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SUMMARY 
Methods for single-cell RNA sequencing (scRNA-Seq) have greatly advanced in recent years. While 

droplet- and well-based methods have increased the capture frequency of cells for scRNA-Seq, these 

technologies readily produce technical artifacts, such as doublet-cell and multiplet-cell captures. Doublets 

occurring between distinct cell-types can appear as hybrid scRNA-Seq profiles, but do not have distinct 

transcriptomes from individual cell states. We introduce DoubletDecon, an approach that detects doublets 

with a combination of deconvolution analyses and the identification of unique cell-state gene expression. 

We demonstrate the ability of DoubletDecon to identify synthetic and cell-hashing cell singlets and doublets 

from scRNA-Seq datasets of varying cellular complexity. DoubletDecon is able to account for cell-cycle 

effects and is compatible with diverse species and unsupervised population detection algorithms (e.g., 

ICGS, Seurat). We believe this approach has the potential to become a standard quality control step for the 

accurate delineation of cell states. 
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INTRODUCTION 
The delineation of discrete transcriptomic cell states across organism development and disease will have 

profound impacts on biomedical research over the next several decades. Single-cell genomics provides a 

powerful means to derive and ultimately characterize novel cell states (Olsson et al., 2016; Velten et al., 

2017; Villani et al., 2017; Yanez et al., 2017). While single cell profiling technologies continue to evolve 

at an astonishing pace, numerous challenges remain, including the separation of valid biological signatures 

from technical noise. A common source of confounding gene expression in single-cell RNA-Seq (scRNA-

Seq) experiments is the occurrence of doublet or multiplet cell profiles, which result from the simultaneous 

capture of multiple cells in a single-well or droplet (Kang et al., 2018). 
As demonstrated by cross-species mixing experiments, the frequency of single-cell doublets 

increases with the greater loading of cells for droplet-based scRNA-Seq platforms (Goldstein et al., 2017; 

Gong and Szustakowski, 2013; Macosko et al., 2015; Stoeckius et al., 2017). As a result, researchers are 

often advised to load fewer cells for these protocols to decrease the occurrence of doublets and hence limit 

the cellular depth afforded by these technologies. Beyond the mixing of individual cells, insufficient cellular 

dissociation will increase the frequency of cell aggregates which often result in hybrid expression profiles. 

The introduction of cell doublet profiles can significantly confound the experimental analysis and 

interpretation of scRNA-Seq data, in particular, the identification of novel cell states, developmental 

trajectories and biologically valid mixed-lineage progenitor states (Magella et al., 2017; Olsson et al., 2016). 

The identification of doublets from scRNA-Seq is further confounded by varying sparsity of the 

transcriptomic data, with as little as a few hundred unique molecular indexes (UMI) for a single-cell 

transcriptome, often resulting in poor correlation to comparable bulk RNA-Seq profiles (Kashima et al., 

2018; Mantsoki et al., 2016). Although multiplet cell profiles should have a distinct global distribution of 

genes and UMI counts, these variables are insufficient to accurately predict which cells are doublets on 

their own (Stoeckius et al., 2017). Furthermore, other biological signals, such as cell-cycle effects, which 

are frequently variable in scRNA-Seq data (Scialdone et al., 2015), likely contribute to false positive 

doublet detection by simple synthetic doublet cell-profile analyses. While new emerging experimental 

methods, such as CITE-Seq and Cell-Hashing, enable the efficient identification of cell-multiplets, these 

approaches introduce additional experimental costs and cannot be applied to datasets analyzed without such 

protocols (Stoeckius et al., 2017). 
Here we introduce a rigorous method for the identification of doublet-cell profiles from diverse 

scRNA-Seq platforms. Our method is able to account for common confounding biological signatures, such 

as cell-cycle effects and mixed lineage progenitor states that are not distinguished from real doublets by 

conventional in silico cell-mixing prediction approaches. Our approach applies a deconvolution method 

(nonnegative decomposition by quadratic programming), originally designed to estimate cell type 
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proportions in bulk RNA-Seq data, to single-cell datasets to assess the underlying contribution of multiple 

concurrent cellular gene expression programs within a single-cell library. To prevent the inaccurate 

exclusion of transitional cell states associated with overlapping gene expression programs, we include 

additional steps to “rescue” these populations following initial doublet removal. We demonstrate the utility 

of our approach in a spectrum of developmental, disease and a priori identified doublet datasets.  

 

METHODS 
Algorithm Design 
The software DoubletDecon has been developed as an open-source R package 

(https://github.com/EDePasquale/DoubletDecon) with a vignette on its use, algorithms and optional user-

defined parameters. DoubletDecon identifies doublets through a three-step process: Remove, Re-cluster, 

Rescue (Fig. 1). Deconvolution profiles for single-cells are compared to real and synthetic doublet profiles, 

to maximize the representation distinct cell populations that are defined by few gene expression differences. 

Prior to these analyses, the software imports existing single-cell profiles, identifies distinct cell reference 

profiles and simulates doublet expression. 
1. Data import and filtering: DoubletDecon takes input files from the standard outputs of the software 

ICGS (AltAnalyze) and Seurat, the latter of which are first processed through an accessory function 

within DoubletDecon (details of which can be found in the vignette). After processing, there is an 

optional cell-cycle gene cluster removal step to improve specificity of the algorithm.  

2. Reference profile calculation: Gene expression medoids for each user-supplied cell cluster are 

calculated and correlations between the medoids are used to assess cluster similarity. The use of 

cluster medoids inherently excludes signal due to doublets within a cluster, though with highly 

sparse data it is advantageous to use a centroid. A binary correlation matrix is derived from the 

medoid correlations (R), which is termed the “blacklist”. The blacklist correlation threshold (ρ’) is 

user defined, with a default value of 1, with the resultant ρ used as a threshold for cluster similarity 

in the following formula: 

                                                 ρ(Threshold)=mean(R)+ρ’×sd(R)  

Higher values of ρ’ will result in fewer blacklisted clusters.  Markov clustering is used to define 

new clusters so that the similarity between clusters is minimized (Dongen, 2008) (Fig. 1D). This 

step is essential for heterotypic doublet removal, as homotypic doublets would not be expected to 

possess unique gene expression profiles. New medoids are created through this process and 

expression and the cluster identification is updated. 

3. Synthetic doublet profile generation: To determine if the gene expression profile of a cell is more 

similar to an individual cell or doublet from two distinct cell-states, 30 synthetic doublets are 
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generated for each pairwise combination of dissimilar clusters, with cells randomly sampled within 

each cluster and the resulting gene expression averaged.  

4. Step 1 - Remove: The ‘Remove’ step of DoubletDecon uses deconvolution through quadratic 

programming with the R package ‘DeconRNASeq’ (Gong and Szustakowski, 2013). 

DeconRNASeq performs deconvolution on each cell expression profile, using all blacklisted cluster 

medoids as the references for deconvolution. The result will be a percentage estimate of the 

contribution of each reference cell-state (blacklisted cluster medoid) for queried cell (total always 

equal to 100%) (Fig. 1E). Each synthetic doublet centroid profile also undergoes deconvolution. 

For each cell in the dataset, the resulting deconvolution cell-profiles (DCP) are then compared to: 

1) the centroid DCP for cells in each blacklisted cluster and 2) the centroid synthetic doublet DCP, 

using Pearson correlation. Individual cells with a DCP most similar to a synthetic doublet are 

subsequently predicted to be a doublet at this step.   

5. Step 2 - Re-cluster: The cells that are removed as doublets are re-clustered in DoubletDecon’s ‘Re-

cluster’ step. There are two user-defined options for re-clustering: 1) grouping of cells which have 

a common DCP (default) and 2) HOPACH clustering of the doublet gene expression 

profiles(Pollard and van der Laan, 2002). DCP group labels indicate the two highest correlated 

DeconRNASeq reference cell-types, alphabetically sorted (e.g., cluster-1 | cluster-2).  

6. Step 3 - Rescue: In the ‘Rescue’ step of DoubletDecon, unique gene expression is assessed in the 

new doublet clusters via statistical enrichment (Welch's t-test). Initial clustered doublets (e.g., B-

cell | NK-cell) with at least one unique gene expressed relative to the original blacklisted clusters 

are re-assigned as singlets and reincorporated into the non-doublet expression matrix. For this 

analysis, DoubletDecon can evaluate all genes in the expression dataset or just those in the “marker” 

genes provided in the input files. 

7. Downstream analyses: The results from DoubletDecon are immediately visualized (optional) via 

heatmap to evaluate the exclusion of visually distinct doublet gene expression signatures. 

 

RESULTS 
To detect doublet profiles produced from very different cell types, as well as gradual cellular transitions, 

we developed a multi-step analysis strategy, that produces an initial set of putative doublets based on 

deconvolution analysis and then rescues erroneous doublet clusters that have unique gene expression 

(Methods, Fig. 1A,B). To test DoubletDecon in diverse use cases, we selected datasets with distinct 

biological and technical challenges for analysis (Fig. 1C). For this purpose, we used input data from the 

previously published ICGS and Seurat workflows, in which both preliminary unique cell states and cell-

state associated genes sets were already defined or re-derived.  
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Figure 1. DoubletDecon workflow overview. A) Outline of the broad steps employed by this method, including 

cell state clustering with a “blacklist” of cluster medoids, synthetic doublet generation, deconvolution, and rescue 

through unique gene expression identification. B) Steps applied and output files from the remove and rescue 

portions of DoubletDecon. C) Datasets evaluated to assess DoubletDecon accuracy gene expression evidenced 

doublets. D) Cluster medoid blacklist determination. DoubletDecon identifies cell states which are closely related 

and thus are reasonable analogues for deconvolution analysis. Each medoid is calculated from the median gene 

expression of each separate cell-state for all algorithm selected cell-state marker genes (e.g., Seurat, ICGS). Initially, 

a medoid correlation matrix is created (left). Next, a threshold for medoid similarity is defined by the formula for ρ 

(outlined in the Methods), with the user-defined value of ρ' used to set the level of similarity required for a medoid 

to be considered correlated (middle). Finally, this new binary correlation matrix is visualized with a heatmap and 

Markov clustering is used to “square-off” the blacklist and determine which sets of clusters should not be considered 

for multiplet detection (right). E) The frequency of cell-state deconvolution profiles is shown for a dataset without 

doublets (microscopy validated, (Olsson et al., 2016)). Each column represents a different cell, in which each color 

indicates the percentage contribution of a reference cell-type (blacklisted) for that cell. Note, the majority are 

predicted to be composed principally of a single cell-type reference. 
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Identification of Immune-Tissue Synthetic Doublets 
As an initial test of DoubletDecon’s ability to detect doublets in a large and fairly deeply sequenced dataset, 

we used ICGS to identify cell populations and associated marker genes on over 4,000 cells from a 

previously described scRNA-Seq dataset of 19 melanoma tumors using the SMART-Seq2 protocol (Tirosh 

et al., 2016). From the provided processed expression data, we identified seven distinct immune (T-cell, B-

cell, Macrophage) and non-immune cell-states (Melanocyte), in agreement with previously reported cell-

populations (Fig. 2A). From this dataset we created 10 test sets containing synthetic doublets, which include 

the synthetic combination of immune and melanoma tumor cells. Briefly, the number of synthetic doublets 

created was 15 percent of the total number of cells, with cells from two different “blacklisted” clusters 

randomly chosen, and their gene expression averaged to create a synthetic doublet. These doublets were 

then inserted into the original ICGS-processed dataset using a recently developed cell matching and 

alignment algorithm called cellHarmony in the software AltAnalyze (AltAnalyze, 2017). This procedure 

was repeated 10 times to create datasets containing unique combinations of doublets. Each of the 10 datasets 

was tested with DoubletDecon 10 times to assess the variability in doublet calls between runs. Finally, a 

wide range of blacklist correlation thresholds (ρ’) were tested (ranging from 1 to 1.5 times the standard 

deviation above the mean correlation of the cluster correlation matrix, in increments of 0.05), as this is the 

primary variable in the function that is adjusted to account for differing similarities of clusters within the 

dataset (blacklisting).  

 
Figure 2. Results of doublet identification on synthetic doublets. A) ICGS analysis of 4,600 melanoma biopsy cells 

to identify gene and cell clusters, with associate gene-cluster cell-type enrichment predictions (blue text) and program 

assigned guide-genes (red text). B) Ten repeated trials on 10 separately generated sets of synthetic doublets resulted 
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in a sensitivity and specificity estimates. C-D) Both synthetic doublets (C) and putative doublets (D) identified with 

DoubletDecon were visualized with t-SNE, with red dots indicating doublets and gray indicating non-doublets. 

 

The results of these tests show an average sensitivity in detecting synthetic doublets of 83% and a specificity 

of 83% when the blacklist correlation threshold (ρ') was greater that 1.2 (Fig. 2B). There was little variation 

in the resultant sensitivity and specificity across synthetic datasets and trials, which lends confidence to the 

reproducibility of these results (average standard deviation: sensitivity = 1.03%, specificity = 0.79%). 

Visualization of the predicted doublets and known synthetic doublets using t-Distributed Stochastic 

Neighbor Embedding (t-SNE) identified a similar distribution of synthetic and DoubletDecon-identified 

doublets (Fig. 2C-D). Notably, endogenous doublets in the original experiment likely exist but cannot be 

definitively verified. 
 

Rescue of Transitional Cell States Predicted as Doublets 
Developmental and progenitor cell specification hierarchies inherently contain cells with transitioning gene 

expression profiles as well as mixed-lineage cell states as previously demonstrated (Magella et al., 2017; 

Olsson et al., 2016). Any doublet detection method will likely predict cells and cell-states associating with 

such transitions as doublets. In some cases, such predicted doublets will be defined by unique gene 

expression.  Using a recently published hematopoietic bone marrow progenitor dataset of 383 cells with 

high-confidence assigned cell-types and singlet-restricted profiles (validated via cell capture imaging), we 

assessed the false-positive doublet call rate in these data. From this testing we find the maximum specificity 

to be 72% in the initial doublet detection step (“Remove”) but increased to 85% when unique gene 

expression was considered (“Rescue”) (Table S1). When comparing the number of cells called as putative 

doublets after step 1 (“Remove”) to those called as doublets after the final step (“Rescue”), up to 48% of 

the false positives are rescued and accurately identified as non-doublets. Hence, these results indicate that 

rescue of doublets is necessary to further reduce false positives (Fig. 3A). Further examination found that 

the proportion of cells that were recovered varied in different cell states, suggesting that similarity in the 

cell-state transcriptional profiles is a major contributor of doublet prediction (Fig. 3B-C). While ~40% 

monocytic progenitors are inaccurately predicted to be doublets, we note that recently cells in this cluster 

were determined to be either CMP derived and GMP derived, with subtle differences in their transcriptional 

profiles (Yanez et al., 2017). It is likely that these and other predicted doublet cell groups contain rare 

intermediate cells in cell populations that differ slightly in their gene expression but do not contain unique 

gene expression themselves.  
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Figure 3. Results of doublet identification on verified hematopoietic progenitor singlets. A) DoubletDecon was 

run over a range of ρ’ from 1 to 1.5 on Fluidigm-generated hematopoietic progenitor cells that have been visually 

inspected to confirm only singlets were present. The total height of the bars indicates the total number of cells that 

were identified as doublets after the “Remove” step of DoubletDecon across all values of ρ’, while the dark grey 

portions are those identified as doublets at the end of DoubletDecon over 10 independent trials. The difference in bar 

heights between the remove and rescue steps represent the number of cells that were “Rescued” by unique gene 

expression. B-C) These results are reported for a single representative trial for a single ρ’ (1.3) for each previously 

annotated bone marrow progenitor population (Olsson et al., 2016). Both the number of cells (B) and percentage of 

cells per cell state (C) removed at each step are shown. 

 

Qualitative Assessment of Doublet Removal 
In very large scRNA-Seq datasets (>10,000 cells), we expect hundreds to thousands of doublets to occur as 

separate distinct clusters (5-15%). ICGS analysis of >16,000 mouse heart cells collected through DropSeq 

(unpublished) identified 7 major cell populations, with visually identified doublet clusters and confounding 

cell-cycle effects (Fig. 4A). DoubletDecon predicted multiplet profiles show clear patterns of hybrid 

expression, including independent clusters with evidence of mixed cell-type expression (Fig. 4A-C). 

Although 20% of cells called as doublets in the “Remove” step of our analysis, more than twice what we 

would typically expect, the final results reported 11% of cells as doublets. These analyses were performed 

with cell-cycle cluster removal. Notably, without cell-cycle effects excluded, we found 26% doublets after 

the Remove step, however, DoubletDecon identifies 12% of these cells as doublets following the Rescue 

step. While most predicted doublets were interspersed throughout the major cell-type clusters, we note that 

nearly 50% of the cells in the last original cluster were identified as doublets, suggesting that this cluster is 

primarily composed of true-positive doublets. When this cluster was examined further, we discovered gene 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2018. ; https://doi.org/10.1101/364810doi: bioRxiv preprint 

https://doi.org/10.1101/364810
http://creativecommons.org/licenses/by-nd/4.0/


 10 

expression indicative of endothelial and fibroblast cells, which is a profile that we would not expect to 

normally occur, suggesting that all cells in the cluster are likely doublets.  

 

 
Figure 4. Visualization of DoubletDecon predicted multiplets in over 16,000 cells. A) Unsupervised clustering 

with ICGS was performed on approximately 16,000 heart cells collected through Drop-Seq and visualized in 

AltAnalyze, with potentially confounding gene expression clusters (e.g. cell-cycle effects) identified on the left. B-C) 

DoubletDecon predicted multiplets (B) and singlets (C) were also visualized in AltAnalyze. Input ICGS expression 

file is available from: https://www.synapse.org/#!Synapse:syn13849349/files/. 

 

Identification of Experimentally Verified Doublets from PBMC 

As a positive test-case for known multiplet cell profiles, we analyzed a recently described human peripheral 

blood mononuclear cell (PBMC) dataset in which cell multiplets were experimentally defined based on a 

cell hashing barcoding strategy (Stoeckius et al. 2018) (Stoeckius et al., 2017). To obtain frequent doublets 

cell profiles, Stoeckius et al. overloaded a 10x Genomic Chromium port with hundreds of thousands of 

cells. A low gene expression cutoff was further applied by the authors to examine ultra-shallow single-cell 

profiles with as little as 200 unique molecular indexes. Using the same analysis workflow in the software 

Seurat, we selected the top 12,000 most highly expressed cells, only ~3,000 of which possessed over 500 

genes expressed per cell. We predicted multiplets to be those cellular barcodes with >20% of the total 

hashing reads assigned to more than one hashing barcode. Visualization of these results by t-SNE in Seurat 

shows that hashing-based multiplets typically localize to the boundaries of distinct Seurat predicted clusters, 

though many are interspersed (likely homotypic doublets) (Fig. 5A,B). DoubletDecon, using centroids 

rather than medoids, to deal with increased data sparsity, identified up to 47% of Hashing annotated 

multiplets with 70% specificity (Fig. 5C). While generally low, these predictions were comparable to a 

recent alternative doublet detection algorithm called DoubletFinder (40% sensitivity and 93% specificity 

on the same Seurat-processed data) (McGinnis et al., 2018). The low sensitivity to detect such doublets is 

not surprising, given that many homotypic doublets are expected from the major cell populations detected 

by the unsupervised analysis.  
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Figure 5. Performance of DoubletDecon on hashing-validated PBMC doublets. A) t-SNE plot of de novo 

clusters obtained from Seurat, performed on 12,000 PMBCs (after minimum gene expression and UMI filtering 

were applied, following cell-line associated cell profile exclusion as described by Stoeckius et al.). B) Cell hashing 

defined doublets are marked in red with known singlets in gray C). DoubletDecon predicted doublets (red) and 

singlets (gray) were visualized on the same t-SNE plot. D) Performance of DoubletDecon on cell-hashing barcodes 

run over the range of blacklist modifying ρ’ values (0.75 to 1.1, default=1). 

 

DISCUSSION 
As the number and cellular depth of single-cell datasets increases, standardized multiplet discovery 

workflows are necessary to remove technical cellular artifacts that can confound the identification of valid 

biological cell states. DoubletDecon accomplishes this goal by taking advantage of existing robust 

unsupervised population detection approaches, such as Seurat and ICGS, to effectively model doublet gene 

expression profiles. Our approach is applicable to both large and small datasets with both discrete cell 

populations or gradual cellular transitions, by automatically grouping correlated cells states without 

merging (blacklisted clusters). Given that valid hybrid transcriptomic states exist throughout development, 

such as transitional cell states and bi-potential intermediates, DoubletDecon includes specialized methods 

to “rescue” preliminarily “removed” cells and cell-state clusters that include unique gene expression 

patterns. As demonstrated here, this method significantly reduces the number of doublets which are known 

false positives and results in doublet frequencies similar to those expected with increased cell loading. 

Although the initial version of DoubletDecon is able to effectively identify and exclude a high 

proportion of doublet gene expression profiles, we believe that this basic approach can be further expanded 

to identify additional unwanted and desired sources of variation. False negatives with this approach 

currently include multiplets of more than two cells, as well as doublets of highly similar cell states. We aim 

to enable the discovery of such multiplets in the future which should be readily identifiable using our 
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existing deconvolution-based strategy. Minor variation in the results does occur due the random selection 

of cells for real and synthetic reference calculation. False positives currently include cells with intermediate 

lineage profiles that collectively do not result in unique gene expression. We believe this particular 

challenge can be overcome by improving our existing methods for unique population-associated gene 

expression or similarity of those profiles to singlets as additional selection steps, which remains an active 

area of research. In the analyses presented here, existing multi-lineage progenitors were not frequently 

classified as doublets and contained unique gene expression that resulted in the rescue of initially predicted 

doublet cells (Olsson et al., 2016). DoubletDecon further attempts to improve doublet removal through the 

exclusion of cell-cycle gene expression associated clusters. We anticipate that inclusion of custom or known 

confounding gene-sets will provide the flexibility to address additional known undesired effects. 

Ultimately, additional optimization and improvement of these methods will enable greater precision to 

characterize cells from samples with frequent doublets from diverse single-cell platforms and studies.  
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