sciences* **110**, 20332–20337  
885 (2013).

886 16. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. *Nature* **521**, 436–444 (2015).

887 17. Goodfellow, Ian, Bengio, Yoshua, Courville, A. Deep Learning. *MIT Press* (2016).

888 arXiv:1312.6184v5.

889 18. Seung, H. S. & Sompolinsky, H. Simple models for reading neuronal population codes.

890 *Proc.Natl.Acad.Sci.* **90**, 10749–10753 (1993). NIHMS150003.

891 19. Sanger, T. D. Probability density estimation for the interpretation of neural population

892 codes. *Journal of neurophysiology* **76**, 2790–3 (1996).

893 20. Zemel, R. S., Dayan, P. & Pouget, A. Probabalistic interpretation of population codes.

894 *Neural Comp.* **10**, 403–430 (1998).

895 21. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neu-

896 ral populations. *Nature Neuroscience* **9**, 690–696 (2006). 10.1021/n13012853 |

897 NanoLett.2012, 12, 36023608.

898 22. Fetsch, C. R., Pouget, A., Deangelis, G. C. & Angelaki, D. E. Neural correlates of

899 reliability-based cue weighting during multisensory integration. *Nature Neuroscience* **15**,

900 146–154 (2012). NIHMS150003.

901 23. Averbeck, B. B. & Lee, D. Effects of Noise Correlations on Information Encoding and

902 Decoding. *J Neurophysiol* **95**, 3633–3644 (2006).

903 24. Ecker, A. S. *et al.* Decorrelated neuronal firing in coritcal micorcircuits. *Science* **327**,

904 584–587 (2010).

905 25. Ecker, A. S., Berens, P., Tolias, A. S. & Bethge, M. The Effect of Noise Correlations

906 in Populations of Diversely Tuned Neurons. *Journal of Neuroscience* **31**, 14272–14283

907 (2011). NIHMS150003.

908 26. Ecker, A. S. *et al.* State dependence of noise correlations in macaque primary visual cortex.  
909 *Neuron* **82**, 235–248 (2014).

910 27. van Bergen, R. S. & Jehee, J. F. Modeling correlated noise is necessary to decode uncer-  
911 tainty. *NeuroImage* (2017). 1708.04860.

912 28. Denfield, G. H., Ecker, A. S., Shinn, T. J., Bethge, M. & Tolias, A. S. Attentional fluctua-  
913 tions induce shared variability in macaque primary visual cortex. *Nature Communications*  
914 **9**, 2654 (2018).

915 29. Ma, W. J. Signal detection theory, uncertainty, and Poisson-like population codes. *Vision*  
916 *Research* **50**, 2308–2319 (2010).

917 30. Van Bergen, R. S., Ji Ma, W., Pratte, M. S. & Jehee, J. F. Sensory uncertainty decoded from  
918 visual cortex predicts behavior. *Nature Neuroscience* **18**, 1728–1730 (2015). 15334406.

919 31. Tolhurst, D. J., Movshon, J. A. & Dean, A. F. The statistical reliability of signals in single  
920 neurons in cat and monkey visual cortex. *Vision Research* **23**, 775–785 (1983).

921 32. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications  
922 for connectivity, computation, and information coding. *The Journal of neuroscience : the*  
923 *official journal of the Society for Neuroscience* **18**, 3870–96 (1998).

924 33. Ancona, M., Ceolini, E., Öztireli, C. & Gross, M. A unified view of gradient-based attri-  
925 bution methods for deep neural networks (2017).

926 34. Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: Visualis-  
927 ing image classification models and saliency maps. *CoRR* **abs/1312.6034** (2013).

928 35. Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propa-  
929 gating activation differences. In Precup, D. & Teh, Y. W. (eds.) *Proceedings of the 34th In-*

930        *ternational Conference on Machine Learning*, vol. 70 of *Proceedings of Machine Learning*  
931        *Research*, 3145–3153 (PMLR, International Convention Centre, Sydney, Australia, 2017).

932        36. Campbell, F. & Kulikowski, J. The visual evoked potential as a function of contrast of a  
933        grating pattern. *The Journal of physiology* **222**, 345–356 (1972).

934        37. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A re-  
935        lationship between behavioral choice and the visual responses of neurons in macaque mt.  
936        *Visual neuroscience* **13**, 87–100 (1996).

937        38. Angelaki, D. E., Humphreys, G. & DeAngelis, G. C. Multisensory Integration. *Journal Of*  
938        *The Theoretical Humanities* **19**, 452–458 (2009).

939        39. Ma, W. J., Navalpakkam, V., Beck, J. M., van den Berg, R. & Pouget, A. Behavior  
940        and neural basis of near-optimal visual search. *Nature Neuroscience* **14**, 783–790 (2011).  
941        NIHMS150003.

942        40. Beck, J. M., Latham, P. E. & Pouget, A. Marginalization in Neural Circuits with Divisive  
943        Normalization. *Journal of Neuroscience* **31**, 15310–15319 (2011). NIHMS150003.

944        41. Ma, W. J. & Rahmati, M. Towards a Neural Implementation of Causal Inference in Cue  
945        Combination. *Multisensory Research* **26**, 159–176 (2013).

946        42. Orhan, A. E. & Ma, W. J. Efficient probabilistic inference in generic neural networks  
947        trained with non-probabilistic feedback. *Nature Communications* **8**, 138 (2017).

948        43. Cumming, B. G. & Nienborg, H. Feedforward and feedback sources of choice probability  
949        in neural population responses. *Current opinion in neurobiology* **37**, 126–132 (2016).

950        44. Bondy, A. G., Haefner, R. M. & Cumming, B. G. Feedback determines the structure of  
951        correlated variability in primary visual cortex. *Nature neuroscience* **21**, 598 (2018).

952 45. Geisler, W. S. Contributions of ideal observer theory to vision research (2011).

953 NIHMS150003.

954 46. Kording, K. Decision theory: What "should" the nervous system do? (2007).

955 47. Maloney, L. T. & Mamassian, P. Bayesian decision theory as a model of human visual  
956 perception: Testing Bayesian transfer. *Visual Neuroscience* **26**, 147–155 (2009).

957 48. Ma, W. J. Organizing probabilistic models of perception. *Trends in Cognitive Sciences* **16**,  
958 511–518 (2012).

959 49. Brainard, D. H. The Psychophysics Toolbox. *Spatial vision* **10**, 433–6 (1997).

960 50. Tolias, A. S. *et al.* Recording Chronically From the Same Neurons in Awake, Behaving  
961 Primates. *Journal of Neurophysiology* **98**, 3780–3790 (2007).

962 51. Subramaniyan, M., Ecker, A. S., Berens, P. & Tolias, A. S. Macaque Monkeys Perceive the  
963 Flash Lag Illusion. *PLoS ONE* **8**, e58788 (2013).

964 52. Quiroga, R. Q., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised Spike Detection and Sorting  
965 with Wavelets and Superparamagnetic Clustering. *Neural Computation* **16**, 1661–1687  
966 (2004).

967 53. Kohn, A. & Movshon, J. A. Adaptation changes the direction tuning of macaque MT  
968 neurons. *Nature Neuroscience* **7**, 764–772 (2004).

969 54. Richard, M. D. & Lippmann, R. P. Neural Network Classifiers Estimate Bayesian a poste-  
970 riori Probabilities. *Neural Computation* **3**, 461–483 (1991).

971 55. Kline, D. M. & Berardi, V. L. Revisiting squared-error and cross-entropy functions for  
972 training neural network classifiers. *Neural Computing and Applications* **14**, 310–318  
973 (2005).

974 56. Kullback, S. & Leibler, R. A. On Information and Sufficiency. *The Annals of Mathematical*  
975 *Statistics* **22**, 79–86 (1951). 1511.00860.

976 57. MacKay, D. J. C. *Information Theory, Inference, and Learning Algorithms*, vol. 22 (Cam-  
977 bridge University Press, Cambridge, UK, 2003). arXiv:1011.1669v3.

978 58. Srivastava, N., Hinton, G., Krizhevsky, A. & Salakhutdinov, R. Dropout: A Simple Way  
979 to Prevent Neural Networks from Overfitting. *Journal of Machine Learning Research* **15**,  
980 1929–1958 (2014).

981 59. Prechelt, L. Early stopping-but when? In *Neural Networks: Tricks of the Trade, This Book*  
982 *is an Outgrowth of a 1996 NIPS Workshop*, 55–69 (Springer-Verlag, London, UK, UK,  
983 1998).

984 60. Jaderberg, M., Simonyan, K., Zisserman, A. *et al.* Spatial transformer networks. In *Ad-*  
985 *vances in neural information processing systems*, 2017–2025 (2015).

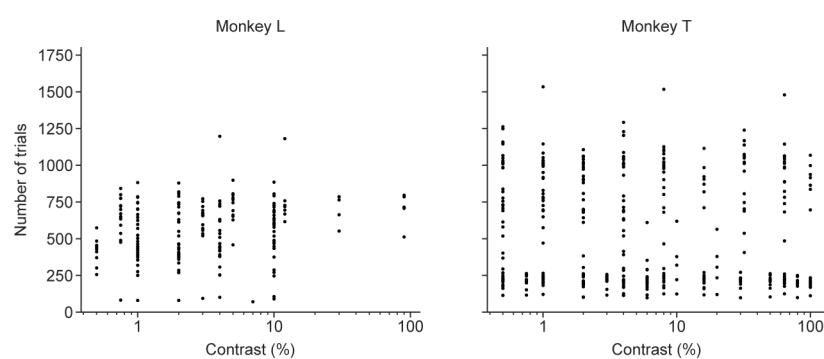
986 61. Rasmussen, C. E. Gaussian processes in machine learning 63–71 (2003).

987 62. Shrikumar, A., Greenside, P., Shcherbina, A. & Kundaje, A. Not just a black box: Learn-  
988 ing important features through propagating activation differences. *CoRR* **abs/1605.01713**  
989 (2016). URL <http://arxiv.org/abs/1605.01713>. 1605.01713.

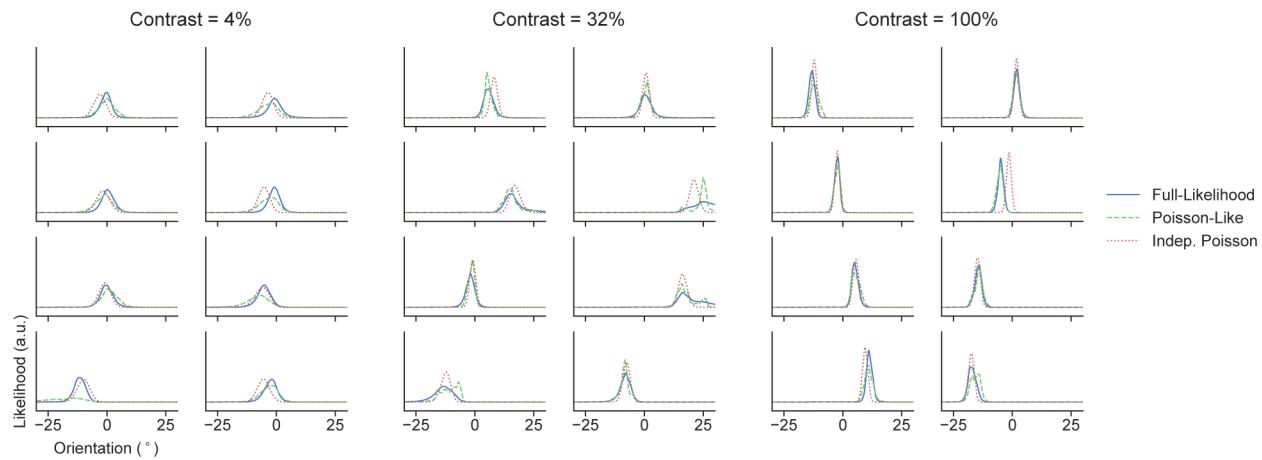
990 63. Mamassian, P. & Landy, M. S. Observer biases in the 3D interpretation of line drawings.  
991 *Vision Research* **38**, 2817–2832 (1998).

992 64. Acerbi, L., Vijayakumar, S. & Wolpert, D. M. On the Origins of Suboptimality in Human  
993 Probabilistic Inference. *PLoS Computational Biology* **10**, e1003661 (2014).

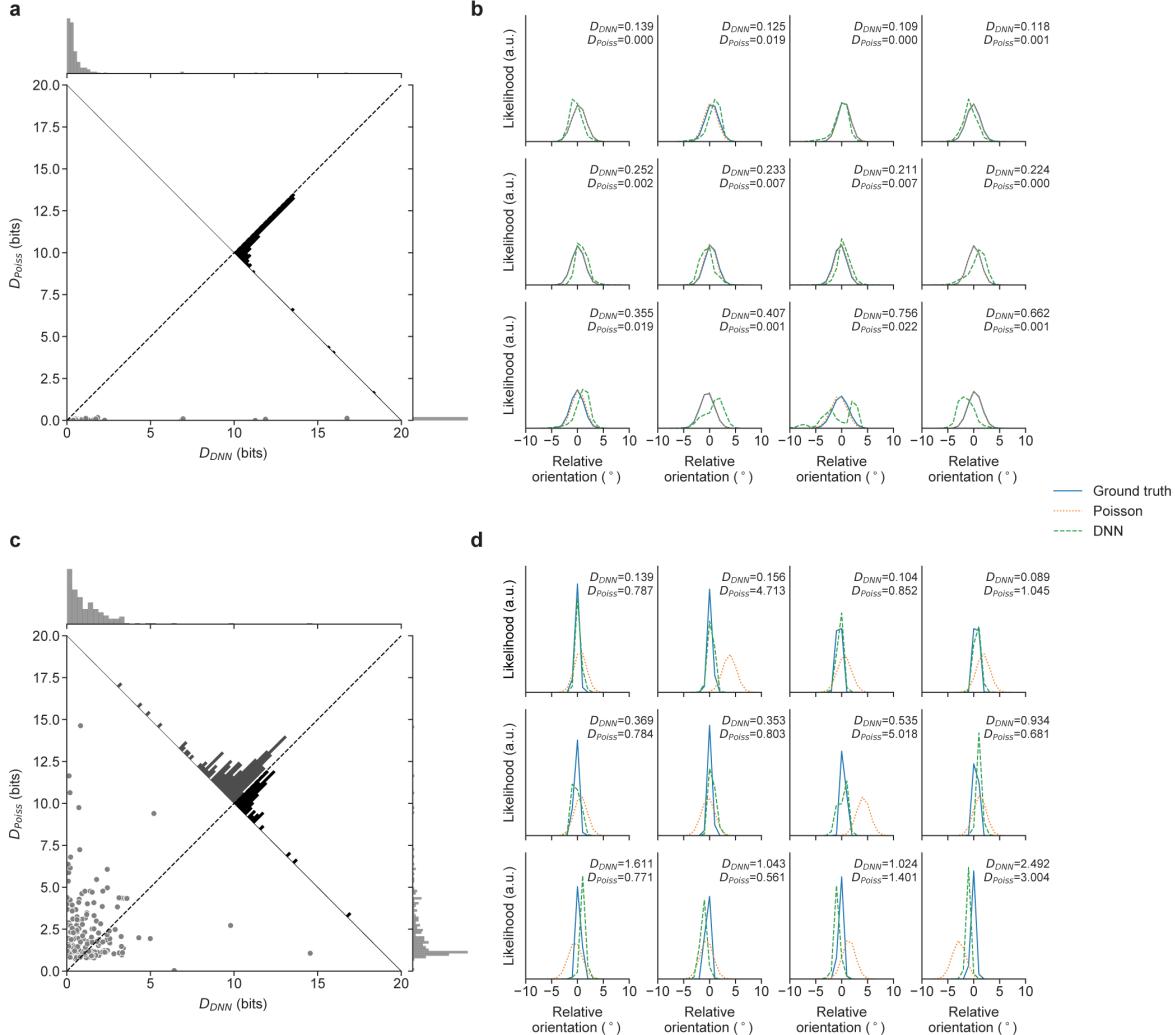
994 65. Acerbi, L. & Ma, W. J. Practical Bayesian Optimization for Model Fitting with Bayesian  
995 Adaptive Direct Search. In *Advances in Neural Information Processing Systems 30*, 1836–  
996 1846 (2017). 1705.04405.



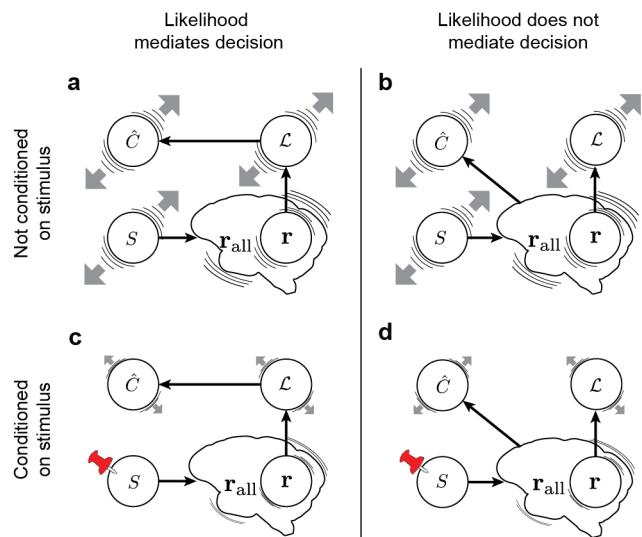
Supplementary Figure 1: Number of trials per contrast-session. Each point corresponds to a single contrast-session, depicting the number of trials performed at the particular contrast.



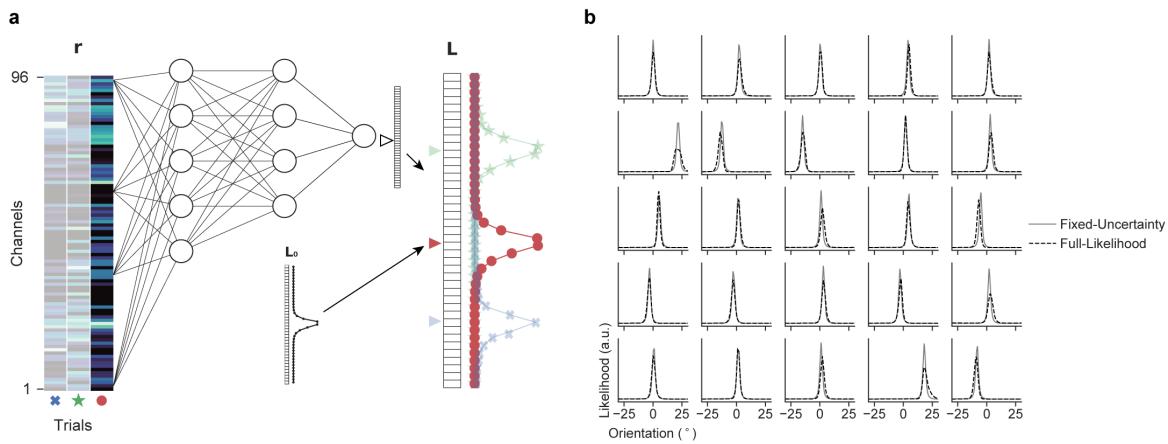
Supplementary Figure 2: Example decoded likelihood functions. Example decoded likelihood functions under Full-Likelihood, Poisson-like and Independent-Poisson based decoders are shown for randomly selected trials from three distinct contrast-sessions from Monkey T.



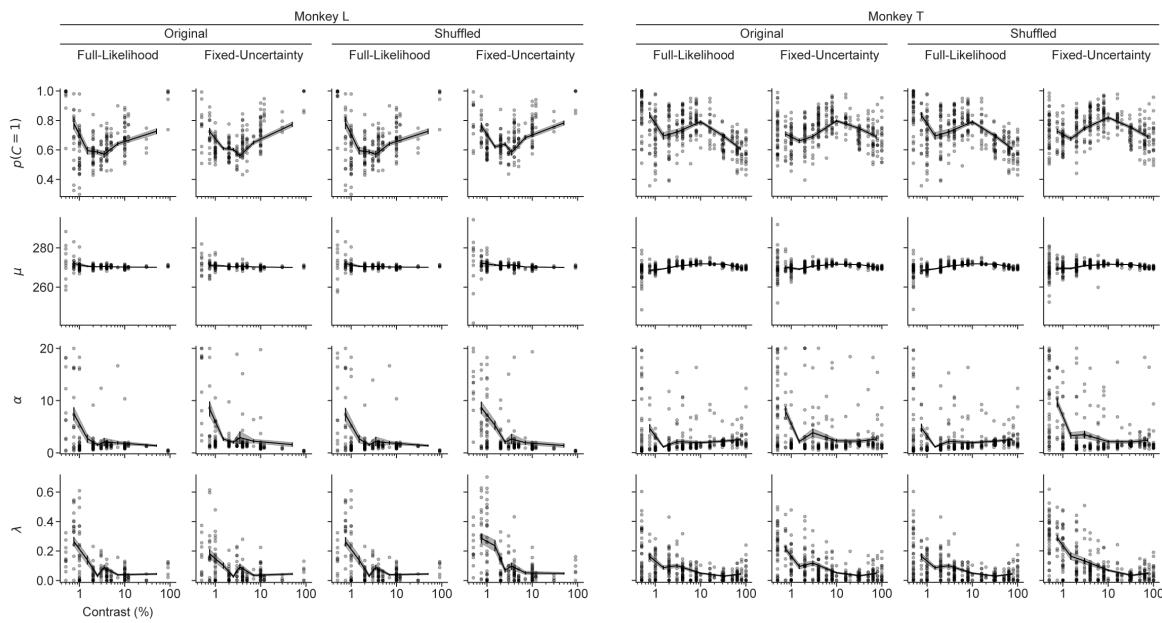
Supplementary Figure 3: Performance of the likelihood functions decoded by DNN-based decoders. **a-b**, Results on independent Poisson population responses. **a**, KL divergence between the ground truth likelihood function and likelihood function decoded with: a trained DNN  $D_{DNN}$  vs. independent Poisson distribution assumption  $D_{Poiss}$ . Each point is a single trial in the test set. The distributions of  $D_{DNN}$  and  $D_{Poiss}$  are shown at the top and right margins, respectively. The distribution of pair-wise difference between  $D_{DNN}$  and  $D_{Poiss}$  is shown on the diagonal. **b**, Example likelihood functions. The ground truth (solid blue), independent-Poisson based (dotted orange), and DNN-based (dashed green) likelihood functions are shown for selected trials from the test set. Four random samples (columns) were drawn from the top, middle and bottom 1/3 of trials sorted by the  $D_{DNN}$  (rows). **c-d**, Same as in **a-b** but for simulated population responses with correlated Gaussian distribution where variance is scaled by the mean.



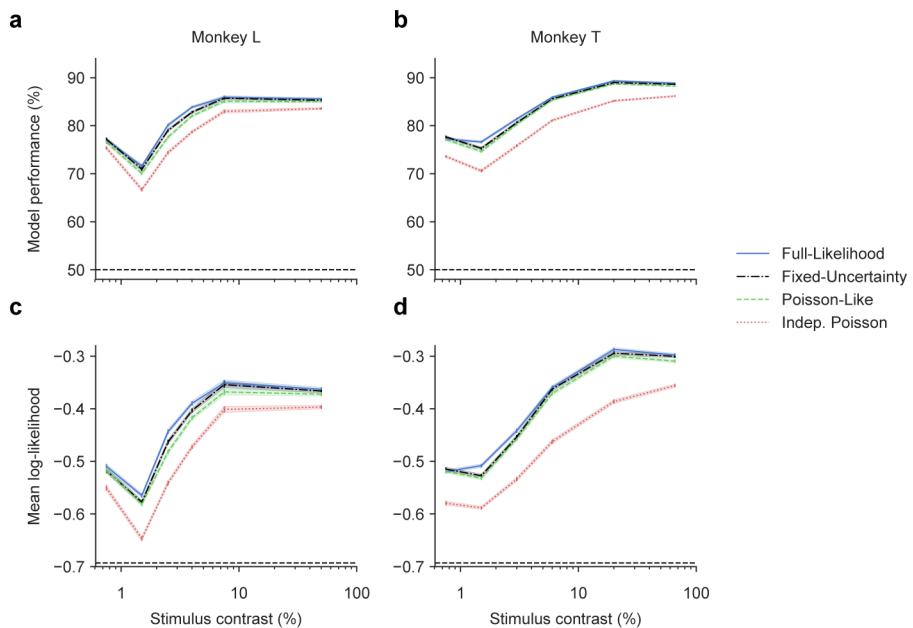
Supplementary Figure 4: Alternative relationships between the likelihood function and the decision. Possible relationships between variables in the model are indicated by black arrows. We consider two scenarios: **a, c** the likelihood function  $\mathcal{L}$  mediates the decision  $\hat{C}$ , **b, d** the likelihood function does not mediate the decision. The gray arrow represents the trial-by-trial fluctuations in the subject's decisions  $\hat{C}$  as predicted by the variable. **a, b**, When not conditioning on the stimulus  $s$ , the stimulus can drive correlation among all variables, making it difficult to distinguish the two scenarios. **c, d**, When conditioning on the stimulus, we expect correlation between  $\hat{C}$  and  $\mathcal{L}$  only when  $\mathcal{L}$  mediates the decision, allowing us to distinguish the two scenarios. The variable  $r$  represents the recorded cortical population and  $r_{\text{all}}$  represents responses of all recorded and unrecorded neurons.



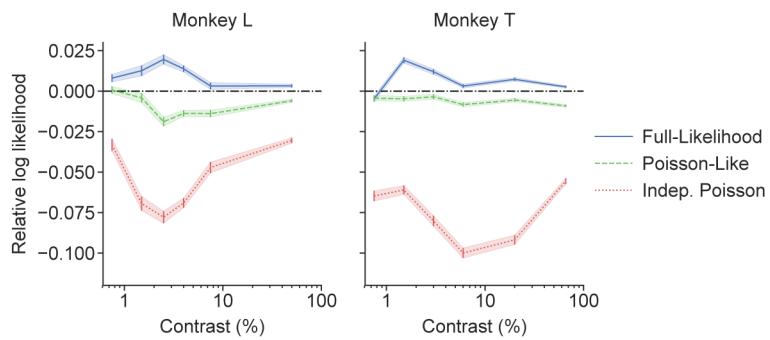
Supplementary Figure 5: Fixed-Uncertainty decoder. **a**, A schematic of a DNN for the Fixed-Uncertainty decoder mapping  $r$  to the decoded likelihood function  $L$ . For each contrast-session, the Fixed-Uncertainty decoder learns a single fixed-shape likelihood function  $L_0$  and a network that shifts  $L_0$  based on the population response. Therefore, all resulting likelihood functions share the same shape (uncertainty) but differ in the center location from trial to trial. **b**, Example decoded likelihood functions from randomly selected trials from a single contrast session for both the Fixed-Uncertainty decoder and Full-Likelihood decoder.



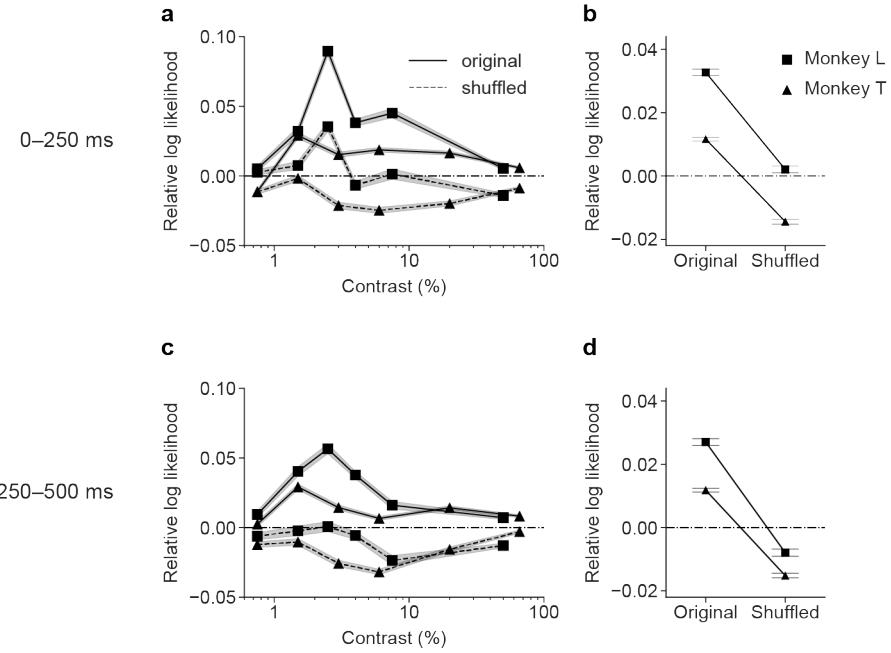
Supplementary Figure 6: Fitted Bayesian decision model parameters. Each point corresponds to a single contrast-session, depicting the average fitted parameter value across 10 cross-validation training sets plotted against the contrast of the contrast-session. The solid line and error bars/shaded area depicts the mean and the standard error of the mean of the parameter value for binned contrast values, respectively.



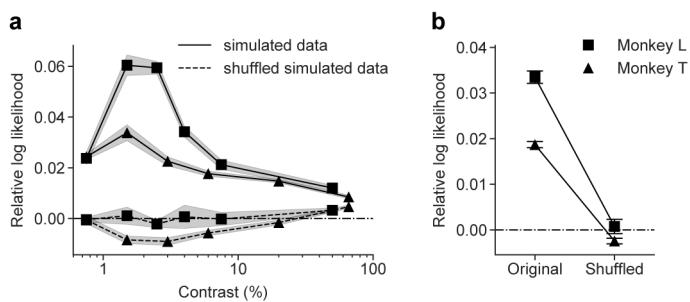
Supplementary Figure 7: Model performance on decision predictions. **a-b**, Model performance measured in proportions of trials correctly predicted by the model as a function of contrast for four decision models based on different likelihood decoders. On each trial, the class decision that would maximize the posterior  $p(\hat{C}|\mathbf{r})$  was chosen to yield a concrete classification prediction. **c-d**, Same as in **a-b** but with performance measured as the trial-averaged log likelihood of the model. For **a-b** and **c-d**, dashed lines indicate the performance at chance (50% and  $\ln(0.5)$ , respectively).



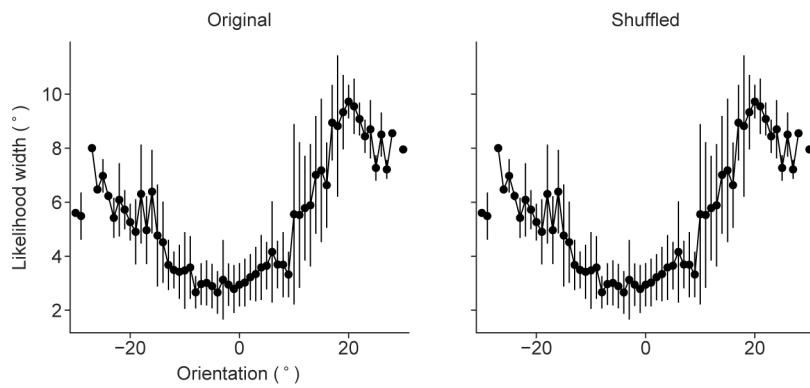
Supplementary Figure 8: Performance of Poisson-like and Independent Poisson Models. For each monkey, the average trial-by-trial performance of the Full-Likelihood, Poisson-like and Independent Poisson Models are shown relative to the Fixed-Uncertainty Model across contrasts, measured as the average trial difference in the log likelihood.



Supplementary Figure 9: Model performance based on population responses to different stimulus windows. **a, c**, Average trial-by-trial performance of the Full-Likelihood Model relative to the Fixed-Uncertainty Model across contrasts, measured as the average trial difference in the log likelihood. The models were trained and evaluated on the population response to **(a)** the first half (0–250 ms) or **(c)** the second half (250–500 ms) of the stimulus presentation. The results for the original (unshuffled) and the shuffled data are shown in solid and dashed lines, respectively. The squares and triangles mark Monkey L and T, respectively. **b, d**, Relative model performance summarized across all contrasts based on models trained as described in **(a, c)**. Performance on the original and the shuffled data is shown individually for both monkeys. The difference between the Full-Likelihood and Fixed-Uncertainty Models was significant with  $p < 0.001$  for both stimulus windows, and on both the original and the shuffled data for both monkeys, except for the shuffled dataset on 0–250ms for Monkey L, for which there was no significant difference between the two models ( $p = 0.17$ ). The difference between the Full-Likelihood Model on the original and the shuffled data was significant ( $p < 0.001$  for both monkeys for both stimulus windows). For **a-d**, all data points are means, and error bar/shaded area indicate standard error of the means.



Supplementary Figure 10: Expected model performance on simulated data using the trained Full-Likelihood Model as the ground truth. **a**, Average trial-by-trial performance of the Full-Likelihood Model relative to the Fixed-Uncertainty Model across contrasts on the simulated data, measured as the trial-averaged difference in the log likelihood. The results for the unshuffled and the shuffled simulated data are shown in solid and dashed lines, respectively. The squares and triangles mark Monkey L and T, respectively. **b**, Relative model performance summarized across all contrasts. Results are shown for each monkey and for unshuffled and shuffled simulated data. For **a** and **b**, all data points are the means and error bar/shaded area indicate the standard deviation across the 5 simulation repetitions.



Supplementary Figure 11: Dependence of average likelihood width on the stimulus orientation. The dependence of the width of the likelihood function  $\sigma_L$  on the stimulus orientation is depicted for an example contrast-session (Monkey T, 8% contrast) on the original and the shuffled data. The shuffling procedure preserves the relationship between the average likelihood width and the stimulus orientation as desired.