

1 Journal of Clinical Microbiology: ddPCR/T-cell number in HTLV-1 patient samples
2
3

4 **TITLE PAGE**

5 **A Multiplex Droplet Digital PCR Assay for Quantification of HTLV-1c DNA Proviral
6 Load and T-Cells from Blood and Respiratory Exudates Sampled in a Remote Setting.**

7
8 David Yurick¹ (dyurick@hotmail.com), Georges Khoury¹ (georges.khoury@unimelb.edu.au),
9 Bridie Clemens¹ (bridie.clemens@unimelb.edu.au), Liyen Loh¹ (lohl@unimelb.edu.au), Hai
10 Pham² (Hai.Pham@baker.edu.au), Katherine Kedzierska¹ (kkedz@unimelb.edu.au), Lloyd
11 Einsiedel^{2,3} (Lloyd.Einsiedel@nt.gov.au), Damian Purcell^{1#} (dfjp@unimelb.edu.au)
12

13 # corresponding author

14 ¹ Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and
15 Immunity at The University of Melbourne, Parkville, VIC 3010, Australia;

16 ²Baker Heart and Diabetes Institute, Alice Springs NT, Australia

17 ³Department of Medicine, Alice Springs Hospital, Alice Springs NT, Australia
18

19 **ABSTRACT**

20 During human T-cell leukemia virus type-1 (HTLV-1) infection the frequency of cells
21 harboring an integrated copy of viral cDNA, the proviral load (PVL), is the main risk
22 factor for progression of HTLV-1-associated diseases. Accurate quantification of
23 provirus by droplet digital PCR (ddPCR) is a powerful diagnostic tool with emerging
24 uses for monitoring viral expression. Current ddPCR techniques quantify HTLV-1 PVL
25 in terms of whole genomic cellular material, while the main target of HTLV-1
26 infection is the CD4⁺ and CD8⁺ T-cell. Our understanding of HTLV-1 proliferation and
27 the amount of viral burden present in different compartments is limited. Recently a
28 sensitive ddPCR assay was applied to quantifying T-cells by measuring loss of
29 germline T-cell receptor genes as method of distinguishing non-T-cell from
30 recombined T-cell DNA. In this study, we demonstrated and validated novel
31 applications of the duplex ddPCR assay to quantify T-cells from various sources of
32 human gDNA extracted from frozen material (PBMCs, bronchoalveolar lavage, and
33 induced sputum) from a cohort of remote Indigenous Australians and then compared
34 the T-cell measurements by ddPCR to the prevailing standard method of flow
35 cytometry. The HTLV-1c PVL was then calculated in terms of extracted T-cell gDNA
36 from various compartments. Because HTLV-1c preferentially infects CD4⁺ T-cells, and
37 the amount of viral burden correlates with HTLV-1c disease pathogenesis,
38 application of this ddPCR assay to accurately measure HTLV-1c-infected T-cells can
39 be of greater importance for clinical diagnostics, prognostics as well as monitoring
40 therapeutic applications.

41

42 **KEYWORDS**

43 HTLV-1; Proviral Load; ddPCR; T-cells; Peripheral Blood; Induced Sputum.
44
45
46

47 **INTRODUCTION**

48 Globally, HTLV-1 is estimated to infect around 20 million people who mostly reside in
49 areas of high endemicity such as southwestern Japan, the Caribbean, South America,
50 sub-Saharan Africa and the Mashhad district of Iran [1]. Recently, it was confirmed
51 that a very high prevalence of HTLV-1 subtype C (HTLV-1c) infection occurs among
52 Aboriginal adults in Central Australia, where prevalence rates exceed 40% in some
53 remote communities [2]. Human T-cell leukemia virus type 1 (HTLV-1) is a
54 lymphoproliferative and ultimately oncogenic retrovirus that primarily infects CD4⁺T-
55 cells [3] and is the causative agent of adult T-cell leukemia/lymphoma, HTLV-1-
56 associated myelopathy/tropical spastic paraparesis [4, 5] and various other immune-
57 mediated disorders [6-10]. In remote Australia, HTLV-1 infections are most
58 significantly associated with bronchiectasis and multiple blood stream bacterial
59 infections [2, 11, 12]. The HTLV-1 viral DNA burden is measured as the proviral load
60 (PVL), which is the proportion of peripheral blood mononucleated cells (PBMCs)
61 carrying an integrated copy of the HTLV-1 viral DNA. PVL correlates with the risk of
62 disease development [13-17], however, levels of provirus can vary greatly between
63 individuals, which complicates the prognostic use of this biomarker. Absolute
64 quantification of the HTLV-1 PVL by ddPCR is a sensitive diagnostic tool with
65 emerging applications for monitoring viral expression [18].

66

67 The main target for HTLV-1 infection, T-cells, are distinguished by the presence of a
68 unique cell surface markers, such as CD3, CD4 and CD8, and their receptor for
69 antigen termed the T-cell receptor (TCR) [19] (Figure 1). Most TCRs are composed of
70 an alpha (α) and a beta chain (β) heterodimer, while a small proportion of T-cells
71 that lacks TCR $\alpha\beta$ chains expresses an alternative T-cell receptor, TCR $\gamma\delta$, with gamma
72 (γ) and delta (δ) chains. The majority of T-cells undergo rearrangement of their
73 TCR $\alpha\beta$ through somatic rearrangement of multiple variable (V), diversity (D) and
74 joining (J) gene segments at the DNA level [20]. V(D)J recombination occurs in
75 developing lymphocytes during the early stages of T-cell maturation [21]. The first
76 recombination event to occur is between one D and one J gene segment in the β
77 chain of the TCR. This process could result in joining of the D β 1 gene segment to any
78 one of the six J β 1 segments, or the D β 2 gene segment to any one of the six J β 2
79 segments. D-J recombination is followed by the joining of one V β -segment from an
80 upstream region of the newly formed D-J complex, resulting in a rearranged V(D)J
81 gene segment [20, 22]. All other gene segments between V and D segments are
82 eventually deleted from the cell's genome as a T-cell receptor excision circle (TREC)
83 [23, 24]. The V(D)J transcript generated will incorporate the constant (C) region
84 resulting in a V β -D β -J β -C β gene segment. Processing of the primary RNA adds a poly-
85 A tail after the C β and removes unwanted sequence between the V(D)J segment and
86 the constant gene segment [25]. The levels of the different functional T-cells and
87 proportions of their individual subtypes circulating in blood can vary significantly.

88

89 Recently, a novel single duplex ddPCR assay was developed and validated for
90 quantifying T-cells by measuring the loss of germline T-cell receptor loci, which
91 resulted in accurate measurement of the T-cell population compared with the gold-
92 standard method of flow cytometry [26]. The dynamic range of this technique makes
93 certain that even low proportions of T-cells are accurately detected. In contrast to
94 other techniques (flow cytometry, immunohistochemistry, real-time quantitative
95 PCR), the digital design of ddPCR offers direct quantification and requires small
96 amounts of DNA derived from fresh, frozen or fixed samples. This is particularly
97 advantageous in a remote community setting where large distances and poor access
98 to resources make it difficult to maintain cell viability of clinical samples, which often
99 vary considerably in quantity and quality. Here, we describe a novel application of
100 the recently introduced duplex ddPCR assay to quantify T-cells from various sources
101 of human gDNA extracted from frozen material such as blood/PBMCs,
102 bronchoalveolar lavage (BAL) and sputum samples obtained ethically from a remote
103 Indigenous Australian HTLV-1 cohort.

104

105 RESULTS

106 Quantification of T-Cells by Measuring the Unrearranged T-cell Receptor DNA

107 During early stages of T-cell maturation, rearrangements of D β 1-J β 1 intergenic
108 sequences occur at both alleles, resulting in deletion of these sequences in nearly all
109 peripheral T-cells [21]. In contrast, the TCR β constant region-2 (C β 2) remains intact
110 during VDJ recombination. By measuring the loss of these specific TCR β loci by ddPCR
111 and normalizing against a stable reference gene, such as RPP30, enables a
112 quantification of the number of T-cells in a clinical sample. On this basis, we designed
113 a set of primer-probes that target the intact TCR β gene region spanning across 143
114 base pairs of the D β 1 exon and J β 1 intron (Figure 1B). An additional primer-probe set
115 were specifically designed to span 218 base pairs of the C β 2 region and used as a
116 positive control (Table 1). We validated our chosen D β 1-J β 1 target sequence for the
117 detection of cells that had not undergone the VDJ recombination and thus were not
118 capable of functioning as T cells using several different cell sources with varying T-
119 cell composition. As expected, only cells that had not undergone T-cell
120 rearrangement such as HEK293T and a subset of PBMCs comprising macrophages,
121 monocytes, NK and B cells with intact primer binding regions resulted in a specific
122 D β 1-J β 1 amplification (Figure 1C). On the other hand, T-cell lines MT4 and CEM that
123 had clonally rearranged TCR genes failed to amplify the deleted TCR segment. All
124 samples resulted in C β 2 amplification since this region remains intact during VDJ
125 recombination. Similarly, the results of a multiplexed ddPCR reaction confirmed that
126 the amplification with D β /J β (CH1, FAM) is restricted to samples containing non-T
127 cells that have not undergone VDJ recombination, while RPP30 reference gene (CH2,
128 HEX) was detected for all samples (Figure 1D).

129

130 We validated this novel ddPCR assay against the gold standard flow cytometry
131 method for T-cell measurement using CD3+ surface staining by comparing the ddPCR

132 and the FACS determinations of the T-cell fraction from 18 healthy donor PBMC
133 samples with varying levels of circulating T-cells (Figure 1E). No significant
134 differences ($p=0.6705$, Wilcoxon matched-pairs test) in the frequency of CD3⁺ T cell
135 fractions were detected between FACS (%29.0 \pm 18.6) and ddPCR (%26.5 \pm 17.6),
136 confirming the specificity and accuracy in detecting unarranged TCR β and thus T-
137 cells.

138

139 **High Accuracy and Dynamic Range of Detecting Unrearranged T-Cell Receptor DNA** 140 **by ddPCR Technology**

141 To evaluate the dynamic range of our unarranged T-cell receptor (UTCR) assay,
142 DNA isolated from non-T cells (HEK293T) were serially diluted into T-cell DNA (CEM
143 cells) and evaluated by ddPCR with 4 replicates per sample. A comparison between
144 the observed with the expected number of copies provided an estimation of the
145 assay accuracy. The slope for the observed UTCR copy number (x: 0.808 ± 0.01) was
146 significantly close to the expected UTCR copy number (y: 1.00 ± 0.0) (Figure
147 Supplementary 1, $R=0.9913$, $P<0.0001$). The dynamic range of ddPCR from 1.56 to
148 10^5 UTCR copies per well ensures sensitive and accurate detection of UTCR DNA, as
149 indicated by the small 95% CIs. The ddPCR lower and upper limit of detection (LoD)
150 for the UTCR assay was determined at 97.9 and 2×10^5 copies per 10^6 cells,
151 respectively.

152

153 **Comparison of T-Cell Quantification in Sorted Cellular Populations Between ddPCR** 154 **and Flow Cytometry Resulted in Positive Correlation**

155 To further validate the assay utilized to calculate the T-cell population in gDNA of
156 frozen samples, we compared measurements of FACS-sorted cell populations by flow
157 cytometry and ddPCR. To perform this, we obtained PBMCs from healthy donors
158 ($n=6$) and isolated various T-cell subsets (CD8⁺, CD4⁺ and $\gamma\delta^+$) and non-T-cell subsets
159 (Natural killer [NK]-cells, monocytes and B-cells) by cell sorting based on expression
160 of lineage-specific phenotypic markers as described in (Figure 2A). The purity checks
161 resulted in $\geq 90\%$ purity in most sorted populations, which reflects the overall
162 homogeneity in each sorted group (Table 1). Two of the sorted healthy PBMC
163 samples resulted in lower purity of $\gamma\delta^+$ T-cell populations, #5 (55.2%) and #6 (65.1%),
164 reflecting possible down regulation of the $\gamma\delta$ TCR or photo bleaching during the
165 sorting process. Lower purity was also noted in two of the sorted monocyte
166 populations, #3 (78.5%) and #6 (77.7%), which could be attributed in part to the
167 adherent nature of these larger cells that can result in adhesion to smaller cells
168 despite attempts to gate out doublet cells. The percentage of T-cells measured by
169 ddPCR in the T-cell populations was equivalent to the one determined by flow
170 cytometry (Figure 2C, ns, $p=0.7559$, Wilcoxon matched-pairs signed rank test),
171 which supports the functionality and the sensitivity of the UTCR assay to specifically
172 detect and quantify T-cell populations. Moreover, the sorted non-T-cell population
173 resulted in 0.0 to 8.6% total T-cells matching the percentage of purity observed by
174 FACS (Table 1), which demonstrates the ability of the UTCR assay to accurately

175 detect unrearranged TCR β chain (Figure 2D, $p < 0.0001$, $r=0.9506$, Pearson r test) and
176 thus sorting efficiency and purity of T-cells from gDNA. The percentage of $\gamma\delta^+$ T-cells
177 determined by FACS was 55.2 to 97%, while the ddPCR results ranged from 46.8 to
178 66% (Table 2). The 30% discrepancy between the flow cytometry and UTCR assay
179 suggest that not all $\gamma\delta^+$ T-cells have fully rearranged TCR β alleles.

180

181 **Application of the UTCR Assay in a Remote Indigenous Australian HTLV-1c Cohort**

182 We next examined the ability of the UTCR assay to quantify T-cells from various
183 sources of HTLV-1 patient samples. To do this, we obtained frozen samples consisting
184 of peripheral blood ($n=29$), induced sputum ($n=6$) and bronchoalveolar lavage (BAL)
185 ($n=3$) from the Alice Springs Hospital-based Indigenous Australian HTLV-1 cohort, as
186 well as blood samples from healthy donors of similar background ($n=14$). A summary
187 of the participant characteristics and results is summarized in Supplementary Table 1
188 and Supplementary Table 2. The collection dates of the samples ranged from 21
189 January 2012 - 08 November 2016. The overall distribution of samples by gender was
190 22 males (57.9%) and 14 females (36.8%), with 2 unknown samples. The average age
191 at time of sample collection was not significantly different between males (46.4 ± 2.9
192 years) and females (48.6 ± 2.3 years) ($p=0.2718$, unpaired t-test).

193

194 Given that HTLV-1 preferentially infects CD4 $^+$ T-cells, we hypothesized that the HTLV-
195 1 PVL per T-cells would be higher in comparison with the PVL per genome since the
196 latter includes all potential cellular targets of HTLV-1 infection and thus would dilute
197 the PVL measurement. Collectively, the 38 samples resulted in a significant
198 difference between the HTLV-1c PVL per genome and PVL per T-cell assays (Figure 3,
199 $p < 0.0001$, two-tailed Paired T-test), which indicates that the HTLV-1 PVL per T-cell
200 assay quantifies a specific HTLV-1 targeted cellular population that could be relevant
201 to the assessment of increased risk of HTLV-1 disease progression.

202

203 Next, we investigated whether the HTLV-1 PVL was consistent between these
204 sources of infected blood and various inflammatory exudates (Figure Supplementary
205 3). The median and interquartile range (IQR) for HTLV-1c PVL per genome and PVL
206 per T-cell in peripheral blood was 5.6×10^3 copies (IQR, 1.8×10^3 , 1.0×10^4) (per 10^6
207 cells) and 6.7×10^4 copies (IQR, 2.4×10^4 , 1.2×10^5) (per 10^6 T-cells), respectively. The
208 median and IQR for HTLV-1c PVL per genome and PVL per T-cell in BAL was 1.3×10^5
209 copies (IQR, 1.2×10^3 , 1.4×10^5) (per 10^6 cells) and 1.2×10^6 copies (IQR, 1.0×10^6 ,
210 1.3×10^6) (per 10^6 T-cells), and 754.0 copies (IQR, 64.8, 6.1×10^3) (per 10^6 cells) and
211 2.3×10^4 copies (IQR, 97.8, 5.0×10^4) (per 10^6 T-cells) respectively in the induced
212 sputum.

213

214 We observed a significantly higher mean \pm SEM of HTLV-1c PVL per genome in blood
215 ($1.1 \times 10^4 \pm 3.1 \times 10^3$ copies/per 10^6 cells) compared with induced sputum ($2.4 \times 10^3 \pm$
216 1.3×10^3 copies/per 10^6 cells; $p=0.0388$, unpaired t-test). We also observed a
217 significantly higher mean \pm SEM HTLV-1c PVL per T-cell in blood ($9.4 \times 10^4 \pm 1.7 \times 10^4$

218 copies/ per 10^6 T-cells) compared with induced sputum ($2.0 \times 10^4 \pm 1.7 \times 10^4$ copies/ per
219 10^6 T-cells; $p=0.0133$, unpaired t-test). Overall, the mean PVL per genome and PVL
220 per T-cell in blood was approximately 4 -and 5- times greater than in sputum,
221 respectively.

222
223 We also observed the mean \pm SEM HTLV-1c PVL per genome was higher in BAL
224 ($9.0 \times 10^4 \pm 4.5 \times 10^4$ copies/ per 10^6 cells) compared with that of blood samples,
225 although this result was not significant. However, the mean \pm SEM HTLV-1c PVL per
226 T-cell in BAL ($1.2 \times 10^6 \pm 1.6 \times 10^5$ copies/ per 10^6 T-cells) was significantly higher
227 compared with that of blood samples ($p=0.0043$, unpaired t-test). The mean PVL per
228 genome and PVL per T-cell in BAL samples was approximately 9- and 13-times higher
229 than blood, respectively.

230
231 Finally, we observed that the mean \pm SEM HTLV-1c PVL per genome and PVL per T-
232 cell in induced sputum ($2.4 \times 10^3 \pm 1.3 \times 10^3$ copies/ per 10^6 cells) and ($2.0 \times 10^4 \pm 1.7 \times 10^4$
233 copies/ per 10^6 T-cells), respectively, was lower compared with that of BAL samples,
234 although neither result reached statistical significance. The PVL per genome and PVL
235 per T-cell in BAL samples was 38- and 57-times higher than induced sputum samples,
236 respectively.

237
238 **DISCUSSION**
239 Previous studies have shown that quantitative PCR (qPCR) and ddPCR are both
240 capable of distinguishing clinically significant differences in T-cell proportions and
241 perform similarly to FACS [27]. However, ddPCR technology results in a high-
242 throughput digital PCR with several advantages over qPCR [28, 29]. Unlike qPCR,
243 ddPCR provides an absolute count of target copies independent of an extrapolation
244 from a standard curve, which greatly reduces variability between assays and
245 difficulty in measuring PVL, particularly from samples with low numbers of cells [30,
246 31]. Direct measurement of target DNA is optimal for viral load analysis, and when
247 combined with the massive sample partitioning afforded by ddPCR, a greater
248 precision and reliability can be achieved [32].

249 We have demonstrated and validated a novel application of the ddPCR assay to
250 accurately measure T-cells in HTLV-1-infected peripheral blood and inflammatory
251 exudates. Specifically, we provided evidence from a remote Indigenous Australian
252 HTLV-1c cohort that the viral burden varies between compartments. Collectively, we
253 found a significant difference between HTLV-1 PVL per genome and PVL per T-cell,
254 indicating that the HTLV-1 PVL per T-cell assay quantifies a specific HTLV-1 targeted
255 cellular population that could be relevant to the assessment of increased risk of
256 HTLV-1 disease progression. A higher HTLV-1 proviral burden resides in cells
257 extracted from BAL samples compared with peripheral blood, and suggests
258 differences in the location of the HTLV-1 inflammatory response. In fact,
259 measurement of specific compartments such as the lungs may be a better indicator

260 for risk of disease progression, specifically HTLV-1c-associated respiratory diseases
261 such as bronchiectasis [11].

262
263 Given the difficulty in collecting clinical material from remote community setting,
264 there are several limitations in this study such as the limited number of subjects who
265 provided pulmonary secretions. Further work is necessary to confirm our findings in
266 larger studies in central Australia. It is also critical to compare PVL from different
267 compartments in the same individual given that wide variability in peripheral blood
268 PVL exists between individuals, which could complicate comparisons between groups
269 and the use of PVL as a prognostic tool. In addition, low cell numbers are more likely
270 to explain why we measured such low PVL in the induced sputum. The range of cells
271 and T-cells for sputum samples was 264.5 - 640.5 and 13.0 - 74.5, respectively. While
272 the sputum cell numbers were low compared to BAL samples, the BAL was only
273 collected during procedures under the setting of intensive care making BAL samples
274 unsuitable for monitoring of HTLV-1 involvement in lung disease. A further limitation
275 results from the lack of clinical history of these subjects. Without this information,
276 potential complications such as pulmonary disease or infective exacerbation during
277 sample collection could influence our results.

278
279 In conclusion, our data supports the application of the ddPCR assay to count T-cells
280 from DNA specimens from various compartments, and has potential clinical and
281 diagnostic applications in the sharply focused longitudinal monitoring of HTLV-1 PVL
282 and risk assessment of HTLV-1-associated inflammatory diseases. Furthermore, this
283 assay has translational applications in the validation of cell purity following isolation
284 of CD4⁺, CD8⁺, $\gamma\delta$ ⁺ T-cells, as well as B-cells, NK cells and monocytes. In order to fully
285 explore the applications of this UPCR assay, it will be essential to conduct larger
286 HTLV-1 case-controlled studies and experimentally address how the viral burden in
287 specific compartments correlates with HTLV-1-associated disease pathogenesis.

288

289 MATERIALS AND METHODS

290 Primary Cells

291 Whole blood samples from HTLV-1c patients were collected from adult subjects (age
292 ≥ 18 years) who were recruited >48 h after admission to Alice Springs Hospital,
293 Northern Territory, central Australia, between 21 January 2012– 08 November 2016.
294 With ethics approval and patient consent in primary language, frozen specimens
295 consisting of 29 peripheral blood, 6 induced sputum and 3 bronchoalveolar lavage
296 (BAL) samples from the remote Indigenous Australian cohort were sent to The Peter
297 Doherty Institute for Infection and Immunity at The University of Melbourne. Also,
298 14 healthy subjects from similar background were included as negative controls.
299 gDNA was extracted using GenElute™ Blood Genomic DNA Kit (Sigma-Aldrich)
300 according to manufacturer's instructions and eluted in EB buffer (Sigma-Aldrich) or
301 RNA-free water. To ensure efficient gDNA extraction from sputum and BAL, samples
302 were supplemented with carrier DNA and treated for 3 h at 55°C with lysis buffer and

303 proteinase K (200 µg). Purity of the isolated DNA A260/280 ratio was measured by
304 UV spectrophotometry (Nanodrop Technologies, Wilmington, CA).

305

306 **HTLV-1 Serologic and Molecular Studies**

307 HTLV-1 serostatus was based on the detection of specific anti-HTLV-1 antibodies in
308 serum by enzyme immunoassay (EIA) (Murex HTLV1+II; DiaSorin, Saluggia, Italy) and
309 the Serodia®HTLV-I particle agglutination assay (Fujirebio, Tokyo, Japan) performed
310 by the National Serological Reference Laboratory, Melbourne, Australia.

311

312 **ddPCR Limit of Detection of HTLV-1c gag and tax**

313 To evaluate the dynamic range and accuracy of quantifying HTLV-1 gene regions by
314 ddPCR, a 1:5 serial dilution of plasmids containing HTLV-1c viral targets (pCRII-
315 HTLV1c-gag and pCRII-HTLV1c-tax) were used to determine the lower and upper
316 LoD. The standard curve was performed in duplicate as independent experiments,
317 resulting in partitioning of approximately 40,000 droplets. Where the data points
318 stray from linearity represents the lower and upper LoD.

319

320 **ddPCR Limit of Detection of Non-T-cells**

321 To evaluate the dynamic range and accuracy of quantifying T-cells by ddPCR, a 1:5
322 serial dilution of gDNA isolated from non-T-cells (HEK 293T) and T-cells (CEM) (each
323 6x10⁶ cells/ml) were used to determine the lower and upper LoD in measuring the
324 number of unarranged TCRβ gene regions. CEM T-cells were added to each well to
325 maintain normalized levels of gDNA throughout the assay. The intact TCRβ gene
326 region spanning across the Dβ1 and Jβ1 region was measured in duplicate for each
327 sample on 3 separate occasions for n=3.

328

329 **ddPCR HTLV-1 PVL Measurements**

330 To quantify the PVL accurately, primers (900nM) and FAM-conjugated hydrolysis
331 probes (250nM) specific to a conserved HTLV-1c-gag or -tax were developed (Table
332 1). Probes targeting the provirus were labeled with FAM (Applied Biosystems),
333 whereas the probe directed at the reference gene *RPP30* (Ribonuclease P/MRP
334 subunit P30, dHsaCPE5038241, Bio-Rad) was labeled with HEX. All primers and
335 probes were designed for ddPCR and cross-checked with binding sites against the
336 human genome to ensure target specificity of the generated primer pairs (Primer-
337 BLAST, NCBI). A temperature optimization gradient ddPCR assay was performed to
338 determine the optimal annealing temperature of primers targeting HTLV-1 *gag* and
339 *tax* (data not shown). ddPCR was performed using ddPCR Supermix for probes (no
340 dUTP, Bio-Rad Laboratories, Hercules, CA) in 22 µl with 50-100 ng of gDNA. Following
341 droplet generation (15,000-18,000 on average) using a QX-200 droplet generator,
342 droplets were then transferred to a 96-well plate (Eppendorf, Hauppauge, NY), heat-
343 sealed with pierceable sealing foil sheets (ThermoFisher Scientific, West Palm Beach,
344 FL), and amplified using a C1000 Touch™ thermocycler (Bio-Rad) with a 105°C heated
345 lid. Cycle parameters were as follows: enzymatic activation for 10 minutes at 95°C;

346 40 cycles of (denaturation for 30 seconds at 94°C, annealing and extension for 1
347 minute at 58°C); enzymatic deactivation for 10 minutes at 98°C; and infinite hold at
348 10°C. All cycling steps utilized a ramp rate of 2°C/sec. Droplets were analyzed with a
349 QX200 droplet reader (Bio-Rad) using a two-channel setting to detect FAM and HEX.
350 The positive droplets were designated based on the no template controls (NTC) and
351 FMO controls (HTLV-1(-)/RPP30(+); HTLV-1(+)/RPP30(-) and HTLV-1(+)/RPP30(+))
352 using gDNA extracted from healthy donors, HTLV-1c tax plasmid (pcRII-tax) and MT4
353 gDNA, which were included in each run. While our primers are specific for HTLV-1c,
354 they work efficiently in detecting HTLV-1a from MT4 cell line [18].
355

356 **ddPCR T-Cell Measurements**

357 Methods to quantify T-cells accurately using the duplex ddPCR assays have been
358 previously described by Zoutman et al., 2017 [26]. However, different primers and
359 probe were utilized in this study (Table 1). Probes directed at the intact TCR β gene
360 region, which represents a cell that has not undergone VDJ recombination and
361 spanning across 143 base pairs of the D β 1 - J β 1 region were labeled with FAM,
362 whereas probes directed at the internal reference gene *RPP30* were labeled with
363 HEX to quantify the total number of cells (Table 1). Additional primers and probe
364 were specifically designed to span 218 base pairs of the TCR β constant region-2 (C β 2)
365 and used as a positive control (Table 1). The final concentrations of each primer and
366 probe used in the ddPCR reaction were 900nM and 250nM, respectively. A
367 temperature optimization gradient assay was performed to determine the optimal
368 annealing temperature of primers targeting TCR β gene regions (data not shown).
369 ddPCR was performed as previously described, but the cycle parameters were as
370 follows: enzymatic activation for 10 minutes at 95°C; 50 cycles of (denaturation for
371 30 seconds at 94°C, annealing and extension for 1 minute at 60°C); enzymatic
372 deactivation for 10 minutes at 98°C; and infinite hold at 10°C.
373

374 **ddPCR HTLV-1 PVL Data Analysis**

375 QuantaSoft software version 1.7.4 (Bio-Rad) was used to quantify and normalize the
376 copies/ μ l of each target per well. To address the HTLV-1-infected samples, which
377 might be at or below the LoD, calculation of proviral copy number was normalized to
378 the lower LoD of the PVL assay (65 copies per 10^6 cells). Amplitude fluorescence
379 thresholds were manually determined according to the negative controls (non-
380 template control and DNA from healthy PBMCs), which had been included in each
381 run. Droplet positivity was measured by fluorescence intensity above a minimum
382 amplitude threshold. All samples were run in duplicate, and the HTLV-1 PVL was
383 determined as the mean of the two measurements. The HTLV-1 PVL per genome was
384 calculated based on the concentration of HTLV-1 target gene, either *gag* or *tax*, and
385 expressed as proviral copies per μ l, and divided by the copies of RPP30 diploid
386 genome. The quotient is then multiplied by a chosen unit of cells designated as 1 x
387 10^6 cells.

388
$$\text{PVL per genome} = [(\text{Viral copies}) \div (\text{RPP30 copies}/2)] \times 10^6 \text{ cells} \quad (1)$$

389

390

391 **ddPCR T-cell Data Analysis**

392 Quantification and normalization of number of T-cells was previously described [26].
393 Briefly, to address the HTLV-1c-infected samples, which might be at or below the
394 LoD, calculation of the number of T-cells in each sample was normalized to the lower
395 LoD of the UPCR assay (98 copies per 10^6 T-cells). All samples were run in duplicate
396 to quantify the absolute mean number of intact D β /J β -regions, or non-T-cells, which
397 represents a cell that has not undergone VDJ recombination. As previously described
398 by Zoutman et al., the total number of non-T-cells is quantified absolutely by ddPCR
399 and then subtracted from the total number of cells to arrive at the total T-cell
400 fraction. From this, the HTLV-1c PVL per T-cell was calculated based on the
401 corresponding HTLV-1 PVL per genome values targeting *gag* or *tax*, and defined as
402 the HTLV-1 proviral copies per 10^6 T-cells. If the PVL per genome is derived from total
403 genomic material, and the proportion of T-cells is calculated by subtraction from the
404 proportion of non-T-cells, the contribution of T-cells to the PVL is calculated in the
405 following manner:

406

407

$$\text{PVL per T-cell} = \text{PVL per genome} / ((\text{T-cell copies} \times 10^6) / \text{Total cell copies}) \times 10^6 \quad (2)$$

$$\text{T-cell copies} = (\text{RPP30 copies}/2) - (\text{Non T-cell copies}/2) \quad (3)$$

$$\% \text{ T-cells} = (\text{T-cell copies} / \text{Total cell copies}) \times 100 \quad (4)$$

408

409 **Flow Cytometry**

410 Flow cytometry was performed on frozen PBMCs isolated from buffy coats
411 (Australian Red Cross Blood Service, West Melbourne, Australia). Cryopreserved cells
412 were rapidly thawed at 37°C, added dropwise to thawing media containing fresh
413 cRPMI (Roswell Park Memorial Institute 1640 medium (RPMI; Gibco Invitrogen Cell
414 Culture, Grand Island, NY, USA) with 10% fetal calf serum (FCS; Bovogen Biologicals,
415 East Keilor, VIC, Australia), 2mM L-glutamine, 1mM sodium pyruvate, 100 μ M MEM
416 non-essential amino acids, 5mM HEPES buffer (all Gibco), 55 μ M 2-mercaptoethanol
417 (Invitrogen Corporation, Carlsbad, CA, USA), 100 U/ml penicillin and 100 U/ml
418 streptomycin (both Gibco) and benzonase (50U/ml) (Novagen, ED Millipore
419 Corporation, Billerica, MA, USA). Cells were then centrifuged at room temp for 6 min
420 at 500 x g, counted and resuspended in PBS, and then stained with Live/Dead-Aqua
421 (Molecular Probes for Life Technologies) to exclude potential autofluorescence from
422 dead cells. Cells were then washed twice with PBS and stained with a combination of
423 anti-CD3 Alexa Fluor 700 (UCHT1), anti-CD4 BV650 (SK3), anti-CD8 PerCPCy5.5 (SK1),
424 anti-CD14 APC-H7 (MΦP9), anti-CD56 PE-Cy7 (NCAM16.2), anti-TCR- γ δ -1 PE (11F2)
425 and anti-CD19 BV711 (SJ25C1) (all BD Biosciences) (PBS with 0.1% Bovine Serum

426 Albumin, Gibco for Life Technologies). After washing twice with sort buffer, cells
427 were resuspended and passed through a 70 μ m sieve and acquired by Fluorescence-
428 activated cell sorting (FACS; BD FACS Aria Fusion, BD Immunocytometry Systems, San
429 Jose, CA, USA) to isolate live populations of non-T-cells (NK, B-cells, monocytes), T-
430 cells (CD8 $^{+}$, CD4 $^{+}$, $\gamma\delta^{+}$). The flow gating strategy to sort non-T-cell and T-cell
431 populations was as follows: live non-T-cell populations of B-cells (CD19 $^{+}$ CD14 $^{-}$),
432 Monocytes (CD14 $^{+}$ CD19 $^{-}$), NK cells (CD14 $^{-}$ CD19 $^{-}$ CD56 $^{+}$ CD3 $^{-}$); and then live T-cell
433 populations of $\gamma\delta^{+}$ T-cells (CD14 $^{-}$ CD19 $^{-}$ CD3 $^{+}$ TCR $\gamma\delta^{+}$), CD4 $^{+}$ T-cells (CD14 $^{-}$ CD19 $^{-}$
434 CD3 $^{+}$ TCR $\gamma\delta^{-}$ CD4 $^{+}$) and CD8 $^{+}$ T-cells (CD14 $^{-}$ CD19 $^{-}$ CD3 $^{+}$ TCR $\gamma\delta^{-}$ CD8 $^{+}$) (Figure 2A). After
435 sorting the samples into respective populations, a purity check for each population
436 was subsequently performed. Gates were carefully chosen to reduce the selection of
437 unspecific cellular populations. (Figure 2B). Data were analyzed with FlowJo version
438 9.7.6 (Tree Start) software.

439

440 **Statistical Analysis**

441 GraphPad Prism version 6 (GraphPad Software, La Jolla, CA) software was used for
442 statistical analysis. To evaluate linear association in the fraction of T-cells measured
443 between ddPCR and flow cytometry, linear regression and standard Pearson r tests
444 were performed. T-cell quantification data from healthy and HTLV-1c-infected cohort
445 samples were depicted as dot plots and tested for differences in median counts by
446 Kruskal-Wallis testing with a confidence interval of 95%. Mann-Whitney was used to
447 compare unpaired samples, and Paired T test was used to compare paired specimens
448 (blood, BAL and sputum). $P < 0.05$ was considered significant.

449

450 **SUPPLEMENTAL MATERIAL**

451 Supplemental material for this article may be found online.

452

453 **ACKNOWLEDGEMENTS**

454 We would sincerely like to thank all the remote Indigenous Australian community
455 members who participated in this study. We also would like to thank members of the
456 scientific community who generously shared reagents critical to this work. We
457 acknowledge Kim Wilson of the National Reference Laboratory of Melbourne,
458 Australia, and gratefully acknowledge the support of the Pathology Department at
459 Alice Springs Hospital. We would also like to thank the DMI Flow Facility staff for
460 their advice and generous assistance during the sorting experiments.

461

462 The study was reviewed and approved by the Central Australian Human Research
463 Ethics Committee. All patients were informed in first language and gave written
464 informed consent in accordance with the National Health and Medical Research
465 Council of Australia. (HREC-14-249). The datasets used and/or analyzed during the
466 current study relates to Indigenous Australians and cannot be accessed without
467 appropriate ethics approval from the Central Australian Human Research Ethics

468 Committee for researchers who meet the criteria for access to confidential data
469 (cahrec@flinders.edu.au).

470

471 The authors declare that they have no competing interests.

472

473 This study was supported by the National Health and Medical Research Council of
474 Australia (NHMRC) program grant #1052979 to DP and program grant #1071916 to
475 KK. KK is a NHMRC Senior Research Level B Fellow (#1102792) and BC is a NHMRC
476 Peter Doherty Fellow.

477

478

479

480

481 REFERENCES

1. Gessain A, Cassar O. Epidemiological Aspects and World Distribution of HTLV-1 Infection. *Frontiers in microbiology*. 2012;3:388. Epub 2012/11/20. doi: 10.3389/fmicb.2012.00388. PubMed PMID: 23162541; PubMed Central PMCID: PMC3498738.
2. Einsiedel LJ, Pham H, Woodman RJ, Pepperill C, Taylor KA. The prevalence and clinical associations of HTLV-1 infection in a remote Indigenous community. *Med J Aust.* 2016;205(7):305-9. Epub 2016/09/30. PubMed PMID: 27681971.
3. Verdonck K, Gonzalez E, Van Dooren S, Vandamme AM, Vanham G, Gotuzzo E. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. *Lancet Infect Dis.* 2007;7(4):266-81. doi: 10.1016/S1473-3099(07)70081-6. PubMed PMID: 17376384.
4. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. *Proceedings of the National Academy of Sciences of the United States of America.* 1980;77(12):7415-9. Epub 1980/12/01. PubMed PMID: 6261256; PubMed Central PMCID: PMC350514.
5. Gessain A, Barin F, Vernant JC, Gout O, Maurs L, Calender A, et al. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. *Lancet.* 1985;2(8452):407-10. Epub 1985/08/24. PubMed PMID: 2863442.
6. Kamoi K, Mochizuki M. HTLV-1 uveitis. *Frontiers in microbiology*. 2012;3:270. doi: 10.3389/fmicb.2012.00270. PubMed PMID: 22837757; PubMed Central PMCID: PMCPMC3403349.
7. Eguchi K, Matsuoka N, Ida H, Nakashima M, Sakai M, Sakito S, et al. Primary Sjogren's syndrome with antibodies to HTLV-I: clinical and laboratory features. *Ann Rheum Dis.* 1992;51(6):769-76. PubMed PMID: 1352097; PubMed Central PMCID: PMCPMC1004744.
8. Nishioka K, Maruyama I, Sato K, Kitajima I, Nakajima Y, Osame M. Chronic inflammatory arthropathy associated with HTLV-I. *Lancet.* 1989;1(8635):441. PubMed PMID: 2563817.
9. Morgan OS, Rodgers-Johnson P, Mora C, Char G. HTLV-1 and polymyositis in Jamaica. *Lancet.* 1989;2(8673):1184-7. PubMed PMID: 2572904.

- 513 10. Nakagawa M, Izumo S, Ijichi S, Kubota H, Arimura K, Kawabata M, et al. HTLV-I-
514 associated myelopathy: analysis of 213 patients based on clinical features and
515 laboratory findings. *Journal of neurovirology*. 1995;1(1):50-61. Epub 1995/03/01.
516 PubMed PMID: 9222342.
- 517 11. Einsiedel LC, O; Goeman, E; Spelman, T; Au, V; Hatami, S; Joseph, S; Gessain, A.
518 High HTLV-1 subtype C proviral loads are associated with bronchiectasis in
519 Indigenous Australians: Results of a case-control study. *Oxford Journals: Open Forum*
520 *Infectious Diseases*. 2014. doi: 10.1093/ofid/ofu023.
- 521 12. Einsiedel L, Cassar O, Spelman T, Joseph S, Gessain A. Higher HTLV-1c proviral
522 loads are associated with blood stream infections in an Indigenous Australian
523 population. *J Clin Virol*. 2016;78:93-8. Epub 2016/03/25. doi:
524 10.1016/j.jcv.2016.03.006. PubMed PMID: 27011343.
- 525 13. Furtado Mdos S, Andrade RG, Romanelli LC, Ribeiro MA, Ribas JG, Torres EB, et al.
526 Monitoring the HTLV-1 proviral load in the peripheral blood of asymptomatic carriers
527 and patients with HTLV-associated myelopathy/tropical spastic paraparesis from a
528 Brazilian cohort: ROC curve analysis to establish the threshold for risk disease. *J Med*
529 *Virol*. 2012;84(4):664-71. doi: 10.1002/jmv.23227. PubMed PMID: 22337307.
- 530 14. Matsuzaki T, Nakagawa M, Nagai M, Usuku K, Higuchi I, Arimura K, et al. HTLV-I
531 proviral load correlates with progression of motor disability in HAM/TSP: analysis of
532 239 HAM/TSP patients including 64 patients followed up for 10 years. *Journal of*
533 *neurovirology*. 2001;7(3):228-34. Epub 2001/08/23. doi: 10.1080/13550280152403272.
534 PubMed PMID: 11517397.
- 535 15. Yamano Y, Nagai M, Brennan M, Mora CA, Soldan SS, Tomaru U, et al. Correlation
536 of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load,
537 virus-specific CD8(+) T cells, and disease severity in HTLV-1-associated myelopathy
538 (HAM/TSP). *Blood*. 2002;99(1):88-94. PubMed PMID: 11756157.
- 539 16. Iwanaga M, Watanabe T, Utsunomiya A, Okayama A, Uchimaru K, Koh KR, et al.
540 Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in
541 asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan. *Blood*.
542 2010;116(8):1211-9. doi: 10.1182/blood-2009-12-257410. PubMed PMID: 20448111.
- 543 17. Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, et al.
544 Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic
545 HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. *Journal of*
546 *neurovirology*. 1998;4(6):586-93. Epub 1999/03/05. PubMed PMID: 10065900.
- 547 18. Brunetto GS, Massoud R, Leibovitch EC, Caruso B, Johnson K, Ohayon J, et al. Digital
548 droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1
549 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patients and
550 identification of viral mutations. *Journal of neurovirology*. 2014;20(4):341-51. doi:
551 10.1007/s13365-014-0249-3. PubMed PMID: 24781526; PubMed Central PMCID:
552 PMC4085507.
- 553 19. Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotoxicity in
554 lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. *Nature*.
555 1974;248(5450):701-2. PubMed PMID: 4133807.
- 556 20. Tonegawa S. Somatic generation of antibody diversity. *Nature*. 1983;302(5909):575-
557 81. PubMed PMID: 6300689.

- 558 21. Dik WA, Pike-Overzet K, Weerkamp F, de Ridder D, de Haas EF, Baert MR, et al.
559 New insights on human T cell development by quantitative T cell receptor gene
560 rearrangement studies and gene expression profiling. *J Exp Med.* 2005;201(11):1715-
561 23. doi: 10.1084/jem.20042524. PubMed PMID: 15928199; PubMed Central PMCID:
562 PMCPMC2213269.
- 563 22. Hesslein DG, Schatz DG. Factors and forces controlling V(D)J recombination. *Adv
564 Immunol.* 2001;78:169-232. PubMed PMID: 11432204.
- 565 23. Livak F, Schatz DG. T-cell receptor alpha locus V(D)J recombination by-products are
566 abundant in thymocytes and mature T cells. *Mol Cell Biol.* 1996;16(2):609-18. PubMed
567 PMID: 8552089; PubMed Central PMCID: PMCPMC231040.
- 568 24. Breit TM, Verschuren MC, Wolvers-Tettero IL, Van Gastel-Mol EJ, Hahlen K, van
569 Dongen JJ. Human T cell leukemias with continuous V(D)J recombinase activity for
570 TCR-delta gene deletion. *J Immunol.* 1997;159(9):4341-9. PubMed PMID: 9379030.
- 571 25. Goldsby RA, Goldsby RA. *Immunology*. 5th ed. New York: W.H. Freeman; 2003.
572 xxiii, 549, 56 p. p.
- 573 26. Zoutman WH, Nell RJ, Versluis M, van Steenderen D, Lalai RN, Out-Luiting JJ, et al.
574 Accurate Quantification of T Cells by Measuring Loss of Germline T-Cell Receptor
575 Loci with Generic Single Duplex Droplet Digital PCR Assays. *J Mol Diagn.*
576 2017;19(2):236-43. doi: 10.1016/j.jmoldx.2016.10.006. PubMed PMID: 28012713.
- 577 27. Wiencke JK, Bracci PM, Hsuang G, Zheng S, Hansen H, Wrensch MR, et al. A
578 comparison of DNA methylation specific droplet digital PCR (ddPCR) and real time
579 qPCR with flow cytometry in characterizing human T cells in peripheral blood.
580 *Epigenetics.* 2014;9(10):1360-5. doi: 10.4161/15592294.2014.967589. PubMed PMID:
581 25437051; PubMed Central PMCID: PMCPMC4622657.
- 582 28. Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, et al. Comparison of
583 droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. *J
584 Clin Microbiol.* 2013;51(2):540-6. doi: 10.1128/JCM.02620-12. PubMed PMID:
585 23224089; PubMed Central PMCID: PMCPMC3553899.
- 586 29. Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, et al. Highly precise
587 measurement of HIV DNA by droplet digital PCR. *PLoS One.* 2013;8(4):e55943. doi:
588 10.1371/journal.pone.0055943. PubMed PMID: 23573183; PubMed Central PMCID:
589 PMCPMC3616050.
- 590 30. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al.
591 High-throughput droplet digital PCR system for absolute quantitation of DNA copy
592 number. *Anal Chem.* 2011;83(22):8604-10. doi: 10.1021/ac202028g. PubMed PMID:
593 22035192; PubMed Central PMCID: PMCPMC3216358.
- 594 31. Lee TH, Chafets DM, Busch MP, Murphy EL. Quantitation of HTLV-I and II proviral
595 load using real-time quantitative PCR with SYBR Green chemistry. *J Clin Virol.*
596 2004;31(4):275-82. doi: 10.1016/j.jcv.2004.05.016. PubMed PMID: 15494269.
- 597 32. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, et al.
598 Evaluation of a droplet digital polymerase chain reaction format for DNA copy number
599 quantification. *Anal Chem.* 2012;84(2):1003-11. doi: 10.1021/ac202578x. PubMed
600 PMID: 22122760; PubMed Central PMCID: PMCPMC3260738.

602 **TABLES:**

603

604 **Table 1: Primers and probe details used for ddPCR quantification of HTLV-1c and T-
605 cells**

Droplet digital PCR for HTLV-1c and RPP30 primers						
Oligo ID	Strand	Sequence (5' → 3')	WC	Annealing T _m (C°)	Purpose	
3083	+	CAAATGAAGGACCTACAGGC	20 μM	58	Production of HTLV-1c-gag fragment	
3084	-	TATCTAGCTGCTGGTGATGG	20 μM	61	Production of HTLV-1c-gag fragment	
3085	+	TCCAGGCCCTATTGGACAT	20 μM	59	Production of HTLV1c-tax fragment	
3086	-	CGTGTAGAGTAGGACTGAG	20 μM	59	Production of HTLV1c-tax fragment	
Droplet digital PCR for HTLV-1c and RPP30 probes						
3321*	+	6FAM-ACCATCCGGCTTGCACT-MGBNFQ	20 μM	58	Detection of HTLV-1c-gag	
3318*	-	6FAM-CATGATTCGGCCCTGC-MGBNFQ	20 μM	61	Detection of HTLV-1c-tax	
Droplet digital PCR for T-cell receptor beta gene regions primers						
3095	+	TGTACAAAGCTAACATTGTGGGAC	20 μM	61	Amplification of TCRβ exon-1 of diverse region-1	
3096	-	AACCAAATTGCATTAAGACCTGTGACC	20 μM	60	Amplification of TCRβ upstream intron of joining region-1	
3157	+	TCCGTTAAGTGAGTCTCTCC	20 μM	55	Detection of TCRβ constant region-2	
3158	-	ATACAAGGTGGCTTCCCTA	20 μM	55	Detection of TCRβ constant region-2	
Droplet digital PCR for T-cell receptor beta gene regions probes						
3191*	+	ACAATGATTCAACTCTACGGAAACC	20 μM	59	Detection of TCRβ exon-1 of diverse region-1	
3159*	-	CGTGAGGGAGGCCAGGCCACCTG	20 μM	68	Detection of TCRβ constant region-2	

Note:

*Denotes TaqMan probe

MGBNFQ – Minor Groove Binding Non-Fluorescent Quencher

606

607

608

609

610 **Table 2: Purity check of FACS-sorted cell populations and percentage T-cells
611 measured by ddPCR**

612

613

Purity Check												
Cell Type	% Purity of FACS-sorted Population						% T-cells in ddPCR measure					
	T-cells	PBMC1	PBMC2	PBMC3	PBMC4	PBMC5	PBMC6	PBMC1	PBMC2	PBMC3	PBMC4	PBMC5
CD8+	98.7	97.2	95.8	92.8	93.2	91.3	97.3	97.0	98.0	95.3	96.7	97.1
CD4+	98.4	97.0	98.2	92.6	97.6	94.6	95.9	95.8	95.3	94.9	95.4	95.5
γδ+	97.0	94.5	89.6	91.5	55.2	65.1	62.1	61.7	46.8	58.2	66.0	45.2
Non-T-cells												
NK	99.5	99.9	99.0	95.1	94.4	95.3	0.9	0.0	0.9	5.9	4.9	0.2
Monocyte	92.9	89.5	78.5	93.9	92.5	77.7	1.6	5.3	0.0	1.7	2.2	0.0
B-cell	96.4	92.1	90.9	97.7	94.0	94.7	3.3	5.5	8.6	5.4	3.5	1.0

614

615

616

617

618

619 **FIGURE LEGENDS**

620

621 **Figure 1: Validation of T-cell measurement by targeting the unarranged T-cell**

622 receptor in comparison to flow cytometry. A) Study design and sample composition.

623 Extracted genomic DNA from frozen blood, PBMCs, bronchoalveolar lavage and sputum

624 samples obtained from remote Australian Indigenous HTLV-1c cohort was used to measure

625 T-cells by a generic single duplex ddPCR assay. Viable cellular material isolated in whole

626 blood and PBMCs from the same HTLV-1c cohort was used to measure T-cells by the gold

627 standard method of flow cytometry. B) Schematic depiction of T-cell receptor β (TCR β) loci

628 and the oligonucleotides (black arrows) and probes (pink star) used for detecting non T-cells

629 (Diversity D β 1 – Joining J β 1) and all cells (constant region-2, C β 2). C) Validation of

630 oligonucleotide specificity for detecting TCR β rearrangement. Only cells that have not

631 undergone TCR rearrangement present intact D β 1-J β 1 primer-binding regions and will result

632 in a 143-base pair amplicons (noted D β 1). The C β 2 primers resulted in a 218-base pair

633 amplicons since this region remains intact at the DNA level during VDJ recombination. The

634 RPP30 primers resulted in a 62-base pair amplicons of all samples containing human gDNA.

635 NTC, non-template control. D) A one-dimensional (1-D) ddPCR profile on Ch1 demonstrates

636 the D β 1 primer specificity to amplify samples containing non-T-cells or cells that have not

637 undergone VDJ recombination (HEK and PBMC) (D β 1+ blue droplets; D β 1- black droplets);

638 Ch2 1-D profile targeting the ubiquitous housekeeping gene, RPP30 (RPP30+ green droplets;

639 RPP30- black droplets), which allows absolute quantification of total cells. Amplitude

640 threshold is represented with a pink line. E) Comparison of T-cell quantification by FACS to

641 ddPCR. Determined T-cell fractions of 18 healthy PBMC donors are plotted jointly for direct

642 comparison of the two quantification methods. Bars indicate mean values with standard

643 deviation (FACS: 29 \pm 18.6; ddPCR: 26 \pm 17.6) (Wilcoxon matched pairs test, p=0.6705, ns =

644 non-significant).

645

646 **Figure 2A: Comparison of T-cell quantification between ddPCR and flow cytometry in**

647 **sorted cellular populations. A) Flowchart of FACS sorting strategy.** PBMC samples from 6

648 healthy donors were sorted into non-T-cell (NK, monocyte and B-cells) and T-cell

649 populations (CD8 $^+$, CD4 $^+$ and $\gamma\delta$), followed by DNA extraction. B) Purity checks of the

650 various sorted cellular populations. C) Comparison of the total fraction of T-cells measured

651 in each sorted population from healthy donors by ddPCR and FACS. Distribution of

652 measured cell subsets was very similar, which did not result in a significant difference

653 between the ddPCR and FACS assays (p=0.7559, Mann-Whitney). D) Correlation of ddPCR

654 and FACS measured T-cells in sorted populations of T-cells and non-T-cells from healthy

655 donors resulted in a positive correlation (p<0.0001, r=0.9506).

656

657 **Figure 3: Distribution of HTLV-1c PVL measured in peripheral blood and various**
658 **exudates from an Indigenous Australian cohort.** HTLV-1c proviral load (PVL) per
659 genome and PVL per T-cell were measured in HTLV-1c infected (+ve) peripheral blood
660 (red), induced sputum (green) and bronchoalveolar lavage (BAL, blue) samples from remote
661 Indigenous Australian cohort participants. PBMCs from healthy indigenous volunteers (-ve)
662 were used as a negative control (open black circles). Box mid-line represents median value
663 with interquartile range. Three subjects donated both blood and sputum samples designated
664 by Δ , \square and \diamond . Isolated gDNA from one BAL and one sputum sample was insufficient for
665 PVL per T-cell assay.

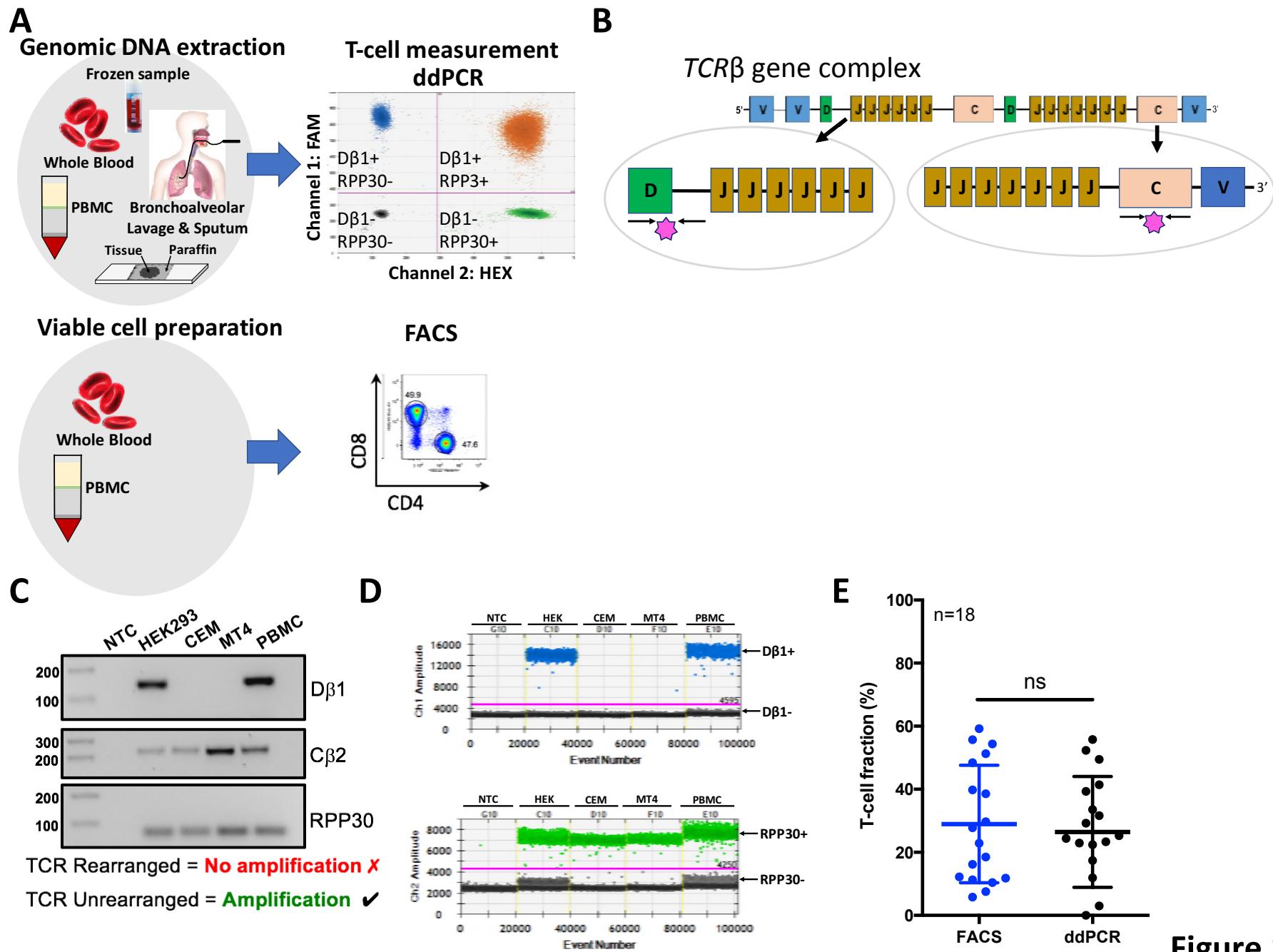
666

667 **Figure Supplementary 1: ddPCR limit of detection of UTCR assay.** A 1:5 serial dilution
668 of gDNA from HEK293T and CEM cells was performed to determine the limit of detection
669 (LoD) of the UTCR assay. Data shown are the mean values of 3 independent measurements
670 each conducted in duplicate (n=3). Comparison of the observed number of copies from each
671 target (y-axis) with the expected number of copies (x-axis) provides an estimation of the
672 assay accuracy. The dilution series strays from linearity at 1.56 copies per 22ul well. The
673 ddPCR lower and upper LoD for the UTCR assay was determined at 97.9 and 2×10^6 copies
674 per 10^6 cells, respectively.

675

676 **Figure Supplementary 2: Sequential gating to identify specific leukocyte subsets. A)**
677 Gating strategy into various T-cell subsets (CD8 $^+$, CD4 $^+$ and $\gamma\delta^+$ cells) and non-T-cell
678 populations (NK, Monocytes and B-cells). B) Purity check of sorted populations and
679 percentages of cells present in sorted samples.

680


681 **Table Supplementary 1:** Clinical characteristics and HTLV-1 proviral load (PVL) of 29
682 indigenous adult blood donors from remote Central Australia.

683

684 **Table Supplementary 2:** Detailed summary of 9 inflammatory exudate donors from remote
685 Central Australian Indigenous HTLV-1c cohort.

686

687 **Supplementary Figure 3: Relative distribution of HTLV-1c PVL measured in blood and**
688 **inflammatory exudates from a remote Indigenous Australian cohort.** Distribution of
689 HTLV-1c proviral load (PVL) per genome and PVL per T-cell within peripheral blood (red),
690 induced sputum (green) and bronchoalveolar lavage (BAL, blue) samples. Three subjects
691 donated both blood and sputum samples designated by Δ , \square and \diamond . PBMCs from healthy
692 indigenous volunteers (-ve) were used as a negative control (open black circles). Line
693 represents median value with interquartile range. Isolated gDNA from one BAL and one
694 sputum sample was insufficient for PVL per T-cell assay.

Figure 1

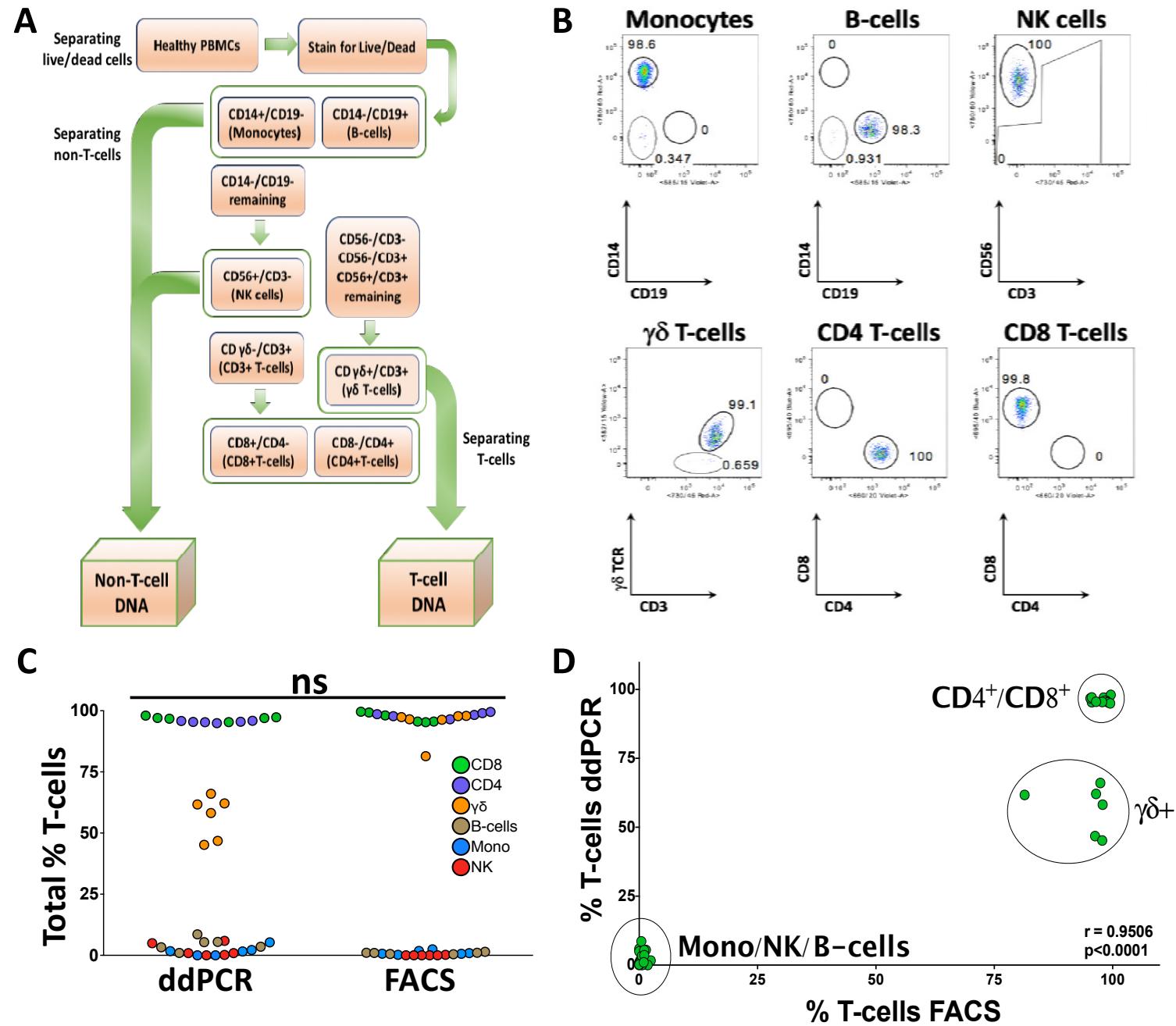


Figure 2

HTLV-1c PVL from Indigenous Australian cohort

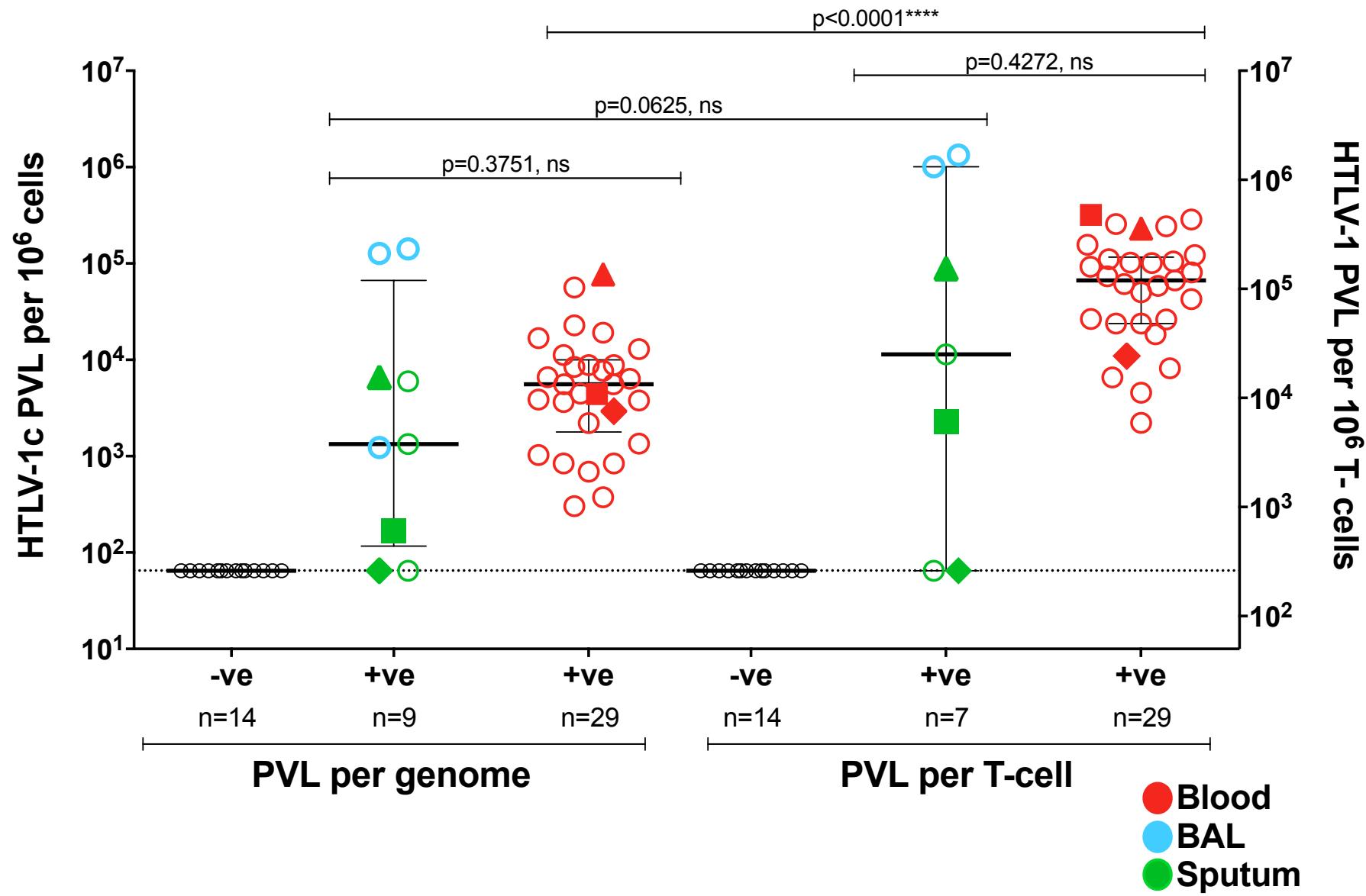


Figure 3

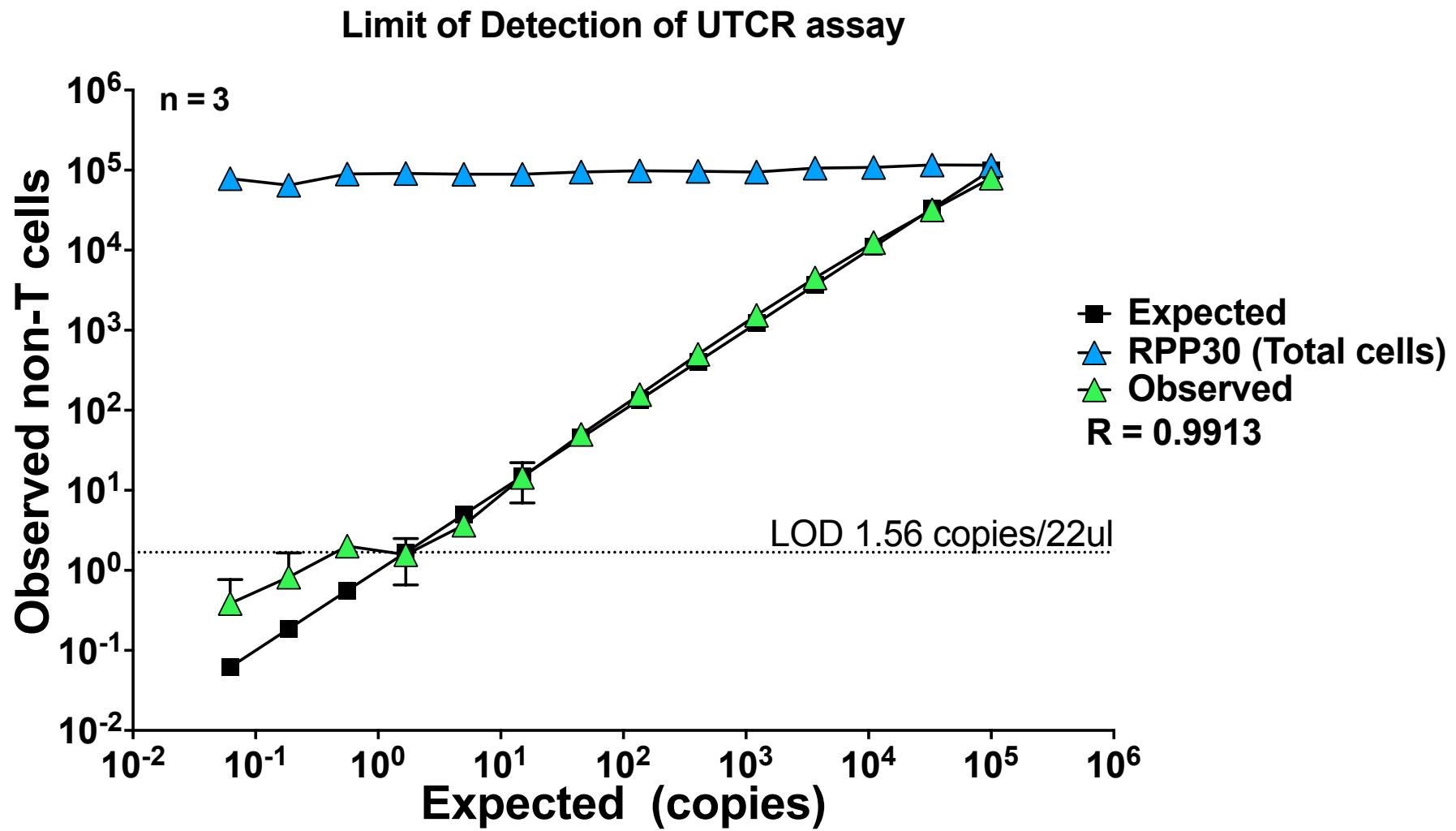
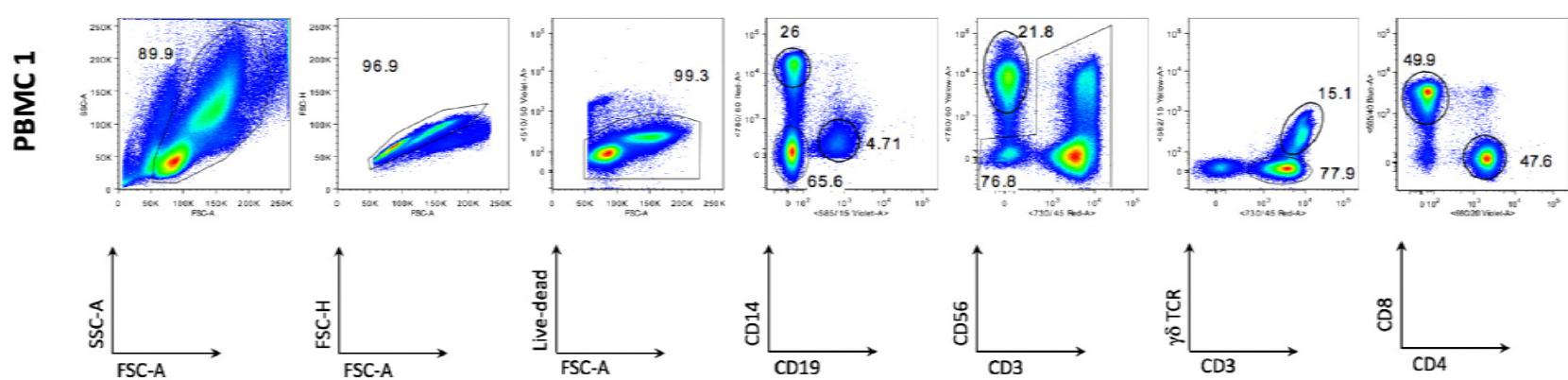
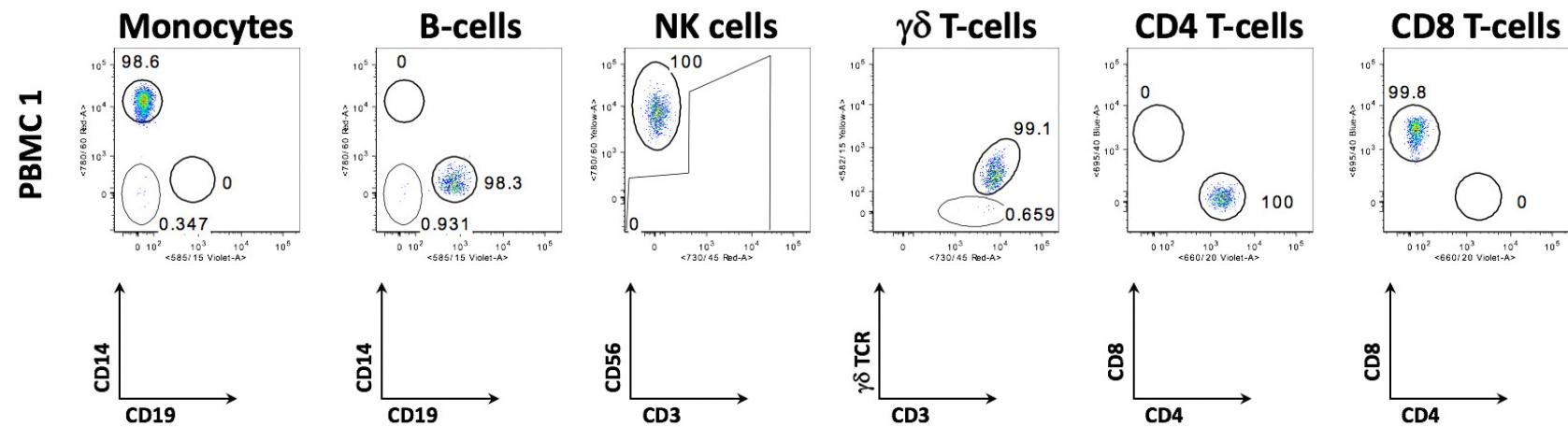




Figure S1

A**B****Figure S2**

Collection Date	Age	Sex	PVL per Genome (copies per 10^6 cells)	PVL per T-cell (copies per 10^6 T-cells)	Sample Type
21-Nov-12	48	M	8.81E+03	5.86E+04	Blood
29-Nov-12	55	F	3.03E+02	4.26E+04	Blood
20-Nov-12	43	F	6.92E+02	6.58E+03	Blood
9-Jul-13	68	M	3.79E+03	6.67E+04	Blood
28-Feb-13	53	F	1.12E+04	9.26E+04	Blood
1-Mar-13	58	M	8.39E+02	1.84E+04	Blood
27-Feb-13	51	F	8.84E+03	8.07E+04	Blood
20-Aug-13	40	M	8.42E+02	8.19E+03	Blood
3-Oct-13	67	M	4.45E+03	5.02E+04	Blood
16-Oct-13	44	M	6.60E+03	2.57E+05	Blood
19-Nov-13	48	M	6.35E+03	1.11E+05	Blood
25-Nov-13	60	M	5.57E+03	1.22E+05	Blood
21-Feb-12	51	F	7.70E+03	6.13E+04	Blood
3-Feb-12	48	F	3.74E+02	2.22E+03	Blood
22-Nov-12	53	M	1.35E+03	2.63E+04	Blood
30-Sep-16	51	F	1.91E+04	7.35E+04	Blood
26-Oct-16	23	M	8.43E+03	1.01E+05	Blood
12-Jun-16	51	F	3.87E+03	2.38E+04	Blood
10-Jun-16	48	M	1.29E+04	1.56E+05	Blood
27-Feb-13	37	M	3.65E+03	1.05E+05	Blood
13-Feb-13	33	M	5.58E+03	2.38E+04	Blood
29-Aug-12	33	F	1.68E+04	2.43E+05	Blood
21-Jan-12	48	M	1.03E+03	4.55E+03	Blood
21-Nov-12	65	F	5.62E+04	2.87E+05	Blood
24-Sep-13	56	F	2.28E+04	1.02E+05	Blood
8-Nov-13	46	M	2.93E+03	1.10E+04	Blood
11-Jun-12	33	F	7.72E+04	2.32E+05	Blood
21-Oct-13	44	M	4.42E+03	3.19E+05	Blood
6-Nov-12	43	M	2.21E+03	2.66E+04	Blood

Table Supplementary 1: Detailed summary of 29 blood donors from remote Central Australian Indigenous HTLV-1c cohort.

Table S1

Collection Date	Age	Sex	PVL per genome (copies per 10 ⁶ cells)	PVL per T-cell (copies per 10 ⁶ T-cells)	Sample Type
Unknown	Unknown	M	5.98E+03	6.48E+01	Sputum
30-Sep-16	51	F	6.48E+01	6.48E+01	Sputum
26-Oct-16	23	M	6.62E+03	8.86E+04	Sputum
8-Nov-16	67	M	6.48E+01	6.48E+01	Sputum
Unknown	74	M	1.34E+03	1.14E+04	Sputum
12-Jun-16	51	F	6.48E+01	6.48E+01	Sputum
7-Nov-13	46	M	5.27E+03	N/A	BAL RUL
21-Dec-15	32	M	1.27E+05	1.01E+06	BAL RUL
21-Dec-15	32	M	1.42E+05	1.33E+06	BAL LLL

Table Supplementary 2: Detailed summary of 9 inflammatory exudate donors from remote Central Australian Indigenous HTLV-1c cohort

Table S2

HTLV-1c PVL from Indigenous Australian cohort

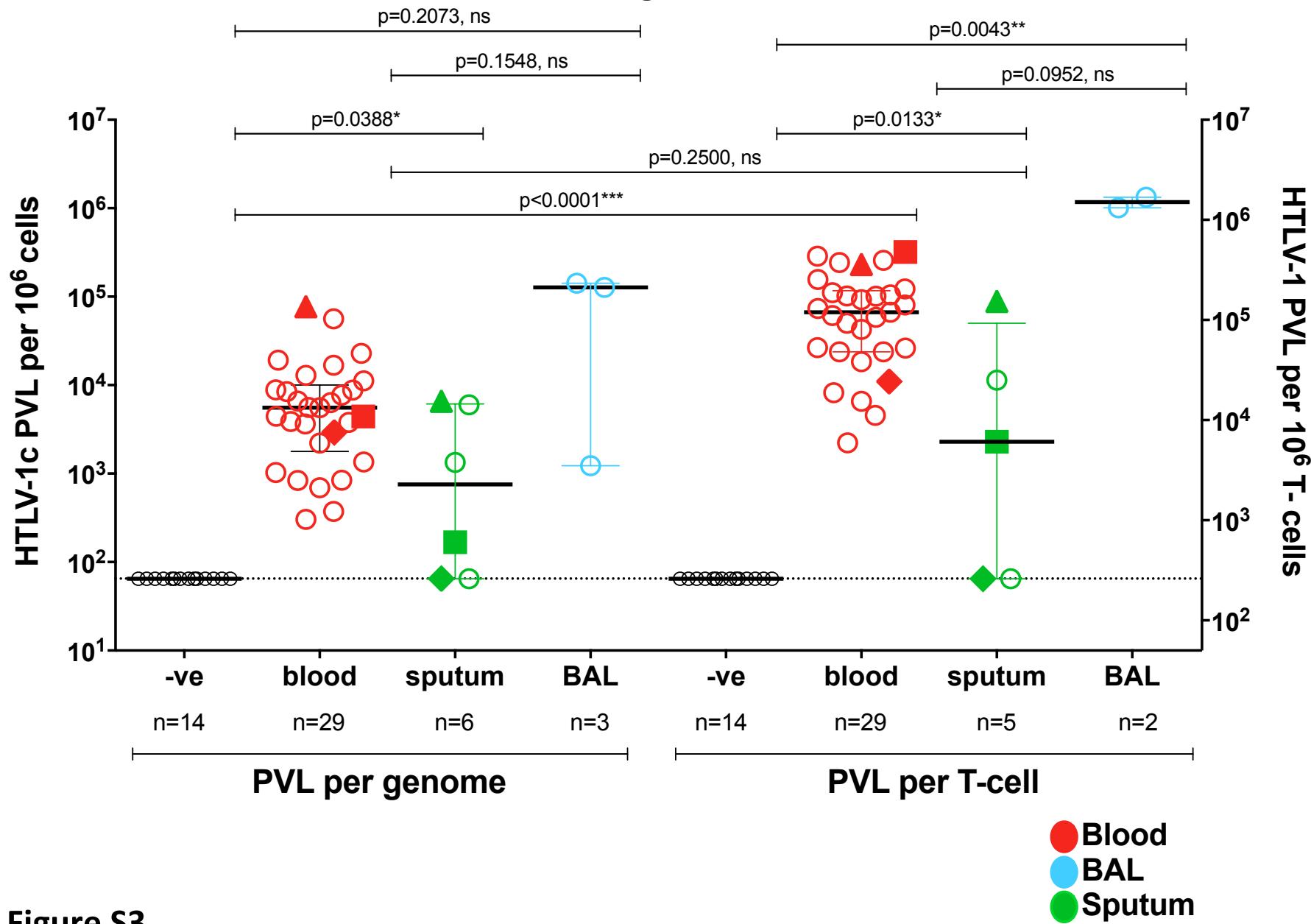


Figure S3