

1 **Effect of NaCl-Stressed Bt Cotton on the Feeding Behaviors and**
2 **Nutritional Parameters of *Helicoverpa armigera***

3 Jun-Yu Luo, Shuai Zhang, Xiang-Zhen Zhu, Ji-Chao Ji, Kai-Xin Zhang, Chun-Yi
4 Wang, Li-Juan Zhang, Li Wang, Jin-Jie Cui[†]

5

6 State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences, Anyang
7 455000, Henan, China.

8 **†Corresponding authors:**

9 Prof. Jin-Jie Cui

10 State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of
11 Agricultural Sciences, Anyang 455000, Henan, China

12 E-mail: cuijinjie@126.com; Tel.: +86 3722562217; Fax: +86 3722562296

13

14

16 **Abstract**

17 Saline-alkali soil is an arable land resource on which transgenic Bt cotton has been
18 planted on a large scale in accordance with food security strategies, but there are
19 concerns about the insecticidal effects of Bt cotton on target insect pests. In this study,
20 a *Bacillus thuringiensis* (Bt) cotton variety, GK19, and its nontransgenic parent
21 variety, Simian-3, were used as experimental materials to study the effect of the
22 expression of exogenous insecticidal proteins in Bt cotton under NaCl stress on the
23 feeding behavior and nutritional parameters of *Helicoverpa armigera*. The results
24 showed that the expression of exogenous insecticidal proteins in GK19 was
25 significantly inhibited under NaCl stress. However, on GK19 Bt cotton, the feeding,
26 crawling, resting and spinning down of the 5th instar *H. armigera* larvae, as well as
27 the food consumption and feces amount of these larvae, did not markedly differ under
28 different NaCl concentrations. In contrast, the mean relative growth rate (MRGR),
29 relative growth rate (RGR), approximate digestibility (AD), efficiency of conversion
30 of ingested food (ECI) and efficiency of conversion of digested food (ECD) of the
31 larvae decreased markedly in response to NaCl stress. Under the same concentration
32 of NaCl, the nutritional parameters of the bollworm larvae on GK19 Bt cotton or
33 Simian-3 nontransgenic cotton were different. However, the interaction between salt
34 stress and cotton variety had no significant effect on the feeding behavior or
35 nutritional parameters of *H. armigera* larvae. These results may provide a scientific
36 basis for determining the effect of exogenous insecticidal protein expression in Bt
37 cotton under NaCl stress on *H. armigera* and can therefore be useful for the effective
38 application of Bt cotton in saline-alkali soils to prevent and control *H. armigera*.

39 **Keywords:** NaCl stress; Bt cotton; *Helicoverpa armigera*; nutritional
40 parameters; feeding behavior

41 **Introduction**

42 Soil salinization is an obstacle that cannot be ignored in the sustainable development
43 of agriculture [1-2]. In recent years, due to improper irrigation and poor drainage,

44 approximately 300,000 hectares of cultivated land worldwide has experienced
45 secondary salinization [3]. In China, nearly 37 million hectares of saline-alkali soil,
46 accounting for 4.9% of the nation's arable land, severely hinder crop production [4].
47 Cotton is an important economic crop and the pioneer crop for saline-alkali lands. The
48 rational development and utilization of saline-alkali land resources are highly
49 important for agricultural production.

50 *Bacillus thuringiensis* (Bt) cotton is commercially cultivated on a large scale in
51 many countries [5-7], as it can effectively control specific lepidopteran pests, reduce
52 dependence on chemical insecticides and protect both beneficial arthropod
53 populations and the environment [8-10]. Although no target pests are beyond the
54 control of extensive Bt cotton use [11-12], many reports have indicated that the
55 effects of Bt cotton on lepidopteran pests differ over the cotton growing season [13]
56 and that the Bt insecticidal protein content is correlated with cotton variety [14-15],
57 cotton growth stage [11,16], and plant parts [17-24]. With respect to the response of
58 Bt cotton to abiotic stress, some studies have investigated the effect of salt stress on
59 the insecticidal protein expression in Bt cotton [19, 20, 22, 24], but few studies have
60 investigated the effects of salt stress on both the expression of insecticidal proteins in
61 Bt cotton and the nutritional levels of lepidopteran pests.

62 Under the context that arable land for grain production is diminishing and that
63 cotton must be planted on saline-alkali land, a salt stress test on Bt cotton plants was
64 simulated in the laboratory to study the exogenous insecticidal protein expression in
65 Bt cotton under NaCl stress and the associated interactions with cotton bollworm
66 (*Helicoverpa armigera*). The results provide a scientific basis for the prevention and
67 control of bollworm in Bt cotton fields in saline-alkali soils.

68 **Materials and methods**

69 **Plants and insects**

70 Bt cotton variety GK19 and its nontransgenic parent variety Simian-3 were provided
71 by the Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural
72 Sciences, China. GK19 and Simian-3 seeds were sown in germination boxes. After

73 both cotyledons of the cotton seedlings were open and spread flat, the cotton roots
74 were washed, and each seedling was transferred to a hydroponic growth box
75 containing nutrient solution. The growth boxes were subsequently placed in a plant
76 culture room (temperature 25 ± 2 °C, humidity 50-60%) until four true leaves grew.
77 Bollworm larvae were provided by the Institute of Cotton Research of the Chinese
78 Academy of Sciences (CAAS). The bollworm larvae were reared with artificial feed
79 [25] in a light incubator under the 60±5% relative humidity, 2±1 °C, and a 14:10
80 (light:darkness) photoperiod .

81 **NaCl stress treatment**

82 The NaCl stress treatments consisted of 3 concentration gradients, namely, 0 mmol
83 L⁻¹, 75 mmol L⁻¹ and 150 mmol L⁻¹, and each test was repeated 3 times. The cotton
84 nutrient solution and NaCl levels were renewed every 2 days after the initial nutrient
85 and stress application. The nutrient solution was prepared, and the cotton plants were
86 cultivated in accordance with the methods of Jiang et al.[19]; tests were performed for
87 8 days after the NaCl stress treatment.

88 **Detection of exogenous protein expression**

89 Unfolded leaves were collected from the tops of GK19 Bt cotton plants under
90 different levels of NaCl stress. For each treatment, 5 leaves were collected. The leaves
91 were then mixed evenly, frozen and ground in liquid nitrogen, after which the
92 exogenous insecticidal protein expression was measured using a Cry1Ac/Cry1Ab
93 detection kit (ENVIROLOGIX, USA).

94 **Survey of bollworm feeding behavior**

95 GK19 Bt cotton and Simian-3 nontransgenic cotton plants under different levels of
96 NaCl stress were collected. For each treatment, 5 plants were collected, and the
97 cotyledonary nodes and roots were cut and discarded from each plant. The remaining
98 plant portions were placed into a plastic cup containing 1% solidified water agar. A
99 single recently hatched bollworm larva was placed onto each plant. Subsequently, the
100 plastic cup was covered with an inverted plastic cup of equal size, and the cups were
101 sealed together with sealing film. After 10 min, when the bollworm had stabilized, it
102 was observed. This test was repeated 3 times; a total of 15 cotton plants were used.

103 The feeding statuses (feeding, crawling, resting and spinning down) of the bollworm
104 larvae under the different treatments were observed and recorded every 30 min for 6
105 h.

106 **Determination of the nutritional parameters of the bollworms**

107 To determine the nutritional status of the bollworms, 5th instar larvae were used.
108 Leaves were collected from the tops of the GK19 Bt cotton and Simian-3
109 nontransgenic cotton and then placed into clean, sterilized glass test tubes (15 cm×Φ5
110 cm). Afterward, similarly sized bollworm larvae were placed onto the cotton leaves,
111 and each test tube was plugged with a cotton swab to prevent the bollworms from
112 escaping. One 5th instar bollworm larva was placed in each tube, and larvae were
113 reared for 2 d; 30 larvae were examined per treatment, and every 10 larvae
114 represented one replicate. Before rearing, both the weight of the bollworm larvae and
115 the fresh weight of the cotton leaves were measured; after rearing, the weight of the
116 bollworm larvae and the dry weight of the remaining cotton leaves were measured
117 after drying at 80 °C for 72 h. In addition, the fresh weight of the feces in the test
118 tubes were measured. Ten leaves without bollworms served as blank controls for each
119 treatment. The following nutritional effect parameters were calculated: the mean
120 relative growth rate (MRGR) [26], relative growth rate (RGR), relative metabolic rate
121 (RMR), relative consumption rate (RCR), efficiency of conversion of ingested food
122 (ECI), efficiency of conversion of digested food (ECD) and approximate digestibility
123 (AD) [27-28]. The food consumption, amount of feces, larval weight and weight gain
124 of the bollworms were measured.

125 **Data analysis**

126 SPSS 17.0 statistical analysis software for Windows (SPSS, Chicago, IL, USA) was
127 used to analyze significant differences in the sample data. The Bt insecticidal protein
128 expression, nutritional effect parameters and feeding behavior parameters of the
129 bollworms were analyzed via one-way ANOVA with SPSS 17.0. Significant
130 differences between treatments were tested using LSD tests.

131 **Results**

132 **Effect of NaCl stress on the expression of exogenous insecticidal protein in Bt
133 cotton leaves**

134 With the increase in NaCl concentrations, the expression of exogenous proteins in the
135 Bt cotton leaves tended to decrease (Fig. 1). Compared with 0 mmol L⁻¹ NaCl stress,
136 75 mmol L⁻¹ and 150 mmol L⁻¹ NaCl stress caused 23.16% ($p=0.022$) and 59.01%
137 ($p=0.003$) lower exogenous protein expression in Bt cotton leaves, respectively.
138 Compared with 75 mmol L⁻¹ NaCl stress, the exogenous protein expression in Bt
139 cotton leaves under 150 mmol L⁻¹ NaCl stress decreased by 46.66% ($p<0.001$).
140 Together, these results showed that NaCl stress could significantly inhibit the
141 exogenous protein expression in Bt cotton and that the decrease in the exogenous
142 protein expression was related to the degree of salt stress.

143 **Effect of NaCl-stressed Bt cotton on the feeding behavior of bollworms**

144 The effect of NaCl-stressed Bt cotton on the feeding behavior of bollworm larvae is
145 shown in Fig. 2. When GK19 Bt cotton and Simian-3 nontransgenic cotton plants
146 were under NaCl stress, the probability that bollworm larvae would feed on them
147 decreased as NaCl concentration increased, but the difference between treatments was
148 not significant. Compared with the feeding probability of bollworm larvae on
149 Simian-3 nontransgenic cotton plants, that on GK19 Bt cotton plants was low overall.
150 Under 0 mmol L⁻¹ NaCl stress, the feeding probability of bollworm larvae on GK19
151 was 42.65% ($p=0.037$) lower than that on Simian-3. Furthermore, the feeding
152 probability of bollworm larvae did not significantly differ under 75 mmol L⁻¹ and 150
153 mmol L⁻¹ NaCl stress; the probabilities of crawling, resting and spinning down for
154 larvae on Bt cotton were not significantly different from those for larvae on
155 nontransgenic cotton, even under different levels of NaCl stress. These results show
156 that NaCl stress did not significantly affect the feeding behavior of bollworm larvae
157 on cotton plants.

158 **Effect of NaCl-stressed Bt cotton on the nutritional effect parameters in
159 bollworms**

160 **Food consumption and the amount of feces**

161 The cotton variety and NaCl stress had marked effects on the food consumption and
162 amount of feces of bollworm larvae (Fig. 3). Under the same NaCl stress condition,
163 the food consumption and amount of feces of bollworm larvae on GK19 Bt cotton
164 were significantly lower than those on Simian No. 3 nontransgenic cotton ($p_0=0.000$,
165 $p_{75}=0.000$, $p_{150}=0.001$). Compared to the 0 mmol L⁻¹ NaCl treatment, the food
166 consumption and amount of feces of bollworm larvae on the Bt cotton under 75 mmol
167 L⁻¹ and 150 mmol L⁻¹ NaCl both first increased but then decreased, and there was no
168 significant difference among the stress treatments. However, the food consumption
169 and amount of feces of the cotton bollworm larvae on nontransgenic cotton were
170 decreased, and under 150 mmol L⁻¹ NaCl, these characters decreased by 25.88% and
171 23.06% ($p_{75}=0.002$, $p_{150}=0.021$), respectively. Together, these results showed that the
172 introduction of exogenous genes significantly inhibited the food consumption and
173 amount of feces of bollworm larvae on cotton. However, as the NaCl concentration
174 increased, no significant differences in the bollworm food consumption and amount of
175 feces were observed on either cotton variety.

176 **Nutritional effect parameters**

177 The cotton variety and NaCl stress significantly affected the MRGR, RGR, RCR and
178 relative consumption rate (RMR) of the bollworm larvae (Fig. 4). Under the same
179 NaCl stress level, the MRGR, RGR and RCR of bollworm larvae feeding on GK19 Bt
180 cotton were significantly lower than those of bollworm larvae feeding on Simian-3
181 nontransgenic cotton ($p<0.001$), but the RMR of the former was significantly higher
182 than that of the latter ($p>0.05$). Compared with the MRGR and RGR under 0 mmol
183 L⁻¹ NaCl stress, those of bollworm larvae feeding on both varieties of cotton under 75
184 mmol L⁻¹ and 150 mmol L⁻¹ NaCl stress decreased, but the MRGR ($p_{75}=0.046$,
185 $p_{150}=0.014$) and RGR ($p_{75}=0.027$, $p_{150}=0.050$) of bollworm larvae feeding on Bt
186 cotton and nontransgenic cotton under 150 mmol L⁻¹ NaCl stress significantly
187 decreased.

188 The RCR and RMR of bollworms feeding on GK19 Bt cotton significantly

189 differed ($p_{RCR}=0.011$, $p_{RMR}=0.027$) under 75 mmol L⁻¹ NaCl stress. In addition, the
190 RCR of bollworms feeding on Simian No. 3 nontransgenic cotton significantly
191 differed ($p=0.014$) under 150 mmol L⁻¹ NaCl stress. Overall, these results showed that
192 both cotton variety and NaCl stress can significantly affect the MRGR, RGR, RCR
193 and RMR of bollworm larvae.

194 The cotton variety and NaCl stress significantly affected the AD, ECI and ECD
195 of bollworm larvae (Fig. 5). Under the same NaCl stress level, the AD of bollworm
196 larvae feeding on GK19 Bt cotton was higher than that of bollworm larvae feeding on
197 Simian-3 nontransgenic cotton; in addition, the ECD and ECI of the former were
198 lower than those of the latter only under 75 mmol L⁻¹ and 150 mmol L⁻¹ NaCl stress
199 ($p<0.001$). Compared with the AD and ECI under 0 mmol L⁻¹ NaCl stress, the AD
200 ($p_{75}=0.004$, $p_{150}=0.000$) and ECI ($p_{75}=0.000$, $p_{150}=0.000$) of bollworm larvae feeding
201 on the Bt cotton under 75 mmol L⁻¹ and 150 mmol L⁻¹ NaCl stress significantly
202 decreased, while the ECD decreased only under 75 mmol L⁻¹ NaCl stress ($p=0.049$).
203 The AD, ECI and ECD of bollworm larvae feeding on Simian-3 nontransgenic cotton
204 did not significantly change. Together, these results showed that both the cotton
205 variety and NaCl stress can significantly affect the AD, ECI and ECD of bollworm
206 larvae.

207 Salt stress concentration and cotton variety interaction

208 Within a certain range, the salt stress concentration, cotton variety, and their
209 interaction have certain effects on the feeding behavior and nutritional parameters of
210 bollworm larvae (Table 1). Salt stress had no significant effect on the probability of
211 bollworm feeding, while cotton variety had a significant effect on the probability of
212 bollworm feeding and crawling; the interaction between salt stress and the cotton
213 variety had no significant effect on the probability of bollworm feeding or crawling.
214 Both the cotton variety and salt stress significantly affected the nutritional parameters
215 of bollworm larvae after feeding, but their interaction had less of an effect on the
216 nutritional parameters. Neither salt stress nor cotton variety had significant interactive
217 effects on the feeding behavior or nutritional parameters of the bollworm larvae.

218 Discussion

219 The insecticidal effect of Bt cotton depends on the expression of exogenous
220 insecticidal proteins, which is correlated with plant variety, plant growth stage, plant
221 tissue and abiotic stress [11,14,16,17,18, 19, 20, 22,24]. In this study, the expression
222 of exogenous insecticidal proteins in the leaves of Bt cotton GK19 was measured
223 under NaCl stress. The results showed that NaCl stress could significantly inhibit the
224 expression of exogenous Bt proteins in the Bt cotton plants, which is consistent with
225 the conclusions of Rao [18], Jiang et al. [19], Luo et al. [20] and Iqbal et al. [22].
226 Based on their salt stress studies, Li et al. [29] and Luo et al. [24] reported similar
227 conclusions under greenhouse and under natural field conditions. Together, these
228 results show that salt stress can significantly inhibit the expression of exogenous
229 proteins in Bt cotton and that the degree of inhibition is related to the degree and
230 duration of the salt stress.

231 Different pests exhibit different behavioral responses to transgenic crops; even
232 for the same pest, larvae at different instars respond differently to the same transgenic
233 crop, and the same pest can exhibit different avoidance behaviors to different toxins
234 or genetically modified crop species [30-33]. This study investigated the feeding
235 behavior of newly hatched bollworm larvae on GK19 Bt cotton and its nontransgenic
236 parent Simian-3 under NaCl stress. The results showed that the feeding probability of
237 bollworm larvae on GK19 Bt cotton and Simian-3 nontransgenic cotton under NaCl
238 stress decreased as the NaCl concentration increased; however, there were no
239 significant differences among salt treatments. Compared to the probability of
240 bollworm larvae feeding on Simian-3 nontransgenic cotton, that on GK19 Bt cotton
241 was lower overall and decreased significantly only under no salt stress (0 mmol L⁻¹),
242 which is similar to the results under normal planting conditions [31]. However, under
243 salt stress conditions, there was no significant difference in the feeding rate of the
244 newly hatched bollworm larvae on the two varieties of cotton, probably due to the
245 decrease in the bollworm avoidance behavior resulting from the reduced expression of
246 exogenous insecticidal proteins in Bt cotton under NaCl stress [34-36]. The

247 probabilities of bollworm larvae crawling, resting and spinning down on GK19 Bt
248 cotton were not significantly different from those on Simian-3 nontransgenic cotton,
249 and these probabilities did not significantly differ among the NaCl stress treatments.
250 These findings show that NaCl stress had no significant effect on the feeding behavior
251 of bollworm larvae on cotton, as shown by the results of previous experiments on rice
252 brown planthopper (*Nilaparvata lugens*) selection of hosts for oviposition [37].

253 When grass-feeding insects feed on transgenic insect-resistant plants, food
254 consumption and use may be affected [38]. Whittaker et al. [39] studied the effects of
255 elevated CO₂ concentrations on plant-herbivore interactions, and their results showed
256 that Bt cotton and elevated CO₂ concentrations could slow the development of
257 bollworms and consequently reduce the larval weight gain, RGR and MRGR. The
258 present study investigated the effects of GK19 Bt cotton and its nontransgenic parent
259 Simian-3 under NaCl stress on the nutritional parameters of 5th instar bollworm larvae.
260 The results showed that, under the same NaCl stress level, the food consumption and
261 amount of feces of bollworm larvae were significantly lower on GK19 Bt cotton than
262 on Simian-3 nontransgenic cotton, which is consistent with the conclusions of
263 Shobana et al. [40] and Roy et al. [38]. However, there were no significant differences
264 among the stress treatments involving different NaCl concentrations; NaCl stress
265 resulted in significant decreases in the MRGR, RGR, AD, ECI and ECD of the 5th
266 instar bollworm larvae, which was essentially consistent with the results of both
267 Whittaker et al. [39] and Chen et al. [41], who investigated the effects of elevated CO₂
268 on the nutritional parameters of bollworms feeding on Bt cotton. Somashekara et al.
269 [42] reported that the AD of bollworms decreased after feeding on Bt cotton, while in
270 this study, the AD of 5th instar bollworm larvae feeding on GK19 Bt cotton was much
271 higher than that of 5th instar larvae feeding on nontransgenic cotton, which is
272 consistent with the results that Chen et al. [43] reported in their study about the
273 nutritional parameters of different generations of beet armyworms feeding on
274 transgenic cotton. In addition, the results of the present study suggest that the
275 nutritional parameters of bollworms feeding on transgenic and nontransgenic cotton
276 plants differ under NaCl stress. The variations between these studies and insects may

277 be due to either the response of phytophagous insects to different hosts, which
278 correlates with the growth status of the host plants [44-45,40], or the food
279 compensatory effect of the insects [44]; this question needs to be studied further via
280 both short-term and long-term experiments.

281 The analysis of the interactive effects revealed that Bt cotton could inhibit the
282 feeding behavior of bollworm larvae; however, salt stress did not affect the chance
283 that larvae would feed on cotton. Although both salt stress and cotton variety
284 significantly affected the nutritional parameters of bollworm larvae after feeding, they
285 had no significant interactive effects on the feeding behavior or nutritional parameters
286 of bollworm larvae. Together, these results are consistent with those reported by Chen
287 et al. [41], who studied the effect of elevated CO₂ concentrations on the nutritional
288 parameters of bollworms.

289 Under the background of planting Bt cotton on saline-alkali land, this study
290 investigated the complexity of the response of bollworm larvae to Bt cotton grown
291 under NaCl stress. The results showed that NaCl stress could not induce taxis or
292 reduce the feeding behavior of bollworm larvae on cotton but could affect the growth,
293 development, and nutritional parameters of bollworm larvae. The food utilization rate
294 of phytophagous insects of different species and generations differs highly, and
295 further research is needed to clarify the effect of reductions in the expression of
296 exogenous proteins on bollworms feeding on Bt cotton plants under salt-alkali stress
297 and to quantify the nutritional indicators of herbivores on transgenic insect-resistant
298 plants to determine the impact of these plants on target or nontarget organisms. These
299 findings provide a basis for the control of pests on Bt cotton plants on saline-alkali
300 lands.

301 **Acknowledgements**

302 We are grateful for the financial support from the National Natural Science
303 Foundation of China (31501253).

304 **Conflict of interest**

305 The authors have no conflicts of interest to declare.

306 **References**

- 307 1. Kahlown MA, Azam M. Individual and combined effect of waterlogging and salinity on crop
308 yields in the Indus basin. *Irrig Drain.*, 2002; 51:329-338.
- 309 2. Barrett-Lennard EG. The interaction between waterlogging and salinity in higher plants: causes,
310 consequences and implications. *Plant Soil*, 2003; 253:35-54.
- 311 3. Dong H. Technology and field management for controlling soil salinity effects on cotton. *Afr. J.
312 Agr. Res.*, 2012; 7: 4707-4715.
- 313 4. In Press. National Soil Survey Office. *Soils of China*. China Agric. In Press. 1998.
- 314 5. Jjjr A, Wrjr M. Genetic basis for variability of Cry1Ac expression among commercial
315 transgenic *Bacillus thuringiensis* (Bt) cotton cultivars in the United States. *J. Cotton Sci.*,
316 2004; 8: 17-23.
- 317 6. Dong H, Li W, Tang W, Zhang DM. Development of hybrid Bt cotton in China-a successful
318 integration of transgenic technology and conventional techniques. *Curr. Sci.* 2004;
319 86:778-782.
- 320 7. Whitehouse MEA, Wilson LJ, Fitt GP. A Comparison of arthropod communities in transgenic
321 Bt and conventional cotton in Australia. *Environ. Entomol.*, 2005; 34: 1224-1241.
- 322 8. Pray CE, Huang J, Hu R, Rozelle S. Five years of Bt cotton in China-the benefits continue.
323 *Plant J.*, 2002; 31:423-430.
- 324 9. Tabashnik BE, Dennehly TJ, Sims MA, Larkin K, Head GP, Moar WJ, Carrie're Y. Control of
325 resistant pink bollworm (*Pectinophora gossypiella*) by transgenic cotton that produces

326 *Bacillus thuringiensis* toxin Cry2Ab. *Appl. Environ. Microbiol.*, 2002;68:3790.

327 10. Dhillon MK, Sharma HC. Impact of Bt-engineered cotton on target and non-target arthropods,
328 toxin flow through different trophic levels and seed cotton yield. *Karnataka J. Agr. Sci.*, 2010;
329 22: 462-466.

330 11. Dong HZ, Li WJ. Variability of endotoxin expression in Bt transgenic cotton. *J. Agron. Crop*
331 *Sci.*, 2007; 193:21-29.

332 12. Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y. Insect resistance to Bt crops:
333 evidence versus theory. *Nat. Biotechnol.*, 2008; 26:199-202.

334 13. Olsen KM, Daly JC, Holt HE, Finnegan EJ. Season-long variation in expression of Cry1Ac
335 gene and efficacy of *Bacillus thuringiensis* toxin in transgenic cotton against *Helicoverpa*
336 *armigera* (Lepidoptera: Noctuidae). *J. Econ. Entomol.*, 2005; 98:1007-17.

337 14. Adamczyk JJ, Sumerford DV. Potential factors impacting season-long expression of Cry1Ac
338 in 13 commercial varieties of Bollgard® cotton. *J. Insect Sci.* 2001; 1: 1-6.

339 15. Li WQ, Yang YM, Li CZ, Mao RZ, Liu XJ. Effect of salt stress on growth and development of
340 Bt transgenic cotton mutants and their parent cultivars. *Chinese J. Eco-Agr.* 2007;
341 15:108-111.

342 16. Wan P, Zhang Y, Wu K, Huang MS. Seasonal Expression Profiles of Insecticidal Protein and
343 Control Efficacy Against *Helicoverpa armigera* for Bt Cotton in the Yangtze River Valley of
344 China. *J. Econ. Entomol.*, 2005; 98:195-201.

345 17. Abel CA, Adamczyk JJ. Relative concentration of Cry1A in maze leaves and cotton bolls with
346 diverse chlorophyll content and corresponding larval development of fall armyworm
347 (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) on maize

348 whorl profiles. *J. Econ. Entomol.* 2004; 97:1737-1744.

349 18. Rao CK. *Transgenic Bt Technology: 3. Expression of transgenes*. Available, 2005; from:
350 <http://www.monsanto.co.uk/news/ukshowlib.phtml?uid=9304>.

351 19. Jiang L, Duan L, Tian X, Wang B, Zhang H, Zhang M, Li ZH. NaCl salinity stress decreased
352 *Bacillus thuringiensis* (Bt) protein content of transgenic Bt cotton (*Gossypium hirsutum* L.)
353 seedlings. *Environ Exp Bot.*, 2006;5:315-320.

354 20. Luo Z, Dong H, Li W, Ming Z, Zhu Y. Individual and combined effects of salinity and
355 waterlogging on Cry1Ac expression and insecticidal efficacy of Bt cotton. *Crop Protect.*,
356 2008; 27:1485-1490.

357 21. Chen Y, Chen Y, Wen Y, Zhang X, Chen D. The effects of the relative humidity on the
358 insecticidal expression level of Bt cotton during bolling period under high temperature. *Field*
359 *Crops Res.*, 2012; 137:141-147.

360 22. Iqbal A, Ali S, Zia MA, Shahzad A, alal-ud-din J. Comparative account of Bt gene expression
361 in cotton under normal and salt affected soil. *Int J Agric Biol.*, 2013;15: 1181-1186.

362 23. Li H, Li YB, Hu DP, Wang GX, Lv C H, Zhang X, Chen Y, Chen DH. Effect of high
363 temperature stress on Bt insecticidal protein content and nitrogen metabolism of square in Bt
364 cotton. *Acta Agron. Sin.*, 2016; 42: 1374.

365 24. Luo JY, Zhang S, Peng J, Zhu XZ, Lv LM, Wang CY, Li CH, Zhou ZG, Cui JJ. Effects of Soil
366 Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of *Helicoverpa*
367 *armigera* in Field-Grown Transgenic Bt Cotton. *Plos One*, 2017; 12:e0170379.

368 25. Wu KJ and Gong PY. A new and practical artificial diet for the cotton bollworm. *Entomologia*
369 *Sinica*, 1997; 4: 277-282.

370 26. Viskari EL, Surakka J, Pasanen P, Mirme A, Kössi S, Ruuskanen J, Holopainen JK. Responses
371 of spruce seedlings (*Picea abies*) to exhaust gas under laboratory conditions-plant-insect
372 interactions. *Environ. Pollut.*, 2000; 107:89-98.

373

374 27. Waldbauer GP. The consumption and utilization of food by insects. *Adv. Insect Physiol.*, 1968;
375 5:229-288.

376 28. Scriber JM, Slansky F. The nutritional ecology of immature insects. *Annu. Rev. Entomol.*,
377 1981; 26: 183-211.

378 29. Li MY, Li FJ, Yue YS, Tinan XL, Li ZH, Duan LS. NaCl-Induced changes of ion fluxes in
379 Roots of transgenic *Bacillus thuringiensis* (Bt) cotton (*Gossypium hirsutum* L.). *J. Integr.*
380 *Agr.*, 2013; 12:436-444.

381 30. Gore J, Leonard BR, Church GE, Cook DR. Behavior of bollworm (Lepidoptera: Noctuidae)
382 larvae on genetically engineered cotton. *J. Econ. Entomol.*, 2002; 95:763-9.

383 31. Zhang JH, Wang CZ, Qin JD, Guo SD. Feeding behaviour of *Helicoverpa armigera*, larvae on
384 insect-resistant transgenic cotton and non-transgenic cotton. *J. Appl. Entomol.*, 2004; 128:
385 218–225.

386 32. Men X, Ge F, Yardim EN, Parajulee MN. Behavioral response of *Helicoverpa armigera*,
387 (Lepidoptera: Noctuidae) to cotton with and without expression of the Cry1Acδ-Endotoxin
388 protein of *Bacillus thuringiensis*, Berliner. *J. Insect Behav.*, 2005; 18:33-50.

389 33. Li WQ, Yang YM, Li CZ, Mao RZ, Liu XJ. Effect of salt stress on growth and development of
390 Bt transgenic cotton mutants and their parent cultivars. *Chinese J. Eco-Agr.* 2007;
391 15:108-111.

392 34. Kumar H. Orientation, Feeding, and ovipositional behavior of diamondback moth, *Plutella*
393 *xylostella* (Lepidoptera: Plutellidae), on transgenic cabbage expressing Cry1Ab toxin of
394 *Bacillus thuringiensis* (Berliner). *Environ. Entomol.*, 2004; 33:1025-1031.

395 35. Su HH, Fan N, Li D, Yang YZ. Feeding behavior of *Spodoptera exigua* larvae on
396 insect-resistant transgenic cotton and non-transgenic cotton. *Chinese J. Biol. Control*, 2010;
397 26: 421-427.

398 36. Berdegué M, Trumble JT, Moar WJ. Effect of CryIC toxin from *Bacillus thuringiensis* on
399 larval feeding behavior of *Spodoptera exigua*. *Entomol. Exp. Appl.*, 2015; 80:389-401.

400 37. Chen M, Ye GY, Yao HW, Hu C, Shu QY. Evaluation of the impact of insect-resistant
401 transgenic rice on the feeding and oviposition behavior of its non-target insect, the brown
402 planthopper, *Nilaparvata lugens* (Homoptera: Delphacidae). *J. Integr. Agr.*, 2003; 2:
403 1000-1006.

404 38. Roy N, Barik A. The Impact of variation in foliar constituents of sunflower on development
405 and reproduction of *diacrisia casignetum* Kollar (Lepidoptera: Arctiidae). *Psyche:J.*
406 *Entomol.*, 2012; 9.

407 39. Whittaker JB. Insects and plants in a changing atmosphere. *J. Ecol.*, 2001; 89:507-518.

408 40. Shobana K, Murugan K, Naresh Kumar A. Influence of host plants on feeding, growth and
409 reproduction of *Papilio polytes* (The common mormon). *J. Insect Physiol.*, 2010; 56:
410 1065-1070.

411 41. Chen F, Wu G, Ge F, Parajulee MN, Shrestha RB. Effects of elevated CO₂ and transgenic Bt
412 cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton
413 bollworm. *Entomol. Exp. App.*, 2005; 115:341-350.

414 42. Somashekara R, Udikeri SS, Patil SB, Basavanagoud K. Food consumption indices for spotted

415 bollworm *Earias vittella* (Fab.) on transgenic cottons expressing one or two Bt genes.

416 Karnataka J. Agr. Sci., 2012; 24:140-142.

417 43. Chen F, Wu G, Meghan P, Ge F. Long-term impacts of elevated carbon dioxide and transgenic

418 Bt cotton on performance and feeding of three generations of cotton bollworm. Entomol. Exp.

419 Appl., 2007; 124:27-35.

420 44. Wu G, Chen FJ, Ge F. Response of multiple generations of cotton bollworm *Helicoverpa*

421 *armigera* Huebner, feeding on spring wheat, to elevated CO₂. J. Appl. Entomol., 2006;

422 130:2-9.

423 45. Wu G, Harris MK, Guo JY, Wan FH. Response of multiple generations of beet armyworm,

424 *Spodoptera exigua* (Hübner), feeding on transgenic Bt cotton. J. Appl. Entomol., 2009;

425 133:90-100.

427 **s Table 1 Effects of NaCl, cotton variety, and the interaction between NaCl and**
428 **cotton variety on the feeding behavior and nutritional effect parameters of young**
429 **cotton bollworm larvae (F-value).** * or ** indicates significant differences under the
430 same NaCl stress treatment (LSD test: $p<0.05$ and $p<0.01$).

431

432

434 **Figure Legends**

435 **Fig. 1. Effect of NaCl stress on exogenous insecticidal protein expression in Bt**
436 **cotton.** Mean (\pm SD) exogenous protein contents of cotton bollworms (*Helicoverpa*
437 *armigera*) fed excised transgenic Bt (Bt) cotton plants grown under NaCl stress.
438 Different lowercase letters indicate significant differences between NaCl stress
439 treatments (LSD test: $p<0.05$).

440

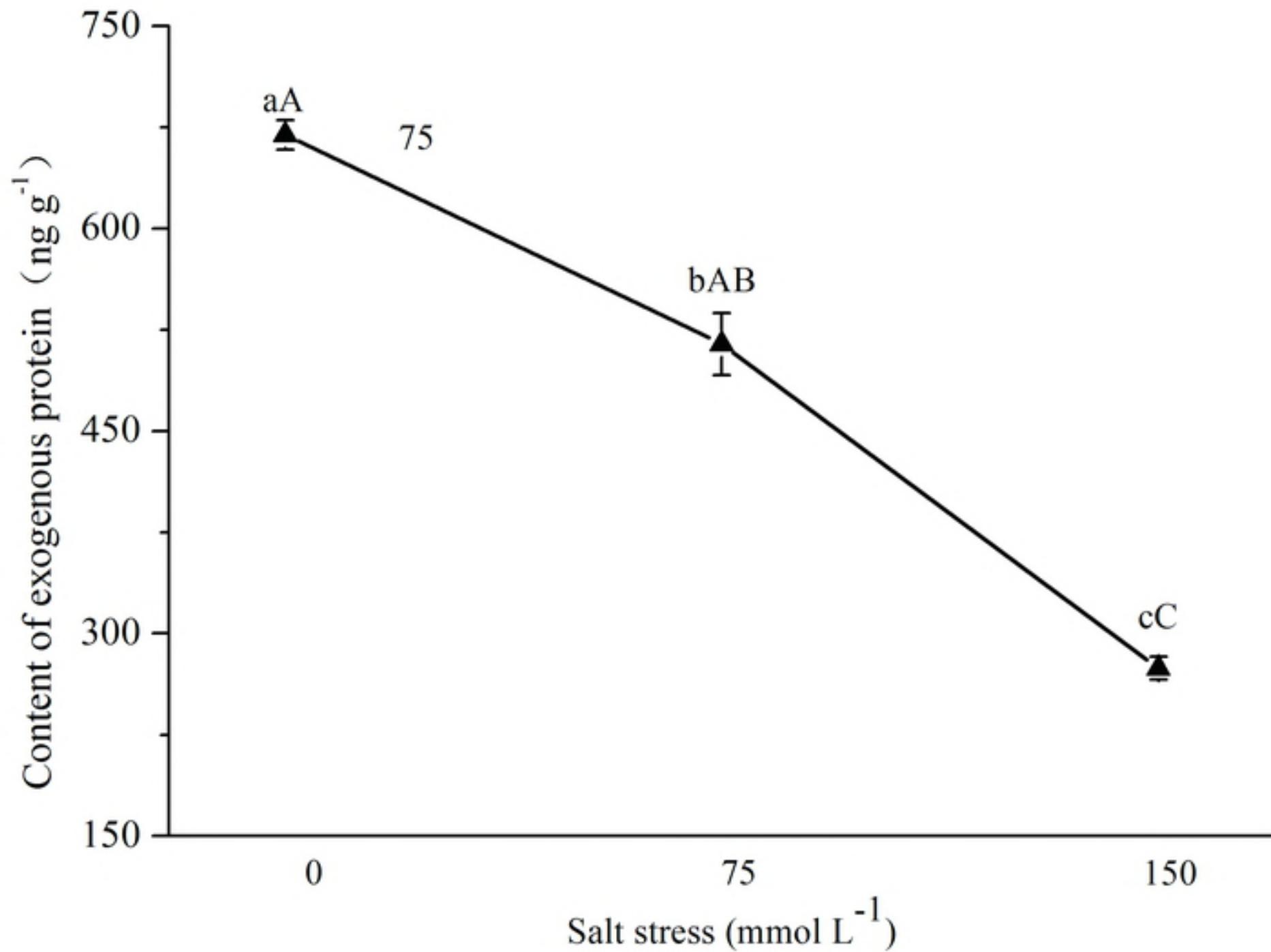
441

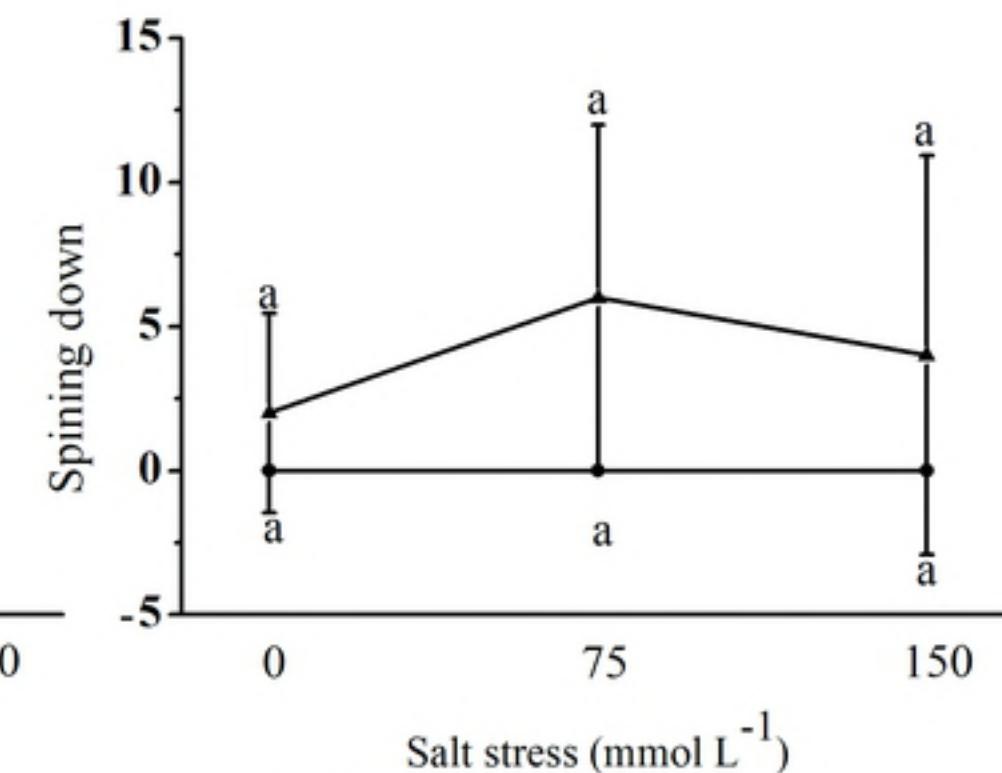
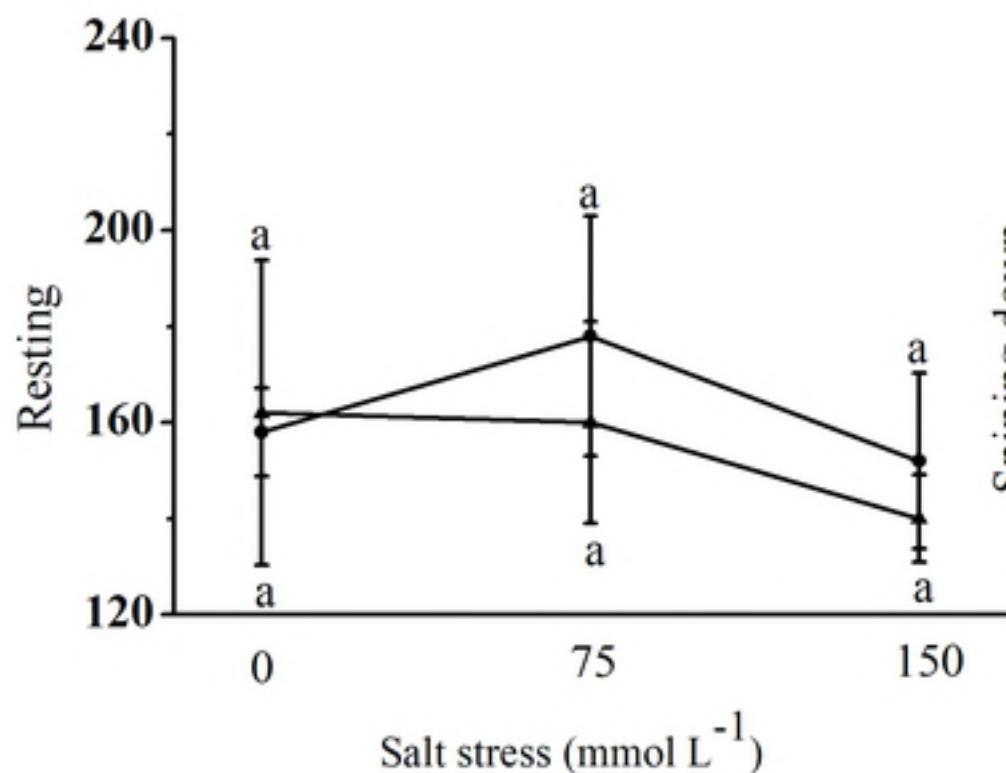
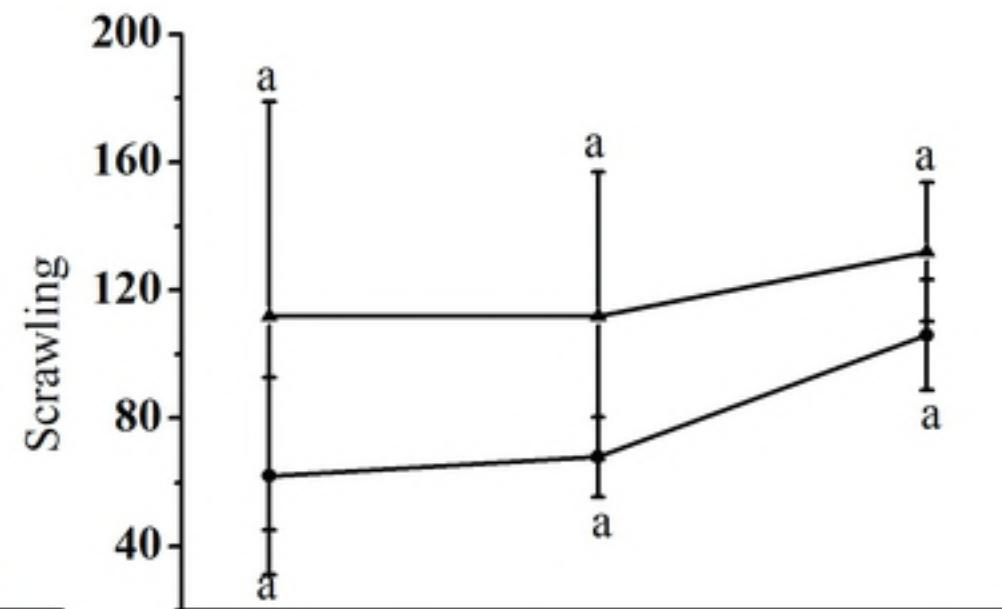
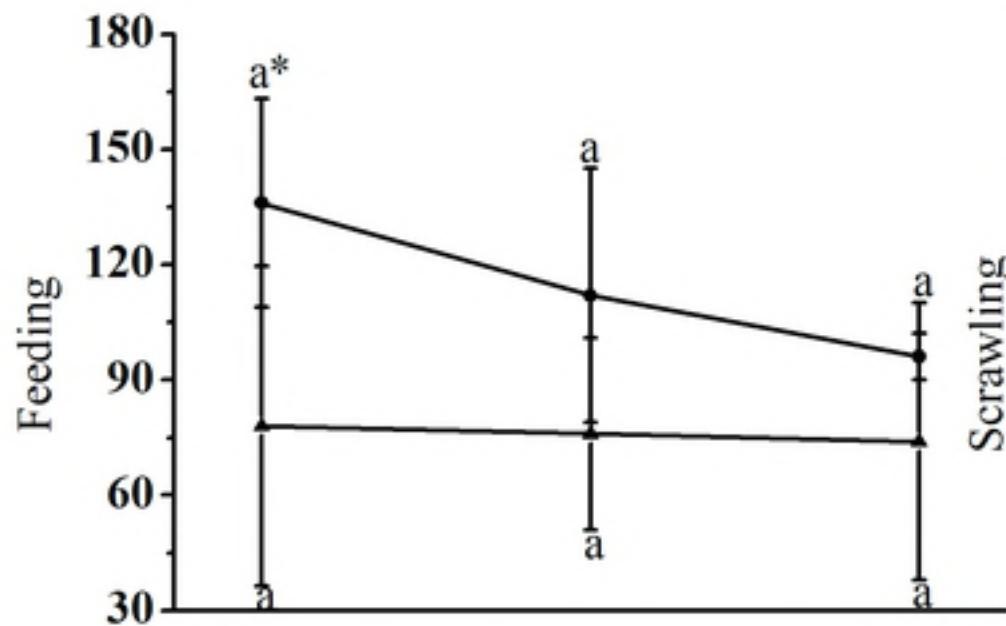
442 **Fig. 2. Effect of NaCl-stressed Bt cotton on the feeding behavior of bollworm**
443 **larvae.** (A) Mean (\pm SD) feeding, (B) crawling, (C) resting and (D) spinning down
444 behavior of cotton bollworms (*Helicoverpa armigera*) fed excised transgenic Bt (Bt)
445 and nontransgenic (Non) cotton plants grown under NaCl stress. Different lowercase
446 letters indicate significant differences between NaCl stress treatments, and * indicates
447 significant differences between the cotton varieties under the same NaCl stress
448 treatment (LSD test: $p<0.05$).

449

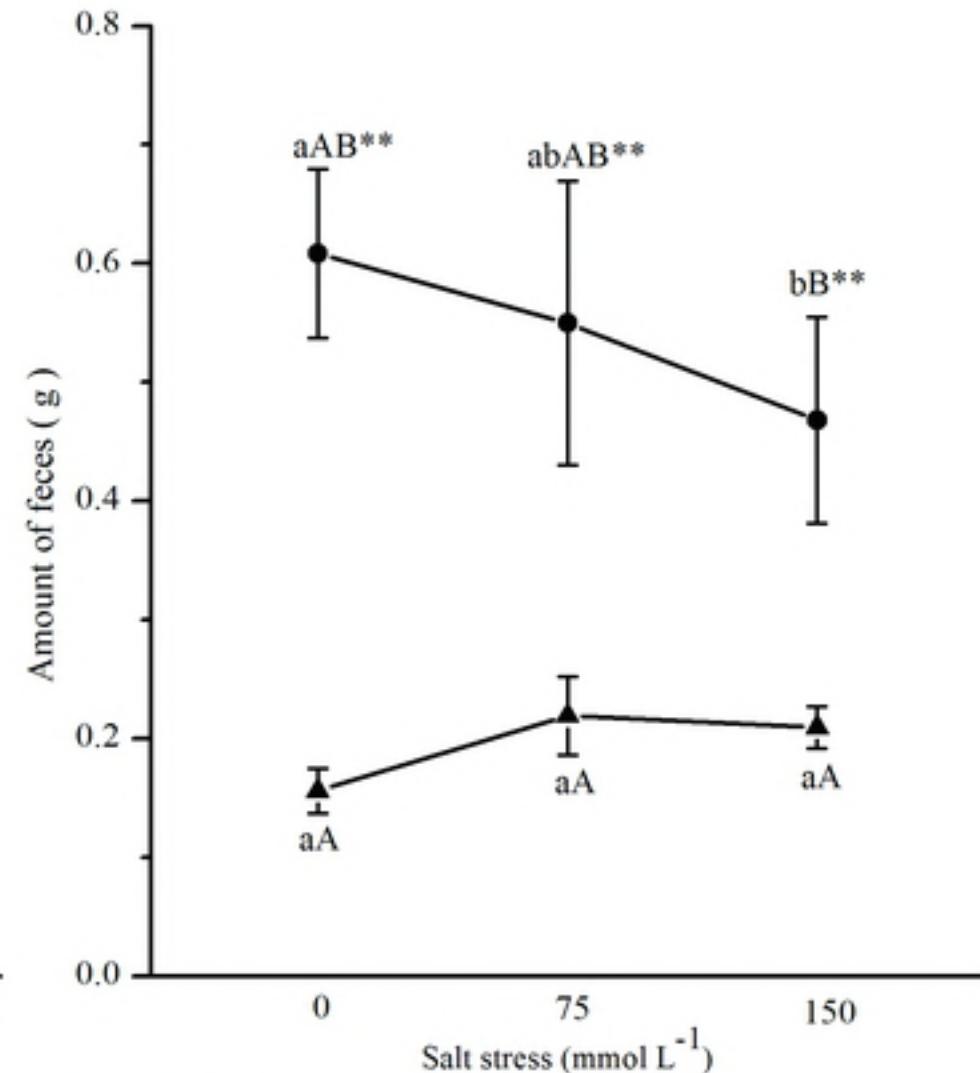
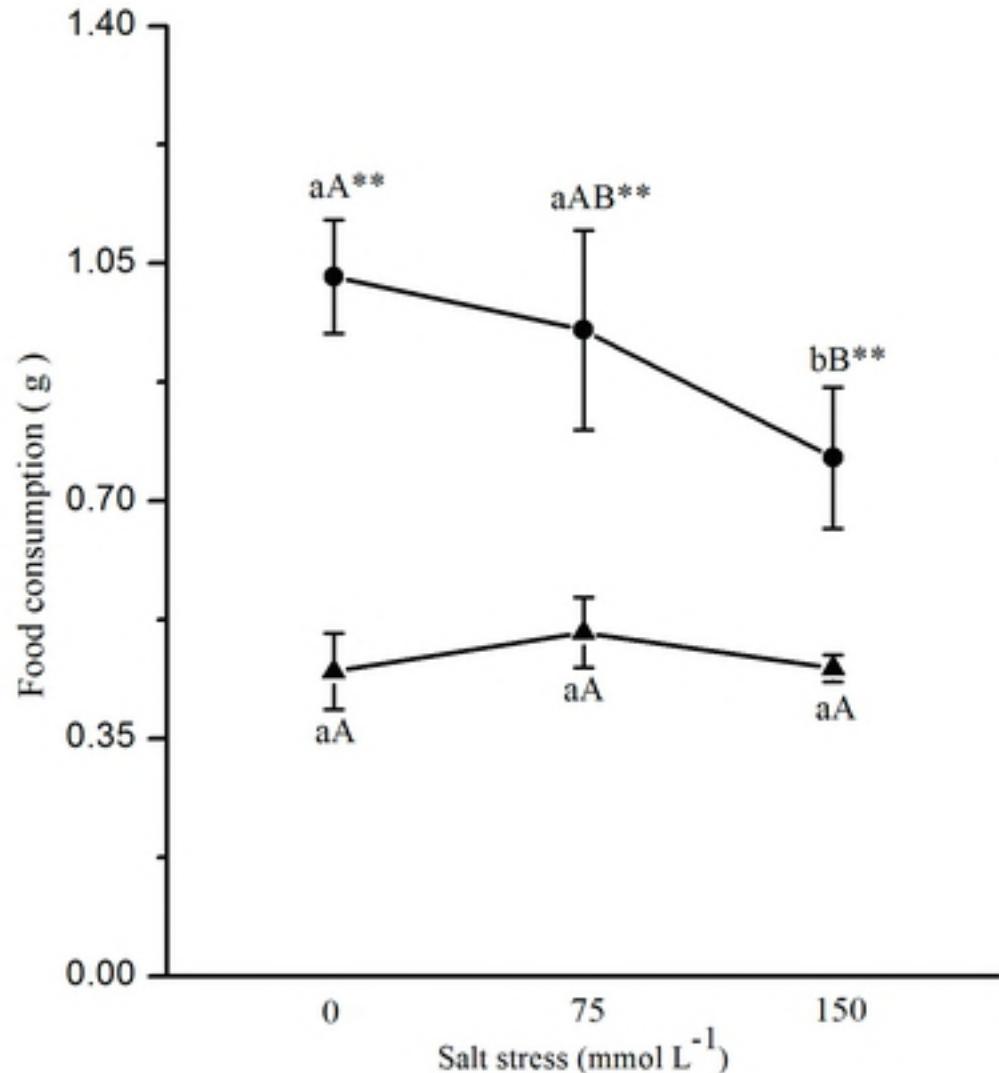
450 **Fig. 3. Effect of NaCl-stressed Bt cotton on the food consumption and amount of**
451 **feces of bollworm larvae.** (A) Mean (\pm SD) food consumption and (B) amount of
452 feces of cotton bollworms (*Helicoverpa armigera*) fed excised transgenic Bt (Bt) and
453 nontransgenic (Non) cotton plants grown under NaCl stress. Different lowercase
454 letters indicate significant differences between NaCl stress treatments, and * or **
455 indicates significant differences between cotton varieties under the same NaCl stress
456 treatment (LSD test: $p<0.05$ and $p<0.01$, respectively).

457

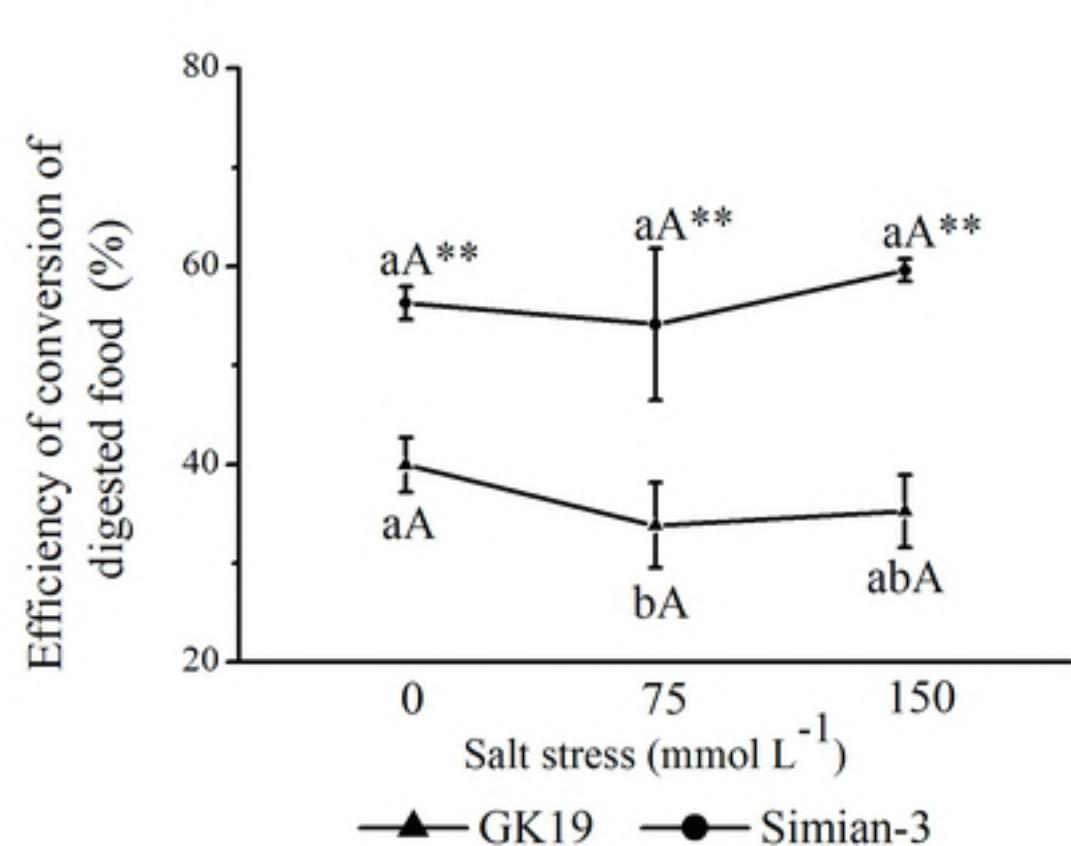
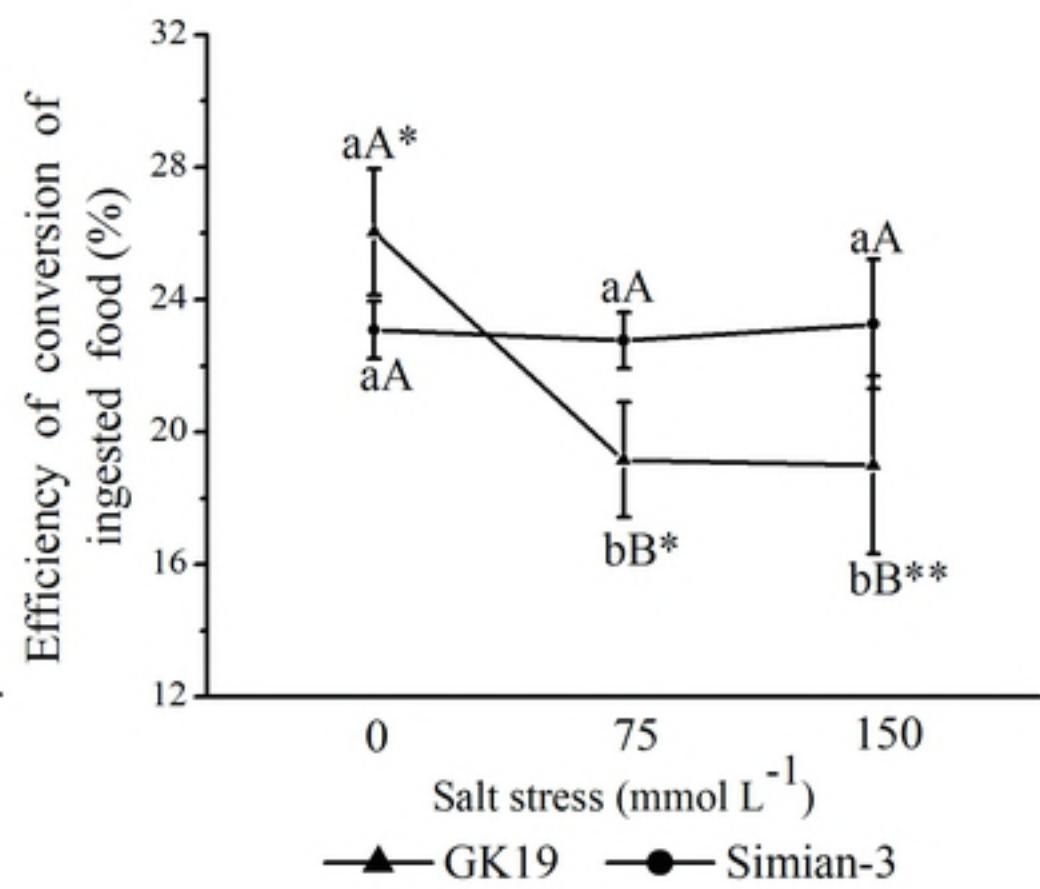
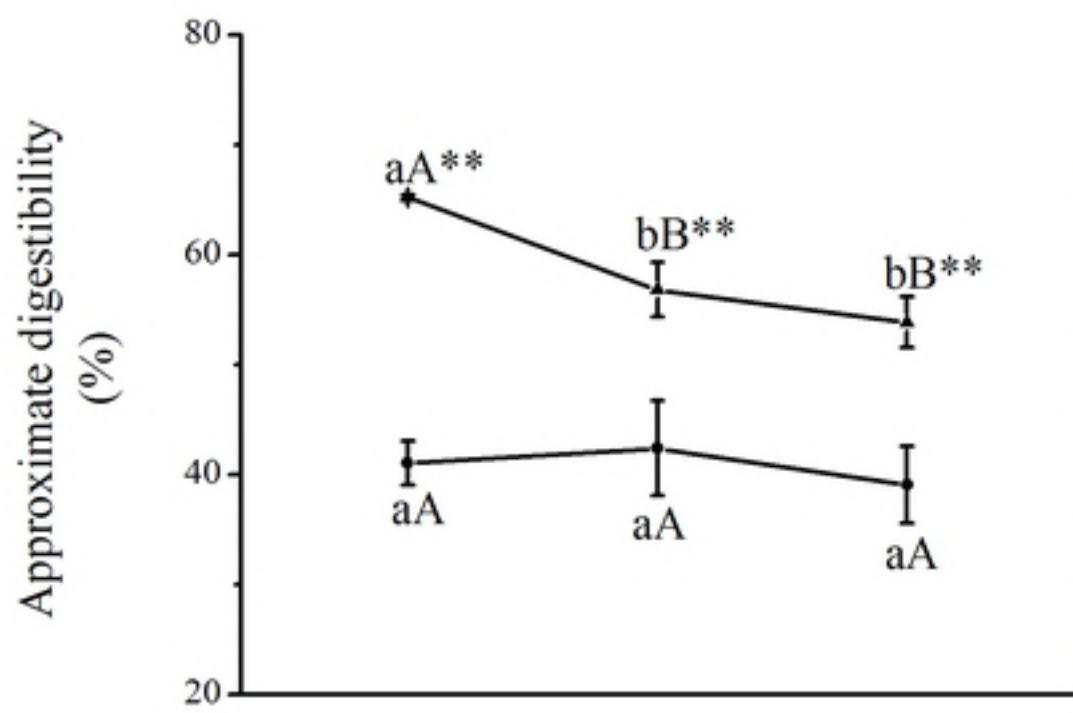

458 **Fig. 4. Effect of NaCl-stressed Bt cotton on the MRGR, RGR, RCR**
459 **and RMR of bollworm larvae.** (A) Mean (\pm SD) relative growth rate
460 (MRGR), (B) relative growth rate (RGR), (C) relative consumption rate
461 (RCR), and (D) relative metabolic rate (RMR) of cotton bollworms





462 (*Helicoverpa armigera*) fed excised transgenic Bt (Bt) and nontransgenic
463 (Non) cotton plants grown under NaCl stress. Different lowercase letters
464 indicate significant differences between NaCl stress treatments, and * or
465 ** indicates significant differences between cotton varieties under the
466 same NaCl stress treatment (LSD test: $p<0.05$ and $p<0.01$, respectively).

467



468 **Fig. 5. Effect of NaCl-stressed Bt cotton on the AD, ECI and ECD of bollworm**
469 **larvae.** (A) Mean (\pm SD) approximate digestibility (AD), (B) efficiency of conversion
470 of ingested food (ECI), and (C) efficiency of conversion of digested food (ECD) of
471 cotton bollworms (*Helicoverpa armigera*) fed excised transgenic Bt (Bt) and
472 nontransgenic (Non) cotton plants grown under NaCl stress. Different lowercase
473 letters indicate significant differences between NaCl stress treatments, and * or **
474 indicates significant differences between cotton varieties under the same NaCl stress
475 treatment (LSD test: $p<0.05$ and $p<0.01$, respectively).


476

▲ GK19 ● Simian-3

