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Abstract

Previous studies have shown that in 3D cell culture models of human mammary cells (HMEC) (i) colony
organizations are heterogeneous, and (ii) ERBB2 is overexpressed in MCF10A when the stiffness of the
microenvironment is increased to that of high mammographic density (MD). The goal of the current study
is to identify transcription factors that regulate processes associated with the increased stiffness of the
microenvironment. Two HMEC premalignant lines of MCF7 and 184A1 are cultured in 3D, colonies are
imaged using confocal microscopy, and colony organizations and heterogeneity are quantified as a function
of the stiffness of the microenvironment. In parallel and surrogate assays, colony organizations are profiled
by transcriptomics. Transcriptome data are enriched by correlative analysis with the computed
morphometric indices, from 3D culture, and a subset of transcriptome data is selected. This subset is then
processed with Model-based Analysis of Regulation of Gene Expression (MARGE) and publicly available
ChlP-seq data to predict regulatory transcription factors. The integrative analysis indicated that YY1
regulates ERBB2 in the 3D cell culture of MCF10A when the stiffness of the microenvironment is increased
to that of high MD. Subsequent experimental validation confirmed that YY1 is only expressed at the high
stiffness value of the microenvironment concomitant with the overexpression of ERBB2 in MCF10A.
Furthermore, using ERBB2 positive SKBR3 cell line, co-expression of YY1 and ERBB2 is absent, which
indicates that YY1 regulates tumorigenicity through multiple pathways.

Author’s summary

MCF10A is a premalignant immortalized human mammary cell that has been isolated from a patient with
fibrocystic and lost several barriers toward transformation. In an earlier study, we showed that ERBB2 is
upregulated in 3D cultures of MCF10A when the stiffness of the microenvironment is increased to that of
high mammographic density. Here, we leverage publicly available ChlP-seq data to predict and validate
the cis-regulator of ERBB2. Our integrated experimental and computation protocol provides a pathway for
elucidating regulators that can potentially be targeted for intervention.

Keywords: 3D cell culture, Epigenetics, Cis-regulators, Integrative phenotypic and genomic analysis
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Introduction

We aim to identify and validate key transcription factors (TFs) and functional enhancers that regulate
processes associated with the increased stiffness of the microenvironment in 3D cell culture models.
Toward this objective, we integrate surrogate readouts that are generated through imaging of 3D colony
formation with transcriptomic profiling data leading to a subset of the enriched gene set through correlative
analysis. 3D colony formations are imaged using confocal microscopy, where each colony is segmented
and represented multi-parametrically [1, 2] as a function of the increased stiffness of the microenvironment.
In a parallel assay, transcriptome data are also generated, under identical conditions, and genes that correlate
with computed colony (e.g., morphometric) indices are identified and enriched. Subsequently, the enriched
gene set is cross-referenced with publicly available ChlP-seq data for inferring regulatory transcription
factors.  Although gene expression profiling, using microarray or RNA-seq techniques, can identify
differentially expressed genes between two or more conditions, the gene list is not sufficient to learn about
regulation. Existing methods such as ARACNE [3, 4] use transcriptomic profiling to infer cis-regulatory
networks. However, these techniques require a large number of samples for expression profiling, and
indirect effects, such as secondary regulatory relations, between genes, cannot be distinguished from the
direct transcriptional regulatory events. ChlP-seq data measure genome-wide distributions of regulatory or
epigenetic factors (transcription factors or histone modifications) that elucidate direct interactions between
regulators and their target genes. By taking advantage of publicly available genomic data, including histone
modification ChIP-seq and chromatin accessibility DNase-seq data from various cell types, we can predict
the functional enhancer elements in the human genome.

We use a recently developed method called Model-based Analysis of Regulation of Gene Expression
(MARGE) [5] to infer the cis-regulatory network. MARGE uses a compendium of published ChlIP-seq data
for H3K27ac (e.g., acetylation at 27th lysin residue of the Histone H3 protein) and applies a regression-
based semi-supervised learning approach to predict the functional enhancers of a given gene set. The key
transcription factors can then be predicted by associating the MARGE-predicted enhancer profile with
thousands of existing TF ChlP-seq datasets. MARGE defines a regulatory potential for each gene by
summarizing nearby H3K27ac ChlP-seq signals, and we have shown that regulatory potentials scaled
across public H3K27ac profiles are more predictive of genes that are repressed or activated by BET
inhibitors or the super-enhancer based approach [5]. MARGE offers three distinct advantages. First,
compared with the existing master-regulator prediction methods such as super-enhancer analysis [6, 7],
MARGE uses a more quantitative model to associate H3K27ac signals to each gene, and, as a result,
MARGE has been shown to outperform ROSE [6, 7]. Second, MARGE uses a compendium of published
ChlP-seq data for H3K27ac, a histone mark associated with the active enhancer regions in the genome [8,
9], which have been reported to be more informative for inference of gene regulation than looking at the
promoters alone. Third, MARGE is designed to capture important information that can explain variations
in gene expression, regardless of up/down-regulation, or what cell type or tissue origin the data come from
[5]. Hence, gene regulation inference with MARGE is not limited to the availability of epigenomic data for
any particular tissue type that we are studying, but can also apply to any cell system regardless of the
availability of epigenomic data in the compendium.

In a recent study, we examined 3D colony organization as a function of the stiffness of the extracellular
matrix (ECM) within the range of mammographic density (MD) [10]. The study concluded that ERBB?2 is
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overexpressed in the 3D cultures of MCF10A when the stiffness of the microenvironment is increased to
that of high MD in the clinical samples. The stiffness of the MD was measured on clinical histology samples
using atomic force microscopy, which varied between 250 to 1800Pa [10]. Overexpression of ERBB2 was
hypothesized by integrating computed morphometric indices of colony formation, from microscopy
readouts, with the matched gene expression data and then validated using immunofluorescence staining and
microscopy. Although we have shown that the relationship between ERBB2 and stiffness of the
microenvironment is specific to the 3D cell culture model and MCF10A, the regulators of ERBB2 are the
primary motivation of this study. The details of the experimental design, microscopy, and computational
analysis are included in the material and method section, i.e., supplementary files for online publication.

Results

The frequency of aberrant phenotypes are increased as a function of increased stiffness:

Two human mammary epithelial cell (HMEC) lines were cultured in 3D, and the stiffness of the
microenvironment was modulated between 250 to 1800 Pa., which is the stiffness values at low and high
mammographic density [10]. At each stiffness value, colony formation was imaged using confocal
microscopy, and from the same passage, RNA was collected for transcriptomic profiling. Colony formation
indices were quantified using BioSig3D [1, 2], where for each colony a number of indices are computed.
These indices include geometrical and morphological features of colony formation such as flatness,
elongation, colony size, lumen formation, and changes in the proximity of nearby cells. The rationale being
that aberrant colony organization (e.g., colony flatness) is one of the first indicators of dysplasia and an
early marker of malignant progression. One of the capabilities of the BioSig3D is that heterogeneity can
be profiled through consensus clustering, where the frequency of occurrence of each cluster can then be
guantified. As a result, sensitive assays can be developed and profiled. One example of heterogeneity
analysis is shown in Fig. 1, where elongation is shown to have two subpopulations, and the frequency of
occurrence of the aberrant subpopulation increases as a function of the stiffness of the microenvironment.
The frequency of aberrant colony formation is consistent for both cell lines. Another example is shown in
Fig. 2.

Proliferation rate, within each colony, is cell line dependent:

Phenotypic analysis of the colony size as a function of increased stiffness inferred two subtypes for each
of the cell lines as shown in Fig. 2(a-b), where the colony size is profiled by the number of cells in each
colony. The results indicate that for MCF10A, there is a dominant population of smaller colony size at the
low stiffness of the microenvironment, but the frequency of larger colony size increases as a function of the
higher stiffness of the microenvironment. On the other hand, for 184A1 (http://nmec.Ibl.gov/mindex.html
from Stampfer Lab), two equal subpopulations are present at the low stiffness of the microenvironment, but
the frequency of larger colony size decreases as a function of the increased stiffness of the
microenvironment. These data suggest that (i) MCF10A is more clonal and homogenous than 184A, (ii) at
the high stiffness of the microenvironment, both cell lines behave similarly, and (iii) subtypes of colony
size can be used to fingerprint each cell line.
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YY1 is predicted as a regulatory transcription factor for MCF10A and 184A1:

For each of the cell lines, genes that correlate with phenotypic indices (e.g., colony elongation, colony
size) were identified and a subset of genes was selected based on their p-values. The correlative analysis
enriches the gene expression data with the computed colony formation indices, which serve as a surrogate
assay. The raw data and the enriched gene sets are included as data file for on-line publication. The enriched
gene sets were computed for two colony formation indices, applied to MARGE [5] and the relevant publicly
available H3K27ac ChlP-seq datasets, and the functional enhancer-profiles that regulate these genes are
predicted, as shown in Fig. 3a. The relevant H3K27ac ChIP-seq datasets, selected by MARGE, include
samples from the breast cancer cell line MCF-7, which indicates biological similarity in gene regulation
profiles between the cell lines, as shown in Supplementary Table 1. An example of the MARGE-predicted
enhancer profile is shown in Fig. 3b.

We then investigated the association between the MARGE-predicted functional enhancer profile and
2264 ChlIP-seq datasets collected from the public domain [13] representing genomic profiles of over 400
TFs in various cell types. Among these TFs, with the available ChiP-seq data, Yin-Yang 1 (YY1) was
identified as highly associated with the MARGE-predicted enhancer profile in both cell lines. The analysis
is based on the criteria that YY1 binding sites in most YY1 ChlP-seq datasets align with the top-ranked
enhancers in the genome with a P-value less than 0.001, as shown in Fig. 3c-f. It is important to note that
YY1 was predicted with only 15 human breast samples of H3K27ac ChlIP-seq. YY1 is a ubiquitous
transcription factor that plays an important role in normal biological processes such as differentiation and
proliferation, as well as tumorigenesis [15], where tumorigenesis is induced through cell cycle regulation,
inhibition of the p53 tumor suppressor gene, or regulation of apoptosis. YY1 has been shown to cooperate
with the AP-2 transcription factor (cell growth and differentiation) to stimulate ERBB2 [16], which is
generally overexpressed in breast cancer and is negatively regulates p27 (a cell cycle inhibitor) [17]. p27 is
known to function as a tumor suppressor, which is rarely mutated in human cancers. Increased stiff of the
matrix leads to Rho activation [18], where Rho activation has been linked to increased proliferation [19]
and is necessary to remove the inhibition of cell cycle progression that is imposed by p27. Furthermore,
inhibition of YY1 in MCF7 has been shown to transform 3D colony formation to that of MCF10A [17];
however, 3D colony formation has been cell line dependent with the down-regulation of YY1, which is
potentially due to the degree of malignant properties for each of the cell line.

YY1 activates ERBB2 in MCF10A at high stiffness values of the microenvironment:

In a recent paper, we showed that ERBB2 is overexpressed in 3D cell culture models of an MCF10A cell
line by simply increasing the stiffness of the microenvironment within the range of MD, i.e., from 250 to
1800Pa [10]. Having identified YY1 as a TF regulator using MARGE, we then designed three experiments
with the necessary set of controls for validating overexpression of YY1 in 3D cell culture models. To begin,
control cells were engineered by overexpressing and knocking down YY1 using the CRISPR technology
with a sample result shown in Supplementary Fig. 1 and 2. The first experiment was performed with
MCF10A, which indicated that (i) YY1 regulates ERBB2 at high stiffness, (ii) if YY1 is turned off with
CRISPR, then ERBB?2 is never activated either at low or high stiffness values of the microenvironment,
and (iii) if YY1 isupregulated then ERBB?2 is also activated even at low stiffness of the microenvironment.
Fig. 4 shows co-localization of YY1 with ERBB2. The second experiment was performed with the non-
transformed 184A1 HMEC; however, neither overexpression of ERBB2 nor YY1 were observed. The third
experiment was performed with the ERBB2 positive cell line of SKBR3, where control cells were


https://doi.org/10.1101/365403
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/365403; this version posted July 9, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

O© 00 N O O b W DN P

B A DB D W W WWWWWWWWNDNDDNDNDNDDNDNDDMDNDNDNDNDNDMNNRPERERRPERERERERRPRPRPRE
A WO NP OO 00O NO O & WNPFP O O 0o NOO O P WDNP O OOWWNO UG WDN P O

aCC-BY 4.0 International license.

engineered to overexpress and knock down YY1. Regardless of the stiffness of the microenvironment and
YY1 being on up or down, ERBB2 was always expressed in this cell line.

Discussion

The following observations are made using the two human mammary epithelial cell lines of MCF10A
and 184A1. These two cell lines were selected because, at high stiffness, MCF10A expresses ERBB2 while
184A1 does not [10]. Furthermore, MCF10A originates from a patient with the fibrocystic disease, while
184A1 originates from the normal patient following reduction mammoplasty. We conclude that (I)
Increased stiffness of the microenvironment, within the range normal mammographic density, also
increased the frequency of aberrant colony formation for both cell lines. (1) Proliferation indices can be
used to assess diversity and heterogeneity in each of the cell lines, and subtyping based on computed indices
has the potential to identify each cell line uniquely and stratify cell lines phenotypically. (1) Having
enriched the gene expression data with computed colony indices, MARGE predicted YY1 to be highly
enriched as one of the cis-regulatory hubs for both cell lines. It is important to note that neither ERBB2 nor
YY1 are enriched at the transcription level. (IV) YY1 is co-expressed with ERBB2 in MCF10A when the
stiffness of the microenvironment is increased to that of high mammographic density, but the co-expression
of ERBB2 and YY1 in 184A1 is absent. However, in an ERBB2 positive cell line of SKBRS3,
overexpression or knock out of YY1 had no impact on the expression of ERBB2. Additional observations
suggest overexpression of YY1 in SKBR3 and a number of other tumor cell lines [17]. Similar observations
were also made when the culture was performed in the presence of lactacystin, a protease inhibitor, and a
nonsteroidal anti-inflammatory drug (NSAID) [20]. However, both of these studies have used the 2D cell
culture models of the cell lines and bulk measurement. It is well known that the patterns of gene and protein
expression are differentially expressed between the 2D and 3D cell culture models. For example, our
analyses have shown that (a) ERBB2 is only expressed in 3D cell culture models at the stiffness value of
high mammographic density [10], and (b) PPARY, one of the biomarkers of invasive phenotypes is only
expressed in 3D and not in 2D [21].

In conclusion, integrative morphometric and transcriptomic data has enriched the molecular signature for
inference of the cis-regulatory networks. Our integrative analysis suggests that YY1 upregulates ERBB2 in
the 3D cell culture of MCF10A when the stiffness of the microenvironment is increased to that of high
mammographic density. In addition, YY1 is also highly enriched in 184A1, but not expressed within the
same range of the experimental conditions. This is possible because MCF10A is more differentiated and is
derived from a benign proliferative breast tissue, which is spontaneously immortalized without defined
factors [22]. Furthermore, using ERBB2 positive SKBR3 cell line, co-expression of YY1 and ERBB?2 is
absent, which indicates that YY1 regulates tumorigenicity through multiple signaling pathways. Similar
analyses are applicable for the analysis of a wide array of biological processes and cell signaling.

Methods

Embedded 3D culture model

Embedded method was used for the 3D cell culture model[11]. For each stiffness condition as per
mammographic density (MD)[12], three replicates of 3D cell cultures of MCF10A human mammary
epithelial cells (HMEC) were performed. The stiffness of the microenvironment per MD was modulated
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by varying concentration of agarose, 1% agarose for low MD and 2.0% agarose for High MD. The initial
seeding density for 3D cell culture is 8000 cells per well. The procedure of preparing 3D culture was
described as following. The cells were carefully suspended in 40 pL Matrigel matrices (BD). Next, 40 puL
of 2.0% and 4% agarose solution (Sigma) were added and thoroughly mixed. The formed gels have final
concentrations of agarose at 1.0% and 2.0%. The corresponding stiffnesses were 250 and 1800 Pa,
respectively. The mixtures were placed in an 8-well chambered coverglass (Nunc Lab Tek II), and
incubated for 20 min, allowing each matrix to gel before adding the growth medium (500 pL/well). Cells
were maintained in culture for 8 days while changing the medium once every third day. Changing of the
medium was also monitored with phase microscopy for proper growth and colony formation.

Cell subculture and maintenance

MCF10A and SKBR3 cultured sequentially following an initial pilot project, validation, and hypothesis
generation. Cells were maintained in a 37°C incubator with 5% CO,. The MCF10A model system was
obtained from ATCC at passage > 50 and was then subcultured (P5-P7) for the proposed studies. MCF10A
were cultured in DMEM/F12 medium (Life Science Technology) supplemented with 5% horse serum (Life
Science Technology), 10 ng/mL EGF (Life Science Technology), 50 ng/mL chlora toxin (Sigma), 200
pug/mL insulin (Sigma), 100 ng/mL hydroxylcortisone (Sigma), and 1% penicillin-streptomycin (Life
Science Technology). SKBR3 were cultured in DMEM supplemented with 10% of FBS (Life Science
Technology) and 1% penicillin-streptomycin.

Transfection

The CRISPR-cas9 technology was used to transfect MCF10A cell lines to overexpress/knockout YY1
(Santa Cruz Biotechnology, SC400295/SC409112). The vendor’s protocol was followed without any
modifications as follows: (1) 10,000 cells were seeded per well in a 12-well plate tissue culture plate and
incubated in 2 mL of antibiotic-free standard growth medium. (I1) Cells were monitored for their confluency
to conclude healthy and proliferating cells, which are required for CRISPR Activation Plasmid transfection,
i.e., confluency should be approximately 60-80. (I11) 300 pl YY1 activation Plasmid Transfection Reagent
Complex (Complex component details were described in company provided protocol was added dropwise
to each well. (IV) The plate was gently mixed by swirling, and cells were incubated for 24 hours under
conditions normally used to culture the cells. (V) Empty plasmid vectors were set aside as a negative
control. (VI) After 24 hours, transfected cells were stained with the YY1 antibody for validation and
subsequently transferred to the 3D culture for further testing.

Fixation and immunofluorescence staining

Cell cultures in the hydrogel and on the plastic plate were fixed at room temperature in 10% formalin for
30 min. After 3 times of PBS washes, cells were permeabilized using a 0.1% Triton X-100 solution for 5
min. Cell cultures were washed 3 times with PBS, blocked using a 1% bovine serum albumin (BSA)
solution (Sigma) supplemented with 1% goat IgG (Jackson ImmunoResearch), and the blocking solution
was maintained for 1 h. In some cases, samples were stained for a specific molecular endpoint, but in all
cases, DAPI nuclear stain was applied for profiling colony organization. Monoclonal rabbit anti-human
primary antibodies (e.g., ERBB2 EP1045Y, and YY1 EPR4652) (Abcam) were diluted in blocking solution
(2:500), incubated for 1 h, and followed by 3 PBS washes. Goat anti-rabbit secondary antibody conjugated
with Alexa 488 and Alexa 565 (A11008 and A11011) (Life Science Technology) was diluted in the
blocking solution (1:250), conjugated to primary antibody for 1 h, and followed by 3 PBS washes.
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Subsequently, nuclei were stained with 4’-6-diamidino-2-phenylindole (50 ng/mL) (DAPI D1306, Life
Science Technology).

Fluorescent microscopy

Stained samples were imaged using a Zeiss LSM 710 system equipped with a Zeiss Apochromat 40X/1.1
(0.8 mm WD) water immersion objective lens. The excitation filters were set at 405, 488 and 568 nm, and
the emission filters were set to receive signals between 420-480, 420-550 and 597-700 nm, respectively.
The laser intensity was set at 1%. A twin-gate main beam splitter with two wheels, each wheel having 10
filter positions (and thus 100 possible combinations), was used to separate excitation and emission beams.
The pinhole was set at “1”. The digital gain was adjusted to approximately % of the maximum gain, which
kept the dynamic range of the pixels between 500-2000 (12 bits). The 3D stack function of the Zen software
was used to collect raw 3D information for each colony and was concurrent with “Z correction” of the pixel
intensity for thick samples. The voxel size was set to 0.25umx0.25umx1um, the image files were saved as
Ism files, and uploaded to the BioSig3D imaging bioinformatics system [1].

RNA analysis

Total RNA collected from different stiffness, 250 Pa to 1800 Pa, were extracted using a Qiagen
RNAeasy micro kit, following the in-kit protocol. The RNA quality was checked to assure that RNA
integrity number (RIN) was over 7, out of maximum 10. Total RNA extractions were sent to the UCLA
UNGC core facility for profiling, where UCLA performed their own quality control check independently.
Subsequently, UCLA amplified the total RNA by Ambion amplification and profiled gene expression on
Illumina human ht-12 chip in triplicates. The chips were scanned, gene expression data were normalized,
and p-values for the quality of each gene was computed, and a spreadsheet was delivered for integrative
analysis.

Enhancer and key TF prediction using MARGE

MARGE (version 1.0) was used to predict the genomic enhancer profile using the highly correlated gene
set as input. To obtain the best enhancer prediction, MARGE regression was executed under default
parameters for 10 times and the enhancer profile with highest prediction evaluation measure (AUC) was
selected. The predicted enhancer profile is a ranked list of ~2.7 million cis-elements (candidate enhancers)
in the human genome, obtained as a union set of all DNase hypersensitive sites from over 400 human
DNase-seq datasets. 2264 ChlP-seq datasets were collected from the human genome for TFs and chromatin
regulators that is also referred to as “factor”[13]. For each factor, MACS2[14] was used to identify the
binding sites under a false discovery rate (FDR) cutoff of 0.01 and five fold-enrichment cutoff. A
present/absent assignment was placed on each of the 2.7 candidate enhancer sites to show whether a site is
bound by this factor or not that is determined by peak region overlap. Subsequently, a receiver operational
curve (ROC) is generated using the ranked enhancer prediction of each factor, and the area under the ROC
curve (AUC) is calculated to evaluate the association of this factor. Finally, the AUC of 18 YY1 ChIP-seq
datasets were compared with the null distribution of AUC of all 2264 ChIP-seq datasets and a p-value was
calculated under the K-S test.
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List of Abbreviation
3D three dimensional

ECM extracellular matrix

YY1 yinyang 1

HMEC human mammary epithelial cell

ERBB2 Receptor tyrosine-protein kinase erbB-2

TF transcriptional factor

MD mammographic density

MARGE model based analysis of regulation of gene expression
PPARy peroxisome proliferator activated receptor y

EGF epidermal growth factor

CRISPR clustered regularly interspaced short palindromic repeats
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Figure Legends

Figure 1. Colony shapes are heterogeneous: (a) Consensus clustering identifies two morphometric subtypes
quantified with the colony elongation index as a function of increased stiffness of the microenvironment
from 250 to 1800Pa. (b-c) Representative of colony organization for each of the subtypes imaged through
confocal microscopy with each nucleus segmented with BioSig3D. (d) Frequency of occurrence of colony
elongation increases as a function of increased stiffness of the microenvironment. Scale bar is 20 pm.

Figure 2. Colony proliferation rates are heterogeneous. (a) Consensus clustering identifies two diverse
morphometric subtypes for MCF10A with the representative of each subpopulation shown. The frequency
of larger colonies increases as a function of increased stiffness of the microenvironment. (b) Consensus
clustering identifies two approximately equal morphometric subtypes for 184A1 with the representative of
each subpopulation shown. The frequencies of smaller colonies increases as a function of increased stiffness
of the microenvironment. Scale bar is 20 um.

Figure 3. MARGE predicts YY1 as a functional transcription factor (TF) regulating phenotype-associated
genes. (a) MARGE schematic. MARGE predict functional cis-regulatory (enhancer) profiles of a given
gene list, using a compendium of public H3K27ac ChlP-seq profiles. Key TFs are further predicted by
associating the cis-regulatory (enhancer) profiles generated by MARGE with each of 2264 collected public
TF ChlP-seq datasets. For each TF dataset, a receiver operating characteristic (ROC) curve is generated,
and the area under the curve (AUC) is used to assess the association of the regulatory profile with this TF
in the genome. (b) Sample genome browser shapshot of a public YY1 ChlP-seq profile (upper track) and
an MARGE-predicted cis-regulatory (enhancer) profile (lower track). YY1 ChlP-seq dataset is from K562
cell line (Pope, et al., 2014). The enhancer profile is predicted from genes correlated with stiffness. (c-f)
YY1 is highly enrich regardless of the phenotypic indices for MCF10A. Cumulative distributions of AUC
scores for predicting all 2264 ChlIP-seq datasets for different TFs’ binding (blue) and 18 datasets for YY1
binding (red). Having significantly higher AUC scores than the all-TF background, YY1 is predicted as a
functional regulator of the input gene sets for cell line MCF10A. (P-value < 0.001, by K-S test.)

Figure 4. YY1 regulates ERBB2 in MCF10A monitored by fluorescent microscopy. A cross section of a
multicellular system imaged with confocal microscopy. 3D colony formation is fixed at day 10 and
stained. Top row shows a colony with DAPI, ERBB2, YY1 stain at 100 Pa. Bottom row shows DAPI,
ERBB2, YY1, and merged signal of YY1 and ERBB2 at 1800Pa. Scale bar is Scale bar is 20 pum.

Supporting information Legends
Supporting Information. SI1: Supplementary Table and Figures
Supporting Information. S12: Raw gene expression data as a function of stiffness of the microenvironment

Supporting Information. S13: List of genes sorted by their p-value against computed flatness in MCF10A.
Supporting Information. S14: Keys for Gene expression data
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