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Abstract

The HLA (Human Leukocyte Antigens) genes are well-documented tar-

gets of balancing selection, and variation at these loci is associated with many

disease phenotypes. Variation in expression levels also influences disease sus-

ceptibility and resistance, but little information exists about the regulation

and population-level patterns of expression due to the difficulty in mapping

short reads to these highly polymorphic loci, and in accounting for the exis-

tence of several paralogues. We developed a computational pipeline to accu-

rately estimate expression for HLA genes based on RNA-seq, improving both

locus-level and allele-level estimates. First, reads are aligned to all known

HLA sequences in order to infer HLA genotypes, then quantification of ex-

pression is carried out using a personalized index. We use simulations to show

that expression estimates are not biased due to divergence from the reference

genome. We applied our pipeline to GEUVADIS dataset, and compared the

quantifications to those obtained with reference transcriptome, and found

that a substantial portion of the variation captured by the HLA-personalized

index in not captured by the standard index (23%). We describe the impact

of the HLA-personalized approach on downstream analyses for seven HLA

loci (HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-

DRB1 ). Although the influence of the HLA-personalized approach is modest

for eQTL mapping, the p-values and the causality of the eQTLs obtained are

better than when the reference transcriptome is used. Finally, we integrate

information on HLA-allele level expression with the eQTL findings to show
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that the HLA allele is an important layer of variation to understand HLA

regulation.
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Introduction

The HLA region is the most polymorphic in the genome, and also shows

the greatest number of disease associations, which has made it very well char-

acterized at the genomic, population and functional levels [1, 2]. Decades of

research have also shown that the HLA genes are targets of natural selec-

tion, likely a consequence of their role in responding to pathogens [2, 3].

This combination of evolutionary and biomedical interest has resulted in an

extensive catalogue of HLA variation in human populations, with the iden-

tity and population frequency of HLA alleles defined for various populations

[4, 5, 6, 7].

Variation within or near HLA genes has been convincingly linked to dis-

ease phenotypes, providing an extensive list of SNPs within or near HLA

genes associated with resistance and susceptibility to both autoimmune and

infectious diseases [2, 8, 9]. Although in many cases the mechanistic basis of

the associations remain poorly understood, there has been an effort to iden-

tify whether associations can be linked to features such as variation at the

level of specific amino-acids, HLA alleles, HLA haplotypes, non-coding vari-

ants near HLA genes, or with HLA expression levels (reviewed in [2, 9, 10]).

In some instances, the association of one feature results from the fact

that it tags another feature. For example, [11] showed that HLA expres-

sion levels influence Parkinson disease, and that classical associations with

HLA alleles/haplotypes are sometimes driven by eQTL SNPs. [12] and [13]

showed that HLA-C surface expression levels correlate with HIV load, and
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[14] observed an association of HLA-DPB1 with HBV infection. In both

cases, some HLA alleles may have a protective effect because of their rela-

tive contribution to the overall gene expression. Other studies showed that a

combination of two features may be important. For example, [15] observed

an association of mortality of transplant recipients with increased expression

of HLA-C alleles with certain amino-acid residues.

An understanding of how HLA expression varies among individuals, and

the identification of genetic variants involved in the regulation of expression,

will play a central role in understanding the contribution of HLA genes to

normal and disease phenotypes. However, until recently, little information

existed about the regulatory variation and population-level expression pat-

terns of HLA genes, a result of the difficulty in quantifying expression for

genes which show an unusually high polymorphism and are members of a

multi-gene family [8, 16].

Efforts have been made to develop antibody-based methods to quantify

HLA protein on the cell surface [13, 17], or hybridization-based approaches

to quantify mRNA, such as qPCR [18, 19] and microarray methods [20].

However, the optimization of PCR reactions for a large set of allele-specific

primers, and the design of probes that span the diversity of possible variants

represent a technically challenging and labor-intensive undertaking. In ad-

dition, qPCR technologies are not appropriate for comparison of expression

levels among different loci, an important concern when seeking to understand

how expression of HLA genes responds to environmental challenges.

Despite the difficulties with these approaches, the results obtained to date
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indicate the importance of understanding the genetic architecture underlying

HLA expression [12, 13, 15, 21, 22, 23]. However, they do not take advantage

of the large amount of RNA-seq data generated by studies of whole transcrip-

tomes in large samples [24, 25, 26], often involving populations from various

regions of the world, which represents an attractive resource to investigate

HLA expression.

Although such whole-transcriptome RNA-seq studies do provide expres-

sion estimates for HLA genes, they bring new challenges. RNA-seq pipelines

may provide biased expression estimates for two reasons: 1) many short reads

originating from genes with extreme polymorphism fail to map to the refer-

ence genome, due to high degree of variation (which results in a large number

of mismatches between the reference genome and that of most individuals be-

ing analyzed), and 2) the presence of paralogues makes it difficult to map a

read uniquely to a specific gene, leading to the exclusion of many reads. This

raises concerns about the utility of RNA-seq approaches to quantify HLA ex-

pression, given that these loci represent both the extreme of polymorphism

in the human genome and are part of a multi-gene family [27, 28, 29].

A strategy to overcome these challenges is the mapping of reads to an

HLA-personalized reference, rather than to a single reference genome. For

example, seq2HLA is a tool developed by [30] to provide in-silico HLA types

and expression estimates, and later applied to demonstrate that different tu-

mors types are associated with different HLA expression levels [31], and also

to provide a large catalog of HLA expression in 56 human tissues and cell

types [32]. AltHapAlignR [33] is another recently described algorithm which
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infers the MHC references which are the closest to the individual’s MHC

haplotypes, and maps reads to them. The authors reanalyzed the GEU-

VADIS dataset [24], and provided comparisons with conventional read map-

ping, showing an improvement in accuracy with the HLA-tailored pipeline.

In this article, we compare the results of conventional and HLA-

personalized pipelines to analyze the reliability of RNA-seq quantification.

We discuss for the first time the impact of accurate estimation of HLA ex-

pression on downstream analyses such as eQTL mapping and allele-specific

expression. We show that it is possible to adapt different computationally

efficient methods available to work under the strategy of a personalized ref-

erence to reliably quantify HLA expression from RNA-seq data. We find

that implementations with either a conventional read mapper [34] or a pseu-

doaligner [35] show similar expression estimates.

We use simulations to assess accuracy, showing that HLA-personalized

pipelines are more accurate than conventional mapping, and apply the tool

to reanalyze RNA-seq data of the GEUVADIS dataset of Lymphoblastoid

Cell Lines (LCLs) [24]. We then sought to evaluate the impact of more

accurate expression estimates on downstream analyses by carrying out a

detailed survey for allele-specific expression and eQTL mapping at 7 classical

HLA loci (HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1,

and HLA-DRB1 ).

Surprisingly, we find that conventional RNA-seq pipelines provide gene-

level expression estimates and identify eQTLs which are highly correlated

with those obtained under the HLA-personalized approach. However, we

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/365957doi: bioRxiv preprint 

https://doi.org/10.1101/365957
http://creativecommons.org/licenses/by/4.0/


identify gains of using a pipeline tailored for HLA diversity. These include

more accurate expression estimates, eQTLs with higher probabilities of being

causal, and expression estimates at the HLA allele level.

Results

HLA expression quantification from RNA-seq data

We developed the HLApers pipeline (for HLA expression with personal-

ized genotype) to measure HLA expression from whole-transcriptome RNA-

seq data. The pipeline can use either (1) a suffix array-based read mapper

(STAR [34]) followed by quantification with Salmon [36] (henceforth called

STAR-Salmon), or (2) a pseudoaligner with built-in quantification protocol

(kallisto [35]). The key feature of our implementation is the use of an in-

dex supplemented with a set of sequences covering the breadth of known

HLA sequences (see Materials and methods). We implemented a two-step

quantification approach, where (1) we identify the HLA alleles that maxi-

mize the read counts at each locus allowing us to infer the genotype which is

present (in-silico genotyping), and (2) we use this HLA genotype to create a

personalized index which we use to quantify expression (Figure 1).

For both first and second steps of our pipeline a read can align to more

than one allele or gene (due to their sequence level similarity). Instead of dis-

carding such reads (as in [33]) or evenly splitting them among the compatible

references (as in [30]), we use maximum likelihood estimates of expression
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obtained by an expectation-maximization (EM) algorithm, which is imple-

mented within Salmon and kallisto. This procedure probabilistically assigns

reads to each reference in the index, in a way that accounts for reads that

align to more than one gene or allele [35, 36]. The pipeline is available at

https://github.com/genevol-usp/HLApers.

Figure 1: Schematic representation of the HLApers pipeline to estimate HLA
expression. The reads generated by RNA-seq are represented by curved shapes.
The pipeline can use as input either reads in fastq format or extracted from a BAM
file (Extract reads). These reads are aligned to an index containing all known HLA
alleles (Alignment 1 ), and we pick the alleles for which most reads align to infer
the HLA genotypes of the individual at that locus, in this example a heterozygote
carrying a blue and red allele (HLA typing). In a second step a new alignment is
performed, using as an index only the alleles inferred to be present in that individual
at this locus (Alignment 2 ). Expression is estimated based on the number of reads
aligning to each allele, using a statistical model that accounts for instances where
reads align to multiple HLA alleles or genes (Quantification).

Because the in-silico typing is an important step for accurate expression

estimates, we assessed the concordance between our RNA-seq based HLA

typing and the HLA allele calls experimentally determined by [6] using Sanger

sequencing. The concordance was higher than 97% for all of the 5 HLA genes

compared (Table S1). This is consistent with previous results showing that
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RNA-seq provides reliable HLA alleles calls [30, 37, 38, 39, 40].

Expression quantification for simulated data

We next investigated how using the HLA-personalized index affects the

quantifications of HLA expression. To this end we simulated an RNA-seq

experiment using the Polyester package [41], with a dataset of 50 individuals

and read counts matching those of the observed data, with the same read

length as in the original data (paired-end 75bp reads) and without bias.

We analyzed the simulated dataset using three different methodologies:

(1) Using the two-step approach in HLApers, first we inferred the person-

alized HLA genotype and then aligned reads to it, (2) Alignment to the

reference transcriptome (Gencode release 25; primary assembly), and (3)

Alignment to the reference genome (GRCh38). In approaches (1) and (2),

the alignment is followed by expression quantification using Maximum Like-

lihood (ML), which provides a statistical framework for dealing with mul-

timap reads, whereas in approach (3) quantification is performed using only

uniquely mapped reads.

For each HLA locus and methodology, we assessed the proportion of sim-

ulated reads which successfully aligned. Because previous studies for genome

sequencing identified a correlation between mapping success and the number

of mismatches between the HLA allele an individual carries and the reference

genome [28], we analyzed how alignment success behaves as a function of the

number of mismatches between each HLA allele and the reference genome
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(Figure 2).

Figure 2: Alignment success with three different methodologies. The proportion
of simulated reads which successfully aligned is defined for each locus by the ratio of
the estimated read counts to the number of simulated reads (y-axis). These values
are displayed as a function of the divergence of the HLA allele to the reference
genome (x-axis). Simulated reads were processed through 3 different pipelines:
(1) alignment to the personalized HLA sequences (HLApers (ML)), (2) alignment
to the reference transcriptome (Ref Transcriptome (ML)), (3) alignment to the
reference genome considering only uniquely mapped reads (Ref Genome (Unique)).

The use of an HLA-personalized index results in the largest proportion

of successfully aligned reads, no matter how different the allele carried by

the individual is from the allele in the reference genome. This is expected,

since the personalized HLA component guarantees that a sequence close or

identical to that originating the read will be present.

When the alignment was performed using the reference transcriptome,

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/365957doi: bioRxiv preprint 

https://doi.org/10.1101/365957
http://creativecommons.org/licenses/by/4.0/


there was a marked reduction in the proportion of successfully aligned reads

for HLA-B, HLA-DRB1, HLA-DQA1, HLA-DQB1. In all cases, alignment

success decreased for alleles which showed progressively greater proportions

of mismatches with respect to the reference genome.

Finally, when using uniquely mapped reads there was a massive read loss

regardless of the divergence for HLA-A, HLA-B and HLA-DPB1, and a lower

proportion of successfully aligned reads across all surveyed loci. This shows

that both discarding multipmaps, as well as not including a personalized

index, have a negative impact on mapping success.

Analysis of the GEUVADIS dataset

Having demonstrated that the presence of an individual’s HLA alleles in

the index has a substantial impact on the success of read alignment with

simulated data (Figure 2), we set out to address two questions with real

data. First, we examined how expression varies among HLA loci, when

the personalized index is used (Figure 3). Secondly, we compared expression

estimates with and without the use of the personalized index, so as to evaluate

the impact of its usage on real data (Figure 4).

By summing the estimates for the 2 alleles at each HLA locus, we obtain

gene-level expression estimates (Figure 3). We observe that HLA-B is the

highest expressed gene overall. Among the Class I genes, HLA-B is followed

by HLA-A with similar levels, and by HLA-C which has about 50% of the

expression levels of HLA-B. For Class II genes, HLA-DRA is the most highly

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/365957doi: bioRxiv preprint 

https://doi.org/10.1101/365957
http://creativecommons.org/licenses/by/4.0/


expressed. Although we observe a general concordance with the original

GEUVADIS quantifications [24], for some loci the ordering and fold change

among genes are different. For example, for the GEUVADIS original quan-

tifications, HLA-B is twice as expressed as HLA-A, and HLA-DPA1 is more

expressed than HLA-DRB1 (Figure S1). Our results are more in accordance

with previous HLA-personalized approaches which shows, for example, that

HLA-DR is always more expressed than HLA-DP and HLA-DQ [32].

Figure 3: Gene-level expression of 358 European individuals in the GEUVADIS
dataset [24]. Here we show all HLA genes with expression levels � 100 TPM. TPM:
Transcripts per Million.

We found that, although the expression estimates using the reference

transcriptome were usually lower than using the personalized index, the cor-

relation between indices was greater than 0.87 for every locus except for HLA-
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DQA1 (Figure 4). However, a substantial portion of the variation captured

by the HLA-personalized index is not captured by the reference transcrip-

tome index (average 1 � R2 = 0.23). The loci with the lowest correlations

between indices (HLA-DQA1, HLA-DQB1 and HLA-DRB1 ), are also those

with the greatest read loss when divergence from the reference allele is high,

consistent with the pattern observed in the simulation (Figure 2).

Figure 4: Expression estimates using personalized HLA genotypes (x-axis) versus
the reference transcriptome (y-axis) in the index. For each individual we identify
the average divergence (proportion of mismatches) with respect to the reference
genome, indicated by the red gradient. For all loci with low correlations between
expression quantification methods, there is a marked drop in expression estimates
using the reference transcriptome when the alleles are most divergent from the
reference. Expression estimates are in TPM (Transcripts per Million).

We then investigated if the bioinformatic tool used to quantify expression
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influences expression estimates. When comparing estimates obtained using

the personalized index, those from STAR-Salmon and those from kallisto

had an average correlation of r > 0.99 for read counts, dropping to r = 0.9

for TPM estimates, likely due to different bias correction models (Figure

S2). Overall, these results show that the key features influencing alignment

success are the use of a personalized index and the statistical treatment of

multimaps (as opposed to discarding them), with the specific alignment tool

being less influential.

eQTL analysis of HLA loci

The key role played by HLA loci in the immune response and their strong

and abundant associations with infectious and autoimmune diseases have

motivated studies to uncover their regulatory architecture.

Here, we use our approach based on a personalized index to obtain ac-

curate expression estimates, together with genotype data from the 1000

Genomes Project [42], to identify SNPs which are associated with variation

in expression levels (eQTLs).

Because multiple SNPs can affect expression, it is interesting to identify

independent contributions made by distinct SNPs. This has previously been

done by using a best eQTL (i.e., the one with the most extreme p-value) as

a covariate in subsequent searches for an additional variant. Here, we use

a conditional analysis available in QTLtools [43] in order to identify groups

(or "ranks") of SNPs associated with independent signals. For each rank, we
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identified the site with the most extreme association (Figure 5).
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Figure 5: eQTLs for HLA loci. A Distribution of p-values for the association
between genotypic and expression variation along the MHC region colored by gene.
B Distribution of p-values around the transcription start site (vertical line at x
= 0), for eQTLs mapped with the HLA-personalized or reference transcriptome
pipelines. Points are colored according to the rank of association (with gray for
non-significant associations at an FDR of 5%). The best eQTL of each rank is
circled in black. Green arrows indicate the orientation of transcription.
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Differences across indices. Although expression estimates obtained

using HLA-personalized and reference transcriptome indices are significantly

correlated, there is a global reduction in expression estimates based on the

reference transcriptome (Figures 2 and 4). We therefore examined if these

differences in expression across indices have a direct effect on the eQTLs

identified.

Even if eQTLs across studies or pipelines are different, they may both tag

the same biological signal (possibly driven by the same causal site). There-

fore, a simple comparison of eQTL sharing may be inappropriate. We thus

used a Regulatory Trait Concordance (RTC) analysis [43, 44] to test if eQTLs

from different pipelines tag the same signal (indicated by RTC score � 0.95).

We observed that the lead eQTLs capture the same biological signals

across indices for all loci except HLA-DRB1 (Figure 5 and Table S2). Despite

this sharing of eQTL discoveries, the p-values for the eQTLs mapped under

the HLA-personalized pipeline are in almost all cases more extreme than

those from the reference transcriptome (Figure 5).

eQTL sharing with previous studies. Next we investigated whether

the eQTLs for HLA genes which we mapped share the same causal signal

as those reported by previous studies. We queried three large studies of

LCLs [24, 26, 45], including the original GEUVADIS publication, and also

HLA-targeted studies [12, 17, 21, 46].

Although the variants which we mapped as eQTLs were not reported

among the top associations in previous studies, we find that they likely share

the same signal as previous lead eQTLs for Class I genes and HLA-DPB1
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(Table S3). However, for HLA-DQA1, HLA-DQB1, and HLA-DRB1, our

eQTLs do not share the same signal as previously reported eQTLs. This is

consistent with our finding that for these genes the expression estimates are

affected by divergence from the reference genome (Figures 2 and 4), which

may have led to incorrect estimation of expression in previous studies.

However, as we discuss below, the lead eQTLs mapped with the HLA-

personalized pipeline have low causal probabilities (for HLA-DQA1 and

HLA-DRB1, Figure S4), or no functional annotation from ENCODE (for

HLA-DQA1, Table S4), which shows a general difficulty in mapping eQTLs

for these genes in the low/moderate sample sizes.

Putative function of eQTLs. To gain insight into possible function of

the eQTLs mapped with the HLA-personalized pipeline, we examined their

location with respect to the associated HLA gene and functional annotation

for LCLs in ENCODE [47], such as transcription factor binding sites (TFBS),

DNase I hypersensivity sites (DHSs), and chromatin modifications.

The lead eQTL was located no further than 20kb from the gene for HLA-

A, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1, whereas for HLA-

DQA1 it was 82kb upstream the transcription start site (TSS), but within

a cloud of associations which extends to the TSS, and for HLA-B the lead

eQTL was located 210kb away, an unusually large distance with respect to

that of the other loci, but still within a range found in the genomewide eQTL

data (where 11.1% of the eQTLs lie at that distance or further).

Considering all ranks of association, we mapped 16 eQTLs in total, of

which 5 are part of TFBS/DHSs. Regarding chromatin modification, 10
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eQTLs were located within regions with marks of active promoters, enhancers

or other distal elements, transcribed genes, or elements with dynamic chro-

matin (Table S4).

We also used RTC to evaluate if eQTLs identified in our study capture

the same signals as CRD-QTLs identified by [45]. CRDs (for Cis-Regulatory

Domains) are segments of the genome defined by chromatin activity and

formed by coordination between nearby regulatory elements [45] (See Figure

S3 for the location of HLA genes in respect to CRDs in the region). A high

RTC score between a CRD-QTL and an eQTL indicates a shared influence

on the formation of a CRD and gene expression. Overall, 6 out of 16 eQTLs

we identified mark the same signal as CRD-QTLs. Interestingly, the lead

eQTL for HLA-B, which is 210kb away from the gene, has an RTC score of

0.99 with a variant associated with the activity of the CRD linked to HLA-B

(Table S5).

Studies have revealed a significant overlap of eQTLs and GWAS vari-

ants, which provides insight into a biological basis for the GWAS association

[10, 24, 48, 49, 50]. Most GWAS variants are non-coding, and in those cases it

is difficult to know which variant is causal and which gene is modulated, com-

plicating the identification of the direct effects of variants on disease etiology

[44, 51]. Mapping of eQTLs, by identifying variants involved in modulating

expression, offers an additional layer of information for interpreting GWAS

hits. Thus, we sought to investigate the overlap between eQTLs we mapped

and GWAS signals.

We found that nearly all of our eQTLs, according to the RTC score, likely
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share the same biological signal as GWAS hits (Table S6), which shows an

extensive implication of regulation of gene expression in disease phenotypes

at the HLA region.

Causality. A key challenge for eQTL studies is identifying which variants

are causally related to variation in expression, and which are simply geneti-

cally correlated with the functional variant. One approach to identify causal

variants is to use empirical and simulated data on eQTLs in a probabilistic

framework, to estimate the probability that a variant is causal (implemented

in CaVEMaN [49]). We used this method to estimate the probability that the

eQTLs we mapped are causal, and to evaluate if more accurate expression

estimates could lead to improved mapping of causal variants.

For 10 out of 14 eQTLs (excluding HLA-DPB1, for which eQTLs are the

same across indices), we found that the HLA-personalized pipeline produces

eQTLs with higher probabilities than the reference pipeline. However, most

variants do not reach probabilities of 0.8, indicating that even though the

personalized pipeline produces more accurate expression estimates, larger

samples sizes are important to improve fine mapping (Figure S4).

HLA allele-level analysis

Transcriptome studies can quantify expression for various biological fea-

tures: individual SNPs, exons, isoforms, genes. In the case of HLA loci, a

natural unit of interest is the HLA allele. Our HLA-personalized pipeline

provides expression estimates for individual alleles, since it is the allelic se-
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quences which are included in the index. The immunogenetics literature has

shown that many HLA alleles are associated with specific phenotypes of evo-

lutionary and medical importance [reviewed in 2, 9, 10]. Gauging information

about the expression levels of alleles can therefore provide an additional layer

of information.

HLA allele lineages and eQTLs. To investigate HLA regulation at the

allele level, we estimated expression levels for HLA alleles, and we inferred

haplotypes that spanned HLA loci and eQTLs, so that the phasing between

these was known.

We then grouped alleles in "lineages", which comprise groups of alleles

which are evolutionarily and functionally related, since the large number of

alleles would make sample sizes per allele too sparse. Although the expression

of individual allelic lineages is highly variable among individuals, there is an

overall significant difference in expression among lineages (Welch’s ANOVA

p-values ranging from 3.7⇥10�8 for HLA-DPB1 to 6⇥10�51 for HLA-DQA1 ).

We investigated the degree to which the mapped eQTLs account for vari-

ation in expression levels of HLA alleles. Frequently, we observe that more

highly expressed HLA alleles are on haplotypes carrying the eQTL allele asso-

ciated with increased gene-level expression (red dots in Figure 6). At HLA-C,

the rs41561715-T allele is exclusively associated with the C*04 lineage. This

variant is located within the gene, and in fact there are 14 variants tied in

p-value marking the C*04 lineage, distributed from upstream to downstream

the gene.

Another instance is seen at HLA-DPB1. The alleles at this locus are
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divided into two clades, marked by the SNP variant rs9277534 in the 3’-UTR

[23, 52]. The alleles DPB1*04 and DPB1*02 are on the same haplotype as

rs9277534-A, and were associated with low expression, whereas the other

alleles are on haplotypes carrying rs9277534-G, were associated with higher

expression [23, 52], and may increase the risk of persistent Hepatitis B virus

(HBV) infection [14]. Here we mapped rs9277449 as the lead eQTL for HLA-

DPB1. This variant is located 2kb away and has a D0 = 1 with rs9277534,

and although the RTC analysis for shared causal signal was not significant

(RTC = 0.89), and rs9277449 is likely not the causal SNP (Figure S4), these

two variants are non-independent (both are contained among the rank 0

variants (blue) in Figure 5) and, strikingly, rs9277449 also separates the two

clades of alleles based on expression (Figure 6).

These results show that reliable eQTL mapping may help explain differ-

ences in expression among HLA alleles, and help identify genetic variants

which contribute to disease risk.
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Figure 6: Expression levels for different HLA lineages (left-hand side panels), and
eQTL genotypes (right-hand side panels).
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The expression levels for HLA lineages which we report are different from

those of previous studies, showing a distinct ranking of lineages by expres-

sion levels. This may be explained by different techniques (RNA-seq vs.

qPCR), the samples used, or the fact that imputation of expression was

used for heterozygous genotypes in previous studies [13, 18]. Even in a com-

parison with [33], which also reanalyzed the GEUVADIS dataset with an

HLA-personalized approach, we observe only a moderate concordance in the

ordering of lineages by expression level. This is likely due to several differ-

ences between our approach and theirs, including the strategy for alignment

([33] use the 8 MHC region haplotypes to guide quantification, while we di-

rectly use the entire known HLA diversity for this task), and the treatment

of reads mapping to multiple loci or alleles ([33] discard these reads, while

we use a maximum likelihood approach to measure their contribution).

Allelic imbalance. There is increasing interest in understanding if gene

expression is unbalanced (i.e., one allele is more expressed than the other),

and if so, how this contributes to interpretations of disease phenotypes and

natural selection [53]. In the case of HLA genes, for which heterozygote

advantage is a selective regime with strong theoretical support, extremely

unbalanced expression poses a theoretical challenge, since being heterozyote

would not be advantageous if only one allele is expressed. We have used our

expression estimates to quantify allelic imbalance for HLA genes.

Using the expression data at the HLA-allele level we found a low level of

asymmetry in expression, with 77% of the heterozygotes having ASE between

0.4 and 0.5, with Class II genes showing a distribution with a larger variance
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(Allele-specific expression (ASE) was defined as the proportion of the gene

expression attributed to the less expressed HLA allele, Figure 7), and we

see no instances of extreme imbalance as recently reported for SNPs in HLA

genes [54]. Therefore, the extreme imbalance seen at the SNP level does not

hold at the HLA allele resolution.

Figure 7: Allele-specific expression. ASE was measured as the proportion of the
locus-level expression attributed to the less expressed HLA allele in heterozygous
genotypes. Red horizontal bars indicate the median.

Co-expression and haplotypic coordination in expression

Enhanced coordination of gene expression has been proposed as an ad-

vantage for gene clustering, as seen at the HLA region [1, 2]. We found a

high correlation of expression both within the group of Class I and Class II

genes, and lower levels between Class I and Class II genes, which are at least

1.2Mb apart (Figure 8A) [but see 19, for a result of no co-expression among
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Class I genes].

A possible cause for co-expression of genes which are physically close to

each other is that regulatory activity is structured in domains (CRDs, for Cis

Regulatory Domains) [45]. Such domains comprise contiguous regions along

a chromosome, and their existence predicts co-expression along haplotypes

for genes associated with the same CRD. In fact, a previous study did find

evidence that expression of some genes in the MHC region was a feature

associated with haplotype membership [20].

We used our inferences of HLA haplotype structure to investigate if there

is an haplotypic effect on coordination of expression among nearby HLA

genes. Specifically, we tested the hypothesis that co-expression is stronger

between alleles located within the same haplotype than between those on

different haplotypes. We did not find a consistently higher correlation of

expression for alleles on the same haplotype (correlation within haplotypes

being higher in only 4 out of 9 locus pairs surveyed within Class I or Class

II, Figure 8A).

This result suggests that correlation of expression among HLA loci in

LCLs is a result of factors acting at the gene level, and is not driven predom-

inantly by properties of the haplotype. For example, we observe correlation

of expression between Class II genes and CIITA, the Class II Major His-

tocompatibility Complex Transactivator. This correlation is not driven by

proximity (CIITA is on chromosome 16), but rather by a trans regulatory

mechanism (Figure 8B).
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Figure 8: Co-expression patterns for HLA genes. A Pairwise correlation of ex-
pression estimates at the gene-level, for alleles from within the same haplotype,
and for alleles on different haplotypes. B An example of a factor that contributes
to correlation of expression at the gene level. CIITA is located on chromosome 16,
and its protein regulates the expression of Class II genes.

Discussion

The contribution of HLA to normal and disease phenotypes goes beyond

peptide specificity, and includes other factors which influence the strength

of immune responses, such as HLA expression levels. However, we are still

only starting to understand the regulation of expression of these genes, a

consequence of their extreme polymorphism which imposes challenges to the

methodologies available to measure mRNA and protein levels.
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There has been an increasing effort to adapt existing methods used to

analyze RNA-seq data so as to allow reliable in-silico HLA typing ([55] and

other methods reviewed in [56]), and accurate expression estimates for HLA

alleles and genes [30, 33] in large datasets.

In this paper, we present HLApers, an HLA-personalized pipeline that

reliably quantifies HLA expression based on RNA-seq. Our pipeline differs

from previous approaches used to quantify HLA expression by incorporating

a Maximum-Likelihood estimator to deal with instances of reads mapping

to multiple alleles or loci, following a strategy that has been widely used in

RNA-seq studies [26, 57].

Our pipeline is implemented in a way that allows different alignment

strategies to be used. We show that the accuracy of expression depends on

the sequences contained in the index, and is less dependent on the specific

implementation used. We use simulations and data analyses to evaluate the

performance of the HLApers pipeline, and explore how the use of this pipeline

influences downstream analyses.

The impact of using an HLA-personalized index on expression estimates

varies markedly among loci. We found that for HLA-DQA1 there is a large

difference between gene-level expression estimates obtained using the refer-

ence transcriptome and the HLA-personalized index. However, this differ-

ence is quite low for Class I genes, and intermediate for the other Class II

loci (Figures 2 and 4). However, even for the class I genes, using the person-

alized index results in changes in expression estimates. Therefore, we asked

whether the differences in expression obtained using the HLA-personalized
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pipeline have an impact on downstream analyses, such as eQTL mapping.

In the case of HLA-DRB1, the eQTLs identified using the HLA-

personalized pipeline are markedly different from those obtained using the

reference transcriptome. For the other loci we studied, although the eQTLs

differ depending on whether the HLA-personalized index is used, the same

biological signal was being captured (Table S2). The p-values and the causal-

ity of the eQTLs obtained with the personalized pipeline are only modestly

better than when the reference transcriptome is used.

We provide a set of variants associated with independent effects on HLA

regulation, and although it remains difficult to pinpoint the exact causal

variants with a limited sample size, our analysis framework will be applicable

to larger RNA-seq datasets.

Importantly, the HLA-personalized approach provides expression esti-

mates at the HLA allele level, which is not a product of standard RNA-seq

pipelines. We integrate allele level information with the eQTLs mapped for

the genes, showing that the HLA allele is a relevant layer of information to

understand the regulation of gene expression, because in some instances the

regulatory architecture is linked to specific HLA alleles. This joint mapping

of regulatory variants and assessment of expression of HLA alleles can illumi-

nate the understanding of the HLA regulation, and contribute to disentangle

specific contributions to disease phenotypes.
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Materials and methods

Index supplemented with the HLA diversity. In order to create the

index, we downloaded 16,187 nucleotide sequences for 22 HLA loci (HLA-A,

HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, HLA-DMA, HLA-DMB, HLA-DOA,

HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-

DRB1, HLA-DRB2, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DRB7, HLA-

DRB8 ) from the International Immunogenetics/HLA database (IMGT ) (release

3.31.0 available at https://github.com/ANHIG/IMGTHLA).

For many alleles, sequence data is not available for the entire coding region (e.g.,

only for exons 2 and 3 for class I, and exon 2 for class II genes, which are called

ARS exons). Because the lack of sequences for much of the coding region would

cause the exclusion of many reads, including those mapping to the boundaries of

the available exons, for each allele with partial sequence we used the available

sequence to find the closest allele which has the complete sequence, and attributed

the sequence from this allele. This is expected to introduce little bias both in either

the genotyping step (because ARS exons are the most polymorphic and sufficient

to distinguish specific alleles) or the expression estimation (because the non-ARS

sequence attributed is likely very similar to the real one).

For the final index file, we replaced the HLA transcripts in the reference tran-

scriptome (Gencode v25, primary assembly) with the HLA diversity described

above. STAR’s module genomeGenerate, Salmon’s index, and kallisto’s index

compile an index from these sequences.

In-silico HLA typing. In order to select the alleles to be used in the HLA-

personalized index, we observed that a simple procedure of selecting the 2 alleles

with the largest number of estimated read counts after applying a zygosity threshold
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is sufficient to produce calls with accuracy of >95%. However, in order to avoid

false homozygotes and false heterozygotes, we implemented additional steps.

First, we selected the top 5 alleles and applied an intra-lineage threshold of

0.25, meaning that only alleles which had at least 25% of the total expression in

their lineage were considered for further steps. For each individual, we compiled

an index containing only these (up to) 5 alleles and estimate their expression. We

then determined if the individual was heterozygote at the lineage level by applying

a threshold of 0.15 on lineage expression levels. The lead allele from each lineage

was selected to compose the genotype. A zygosity threshold of 0.15 was applied to

decide whether the genotype was heterozygous at the allele-level. For each locus,

the reads mapped to the lead allele were removed, and another step of alignment

and quantification was performed in order to determine if the second allele was

real, or just noise due to extensive similarity to the lead allele. If the second allele

had at least 1% of the locus read counts, it was kept, otherwise the genotype was

considered to be homozygous for the lead allele.

The thresholds described above were chosen because they maximized the con-

cordance with the Sanger sequencing typings [6], while also minimizing the rate of

false homozygotes and heterozygotes.

Expression quantification. We implemented two versions of the HLApers

pipeline: (1) one using STAR (v2.5.3a) [34] to map reads followed by Salmon

(v0.8.2)[36] to quantify the expression, and (2) using kallisto (v0.43.1)[35], which

performs pseudoalignment and quantifications.

The quantification pipeline is structured in a two-stage process, first identifying

the most expressed allele(s) at each HLA locus in order to infer the genotype which

is present, and next quantifying expression for these inferred genotypes as well as
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for the rest of the transcriptome (Figure 1).

Reads were aligned directly to the transcriptome. STAR alignments were

passed to Salmon for quantification (module quant under alignment mode),

whereas kallisto directly produces quantifications with the quant module.

In both the HLA typing step (for which the index contains all HLA sequences

in the IMGT database) and the quantification step (for which an HLA-personalized

index is used), short reads can map to more than one locus, or more commonly to

multiple alleles of the same locus (multimaps). The quantification methods we are

using deal with multimaps by inferring maximum likelihoods estimates optimized

by a expectation-maximization algorithm to probabilistically assign reads to each

reference in the index, and also include models to account for sequencing bias.

For the mapping with STAR, we tuned parameters in order to avoid discard-

ing multimaps and to accommodate mismatches. For quantification, we used all

bias correction options available (–seqBias and –gcBias in Salmon, and –bias in

kallisto).

Simulation. We simulated transcriptome data for 50 randomly chosen GEU-

VADIS individuals. We used the Polyester package [41] and the read counts esti-

mated for these samples to simulate RNA-seq experiments with library sizes of 30

million reads, sampling from a normal distribution of read start sites (with aver-

age fragment length of 250bp and sd of 25bp, and error rate of 0.005). Then we

processed the simulated reads with STAR-Salmon to perform the quantifications

using different indices:

1. HLA-personalized index (HLApers): Reference transcriptome with the an-

notated transcripts for HLA genes replaced with sequences from the person-

alized genotypes.
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2. Reference transcriptome: Gencode v25 transcripts from the primary assem-

bly of reference genome;

3. Reference Genome (GRCh38), considering only uniquely mapped reads.

To investigate the relationship between quantifications and sequence divergence

with respect to the reference, we used the R function adist to calculate the pro-

portion of mismatches between the HLA alleles carried by the individuals and the

alleles in the reference genome.

GEUVADIS reanalysis. We quantified HLA expression based on RNA-

seq data for 358 European individuals, in samples of LCLs (Lymphoblastoid Cell

Lines), as originally reported by the GEUVADIS Consortium [24] (we excluded

samples from the original dataset which are not in the 1000 Genomes phase 3).

We performed expression quantification using the HLApers and reference tran-

scriptome pipelines.

For the eQTL analysis, we used only autosomal genes which are expressed in

a large proportion of samples, exploring the thresholds of TPM > 0 in at least

25%, 50%, or 75% of samples. In order to correct the expression data for technical

effects, we sequentially removed the effect of the first 0 to 100 PCs and ran an eQTL

analysis for each condition (Figure S5). The configuration of thresholds and number

of PCs which maximized the eQTL discovery (at FDR = 5%) was considered. This

resulted in the use of genes expressed in � 50% of samples (19,613 genes), and 60

PCs.

The PCA analysis and data correction were performed with QTLtools v1.1 [43],

using the modules pca and correct respectively.

For the genetic variant data, we used the 1000 Genomes Phase 3 biallelic vari-

ants, lifted to GRCh38 coordinates, after filtering for MAF � 0.05 in the individ-
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uals included in this study (6,837,505 variants in total).

In order to control for population structure in the eQTL analysis, we ran a PCA

on the variant genotype data and assessed the PCs which captured the structure.

We used QTLtools pca requiring that variants should be at least 6kb apart. After

visual inspection of the plots in Figure S6, PCs 1–3 were used as covariates in the

eQTL analysis.

We used QTLtools cis to conduct the cis-eQTL analysis using the following

model:

PCA-corrected and standard normal expression ⇠ SNPs + covariates (PCs for

population stratification)

The permutation pass was performed with 1000 permutations and a cis-window

of 1Mb. P-values were computed by beta approximation and significance was

determined by running the script runFDR_cis.R provided by QTLtools with FDR

of 5%.

Multiple eQTLs with independent effects on a particular gene were mapped

with a conditional analysis based on step-wise linear regression (see Supplementary

method 8 in [43]). The method automatically learns the number of independent

signals per gene and provides sets of candidate eQTLs per signal.

Functional annotation of eQTLs. In order to investigate the putative func-

tion of the eQTLs we mapped, we investigated whether these eQTLs were present in

ENCODE [47] regulatory elements annotated for lymphoblastoid cell lines (LCLs).

We used three types of functional annotations: open chromatin regions given by

DNAse footprinting, transcription factor binding sites (TFBS) assayed by ChIP-

seq, and histone modifications.

Regulatory Trait Concordance (RTC) analysis. We performed an RTC
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[44] analysis as described in [43] to investigate whether our eQTLs tagged the same

causal variant as a GWAS variant or previously reported eQTL.

We downloaded the GWAS catalog data (v1.0.1) from https://www.ebi.ac.

uk/gwas/api/search/downloads/alternative and selected associations with p-

value < 10�8. We obtained the coordinates of recombination hotspots from http:

//jungle.unige.ch/QTLtools_examples/hotspots_b37_hg19.bed.

We applied the RTC module implemented in QTLtools (QTLtools rtc), select-

ing the HLA region only, using a D’ threshold of 0.5, and turning on the conditional

flag (–conditional) to test all independent eQTLs for a gene.

Haplotypic coordination of expression. To investigate whether there is a

haplotypic coordination of expression at HLA, we used phased HLA genotype data

to verify if there was more correlation of expression between alleles on the same

haplotype than on different haplotypes.

We used PHASE [58] to determine the haplotype of each allele in the genotype,

providing HLA allele designations and phased eQTL genotypes as input.

Code availability. The HLApers pipeline is available at https://github.

com/genevol-usp/HLApers. The entire analysis, including simulations, index

compilation, quantification of expression, eQTL mapping, etc is available at

https://github.com/genevol-usp/hlaexpression.
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