
	 1 

Resource limitation modulates the fate of dissimilated nitrogen in a dual-pathway 1	

Actinobacterium  2	

David C. Vuono1,6, Robert W. Read1, James Hemp2, Benjamin W. Sullivan3, John A. Arnone 3	

III1, Iva Neveux1, Bob Blank4, Carl Staub5, Evan Loney1, David Miceli1, Mari Winkler6, Romy 4	

Chakraborty7, David A. Stahl6, Joseph J. Grzymski1,* 5	

1Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA 6	

2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 7	

CA, USA 8	

3Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 9	

89557, USA 10	

4Agricultural Research Service, U.S. Department of Agriculture, Reno, NV, 89512, USA 11	

5Agtron, Inc. 9395 Double R Blvd, Reno, NV 89521, USA 12	

6Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 13	

98195, USA 14	

7Lawrence Berkeley National Laboratory, Berkeley, CA, 94729, USA 15	

*Correspondence: Joseph J. Grzymski, Division of Earth and Ecosystem Sciences, Desert 16	

Research Institute, Reno, 2215 Raggio Parkway, NV 89512, USA 17	

Email: Joe.Grzymski@dri.edu  18	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/364331doi: bioRxiv preprint 

https://doi.org/10.1101/364331
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 2 

Abstract 19	

Respiratory ammonification and denitrification are two evolutionarily unrelated dissimilatory 20	

nitrogen (N) processes central to the global N cycle, the activity of which is thought to be 21	

controlled by carbon (C) to nitrate (NO3
-) ratio. Here we find that Intrasporangium calvum C5, a	22	

novel menaquinone-based dual-pathway denitrifier/respiratory ammonifier, disproportionately 23	

utilizes ammonification rather than denitrification when grown under carbon or nitrate limitation, 24	

not C:NO3
- ratio. Instead, C:NO3

- ratio is a confounding variable for resource limitation. We find 25	

that the protein atomic composition for denitrification modules (NirK) are significantly cost 26	

minimized for C and N compared to ammonification modules (NrfA), indicating that resource 27	

limitation is a major selective pressure imprinted in the architecture of these proteins. The 28	

evolutionary precedent for these findings suggests ecological and biogeochemical importance as 29	

evidenced by higher growth rates when I. calvum grows predominantly using its ammonification 30	

pathway and by assimilating its end-product (ammonium) for growth under ammonium-deplete 31	

conditions. Genomic analysis of I. calvum further reveals a versatile ecophysiology to cope with 32	

nutrient stress and redox conditions. Metabolite and transcriptional profiles during growth 33	

indicate that transcript abundances encoding for its nitrite reducing enzyme modules, NrfAH and 34	

NirK, significantly increase in response to nitrite production. Mechanistically, our results suggest 35	

that pathway selection is driven by intracellular redox potential (redox poise), which may be 36	

lowered during resource limitation, thereby decreasing catalytic activity of upstream electron 37	

transport steps needed for denitrification enzymes. Our work advances our understanding of the 38	

biogeochemical flexibility of N-cycling organisms, pathway evolution, and ecological food-39	

webs. 40	

Introduction 41	

Globally, respiratory ammonification and denitrification are vital nitrogen (N) dissimilation 42	

pathways that either retain reactive N to support net primary productivity or close the N-cycle 43	

through the release of gaseous N, respectively [1]. The environmental controls on these two 44	

pathways, particularly the ratio of electron-donor to electron-acceptor (e.g., C:NO3
-) [2], have 45	

gained attention [3–7] due to increased anthropogenic N inputs into the environment [8]. 46	

However, the effects of resource limitation on growth and pathway selection (i.e., allocation of C 47	
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and N to dissimilatory and assimilatory processes), which are often confounded by C:NO3
- ratio, 48	

have not been tested. Strong selective pressures from Earth’s shifting biogeochemistry and 49	

oxidation-state have driven evolutionary adaptions to microbial electron transport chains (ETC) 50	

[9, 10], respiratory chain redox potentials [11–13], and protein atomic composition [14, 15], may 51	

shed light on how these pathways are regulated in contemporary organisms. Here, by identifying 52	

the biochemical and evolutionary differences between respiratory ammonification and 53	

denitrification, we disentangle the ecological significance and molecular mechanisms of electron 54	

transfer through either pathway in a dual pathway organism. 55	

From a biochemical standpoint, the primary difference between respiratory ammonification and 56	

denitrification is their respective source of reducing equivalents in the ETC: 1) heme-based 57	

cytochrome c nitrite reductase used in respiratory ammonification receive electrons directly from 58	

the quinone (Q) pool [16] while 2) copper and cd1 nitrite reductases used in denitrification 59	

receive electrons from a soluble electron carrier (e.g., cytochrome c) via the bc1 complex [17]. 60	

From an evolutionary standpoint, we can place each N-module’s origin to a putative time in 61	

Earth history based on the metal co-factors that would have been bioavailable: heme-based 62	

cytochromes in an ancient, more reduced, environment compared to the copper-containing nitrite 63	

reductases in an oxidizing environment [18]. The bioenergetic chains of microorganisms also 64	

underwent selective pressure to shift from low-potential (LP) to high-potential (HP) quinones in 65	

response to Earth’s oxygenation [11, 12]. Menaquinone (MK) is thought to be the ancestral type 66	

of LP quinone [19]. Organisms that use ubiquinone (UQ) are thought to have evolved under high 67	

O2 tensions with α-, β-, γ-proteobacteria as the only bacterial clades to use UQ [12]. Surprisingly, 68	

our understanding for the biochemistry of denitrification is based predominantly on HP UQ-69	

based systems [20], leaving a significant knowledge gap in the physiology and biochemistry of 70	

LP MK-based denitrifiers and how they link electron transfer with energy capture under resource 71	

limitation [21–23]. 72	

In order to resolve the mechanisms of C:NO3
- control on pathway selection and better understand 73	

branched respiratory chains in LP-based nitrate-reducing organisms, we undertook the 74	

characterization of the novel Gram-positive Actinobacterium strain Intrasporangium calvum C5: 75	

a dual-pathway nitrite reducer that uses MK as sole pool quinone. Here we show that over a 76	

range of C:NO3
- ratios, duplicated at two substrate concentrations, I. calvum disproportionately 77	
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utilizes its ammonia-forming pathway during C limitation (≤ 0.4mM lactate), when C:NO3
- ratios 78	

are < 1 (an observation contrary to the current paradigm). Using a genome-guided approach 79	

coupled to time-series transcriptomics and metabolite profiles, we identified differentially 80	

expressed genes in the bacterium’s ETC and central metabolic pathways. Using this information 81	

to inform a metabolic reconstruction of the ETC and extensive literature on the biochemistry of 82	

the bc1 complex, we propose a new mechanism by which these two pathways are regulated at the 83	

biochemical level. 84	

Materials and Methods 85	

Culture Conditions 86	

Media preparation: All cultures were grown at 30 ºC and shaken at 250 rpm. Nitrate reducing 87	

minimal media was prepared with the following final concentrations: NaCl (0.6mM), NH4Cl 88	

(1.75mM) (for ammonium replete conditions but not used in NH4-deplete conditions), MgCl2 89	

(0.2mM), CaCl2 (0.04mM), KCl (0.1mM), K2HPO4 (0.01mM), NaHCO3- (0.3mM), cysteine 90	

(1mM) as reducing agent, resazurin as redox indicator, and trace elements and trace vitamin 91	

solutions as reported [24, 25]. 1M sterile filtered (0.2µm) Concentrated stocks of 60% w/w 92	

sodium DL-lactate solution (Sigma-Aldrich, St. Louis, MO, USA), sodium-nitrate and sodium-93	

nitrite (≥99%, Fisher Scientific, Pittsburg, PA, USA) were diluted into media prior to 94	

autoclaving to achieve the desired C:NO3
- ratio. C:NO3

- ratio was calculated based on [3] where 95	

the number of C atoms (n) in the e-donor is multiplied by the concentration of the e-donor, 96	

divided by the number of N atoms in the e-acceptor multiplied by the concentration of the e-97	

acceptor (Table S4). See SI Materials and Methods for complete description of Hungate 98	

technique prepared media. Mean pH for all culture vessels (time series and end-point; Table S5), 99	

measured at the end of each experiment, was 7.3±0.05 (n=144). 100	

Analytical procedures 101	

Growth Curve/Cell counts/Yield Measurements: Growth curves were measured from scratch-102	

free Balch-tubes grown cultures using an automated optical density reader at OD600 nm 103	

(Lumenautix LLC, Reno, NV). End-point cultures were monitored until all replicates reached 104	

stationary phase (65-100 hours depending on C:NO3
- treatment) (Figure S6). Cell counts were 105	

performed by fixing cells in 4% paraformaldehyde (final concentration) for 20 minutes, filtered 106	
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onto 0.2µm pore-sized black polycarbonate filters. A complete description is provided in SI 107	

Materials and Methods. Biomass concentrations were measured by filtration and drying as per 108	

standard protocol [26]. A complete description is provided in SI Materials and Methods. 109	

 110	

Ion and Gas Chromatography Measurements: A dual channel Dionex ICS-5000+ (Thermo 111	

Scientific) ion chromatograph (IC) was used to measure organic (lactate, acetate, and formate) 112	

and inorganic (nitrite and nitrate) anions on an AS11-HC column and cations (ammonium) on a 113	

CS-16 column from the bacterial growth media. A complete description is provided in SI 114	

Materials and Methods. 115	

Phylogenetic, Genomic, and Transcriptomic Analysis 116	

Genomic DNA was assembled using Canu (version 1.7.1) with an estimated genome size of 5 117	

million base pairs [27]. The resulting single contiguous fragment was aligned to the I. calvum 118	

7KIP genome (Acc: NC_014830.1) to compare sequence similarity in Mauve[28, 29]. Genome 119	

annotation for C5 was performed through the NCBI Prokaryotic Genome pipeline 120	

(www.ncbi.nlm.nih.gov/genome/annotation_prok/). Additional gene prediction analysis and 121	

functional annotation was performed by the DOE Joint Genome Institute (JGI) using the Isolate 122	

Genome Gene Calling method (Prodigal V2.6.3 February, 2016) under the submission ID 123	

172966. The complete genome sequence and annotation is available in the NCBI database under 124	

the BioProject number PRJNA475609. A complete description of the phylogenetic, pathway 125	

analysis, and cost-minimization calculations is provided in SI Material and Methods. For 126	

transcriptomic analysis, the resulting raw reads were inspected using FastQC [30] to determine 127	

quality, read length, and ambiguous read percentage. Reads were trimmed based on quality score 128	

with a sliding window of 5 base pairs, quality cutoff of 28, trailing cutoff quality score of 10, as 129	

well as adapter contamination removal in Trimmomatic [31]. A complete description is provided 130	

in SI Materials and Methods. Statistical analyses were conducted in the R environment for 131	

statistical computing (r-project.org). Data that was tested using parametric statistical analysis 132	

were first validated for normality by visualizing the data as a histogram and testing via Shapiro-133	

Wilks test for normality. 134	

Results 135	
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Genomic analysis of I. calvum C5. We sequenced and analyzed the genome of I. calvum C5 to 136	

first compare its similarity to the type species I. calvum 7KIP. We identified a high degree of 137	

sequence similarity to 7KIP based on three homologous sequence regions as locally collinear 138	

blocks (SI Results). Genome size of C5 was 4,025,044 base pairs (bp), only 662 bp longer than 139	

7KIP. Genomic analysis of the ETC revealed the typical suite of complexes common to 140	

facultative aerobes, including primary dehydrogenases (nuo complex, succinate dehydrogenase), 141	

alternative NDH-2 NADH dehydrogenase, cytochrome bc1 complex, high-oxygen adapted 142	

cytochrome c oxidase (A-family), and low-oxygen adapted cytochrome bd oxidase. The bc1 143	

complex subunits are also located immediately upstream of cytochrome c oxidase, suggesting 144	

that these enzymes are encoded in a single operon creating a supercomplex. Despite I. calvum’s 145	

seeming propensity for aerobic growth on a number of growth media [32], its bioenergetic 146	

system uses MK as its sole pool quinone. I. calvum also possesses multiple pathways for 147	

supplying electrons into the MK-pool, such as formate, malate, hydroxybutyrate, and 148	

glycerophosphate dehydrogenases. Once in the MK-pool, there are alternative pathways for 149	

MKH2 oxidation that can circumvent the bc1 complex, such as a membrane-bound respiratory 150	

nitrate reductase module (NarG). In addition, to NarG, its dissimilatory N module composition 151	

consists of a truncated denitrification pathway (N2O is a terminal product) using a copper nitrite 152	

reductase NirK and quinol-dependent nitric oxide reductase qNor. I. calvum also possesses both 153	

catalytic and membrane anchor subunits (NrfA and NrfH, respectively) for a pentaheme 154	

cytochrome c module involved in respiratory nitrite ammonification. 155	

I. calvum encodes for a functional NrfAH complex and assimilates NH4
+ via respiratory 156	

nitrite ammonification. To gain insight into possible function of the NrfAH complex, we 157	

aligned the NrfA protein sequences from C5 and 7KIP to a collection of 33 recognized 158	

cytochrome c nitrite reductases from published annotated genomes (Table S1). This confirmed 159	

that NrfA from I. calvum is a member of the CxxCH 1st heme motif group (Figure 1A), which 160	

forms one of four clades on the NrfA phylogenetic tree. We then queried the genomes of the taxa 161	

in our phylogeny for other annotated N-reducing modules used in nitrate reduction, nitrite 162	

reduction, NO-forming nitrite reduction, and primary pool quinone. Among the three major 163	

clades of NrfA, at least 5 additional taxa are noted having dissimilatory N-module inventories 164	

containing dual respiratory pathways: S. thermophilum, B. azotoformans, B. bataviensis, B. 165	

bacteriovorus, and Candidatus N. inopinata, (Figure 1A). None of the taxa in our NrfA 166	
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phylogeny harbored the cd1 nitrite reductases (NirS). Due to the exclusive NirK representation in 167	

dual-pathway membership, we asked whether there might be differences in protein atomic 168	

composition between NirK and NrfA, given the disparate evolutionary origins of these modules 169	

[33]. We collected 20 additional publicly available NirK protein sequences from nondual-170	

pathway denitrifiers (Table S1) and calculated the protein C and N composition for our 171	

NirK/NrfA collection as atoms per residue side-chain (Figure 1B). These results showed a 172	

significant depletion in C and N atoms per residue side-chain (ARSC) for NirK compared to 173	

NrfA (C and N: p<0.001; t-test), indicating that resource constraints are imprinted on the 174	

evolution of these proteins.  175	

We next tested the functionality of I. calvum’s Nrf complex by growing the bacterium under 176	

reducing conditions (8 mM lactate, 12 mM nitrate, ammonium-replete). We then performed a 177	

state-transition where biomass from late-exponential growth phase was collected and 178	

anaerobically inoculated into ammonia-deplete media (Figure 1C; SI Results). Despite no 179	

detectable amounts of ammonium produced in the media over time, cell counts increased 180	

5.4x105±8.9x104 cells/mL (0.126±0.02 optical absorbance at OD600) over a 48-hour incubation, 181	

indicating consumption of ammonium produced by NrfA. Net ammonium production was 182	

13±2.7 µmoles with the remainder of dissimilated N being used by the denitrification pathway 183	

(24±4.2 µmoles N2O-N), resulting in a recovery of 97.4% dissimilated N. These results 184	

confirmed that I. calvum C5 has a functional Nrf complex and also consumes the product 185	

(ammonium) of respiratory nitrite ammonification. 186	

Respiratory nitrite ammonification exceeds denitrification under C-limitation. We 187	

investigated C:NO3
- control on respiratory ammonification versus denitrification on cultures of I. 188	

calvum C5 over a high resource C:NO3
- range (16-0.4 mM lactate, 12 mM nitrate; ratio 4-0.1) 189	

and low resource C:NO3
- range (1.6-0.04 mM lactate, 1.2 mM nitrate; ratio 4-0.1). This 190	

experimental design enabled us to evaluate C:NO3
- control over a broader range than previous 191	

studies that only considered ratios ≥ 1.5 [3, 4, 34], while also testing the effects of resource 192	

concentration on pathway selection. Under all the treatments tested, gas and ion chromatography 193	

measurements showed products of both respiratory pathways, differing only in the relative 194	

fraction of N2O versus ammonium production across treatments (Figure 2). At high resource 195	

concentrations, respiratory ammonification did not prevail at high C:NO3
- ratios (Figure 2A, 196	
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Figure 2B, left panels; Table S2). Instead, significantly greater amounts of N2O were produced 197	

over ammonium, though nitrite was still the major extracellular end-product of nitrate 198	

respiration. Despite the predominance of N2O production under the high resource concentrations, 199	

ammonium production exceeded N2O production only at the lowest C:NO3
- ratio (0.4 mM 200	

lactate, ratio=0.1) (Figure 2) and accounted for 76.2±0.1% of dissimilated N. 201	

Results from the low resource dataset provided weak support for the strict stoichiometry 202	

hypothesis that C:NO3
- controls pathway selection. Ammonia exceeded N2O production only 203	

under one high C:NO3
- ratio treatment (ratio=4; 1.6 mM lactate; Figure 2A, Figure 2B, right 204	

panels). However, at ratios ≤1 (≤0.4 mM lactate), significantly more ammonium than N2O was 205	

produced. On average, respiratory ammonification accounted for 78.1±8.9% of dissimilated N 206	

for lactate concentrations ≤0.4 mM. When these results are taken in context with cell physiology, 207	

we observed a significant and positive relationship between specific growth rate (µ) and the 208	

fraction of N dissimilated by respiratory ammonification (R2=0.5; p<0.001) (Figure 2C, S1; 209	

Table S3). 210	

Resource concentration influences the metabolite profiles of ammonium and N2O 211	

production. Given the co-occurrence of end products from both pathways during the end-point 212	

experiments (Figure 2), we next investigated the timing of ammonium and N2O production 213	

relative to metabolite profiles for lactate, nitrate/nitrite, and growth phase at two resource 214	

concentrations with the same ratio (8 mM and 0.8 mM lactate, ratio=2; Figure 1A, Figure S2, 215	

Figure S3). Despite ample e-donor and e-acceptor available for growth, the high resource 216	

cultures entered a quasi-stationary phase at ~50 hours, after which there was continued slow 217	

growth (Figure 1A). Metabolite profiles showed that ammonium and N2O production began 218	

simultaneously, as soon as nitrite was produced from nitrate reduction. The low resource cultures 219	

entered stationary phase at ~40 hours (Figure S2) after nitrate had been fully utilized. No further 220	

cell growth was observed after stationary phase was reached. These results show that cell growth 221	

occurred primarily on the reduction of nitrate, while nitrite reduction to ammonium and N2O 222	

occurred during a stationary growth phase, demonstrating that microbial activity is not always 223	

correlated with growth. The metabolite profiles for ammonium and N2O at low resources (Figure 224	

S2) did not mirror those observed at high resources (Figure 2A). The rate of N2O production 225	

significantly decreased and ammonium production oscillated rather than steadily increase 226	
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through time. These differences in metabolite profiles, further demonstrate that concentration 227	

influences the activities of pathway bifurcation. Repeated time series experiments that were 228	

extended up to 300 hours show that nitrite is slowly depleted, but does not get fully consumed 229	

(Figure S3). When cultures were given nitrite, instead of nitrate as a terminal electron acceptor (8 230	

mM lactate, 12 mM nitrite; ratio=2), we observed no immediate growth (as was observed with 231	

nitrate) but measured more N2O than ammonium production (33.4±4.8 µmoles N2O-N and 232	

8.0±2.5 µmoles NH4
+, respectively) (Figure S4), demonstrating respiratory ammonification does 233	

not exceed denitrification when nitrite is supplied as the sole acceptor in I. calvum. 234	

Nitrite-reducing modules are up-regulated during late exponential- and stationary-phase 235	

growth. In order to gain insight into mechanisms of gene regulation and transcriptional 236	

organization of I. calvum, we conducted RNA-Seq in parallel with the high resource time-series 237	

metabolite profile (Figure 3A). This approach enabled us to compare genome-wide differential 238	

expression based on log2 fold change (lfc) of RNA extracted from three growth phases: early 239	

exponential (EE), late exponential (LE), and stationary (ST) (Figure 3B, Figure S5). Within the 240	

central metabolic pathway beginning with the conversion of lactate to pyruvate, we observed a 241	

moderate decrease in transcript abundance of L-lactate dehydrogenase (LDH) (Intca_16740) 242	

between EE-LE and -ST (lfc = -1.6±0.7; -1.9±0.7), respectively. Lactate utilization protein C 243	

(LUP) (Intca_04080), an enzyme involved in lactate degradation, also showed a moderate and 244	

significant decrease in transcript abundance between EE-LE and -ST (lfc = -1.6±0.6; -2.4±0.6, 245	

p=0.002), respectively. I. calvum encodes for two parallel metabolic pathways for pyruvate 246	

conversion to acetyl-CoA: pyruvate dehydrogenase (PDH) (Intca_01255) and pyruvate 247	

ferredoxin oxidoreductase (PFOR) (Intca_15510). For PDH, there was a significant and 248	

moderate increase in transcript abundance between EE-LE and -ST (lfc = 2.1±0.6, p=0.002; 249	

1.5±0.6), respectively. For PFOR, there was a minor decrease in transcript abundance between 250	

EE-LE (lfc = -0.43±0.5), and then a moderate increase in transcript abundance between EE-ST 251	

(1.1±0.5). Citrate synthase (Intca_04135), the enzyme catalyzing the conversion of acetyl-CoA 252	

to citrate and the first step of the tricarboxylic acid (TCA) cycle, showed a highly significant 253	

increase in transcript abundance between EE-LE and -ST (lfc = 4.3±0.5, p<0.001; 6.9±0.5, 254	

p<0.001). 255	
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Within the ETC, there was moderate and significant decrease in transcript abundance for all 256	

subunits from the primary dehydrogenase (nuo complex; Intca_03465-03539) between EE-LE 257	

and -ST (lfc = -1.2±0.3; -2.4±0.6, p<0.001), respectively. Nitrate reductase subunits showed no 258	

change in transcript abundance between EE-LE (lfc = 0.01±0.07) and moderately decreased in 259	

abundance by ST (lfc = -1.2±0.1), which was corroborated by the depletion of nitrate during 260	

stationary phase. There was a significant increase in transcript abundance of nirK (Intca_17170) 261	

(lfc = 2.2±0.6, p=0.003; 2.4±0.6, p<0.001) and quinol dehydrogenase/membrane anchor subunit 262	

nrfH (Intca_09465) (lfc = 2.5±0.6, p=0.001; 2.1±0.6, p=0.003) by EE-LT and EE-ST, 263	

respectively, which coincided with nitrite production (Figure 3A). The catalytic subunit of the 264	

cytochrome c nitrite reductase complex (nrfA) (Intca_09460) also increased moderately in 265	

transcript abundance by EE-LT and EE-ST (lfc = 1.6±0.6; 1.0±0.6), respectively (Figure 3B). 266	

Contrary to the transcript abundance patterns of nirK and nrfAH, nitric oxide reductase (qNor; 267	

Intca_01525) transcripts moderately increased between EE-LT (lfc = 1.6±0.6) but decreased in 268	

the successive time periods (lfc = 0.43±0.6 between EE-ST; lfc = -1.2±0.6 between LE-ST) 269	

(Figure 3B). 270	

There was a significant increase in transcript abundance of formate transporter focA 271	

(Intca_17150) between EE-ST, as well as LE-ST (lfc = 4.9±0.7, p=0.002; 4.8±0.7, p=0.002; 272	

respectively). We verified the production of formate in our ion chromatography measurements in 273	

the range of 100-200µM following late exponential growth. We also observed a moderate 274	

increase in transcript abundance of formate dehydrogenase (FDH) subunits (Intca_11150-275	

11160). These results implicate the activity of formate oxidation, which would contribute to a ∆p 276	

in the periplasm via a Q-loop mechanism and the reduction of MK for electron transfer to nitrite 277	

via cytochrome c nitrite reductase. Considering that formate was not provided in our media 278	

recipe, an alternative pathway for formate production must exist in I. calvum. We also observed 279	

acetate production in similar concentrations as formate (100-200µM). In E. coli, formate is 280	

produced anaerobically from the action of pyruvate formate lyase (PFL). We identified a putative 281	

PFL based on genome annotation (Intca_12230), where transcript abundance also significantly 282	

increased by ST. PFL is also highly sensitive to oxygen [35], which was also in agreement with a 283	

significant increase in transcript abundance between EE-ST and LE-ST (Figure 3B) of 284	

cytochrome bd oxidase (Intca_01110 and Intca_01115), which is thought to protect anaerobic 285	

enzymes against oxidative stress [36]. 286	
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Discussion 287	

We challenge the paradigm that C:NO3
- ratio controls pathway selection in a dual-pathway 288	

organism based on a simple principle: ratios do not account for the abundance of growth-limiting 289	

resources. We hypothesized that limitation in C or NO3
- should better predict pathway selection 290	

in a dual-pathway denitrifier/respiratory ammonifier. To test this hypothesis, we systematically 291	

measured the response of the Gram-positive Actinobacterium Intrasporangium calvum C5 to the 292	

same range of C:NO3
- ratios at both high and low resource loadings to better resolve mechanisms 293	

of pathway selection. We demonstrated that resource concentration, not C:NO3
- ratio, influences 294	

pathway selection. We found stronger support for respiratory ammonification preference under 295	

C-limitation (at low C:NO3
- ratios), which also grew at significantly higher growth rates (Figure 296	

2). These results suggest that the NrfA complex, which receives electrons directly from the MK-297	

pool, is optimized to maximize power when one or more resources are limiting. The enrichment 298	

of C and N ARSC in publically available NrfA over NirK protein seuqences (Figure 1B) 299	

provides further support and evolutionary precedence to ammonification preference over 300	

denitrification under resource limitation. This is because the end-product of ammonification can 301	

be used as an assimilatory N-source (Figure 1C), indicating no evolutionary constraint to cost 302	

minimize N. These data, together with metabolic reconstructions from metabolite and 303	

transcriptional profiles (Figure 3), suggest that C:NO3
- ratio alone is insufficient to explain 304	

pathway selection. 305	

The theoretical basis for pathway selection is explained by the law of the minimum (LM) and the 306	

maximum power principle (MPP), which state that growth is limited by the least abundant 307	

resource and that biological systems are designed to maximize power in order to effectively 308	

allocate energy to reproduction and survival [37, 38], respectively. Here, it appears these two 309	

theories are working together: when resources are limited, the cell utilizes the respiratory 310	

pathway for growth that is optimized to maximize power. Power, in this case, is realized as 311	

higher growth rates from the cultures exhibiting disproportionately higher ammonium production 312	

than N2O production (Figure 2: high resources: C:NO3
- ratio = 0.1; low resources: C:NO3

- ratios 313	

= 4, 1, 0.5, 0.1). More specifically, the bacterium must generate a greater ∆p in order to 314	

maximize power when starved for a growth limiting resource. This may help to further explain 315	

how respiratory ammonification, which is overall energetically less favorable than denitrification 316	
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(lactate with nitrite: ∆Gº = -763.98 versus ∆Gº = -1196.93, respectively), can have higher growth 317	

yields [39] and growth rates (Figure 2, Figure S1) under C- and N-limitation due to the higher 318	

energy yield on a per-nitrite basis (denitrification: -217 KJ per mole nitrite; respiratory 319	

ammonification: -399 KJ per mole nitrite). For comparison, a total of 8 H+ are translocated 320	

during denitrification by I. calvum (not including nitrate reduction since both pathways share this 321	

step) (Figure 3): NADH dehydrogenase translocates 4 H+ per MKH2 oxidized and the bc1 322	

complex translocates an additional 4 H+ per MKH2 oxidized. However, 2 H+ must be consumed 323	

in the periplasm to reduce nitrite to NO [40]. qNor has a net zero H+ release (consumes 2 H+ to 324	

make N2O but releases 2 H+) without MKH2 regeneration [41]. Thus, a net total of 6 H+ are 325	

translocated per nitrite reduced in denitrification with added biosynthetic costs of making the bc1 326	

complex and qNor. In respiratory ammonification, MK/MKH2 redox pair is cycled between 327	

NADH dehydrogenase and formate dehydrogenase. 6 electrons and 8 H+ are needed to reduce 328	

nitrite to ammonium, thus 3 MKH2 are needed [16]. If MKH2 is received from NADH 329	

dehydrogenase, 12 H+ are translocated plus 2 H+ from FDH. As each MKH2 is oxidized at the 330	

binding site of NrfH, 2 H+ are liberated [16], resulting in a net total of 12 H+ translocated per 331	

nitrite reduced for respiratory ammonification. This implies that the cell might deplete its NADH 332	

pool more rapidly on a per nitrite basis. However, if more protons are pumped in the early stages 333	

of growth, the cell would be allocating the ATP generated for anabolism, as evidenced by higher 334	

growth rates in the cultures exhibiting higher amounts of respiratory ammonification (Figure 2), 335	

which is supported by the MPP.  336	

Under our high resource conditions (Figure 2; left panels), at C:NO3
- ratios ≥ 1, we observed that 337	

denitrification prevailed and these cultures had lower growth rates than the predominantly 338	

ammonium producing cultures. These high resource circumstances resulted in the production of 339	

toxic intermediates (i.e., NO2
- and possibly NO, albeit at undetectable levels), which may explain 340	

why these cultures had lower growth rates (Figure 2; left panels) and quasi-steady state growth 341	

curves in our high resource metabolite profile (Figure 3A). Rowley and colleagues [42] reported 342	

that at least 20% of the N2O released during high C conditions were produced by competition 343	

between nitrite and nitrate in the active-site of NarG. Under excess C concentrations, NarG 344	

produces intracellular NO from NO2
- and these intermediates are likely inhibitory to cell growth, 345	

which may explain why our growth curves (Figure 3A) reached a quasi-steady state before 346	

nitrate had been fully utilized (as compared to the low resource metabolite profile, Figure S2). 347	
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Furthermore, resources were not limiting growth under these conditions. Rather, the cells were 348	

likely experiencing toxicity from NO and NO2
- and thus the metabolic outcomes would be 349	

beyond the scope of the LM and MPP. Nonetheless, these results clearly demonstrate that end-350	

product formation from the two resource concentrations tested, with the same C:NO3
- ratios, are 351	

not identical thereby refuting the C:NO3
- control hypothesis. 352	

We selected a single treatment (8 mM lactate, 12 mM nitrate; C:NO3
- ratio = 2), in which we 353	

observed both denitrification and respiratory ammonification occurring simultaneously, for 354	

RNA-Seq in order to gain insight into the transcriptional organization of actively growing I. 355	

calvum cells (Figure 3). Strangely, we saw a decrease in transcript abundance encoding for two 356	

enzymes known to convert lactate to pyruvate, LDH and LUP. While normalized read counts 357	

(Figure S5) were generally consistent across growth phases, indicative of constitutive expression, 358	

further research investigating the mode of anaerobic lactate oxidation in I. calvum would 359	

illuminate how reducing equivalents are fed into its central metabolic pathway. For example, S. 360	

loihica PV-4 is known to use lactate for both denitrification and respiratory ammonification, but 361	

only uses acetate for denitrification [24]. Nonetheless, our transcriptomic data suggests that 362	

pyruvate plays a central role in providing reducing equivalents to the TCA cycle as Acetyl-CoA, 363	

as evidenced by significant upregulation in the genes encoding for pyruvate dehydrogenase and 364	

citrate synthase, as well as apparent “leaking” via incomplete lactate oxidation through the 365	

release of acetate and formate. Such leaking may be produced by a putative PFL, adding to the 366	

diversity of C utilization pathways feeding the ETC, and thereby driving pathway selection for 367	

nitrite reduction. Our transcriptomic results, coupled with a parallel metabolite profile (Figure 3), 368	

also suggest that the dual-pathway is induced by the presence of nitrite, and is not constitutively 369	

expressed like nitrate reductase, narG. Furthermore, it appears that the significant increase in 370	

transcript abundance for the gene encoding the bd oxidase helps to protect the anaerobic-371	

dependent biochemical machinery against oxidative stress, thereby scavenging any residual 372	

oxygen during anaerobic growth. 373	

Our metabolite profiles for N oxyanion respiration and N2O versus ammonium production show 374	

conflicting patterns relative to previous studies (Figure 3A, Figure S2). Yoon and colleagues [43] 375	

reported complete reduction of nitrate, production of nitrite, and then rapid consumption of 376	

nitrite, with N2O as the main end-product, by S. loihica PV-4 (5 mM lactate, 1 mM nitrate; 377	
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ratio=0.6). When Yoon and colleagues [43] replaced nitrate with nitrite as the dominant electron 378	

acceptor (5 mM lactate, 1 mM nitrite, ratio=0.6), ammonification prevailed. Other research has 379	

shown the same response to nitrite replacement and ammonification dominance using non-380	

fermentable C-sources (i.e., acetate) in chemostat enrichments of Geobacter lovleyi[44]. In our 381	

work, nitrite was never fully depleted (Figure 3A, Figure S2, Figure S3) and when nitrite was 382	

given as the only electron acceptor, the bacterium predominantly used denitrification but without 383	

concurrent growth (Figure S4). Similar to our work, Kraft and colleagues[34] also reported 384	

denitrification dominance when nitrite was supplied as the terminal acceptor. These differences 385	

highlight an incomplete understanding for the molecular mechanisms underlying the framework 386	

put forth by the LM and MPP.  387	

A detailed look into the biochemistry of ETC complexes helps to shed light on the molecular 388	

mechanisms modulating pathway bifurcation. For example, Yoon and colleagues [3] 389	

demonstrated that elevated pH selects for ammonification in S. loihica PV-4. This phenotypic 390	

response is due to a decrease in the midpoint potential of the Rieske protein at higher pH [45–391	

48]. Thus, any hindrance of electron flow through the bc1 complex would ultimately reduce the 392	

activity of downstream processes and promote alternative respiratory pathways. Nitrogen and C 393	

limitation have also been shown to influence flux distributions in redox sensitive proteins, 394	

including those found in electron transport [49]. A drop in the intracellular redox potential (redox 395	

poise) of the cell due to resource limitation may decrease the midpoint potential of the Rieske 396	

protein and reduce the activity of any downstream electron exit modules, such as NirK [50–52]. 397	

Thus, based on fundamental principles of protein redox chemistry and thermodynamics, it 398	

becomes clear that denitrification versus ammonification are likely not modulated by an arbitrary 399	

ratio of C:NO3
-, but rather by thermodynamic constraints of the Q-cycle [11, 12]. The phenotypic 400	

response of higher rates of denitrification over ammonification at high C:NO3
- ratios in other 401	

published studies [3, 4] may also be due to enrichment bias for organisms that utilize quinones 402	

with higher midpoint potentials in their bioenergetic chains (Figure 1). Bergdoll and colleagues 403	

[11] suggested that comparisons of Rieske/cytb complexes from organisms with high- and low-404	

potential quinones may help to reconcile the thermodynamic properties of Q-cycle function. 405	

However, most of our understanding of denitrification bioenergetics is based on evolutionarily 406	

recent UQ-based HP bioenergetic chains from Gram-negative α-, β-, γ-proteobacteria. Because I. 407	
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calvum uses a MK-based LP bioenergetic chain it may be possible that the differences in 408	

pathway selection across treatments are unique to LP chains.  409	

Piecing together the evolutionary history of the N-cycle using isotopic signatures for 410	

geochemically available N module cofactors (i.e., Ni, Fe, and Mo) coupled to molecular 411	

evolutionary analysis has revealed respiratory ammonification was likely a major component of 412	

the Archean N-cycle [33]. Abiotic nitrite formation and depletion of ammonia through 413	

photodissociation [53] would have created selective pressures for a dissimilatory N pathway that 414	

also produced assimilatory N. We demonstrate that NrfA proteins are significantly enriched in N 415	

compared to NirK (i.e., no evolutionary constraints to cost minimize N in the nrfA gene product 416	

[15]) (Figure 1B) and that ammonium production (without accumulation in the medium) 417	

supports growth in I. calvum (Figure 1C). The Nrf module is also relatively simplistic in that it 418	

receives electrons directly from the quinol pool and not the bc1 complex used in denitrification. 419	

The early exit of electrons from the ETC (i.e., before reaching the bc1 complex) suggests that Nrf 420	

may have originated prior to the bc1 complex. Furthermore, the quinol oxidation site (Qo) of 421	

cytochrome b contains a PDWY motif, indicative of an ancestral LP respiratory chain found in 422	

many Gram-positive organisms [54]. However, there is still debate regarding the presence of a 423	

cytochrome bc complex in the last universal common ancestor [54, 55]. Lastly, the Nrf module is 424	

wired to operate via a q-loop with formate dehydrogenase whose Mo-cofactors would have also 425	

been bioavailable during the Archean, further supporting an early evolution. 426	

In summary, we employ a new predictive framework that accounts for the biochemistry and 427	

evolutionary history of N modules, ETC complexes, and pool quinones to suggest the 428	

mechanisms by which these two pathways are regulated at the molecular level. With this 429	

understanding, it may be possible to extend our framework to environmental microbial 430	

populations and accelerate model development across different ecosystem scales (i.e., cross-scale 431	

systems biology). 432	
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Figure legends 587	

Figure 1. (A) Maximum likelihood phylogenetic tree of NrfA amino acid sequences from known 588	
respiratory ammonifiers and accompanying N-module composition for each organism. Pool 589	
quinone is also noted for dual-pathway nitrite reducers and model species. Colors of the main 590	
branches denote the 1st heme motif type: CxxCK and CxxCH. (B) Protein atomic composition 591	
for N and C normalized to protein length for NirK and NrfA nitrite reductases. (C) State-592	
transition from ammonium-replete to ammonium-deplete for I. calvum C5 grown under 8mM 593	
lactate 12mM nitrate minimal media at 30 ºC. Metabolite profiles for ammonium-deplete are 594	
shown. 595	

	596	

Figure 2. The effects of high resource (left; range of lactate concentrations with 12 mM NO3
-) 597	

and low resource (right; range of lactate concentrations with 1.2 mM NO3
-) concentrations with 598	

the same C:NO3
- ratio on pathway selection in I. calvum C5. (A) Production of N2O-N and net 599	

change of NH4
+ over a 100-hour incubation period at 30 ºC. Each bar represents the average of 600	

8-10 replicates per treatment (Table S5). (B) Fraction of dissimilated N by pathway. (C) Growth 601	
rates for each corresponding treatment. The x-axis label defines lactate concentration and C:NO3

- 602	
ratio in parentheses. 603	

	604	

Figure 3. (A) Time-series metabolite profiles for lactate, nitrate, and nitrite (top pane), 605	
production of dissimilated end-products as N2O-N and net change in NH4

+ ammonium 606	
production (middle pane), and corresponding growth curve of I. calvum cells grown under 8 mM 607	
lactate 12 mM nitrate (C:NO3

- ratio = 2) (bottom pane). Sampling points during growth phases 608	
are marked where transcriptomic profiling was performed (red arrows). (B) Metabolic 609	
reconstruction of the ETC from I. calvum with transcriptional changes for genes participating in 610	
dual-pathway dissimilatory nitrite reduction. Log2 fold changes in transcript abundance are 611	
shown for late exponential relative to early exponential growth phase (EE vs. LE), stationary 612	
phase relative to early exponential growth phase (EE vs. ST), and stationary phase relative to late 613	
exponential growth phase (LE vs. ST). Locus IDs for each gene product correspond to heat map 614	
subplots in the order shown (left-to-right for each growth phase and top-to-bottom for each locus 615	
ID specified). Higher transcript abundance is represented in red, lower transcript abundance in 616	
blue, and no change in transcript abundance in white. Significant changes in transcript 617	
abundance (p < 0.01) are marked as a red box. Value of log2 fold change is specified within each 618	
subplot. The log2 fold changes of 14 NADH dehydrogenase subunits (Intca_03465-03530) were 619	
averaged as transcriptional changes were all shifted in the same direction. 620	
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Figure 3. (A) Time-series metabolite profiles for lactate, nitrate, and nitrite (top pane), 
production of dissimilated end-products as N2O-N and net change in NH4

+ ammonium 
production (middle pane), and corresponding growth curve of I. calvum cells grown under 8mM 
lactate 12mM nitrate (C:NO3

- ratio = 2) (bottom pane). Sampling points during growth phases 
are marked for transcriptomic analysis. (B) Metabolic reconstruction of the ETC from I. calvum 
with transcriptional changes for genes participating in dual-pathway dissimilatory nitrite 
reduction. Log2 fold changes in transcript abundance are shown for late exponential relative to 
early exponential growth phase (EE vs. LE), stationary phase relative to early exponential 
growth phase (EE vs. ST), and stationary phase relative to late exponential growth phase (LE vs. 
ST). Locus IDs for each gene product correspond to heat map subplots in the order shown (left-
to-right for each growth phase and top-to-bottom for each locus ID specified). Higher transcript 
abundance is represented in red, lower transcript abundance in blue, and no change in transcript 
abundance in white. Significant changes in transcript abundance (p < 0.01) are marked as a red 
box. Value of log2 fold change is specified within each subplot. The log2 fold changes of 14 
NADH dehydrogenase subunits (Intca_03465-03530) were averaged as transcriptional changes 
were all shifted in the same direction. 
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