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Abstract  12 

Single-cell RNA sequencing has spurred the development of computational methods that enable 13 

researchers to classify cell types, delineate developmental trajectories, and measure molecular 14 

responses to external perturbations. Many of these technologies rely on their ability to detect genes 15 

whose cell-to-cell variations arise from the biological processes of interest rather than 16 

transcriptional or technical noise. However, for datasets in which the biologically relevant 17 

differences between cells are subtle, identifying these genes is a challenging task. We present the 18 

self-assembling manifold (SAM) algorithm, an iterative soft feature selection strategy to quantify 19 

gene relevance and improve dimensionality reduction. We demonstrate its advantages over other 20 

state-of-the-art methods with experimental validation in identifying novel stem cell populations of 21 

Schistosoma, a prevalent parasite that infects hundreds of millions of people. Extending our 22 

analysis to a total of 56 datasets, we show that SAM is generalizable and consistently outperforms 23 

other methods in a variety of biological and quantitative benchmarks.  24 
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Introduction 25 

Single-cell RNA sequencing (scRNAseq) datasets typically contain tens of thousands of 26 

genes, although many of them may not be informative for differentiating between cell types or 27 

states. Feature selection is thus commonly used to select a subset of genes prior to downstream 28 

analyses, such as manifold reconstruction and cell clustering (Crow et al., 2018; Satija et al., 2015; 29 

Vallejos et al., 2015). However, current approaches have two major limitations. 30 

First, feature selection methods filter genes based on arbitrarily or empirically chosen 31 

thresholds, small changes in which may result in different gene sets (Vallejos et al., 2017). In 32 

addition, the selection of features typically operates under the assumption that genes with highly 33 

variable expression between individual cells capture biologically meaningful variation. Because 34 

single-cell transcriptomes are inevitably contaminated by a combination of random transcriptional 35 

and technical noise (Grün et al., 2014), the variation in biologically relevant genes may be hard to 36 

distinguish from the background noise, especially when the differences between cell populations 37 

are subtle. Resolving these differences, or “signals”, is essential to study a variety of biological 38 

problems, including identifying cell subtypes (Olsson et al., 2016; Treutlein et al., 2014; Lönnberg 39 

et al., 2017; Fincher et al., 2018; Baron et al., 2016) and quantifying the effects of molecular 40 

perturbations to otherwise homogeneous populations of cells (Lane et al., 2017). In such datasets, 41 

only a small fraction of the genes, and therefore only a small fraction of the total variation, may 42 

contain the signals relevant for distinguishing cell types. Choosing these features ahead of time 43 

without a priori knowledge remains an unmet computational challenge.  44 

The second limitation is that existing methods have been almost exclusively benchmarked 45 

on well-annotated, gold standard datasets with clearly distinguishable cell types (Wang et al., 46 

2017; Kiselev et al., 2017; Duò et al., 2019; Bahlo et al., 2018). These datasets are not informative 47 
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for distinguishing the performance between methods, because the differences between cell types 48 

are relatively straightforward to detect. However, evaluating the performance of feature selection 49 

and/or dimensionality reduction methods on datasets with more subtle signals is difficult as their 50 

ground truth labels are typically ambiguous or nonexistent. 51 

To overcome the shortcomings of current feature selection approaches, here, we introduce 52 

the Self-Assembling Manifold (SAM) method, an unsupervised, "soft feature selection" algorithm 53 

that iteratively rescales gene expressions to refine a nearest neighbor graph of cells until the graph 54 

converges to a stable solution. At each iteration, SAM assigns more weight to genes that are 55 

spatially variable across the constructed graph, and this weighted gene expression is then used to 56 

improve the next nearest neighbor assignment. SAM presents two advantages: it rescales all genes 57 

according to their weights, solving the problem of thresholding, and it prioritizes genes that are 58 

variable across the intrinsic manifold of the data rather than selecting genes that are variable across 59 

individual cells. 60 

Second, in order to better distinguish the performance between methods, we define a 61 

network sensitivity measure to identify datasets with subtle signals. With limited annotations in 62 

most high-sensitivity datasets, we introduce unsupervised graph-based metrics to quantify the 63 

degree of structure within the reconstructed manifolds for comparison between methods. In 64 

addition, we perform benchmarking using known ground truth labels on simulated datasets 65 

spanning a wide range of sensitivities by introducing increasing levels of noise to well-annotated 66 

datasets. These analyses reveal that SAM consistently improves feature selection and cell 67 

clustering.  68 

To demonstrate the utility of SAM in practice, we provide an in-depth analysis of two 69 

datasets that are challenging to analyze using existing methods: stem cells in a human parasitic 70 
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worm, Schistosoma, and activated macrophages (Lane et al., 2017). We show that SAM can 71 

capture novel biology undetectable by other methods and validate these results with experimental 72 

evidence.  73 
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Results 74 

The SAM algorithm 75 

The SAM algorithm begins with a random k-nearest neighbor (kNN) graph and averages 76 

the expression of each cell with its k nearest neighbors: 𝐶 =
1

𝑘
𝑁𝐸, where 𝑁 is the directed 77 

adjacency matrix and 𝐸 is the gene expression matrix (Figure 1a). For each gene i, SAM computes 78 

a spatial dispersion factor of the averaged expressions 𝐶𝑖, which measures variation across 79 

neighborhoods of cells rather than individual cells (Methods). These dispersions are used to 80 

calculate the gene weights, which then rescale the expression matrix: 𝐸̂ = 𝐸√𝑊𝐷, where 𝑊𝐷 is a 81 

diagonal matrix with gene weights along the diagonal. Using the rescaled expressions 𝐸̂, we 82 

compute a pairwise cell distance matrix and update the assignment of each cell’s k-nearest 83 

neighbors accordingly. This cycle continues until the gene weights converge.  84 

 To demonstrate the implementation and utility of SAM, below we analyze a challenging 85 

dataset comprised of a few hundred relatively homogeneous stem cells isolated from Schistosoma 86 

mansoni (Figure 1–Figure supplement 1), a widespread human pathogen (Hoffman et al., 2014). 87 

Using a protocol we have established previously (Wang et al., 2018), these cells were collected by 88 

sorting dividing cells from juvenile parasites harvested from their mouse hosts at 2.5 weeks post 89 

infection. At this stage, the parasites use an abundant stem cell population (~15-20% of the total 90 

number of cells) for rapid organogenesis and growth (Wang et al., 2013; Wang et al., 2018). 91 

Testing several existing methods (Wang et al., 2017; Kiselev et al., 2017; Satija et al., 2015), we 92 

found that they were not able to identify distinct cell populations in this dataset. In contrast, SAM 93 

finds a stable solution independent of initial conditions (Figure 1b). A graph structure with clearly 94 

separated cell populations self-assembles through the iterative process (Figure 1c). In parallel, the 95 

gene weights converge onto the final weight vector. Eventually, only a small fraction of genes 96 
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(~1%) are strongly weighted and useful for separating cell clusters, reflecting the inherent 97 

difficulty of analyzing this dataset. 98 

 Figure 1d shows that SAM iteratively improves a series of graph characteristics, including 99 

the network-average clustering coefficient (NACC), modularity, and Euclidean norm of the spatial 100 

dispersions (Methods). The NACC and modularity quantify the degree of structure within the 101 

graphs – graphs with high NACC and modularity have regions of high density separated by regions 102 

of low density. The dispersion quantifies the spatial organization of gene expression – the higher 103 

the spatial dispersion the less uniformly distributed the gene expressions are along the graph. 104 

Importantly, we verified that SAM does not artificially boost these metrics in data that lack 105 

inherent structure: when applying SAM to a randomly shuffled expression matrix, none of these 106 

metrics increased from the random initial conditions. 107 

 108 

SAM identifies novel subpopulations within schistosome stem cells 109 

 Visualizing the converged graph in two dimensions using Uniform Manifold 110 

Approximation and Projection (UMAP, Becht et al., 2019), we find that cells can be separated into 111 

three main populations, with Louvain clustering (Blondel et al., 2008) further splitting one of these 112 

clusters into two subpopulations (Figure 2a). In contrast, other commonly-used dimensionality 113 

reduction methods, such as principal component analysis (PCA), Seurat (Satija et al., 2015), and 114 

SIMLR (Wang et al., 2017), failed to distinguish these cell populations (see Methods for the 115 

selection of algorithms for comparison). Supplementary Table 1 lists genes with high SAM 116 

weights, which includes most markers that were previously implicated to be enriched in subsets of 117 

schistosome stem cells (Wang et al., 2013; Wang et al., 2018).  118 

Figure 2b shows that the three populations include previously characterized δ′-cells, which 119 
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specifically express an RNA binding protein nanos-2 (Smp_051920), and ε-cells, which are 120 

marked by the expression of eledh (eled, Smp_041540) (Wang et al., 2018). More importantly, 121 

SAM reveals a novel stem cell population, 𝜇, comprising ~30% of all sequenced cells (𝜇 denotes 122 

muscle progenitors as discussed below). While 𝜇-cells express ubiquitous stem cells markers (e.g., 123 

ago2-1, Smp_179320; cyclin B, Smp_082490) and cell cycle regulators (Figure 2–Figure 124 

supplement 1a) (Collins et al., 2013; Wang et al., 2013; Wang et al., 2018), they are also strongly 125 

enriched for a large set of genes, with a calcium binding protein (cabp, Smp_005350), an actin 126 

protein (Smp_161920), an annexin homolog (Smp_074140), a helix-loop-helix transcription factor 127 

(dhand, Smp_062490), and a phosphatase (dusp10, Smp_034500) as the most specific markers of 128 

this population in comparison to other stem cells (Figure 2–Figure supplement 1b).  129 

Fluorescent in-situ hybridization (FISH) in conjunction with EdU labeling of dividing cells 130 

reveals that 𝜇-cells (cabp+EdU+) are distributed near the parasite surface right beneath a layer of 131 

post-mitotic differentiated cells that also express cabp (Figure 2c). Close to the parasite surface, 132 

there are two major cell types intertwined in space: the skin-like tegumental cells and the body 133 

wall muscle cells. However, 𝜇-cells express none of the recently identified markers in tegumental 134 

progenitors (Wendt et al., 2018), suggesting that they may be associated with the muscle lineage. 135 

To test this idea, we performed double FISH experiments and observed in post-mitotic cabp+ cells 136 

the coexpression of a set of canonical muscle markers (Witchley et al., 2013), including 137 

tropomyosin (Smp_031770), myosin (Smp_045220), troponin (Smp_018250), and collagen 138 

(Smp_170340) (Figure 2d). These results suggest that cabp is a specific marker for parasite body 139 

wall muscles and 𝜇-cells are the muscle progenitors. Why the juvenile parasites maintain such an 140 

active pool of muscle progenitors will be an important question for future studies. 141 

 In addition, SAM identifies two subpopulations among ε-cells: εɑ-cells that are highly 142 
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enriched for an aschaete-scute transcription factor (astf, Smp_142120), and εβ-cells that 143 

abundantly express another basic helix-loop-helix protein (bhlh, Smp_087310) (Figure 2b, right 144 

panels). FISH experiments confirm these cells to be in close spatial proximity but with no 145 

coexpression of astf and bhlh (Figure 2e). Moreover, we observed with FISH that there are fewer 146 

astf+ cells in larger, more matured juveniles, suggesting εɑ-cells are a dynamic population during 147 

development. To verify this observation, we sequenced another ~370 stem cell from juveniles at a 148 

later developmental time point (3.5 weeks post infection). After correcting for batch effects in the 149 

combined 2.5- and 3.5-week datasets using the mutual nearest neighbors (MNN) algorithm 150 

(Haghverdi et al., 2018), we find that δ′-, 𝜇-, and εβ-cells remain relatively constant throughout 151 

both time points, whereas εɑ-cells comprise a significantly smaller fraction of the stem cells at 3.5 152 

weeks (7%) compared to 21% at 2.5 weeks (Figure 2f). Taken together, these analyses 153 

demonstrate that SAM can identify experimentally validated stem cell populations that are 154 

previously too subtle to separate using other methods but are closely associated with the 155 

schistosome development. 156 

The critical difference between SAM and other methods lies in how they select genes for 157 

manifold reconstruction. SAM prioritizes genes with variable expressions across neighborhoods 158 

of cells rather than individual cells as in other methods (e.g., Seurat). Figure 2g shows that genes 159 

with high standardized dispersion across individual cells often have low SAM weights, indicating 160 

that these highly variable genes (HVGs) are irrelevant to the topological relationships between 161 

cells. Other methods (e.g. SC3, Kiselev et al., 2017) identify marker genes based on differential 162 

gene expression between cell clusters, but this approach suffers when cell cluster assignment is 163 

poor, especially when discrete cell groups are difficult to separate or absent. Indeed, SC3 failed in 164 

the default mode as it incorrectly predicted there to be only one cluster in the schistosome dataset. 165 
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After we manually increased the number of clusters, SC3 could recover a few of the marker genes 166 

associated with only one (𝜇-cells, blue symbols in Figure 2h) of the populations detected by SAM. 167 

Furthermore, changing the number of clusters resulted in different solutions and large variability 168 

in SC3 scores for its top ranked genes.  169 

 170 

SAM outperforms other state-of-the-art methods in extensive quantitative benchmarking 171 

  Below, we assess the general applicability of SAM by benchmarking its performance 172 

against state-of-the-art scRNAseq analysis methods on a large collection of datasets. We focus on 173 

three methods, i.e., Seurat, SIMLR, and SC3, as they are mostly unsupervised, have been broadly 174 

used, and were shown to outperform other methods through extensive benchmarking (Kiselev et 175 

al., 2017; Wang et al., 2017; Duò et al., 2019; Bahlo et al., 2018; Tian et al., 2019, see Methods 176 

for the selection of algorithms for comparison). We first benchmark against nine datasets 177 

(Supplementary Table 2) that have high-confidence annotations to evaluate the accuracy of SAM 178 

in assigning cell clusters. We find that SAM has the highest Adjusted Rand Index (ARI, a measure 179 

of clustering accuracy) (Hubert and Arabie, 1985) on eight out of the nine datasets and does not 180 

over cluster the data (Figure 3a). Furthermore, SAM converges to the same set of gene weights 181 

for all datasets analyzed (Figure 3b, Figure 3-Figure supplement 1a) and its performance is 182 

robust to the choice of parameters and random initial conditions (Figure 3-Figure supplement 183 

1b-c). In contrast, applying SAM to randomly generated datasets (Methods), the resulting gene 184 

weights are highly dissimilar across random initial conditions (Figure 3b), indicating that SAM 185 

does not converge to a stable solution on datasets with no intrinsic structure. Finally, the scalability 186 

of SAM is similar to that of Seurat, capable of analyzing hundreds of thousands of cells in minutes 187 

(Figure 3c), whereas SIMLR and SC3 are orders of magnitudes slower and thus excluded from 188 
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further benchmarking which requires the analysis of many more datasets.  189 

Because these nine datasets are all comprised of clearly distinguishable cell types, they 190 

may not represent the performance of methods on other datasets that contain cell populations that 191 

are only subtly different. To identify such datasets, we introduce a network sensitivity metric that 192 

quantifies the changes in the cell-to-cell distances when randomly selecting a subset of features 193 

from the gene expression matrices (Methods). High network sensitivity indicates that changes to 194 

the selected features strongly alters the resulting topological network. Networks that are robust to 195 

the selected features correspond to datasets that have many redundant signals or genes 196 

corroborating that network structure. In the datasets we compiled (Supplementary Table 2), all 197 

broadly-used benchmarking datasets have lower sensitivities whereas the schistosome dataset, 198 

which we have shown to be challenging to analyze for other methods, has the highest sensitivity 199 

(Figure 4a). The fraction of genes with large SAM weights (>0.5) is negatively correlated with 200 

the network sensitivity, suggesting that the biologically relevant variation in datasets with high 201 

sensitivity is captured by relatively fewer genes (Figure 4b). Analyzing all 56 datasets, we found 202 

that SAM improves the clustering, modularity, and spatial organization of gene expression across 203 

the graph in comparison to Seurat as the datasets become increasingly sensitive (Figure 4c). 204 

Evaluating the clustering accuracy for the highly sensitive datasets, however, is 205 

challenging, because many of them have incomplete or nonexistent cell type annotations. 206 

Therefore, we use the nine well-annotated benchmarking datasets to simulate data across a wide 207 

spectrum of sensitivities. For this, we corrupt the data by randomly permuting gradually increasing 208 

fractions of the gene expressions. As illustrated by the Darmanis dataset (Darmanis et al., 2015), 209 

Figure 5a shows that the sensitivity increases along with the corruption. SAM’s ARI scores only 210 

marginally decrease as the corruption (and thereby sensitivity) increases, whereas Seurat’s 211 
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performance rapidly deteriorates. A similar contrast was observed with the NACC, modularity, 212 

and spatial dispersion between SAM and Seurat. Importantly, passing the genes with high SAM 213 

weights into Seurat rescued its performance across all metrics, indicating that SAM is able to 214 

consistently capture the genes relevant to the underlying structure of the data even with increasing 215 

levels of noise and illustrating the robustness of its feature selection strategy compared to the HVG 216 

filtering approach of Seurat. These observations generalize to all nine benchmarking datasets, 217 

quantified by the area under the curves (AUC) of the metrics with respect to corruption (Figure 218 

5b).  219 

 220 

SAM clusters macrophages by their activation dynamics with proper temporal ordering 221 

We next highlight another dataset to show that SAM can recover biologically meaningful 222 

information that other methods fail to capture. We chose this example, which contains ~600 223 

macrophages treated with lipopolysaccharide (LPS) when individually trapped in microfluidic 224 

channels (Lane et al., 2017), because it has high network sensitivity (Figure 4a) and has 225 

accompanying single cell functional data of macrophage activation dynamics that may help 226 

validate the results of our analysis. Applied to this dataset, SAM initially identifies two clusters 227 

(Figure 6a, top). Performing gene set enrichment analysis (GSEA, Methods, Subramanian et al., 228 

2005), we find that genes with high SAM weights are dominated by cell cycle-related processes, 229 

with one of the clusters heavily enriched for cell cycle genes (e.g., Top2a, Mki67, Figure 6-Figure 230 

supplement 1a). After removing the cell cycle effects (Methods), SAM identifies two different 231 

clusters in which cells are properly ordered by the time since LPS induction, with the highly 232 

weighted genes being primarily involved in immune signaling (Figure 6a, bottom). These 233 

observations demonstrate that, in conjunction with GSEA, the quantitative gene weights output by 234 
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SAM can be used to infer the biological pathways that drive the clustering of cells.    235 

One of the two clusters is enriched for TNFα expression (Figure 6b). It is known that LPS 236 

activates two independent pathways, one through the innate immune signal transduction adaptor 237 

(Myd88) and the other through the TIR-domain-containing adapter-inducing interferon-β (TRIF) 238 

(Lee et al., 2009). While the Myd88 pathway directly activates NF-κB, the TRIF pathway first 239 

induces the secretion of TNFα, which subsequently binds to its receptor, TNFR, to prolong the 240 

activation of NF-κB (Figure 6c). Figure 6d and Figure 6-Figure supplement 1b show examples 241 

of genes that are highly enriched with TNFα, a number of which are inflammatory factors known 242 

to accumulate due to prolonged NF-κB activation (Lane et al., 2017). These results suggest that 243 

SAM grouped the cells based on their activated signaling pathways: one cluster is activated 244 

through both Myd88 and TRIF pathways (MT) while the other is only activated through Myd88 245 

(M).  246 

To further verify that the separation between the MT and M clusters truly reflects the 247 

dichotomy in cellular response to LPS induction, we noted that this dataset combines scRNAseq 248 

with live-cell imaging of NF-κB activity in single cells. This allows us to directly test if the MT 249 

and M clusters correspond to different signaling dynamics (Methods). We found that most of the 250 

cells with prolonged NF-κB response (i.e., cells showing broad peaks of NF-κB activation in time) 251 

are in fact in the MT cluster (Figure 6e-f, and Figure 6-Figure supplement 2a), consistent with 252 

the expectation that TNFα signaling prolongs NF-κB activation. Although our interpretation of the 253 

data matches that provided in the original study, we were able to analyze the dataset with almost 254 

no a priori knowledge. In contrast, the original study required extensive manual curation, analyzed 255 

only a subset of the dataset, and could not group cells by their NF-κB activation dynamics from 256 

the gene expression data alone. Similarly, Seurat and SIMLR were unable to order the cells by the 257 
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time since LPS induction or group cells based on their activation dynamics after removing the cell 258 

cycle effects (Figure 6g, and Figure 6-Figure supplement 2b-c).   259 
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Discussion 260 

 Here, we introduced a scRNAseq analysis method, SAM, that uses an unsupervised, robust, 261 

and iterative strategy for feature selection and manifold reconstruction. As demonstrated by our 262 

analysis of the schistosome stem cells and activated macrophages, SAM can capture biology that 263 

is undetectable by other methods. While SAM has consistently higher clustering accuracy than 264 

other state-of-the-art methods on datasets containing clearly distinct cell types, its advantages are 265 

especially apparent on datasets in which cell states or types are only distinguishable through subtle 266 

differences in gene expression.  267 

The strength of SAM lies in the integration of three algorithmic components: spatial 268 

dispersion to measure feature relevance, soft feature selection, and the iterative scheme. By 269 

averaging the gene expression of a cell with that of its neighbors, the spatial dispersion quantifies 270 

the variation across neighborhoods of cells rather than individual cells. Genes with high spatial 271 

dispersion are more likely to be biologically relevant as they are capable of separating cells into 272 

distinct topological locations. Soft feature selection includes all genes and weights their 273 

contribution to the manifold reconstruction by their spatial dispersions. This mitigates the 274 

shortcoming of existing approaches in which the selection of features is a binary decision: genes 275 

are either included or not depending on arbitrarily chosen thresholds.  276 

The conceptual challenge here is that calculating the gene weights requires the manifold, 277 

but reconstructing the manifold requires the gene weights for feature selection. SAM thus uses an 278 

iterative strategy to converge onto both the gene weights and the corresponding graph topology 279 

from a random initial graph. Each successive iteration refines the gene weights and network 280 

structure until the algorithm converges. Empirically, for all datasets analyzed we have shown that 281 

SAM converges onto a stable solution and is robust to the random initial conditions. Practically, 282 
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we could initialize SAM using the graph output of another method such as Seurat, but using 283 

random initial conditions avoids potential biases in the analysis and enables the evaluation of the 284 

stability of SAM.  285 

To demonstrate the strengths of SAM in practice, we analyzed the schistosome stem cells 286 

and identified novel stem cell populations that were validated by FISH experiments (Figure 2). In 287 

the analysis of activated macrophages, we showed that SAM can simultaneously order cells by the 288 

time since LPS induction and group cells according to their respective activated signaling 289 

pathways. We have validated this result using the live-cell imaging data presented in the original 290 

study (Figure 6).  291 

We expect the application of SAM is not limited to feature selection, cell clustering, and 292 

manifold reconstruction; it can be readily integrated with existing analytical pipelines as its gene 293 

weights and reconstructed manifolds can be used in downstream analyses. For example, we have 294 

shown how the genes ranked by their SAM weights can be used as input to GSEA to determine 295 

the biological processes enriched among the highly weighted genes (Figure 6), thus directly 296 

testing if the weights reflect biologically relevant genes. Additionally, the manifold reconstructed 297 

by SAM can be used as input to pseudotemporal ordering algorithms (Setty et al., 2016; Trapnell 298 

et al., 2014). 299 

Beyond the two example case studies, we have rigorously evaluated SAM on a total of 56 300 

datasets. While previous studies benchmarked on datasets with clearly defined cell populations, 301 

we defined a network sensitivity measure to rank the datasets based on the inherent difficulty of 302 

their analysis (Figure 4). Using these datasets, we showed that SAM consistently outperforms 303 

other methods in terms of both cell clustering accuracy measured by ground truth annotations, and 304 

manifold reconstruction measured by quantitative graph characteristics. These improvements can 305 
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be attributed to the robust selection of features relevant for cell clustering and manifold 306 

reconstruction even in the presence of significant amounts of random noise, as shown in the 307 

corruption tests (Figure 5). Overall, the network sensitivity and quantitative benchmarking metrics 308 

should help in characterizing the performance of future scRNAseq analysis methods across a wider 309 

variety of datasets.   310 
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Materials and Methods 311 

 312 

Code and data availability. The SAM source code and tutorials can be found at 313 

https://github.com/atarashansky/self-assembling-manifold. The schistosome stem cell scRNAseq 314 

data generated in this study is available through the Gene Expression Omnibus (GEO) under 315 

accession number GSE116920. 316 

 317 

Data processing. Supplementary Table 2 summarizes all datasets used in this study as well as 318 

the methods used to convert raw sequence read counts to gene expression, such as TPM (transcripts 319 

per million), CPM (counts per million), RPKM (reads per kilobase per million), or FPKM 320 

(fragments per kilobase per million). Datasets with asterisks next to their accession numbers are 321 

sourced from the conquer database (Soneson and Robinson, 2018). The nine benchmarking 322 

datasets used with high-confidence labels are marked by crosses. Gene expression is measured in 323 

log space with a pseudocount of 1 (e.g., log2(TPM+1)). Genes expressed (log2(TPM+1)>1) in 324 

fewer than 1% or more than 99% of cells are excluded from downstream analysis as these genes 325 

lack statistical power. To reduce the influence of technical noise near the molecular detection limit, 326 

we set gene expression to zero when log2(TPM+1)<1. We denote the resulting expression matrix 327 

as 𝐸. 328 

In the SAM algorithm (see below), we either standardize the gene expression matrix 𝐸 to 329 

have zero mean and unit variance per gene (which corrects for differences in distributions between 330 

genes) or normalize the expressions such that each cell has unit Euclidean (L2) norm (which 331 

prevents cells with large variances in gene expressions from dominating downstream analyses) 332 

prior to dimensionality reduction. In the below section, we denote the standardized or normalized 333 

expression matrix as 𝐸̅. Empirically, we have found that standardization performs well with large, 334 
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sparse datasets collected through droplet-based methods, whereas L2-normalization is more 335 

suitable for smaller datasets with higher sequencing depth such as those prepared with the Smart-336 

Seq2 protocol (Picelli et al., 2013). This is likely due to the fact that standardization amplifies the 337 

relative expression of genes specific to small populations in large datasets, thereby making them 338 

easier to identify. In contrast, standardization decreases the relative expression of genes specific 339 

to populations comprising larger fractions of the data, as is typically the case in smaller datasets, 340 

thereby making distinct populations more difficult to identify. Supplementary Table 2 documents 341 

the preprocessing step used for each dataset. 342 

 343 

The SAM algorithm. After first generating a random kNN adjacency matrix, the SAM algorithm 344 

goes through three steps that are repeated until convergence. 345 

 346 

1) Calculate the gene weights  347 

First, the expression of each cell is averaged with its k-nearest neighbors: 348 

 
𝐶 =

1

𝑘
𝑁𝐸 (1) 

where 𝑁 is the directed adjacency matrix for the kNN graph, and 𝐸 is the original 𝑛 x 𝑚 gene 349 

expression matrix with rows as cells and columns as genes. Here, we do not use 𝐸̅ as it may 350 

contain negative values, for which dispersion is ill-defined. For each gene i, SAM computes the 351 

Fano factor from the averaged expressions 𝐶𝑖: 352 

 
𝜇𝐶𝑖

=
1

𝑛
∑ 𝐶𝑗𝑖

𝑛

𝑗=1

 (2) 
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𝜎𝐶𝑖

2 =
1

𝑛
∑(𝐶𝑗𝑖 − 𝜇𝐶𝑖

)2

𝑛

𝑗=1

 (3) 

 
𝐹𝑖 =

𝜎𝐶𝑖

2

𝜇𝐶𝑖

 (4) 

where 𝜇𝐶𝑖
 is the mean and 𝜎𝐶𝑖

2  is the variance. We use the Fano factor to measure the gene 353 

expression variance relative to the mean in order to account for the fact that genes with high mean 354 

expressions tend to have higher variability. Computing the Fano factors based on the kNN-355 

averaged expressions links gene dispersion to the cellular topological structure: Genes that have 356 

highly variable expressions among individual cells but are homogeneously distributed across the 357 

topological representation should have small dispersions. 𝑘, set by default to 20, determines the 358 

topological length scale over which variations in gene expression are quantified. Figure 3-Figure 359 

supplement 1b shows that the downstream analysis is robust to the specific choice of 𝑘. 360 

Additionally, the choice of 𝑘 does not significantly affect runtime complexity or scalability. 361 

 To compute the gene weights, we normalize the Fano factors to be between 0 and 1. First, 362 

we saturate the Fano factors to ensure that outlier genes with large spatial dispersions do not skew 363 

the distribution of weights: 364 

 {𝐹𝑖|𝐹𝑖 > 𝑧} = 𝑧 
(5) 

where 𝑧 is by default the mean of the largest 50 dispersions. In other words, Fano factors exceeding 365 

this number are saturated to be 𝑧. We then calculate the gene weights as: 366 

 
𝑊𝑖 =

𝐹𝑖

𝑧
 (6) 

2) Rescale the expression matrix 367 

Having calculated the gene weights, SAM multiplies them into the preprocessed expression 368 

matrix: 369 
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 𝐸̂ = 𝐸̅√𝑊𝐷 
(7) 

where 𝐸̅ is the standardized or normalized expression matrix and 𝑊𝐷 is a diagonal matrix with 𝑊𝑖 370 

along the diagonal. This matrix multiplication linearly rescales the gene expression variances and 371 

gene-gene covariances by their respective weights, attenuating the influence of genes with low 372 

dispersions across neighborhoods. 373 

 374 

3) Updating the kNN graph 375 

To compute pairwise cell-cell distances, we perform PCA on the rescaled expression 376 

matrix 𝐸̂. The variance-scaling operation in Eq. 7 improves the robustness of PCA to variations in 377 

genes that are uniformly distributed along the current graph (i.e., genes with low weights). 378 

Furthermore, this weighting strategy eliminates the typical requirement of selecting a subset of 379 

HVGs to feed into PCA, which often relies on arbitrary thresholds and heuristics. To perform PCA, 380 

we first mean center 𝐸̂ to form 𝐸̂𝜇: 381 

 
𝐸̂𝜇 = 𝐸̂ −

1

𝑛
𝑒𝑒𝑇𝐸̂ (8) 

where e is a column vector of ones with dimension n. We then compute the Singular Value 382 

Decomposition (SVD) of 𝐸̂𝜇: 383 

 𝐸̂𝜇 = 𝑈𝑆𝑉𝑇 
(9) 

with the principal components defined as 384 

 𝑃 = 𝑈𝑆 
(10) 

The eigenvalues corresponding to the eigendecomposition of the gene-gene covariance matrix 385 

are defined in terms of the singular values as 386 
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Λ =

𝑆2

𝑛 − 1
 (11) 

where S is a diagonal matrix with singular values along the diagonal. Using the PC matrix 𝑃, SAM 387 

computes a pairwise cell-cell distance matrix. While typical dimension reduction approaches select 388 

a subset of the PCs, which is often subjective or requires computationally intensive maximum-389 

likelihood approaches, we include all PCs and scale their variances by their corresponding 390 

eigenvalues: 391 

 𝑃̂ = 𝑃√Λ 
(12) 

As a result, PCs with small eigenvalues are weighted less in the calculation of the distance between 392 

cells i and j, 𝐷𝑃𝑖𝑃𝑗
. 𝐷𝑃𝑖𝑃𝑗

 is the Pearson correlation or Euclidean distance between rows 𝑃𝑖 and 𝑃𝑗 393 

in the PC matrix. Pearson correlation distance is used by default, although Figure 3-Figure 394 

supplement 1c shows that SAM is robust to the choice of distance metric. Using the distances to 395 

define the k-nearest neighbors for each cell, SAM updates the kNN matrix and repeats steps 1-3. 396 

The algorithm continues until convergence, defined as when the RMSE between gene weights in 397 

adjacent iterations diminished as defined by: 398 

 

√
1

𝑚
∑(𝑊𝑖,𝑗 − 𝑊𝑖+1,𝑗)2

𝑚

𝑗=1

< 5 × 10−3 
(13) 

where 𝑚 is the number of genes and 𝑊𝑖,𝑗 is the weight for gene 𝑗 at iteration 𝑖. 399 

 400 

Visualization. To visualize the topological structure identified by SAM, we feed the final 401 

weighted PCA matrix, 𝑃̂, into UMAP (Becht et al., 2019) using Pearson correlation as the distance 402 

metric by default. To directly visualize the final kNN adjacency matrix (Figure 1c), we used the 403 

Fruchterman-Reingold force-directed layout algorithm and drawing tools implemented in the 404 
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Python package graph-tool (Peixoto, 2017).  405 

 406 

Choosing the benchmarking methods. We used three main criteria for choosing the benchmark 407 

scRNAseq analysis methods: they should be widely used, have done extensive benchmarking 408 

against other methods, and be mostly unsupervised. We found on Web of Science that among the 409 

highest cited scRNAseq analysis tools in 2017-2018 are Seurat, SC3, SIMLR, Reference 410 

Component Analysis (RCA, Li et al., 2017), Monocle (Trapnell et al., 2014), zero-inflated factor 411 

analysis (ZIFA, Pierson and Yau, 2015), and Wishbone (Setty et al., 2016), of which we chose 412 

Seurat, SC3, and SIMLR. 413 

SC3 is a consensus clustering algorithm that has done rigorous benchmarking against other 414 

methods such as SINCERA (Guo et al., 2015), SNN-Cliq (Xu and Su, 2015) and pcaReduce 415 

(Žurauskien and Yau, 2016) on 12 datasets with ground truth labels. SIMLR, a dimensionality 416 

reduction and clustering algorithm, evaluated its clustering performance on four annotated datasets 417 

against eight other dimensionality reduction methods, including PCA, Factor Analysis (FA), t-418 

SNE, multidimensional scaling (MDS), and (ZIFA). Both methods have demonstrated the highest 419 

clustering accuracy across most of the tested datasets. Additionally, as both methods have built-in 420 

functions to estimate the number of clusters present within the data, they are largely unsupervised. 421 

We also selected Seurat as one of the benchmarking methods, because it is arguably the most 422 

widely used tool for dimensionality reduction and clustering of scRNAseq data and has performed 423 

well in rigorous benchmarking studies against various methods including SC3, SIMLR, RCA, and 424 

pcaReduce (Duò et al., 2019; Bahlo et al., 2018).  425 

We did not select Reference Component Analysis as it is primarily designed for cases in 426 

which an atlas of bulk, cell-type specific, reference transcriptomes is present. Additionally, we did 427 
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not benchmark against Monocle and Wishbone, because they are pseudotime analysis methods 428 

and are meant for datasets with continuous branching processes such as cell differentiation. 429 

However, it is important to note that SAM can be used for dimensionality reduction upstream of 430 

pseudotime algorithms for such datasets. Finally, we did not benchmark against ZIFA as it has 431 

already been shown to have lower clustering accuracy than SIMLR. 432 

 In addition to measuring clustering accuracy, we also introduce the unsupervised NACC, 433 

modularity, and spatial dispersion metrics to quantify both the degree of structure and spatial 434 

organization of gene expression within a nearest-neighbor graph. As such, these metrics can only 435 

be applied to dimensionality reduction methods that construct a graph representation of the dataset. 436 

Consequently, we cannot use these metrics to evaluate SC3.  437 

 Although it does technically produce a graph representation of the data, SIMLR should be 438 

considered as a hybrid between a clustering and dimensionality reduction method. Because its 439 

similarity graph is assumed to have a block structure where the number of blocks is equal to the 440 

prespecified number of clusters, the resulting nearest-neighbor graph will, by construction, tend to 441 

have a higher degree of structure and therefore artificially inflated NACC and modularity.  442 

Furthermore, the poor scalability of SC3 and SIMLR makes them difficult to run for many 443 

trials across a large number of datasets. Although SIMLR, in particular, does provide an alternative 444 

algorithm that can scale to much larger datasets, it has not been extensively benchmarked. Even 445 

so, despite the improved speed of this large-scale implementation, estimating the number of 446 

clusters using its built-in function remains a significant computational and memory bottleneck. For 447 

example, when applied to the ~10,000 planarian neoblasts, neither implementations of SIMLR 448 

could estimate the number of clusters within 2 hours.  As a result, we cannot run SIMLR in an 449 

unsupervised manner on datasets significantly larger than ~3000 cells.  450 
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As there are few practical alternatives for manifold reconstruction that have been as 451 

extensively benchmarked and widely used, we primarily compare SAM to Seurat in tests involving 452 

the unsupervised, graph-based metrics to highlight the key, advantageous characteristics of SAM 453 

as a manifold reconstruction and feature selection algorithm when applied to datasets with varying 454 

sensitivities (Figure 4a-c). 455 

 456 

Benchmarking. To generate the convergence curves in Figure 1b, we computed the root mean 457 

square error (RMSE) of the gene weights averaged across all pairwise comparisons of ten 458 

replicates starting from randomly generated initial graphs. In Figure 3b, we extend this analysis 459 

to all datasets analyzed and report the final error. We use randomly generated datasets of varying 460 

sizes (ranging from 200 to 5000 cells) as a negative control to show that SAM does not converge 461 

onto the same solution across initial conditions when the data has no intrinsic structure. These 462 

datasets were randomly generated by sampling gene expressions from a Poisson distribution with 463 

mean drawn from a gamma distribution. To generate the convergence curves in Figure 3-Figure 464 

supplement 1a, we computed the RMSEs, which are ensemble-averaged across ten replicate runs, 465 

between the gene weights in adjacent iterations. We compute the adjacency error between kNN 466 

adjacency matrices 𝑁𝑖 and 𝑁𝑗 (Figure 1b) as 467 

 
𝐴𝑖,𝑗 =  

𝑒𝑇|𝑁𝑖  −  𝑁𝑗|𝑒

2𝑒𝑇𝑁𝑖𝑒
 (14) 

where 𝑒 is a column vector of ones. This simply measures the fraction of total edges that are 468 

different between the two graphs.  469 

 To compute the standardized dispersion factors in Figure 2g, we used Seurat’s 470 

methodology implemented in Scanpy (Wolf et al., 2018), which groups the genes into 20 bins 471 

based on their mean expression values and computes the z-score of each gene’s Fano factor with 472 
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respect to the mean and standard deviation of all Fano factors in its corresponding bin. To generate 473 

the AUROC scores in Figure 2h, which quantify the likelihood of genes being cluster-specific 474 

markers, we ran SC3 on the schistosome data with the number of clusters ranging from 2 to 12. 475 

We used the AUROC scores corresponding to 4 clusters for the points on the scatter plot and the 476 

standard deviations of the scores across all tested numbers of clusters for the error bars.   477 

 We evaluated each analysis method on nine gold standard datasets (Figure 3a) using the 478 

Adjusted Rand Index (ARI), which measures the accuracy between two cluster assignments 𝑋 and 479 

𝑌 while accounting for randomness in the clustering: 480 

 

𝐴𝑅𝐼 =
∑ (

𝑛𝑖𝑗

2
) − [∑ (

𝑎𝑖

2
) ∑ (

𝑏𝑗

2
)] (

𝑛
2

)⁄

1
2 [∑ (

𝑎𝑖

2
) + ∑ (

𝑏𝑗

2
)] − [∑ (

𝑎𝑖

2
) ∑ (

𝑏𝑗

2
)] (

𝑛
2

)⁄
 

(15) 

where n is the number of cells, and 𝑛𝑖𝑗, 𝑎𝑖, and 𝑏𝑗 are elements from a contingency table that 481 

summarizes the overlap between the assignments 𝑋 and 𝑌 (Hubert and Arabie, 1985). 𝑛𝑖𝑗 denotes 482 

the number of cells assigned to 𝑋𝑖 that are also assigned to 𝑌𝑗, while 𝑎𝑖 and 𝑏𝑗 are the sums of the 483 

ith row jth column of the contingency table, respectively.  484 

Seurat was implemented using the Scanpy package in Python (Wolf et al., 2018). For 485 

Seurat, we selected the top 3000 variable genes according to their standardized dispersions and 486 

chose the number of PCs (bounded between 6 and 50) which explain 30% of the variance for 487 

dimensionality reduction. From these PCs, we calculated a cell-cell correlation distance matrix. 488 

To keep the comparison between SAM and Seurat graphs consistent, this distance matrix was 489 

converted into a kNN adjacency matrix with the value of k used by SAM. To assign cluster labels 490 

for SAM and Seurat, we applied HDBSCAN (Mcinnes et al., 2017), an unsupervised, density-491 

based clustering algorithm to their respective PCA outputs. As HDBSCAN does not cluster any 492 

cell it deems an outlier, we assign the remaining outlier cells to clusters using kNN classification. 493 
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For each outlier cell, we identify its 20 nearest neighbors among the clustered cells. Outliers are 494 

assigned to the same cluster as that of the majority of its neighbors. This minor extension to 495 

HDBSCAN is available as the built-in function hdbknn_clustering in SAM. SC3 was run using 496 

default parameters. The SIMLR package was implemented in R and run with the normalization 497 

parameter set to “True”, which mean-centers gene expressions after normalizing them to be 498 

between 0 and 1. Both SC3 and SIMLR provide their own functions to estimate the number of 499 

clusters and cluster assignments.  500 

 To compare the quality of graphs generated by different methods, we use the NACC, 501 

modularity, and spatial dispersion. The NACC is the average of the local clustering coefficient for 502 

each node of a graph and quantifies the degree of structure in the graph (Watts and Strogatz, 1998). 503 

The local clustering coefficient is defined as  504 

 
𝑎𝑖 =

𝐿𝑖

𝑘𝑖(𝑘𝑖 − 1)
 (16) 

where 𝐿𝑖 is the number of edges between the 𝑘𝑖 neighbors of node i and measures the degree of 505 

connectedness in a particular node’s local neighborhood. We calculate the NACC using the 506 

implementation in graph-tool (Peixoto, 2017). 507 

The modularity Q of a graph is defined as 508 

 
𝑄 =

1

4𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝛿𝑖𝑗)

𝑐

𝑖,𝑗

 (17) 

where Aij is one if there is an edge from cell i to cell j, 𝑘𝑖 is the degree of cell i, 𝑘𝑗 is the degree of 509 

cell j, m is the total number of edges, and 𝛿𝑖𝑗 is one if cells i and j are in the same cluster. High 510 

modularity indicates that clusters have on average many more edges within clusters than between 511 

clusters. To find the optimal modularity for a particular graph, we used Louvain clustering, which 512 

searches for a partition in which modularity is maximized.  513 
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To quantify the spatial organization of gene expression along the graph, we calculate the 514 

Euclidean norm of the largest 500 spatial dispersions. Spatial dispersion is defined as before in the 515 

SAM algorithm: 𝐹𝑖 =
𝜎𝐶𝑖

2

𝜇𝐶𝑖

, where 𝐹𝑖 is the Fano factor of the kNN-averaged expressions, 𝐶𝑖 =516 

1

𝑘
𝑁𝐸𝑖. 𝑁 is the directed adjacency matrix output by SAM or Seurat and 𝐸𝑖 is a column vector of 517 

expression values for gene i.  518 

 To measure the inherent sensitivity of each dataset, we randomly perturbed the gene 519 

expression matrices of each dataset by randomly sampling 2000 genes and applied PCA to the 520 

subsampled data. A correlation distance matrix was calculated from the top 15 PCs and 521 

perturbations were repeated 20 times to generate distance matrix replicates. Sensitivity is then 522 

defined as the average error across all pairwise comparisons between replicates. The error between 523 

two distance matrices j and k, 𝑆𝑗𝑘, is defined as the average correlation distance between 524 

corresponding pairs of rows in the distance matrices 𝑑𝑗 and 𝑑𝑘: 525 

 
𝑆𝑗𝑘 =

1

𝑛
∑ 𝐷{𝑑𝑗,𝑖, 𝑑𝑘,𝑖}

𝑛

𝑖=1

 (18) 

where 𝐷{𝑑𝑗,𝑖, 𝑑𝑘,𝑖} is the Pearson correlation distance between the distances from cell i in distance 526 

matrices j and k.  527 

 We simulated datasets with increasing sensitivity by introducing increasing degrees of 528 

corruption in each of the nine annotated datasets. To corrupt a dataset, we swapped random pairs 529 

of elements in the expression matrix. The number of swaps, p, corresponds to the degree of 530 

corruption, with p varying from 0 to half of the total number of elements in the matrix. For each 531 

annotated dataset, we simulated 10 replicates per value of p. SAM and Seurat were run with default 532 

values on each corrupted dataset, clustering was performed using the hdbknn_clustering function 533 

in SAM, and the ARI, NACC, modularity, and spatial dispersion metrics were recorded. The Area 534 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/364166doi: bioRxiv preprint 

https://doi.org/10.1101/364166
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

Under the Curve (AUC) was calculated for each metric with respect to the fraction of elements 535 

swapped, p, using the trapezoidal rule. Finally, to rescue the performance of Seurat, we used as 536 

input to Seurat the top 3000 genes with the highest SAM weights.  537 

 538 

Gene set enrichment analysis (GSEA). GSEA (Subramanian et al., 2005) is typically run on a 539 

gene expression matrix with user-defined cluster assignments to quantify the differential 540 

expression for each gene. By default, differential expression is quantified using a signal-to-noise 541 

metric and the resulting scores are used to rank the genes in descending order.  However, GSEA 542 

can also run in an alternative mode in which the user provides a predefined list of gene rankings. 543 

Therefore, we used the genes ranked by their SAM weights as input to GSEA to determine the 544 

biological processes enriched among the highly weighted genes. As shown in Figure 6a, we can 545 

directly test if SAM captures the relevant biological processes. GSEA provides a number of 546 

statistical measures to assess the significance of enriched gene sets, of which we use the False 547 

Discovery Rate (FDR). The FDR quantifies the likelihood that a highly enriched gene set 548 

represents a false positive. The significance threshold typically used with FDR is 25%, which 549 

implies that the results are likely to be valid 75% of the time. 550 

   551 

Removal of cell cycle effects. To remove cell cycle effects from the macrophage dataset, we 552 

adopted a simpler version of the strategy used in ccRemover (Barron and Li, 2016), in which we 553 

subtract from the data PCs that are significantly associated with known cell cycle genes. Letting 𝑃 554 

represent the PCs and 𝐿 be the gene loadings, we quantify the association between the set of cell 555 

cycle genes G and PC j as 556 
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𝐴𝑗 =

1

|𝐺|
∑ |𝐿𝑗𝑖|

𝑖∈𝐺

 (19) 

PC j is selected if its association 𝐴𝑗 is at least two standard deviations above the mean of the 557 

associations for all PCs. In the particular case of the macrophage data, we identified the set of PCs 558 

𝑆 = {𝑃0, 𝑃1, 𝑃8} as being significantly associated with the cell cycle genes. We next reconstruct the 559 

data using these PCs, which thus captures the cell-cycle effects, and subtract the reconstructed data 560 

from the expression matrix E: 561 

 𝐸𝑟𝑒𝑚𝑜𝑣𝑒𝑑 = 𝐸 − ∑ 𝑃𝑗𝐿𝑗√𝑊

𝑗∈𝑆

 (20) 

When reconstructing the data, we scale the gene loadings by the SAM weights W so that only the 562 

highly weighted SAM genes (which are initially dominated by cell cycle genes) contribute to the 563 

cell cycle removal, as there may be genes involved in other biological processes that could also be 564 

correlated with the PCs in S. To run SAM on the data with cell cycle effects removed, we use 𝐸 565 

as opposed to 𝐸𝑟𝑒𝑚𝑜𝑣𝑒𝑑 for the calculation of spatial dispersions, because the latter may contain 566 

negative values, for which dispersion is ill-defined. This method is made available as a part of the 567 

SAM package in the functions calculate_regression_PCs and regress_genes. 568 

 569 

Clustering the NF-κB activity time series. In the original study,  Lane et al. combined imaging 570 

and transcriptomics to link NF-κB nuclear translocation dynamics to changes in gene expression 571 

within single cells. Macrophages stimulated with LPS were individually trapped in microfluidic 572 

chambers and imaged for various lengths of time (75-300 min) prior to scRNAseq library 573 

preparation. NF-κB was tagged with a fluorescent protein, and its activation was measured as the 574 

nuclear-localized fluorescence intensity. Based on the imaging data, the authors identified three 575 

main classes of NF-κB dynamics, the first with a transient initial response, the second with a 576 
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prolonged initial response, and the third with a recurrent response. Because the recurrent response 577 

is found only in the 300 min time point and comprises only ~8% of these cells, we primarily 578 

focused on clustering cells based on their initial dynamics. To do this, we used the tslearn 579 

(Tavenard, 2017) python package to group cells based on their NF-κB activity time series. Because 580 

these time series are quite noisy, we were conservative in labeling cells as having a prolonged 581 

initial response in an effort to avoid false positives. As a result, these cells comprise only ~30% of 582 

the dataset. 583 

For the cells sampled at 75 and 150 min after LPS stimulation, we used the time series k-584 

means algorithm with the softdtw distance metric to cluster them each into three groups, which 585 

resulted in representative time series with transient, intermediate, and prolonged responses. 586 

Merging the cells with transient and intermediate responses into one cluster (which we simply 587 

labeled as transient response), we obtained the 75 and 150 min (black and blue, respectively) 588 

representative time series shown in Figure 6e. Because the cells sampled at 300 min displayed 589 

much more variability in their NF-κB time series, we clustered them into 6 groups, labeling the 590 

cluster whose representative time series had the broadest initial peak as the prolonged response 591 

cluster (red in Figure 6e, right). The remaining groups were labeled as the transient response 592 

cluster (red in Figure 6e, left). 593 

 594 

Mapping the schistosome datasets. We used the Mutual Nearest Neighbors algorithm 595 

(Haghverdi et al., 2018) with default values to generate an expression matrix 𝐸𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 in which 596 

the batch effects between the 2.5-week and 3.5-week datasets were corrected for. To run SAM on 597 

the batch-corrected data, we use 𝐸 for the calculation of spatial dispersions as opposed to 598 

𝐸𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑. 599 
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 600 

scRNAseq of schistosome stem cells. Schistosome stem cells were isolated from juvenile 601 

parasites retrieved from infected mice at 2.5 and 3.5 weeks post infection. We followed the 602 

protocol as previously described (Wang et al., 2018). Briefly, we retrieved juvenile parasites from 603 

schistosome-infected mice (Swiss Webster NR-21963) by hepatic portal vein perfusion. Parasites 604 

were cultured at 37°C/5% CO2 in Basch Medium 169 supplemented with 1X Antibiotic-605 

Antimycotic for 24-48 hr to allow complete digestions of host blood cell in parasite intestines. In 606 

adherence to the Animal Welfare Act and the Public Health Service Policy on Humane Care and 607 

Use of Laboratory Animals, all experiments with and care of mice were performed in accordance 608 

with protocols approved by the Institutional Animal Care and Use Committees (IACUC) of 609 

Stanford University (protocol approval number 30366). 610 

Before dissociation, parasites were permeabilized in PBS containing 0.1% Triton X-100 611 

and 0.1% NP-40 for 30 seconds and washed thoroughly to remove the surfactants. The 612 

permeabilized parasites were dissociated in 0.25% trypsin for 20 min. Cell suspensions were 613 

passed through a 100 μm nylon mesh (Falcon Cell Strainer) and centrifuged at 150 g for 5 min. 614 

Cell pellets were gently resuspended, passed through a 30 μm nylon mesh, and stained with 615 

Vybrant DyeCycle Violet (DCV; 5 µM, Invitrogen), and TOTO-3 (0.2 µM, Invitrogen) for 30–45 616 

min. As the stem cells comprise the only proliferative population in schistosomes, we flow-sorted 617 

cells at G2/M phase of the cell cycle on a SONY SH800 cell sorter. Dead cells were excluded based 618 

on TOTO-3 fluorescence. Single stem cells were gated using forward scattering (FSC), side 619 

scattering (SSC), and DCV to isolate cells with doubled DNA content compared to the rest of the 620 

population (Wang et al., 2018). Cells that passed these gates were sorted into 384-well lysis plates 621 

containing Triton X-100, ERCC standards, oligo-dT, dNTP, and RNase inhibitor. 622 
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 cDNA was reverse transcribed and amplified on 384-well plate following the Smart-Seq2 623 

protocol (Picelli et al., 2013). For quality control, we quantified the histone h2a (Smp_086860) 624 

levels using qPCR, as h2a is a ubiquitously expressed in all schistosomes stem cell (Collins et al., 625 

2013; Wang et al., 2013; Wang et al., 2018). We picked wells that generated CT values within 2.5 626 

CT around the most probable values (~45% of total wells, Figure 1-Figure supplement 1). cDNA 627 

was then diluted to 0.4 ng/µL for library preparation. Tagmentation and barcoding of wells were 628 

prepared using Nextera XT DNA library preparation kit. Library fragments concentration and 629 

purity were quantified by Agilent bioanalyzer and qPCR. Sequencing was performed on a NextSeq 630 

500 using V2 150 cycles high-output kit at ~1 million reads depth per cell. Raw sequencing reads 631 

were demultiplexed and converted to fastq files using bcl2fastq. Paired-end reads were mapped to 632 

S. mansoni genome version WBPS9 (WormBase Parasite) using STAR. In 2.5-week dataset, 338 633 

cells with more than 1700 transcripts expressed at >2 TPM were used for downstream analysis. In 634 

the 3.5-weeks dataset, 338 cells with more than 1350 transcripts expressed at >2 TPM were used 635 

for downstream analysis (Figure 1-Figure supplement 1). 636 

 637 

In situ hybridization and EdU labeling. RNA FISH experiments were performed as detailed in 638 

previous publications (Collins et al., 2013; Wang et al., 2013; Wang et al., 2018). Clones used 639 

for riboprobe synthesis were generated as described previously, with oligonucleotide primers 640 

listed in Supplementary Table 3. Juvenile parasites were cultured with 10 µM EdU overnight, 641 

killed in 6 M MgCl2 for 30s, and then fixed in 4% formaldehyde with 0.2% Triton X-100 and 1% 642 

NP-40. Fixed parasites were sequentially dehydrated in methanol, bleached in 3% H2O2 for 30 643 

min, and rehydrated. Parasites were permeabilized by 10 μg/mL proteinase K for 15 min and 644 

post fixed with 4% formaldehyde. The hybridization was performed at 52°C with riboprobes 645 
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labeled with either digoxigenin-12-UTP (Roche) or fluorescein-12-UTP (Roche). For detection, 646 

samples were blocked with 5% horse serum and 0.5% of Roche Western Blocking Reagent, and 647 

then incubated with anti-digoxigenin-peroxidase (1:1000; Roche) or anti-fluorescein peroxidase 648 

(1:1500; Roche) overnight at 4°C for tyramide signal amplification (TSA). For double FISH, the 649 

first peroxidase was quenched for 30 min in 0.1% sodium azide solution before the detection of 650 

the second gene. After FISH, EdU detection was performed by click reaction with 25μM Cy5-651 

azide conjugates (Click Chemistry Tools). Samples were mounted in scale solution (30% 652 

glycerol, 0.1% Triton X-100, 4 M urea in PBS supplemented with 2 mg/mL sodium ascorbate) 653 

and imaged on a Zeiss LSM 800 confocal microscope.  654 
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Figure legends 799 

Figure 1. The SAM algorithm. (a) SAM starts with a randomly initialized kNN adjacency matrix 800 

and iterates to refine the adjacency matrix and gene weight vector until convergence. (b) Root 801 

mean square error (RMSE) of the gene weights (top) and the fraction of different edges of the 802 

nearest-neighbor adjacency matrices (bottom) between adjacent iterations (blue) and between 803 

independent runs at the same iteration (orange) to show that SAM converges to the same solution 804 

regardless of initial conditions. The differences between the gene weights and nearest-neighbor 805 

graphs from independent runs are relatively small, indicating that SAM converges to the same 806 

solution through similar paths. (c) Graph structures and gene weights of the schistosome stem cell 807 

data converging to the final output over the course of 10 iterations (i denotes iteration number). 808 

Top: nodes are cells and edges connect neighbors. Nodes are color-coded according to the final 809 

clusters. Bottom: weights are sorted according to the final gene rankings. (d) Network properties 810 

iteratively improve for the graphs reconstructed from the original data (red) but not on the 811 

randomly shuffled data (blue). Dashed lines: metrics measured from the Seurat-reconstructed 812 

graphs. 813 

 814 

Figure 2. SAM identifies novel subpopulations within schistosome stem cells. (a) UMAP 815 

projections of the manifolds reconstructed by SAM, PCA, and Seurat. SIMLR outputs its own 2D 816 

projection based on its constructed similarity matrix using a modified version of t-SNE. The 817 

schistosome cells are color-coded by the stem cell subpopulations μ, δ’, εɑ, and εβ determined by 818 

Louvain clustering. (b) UMAP projections with gene expressions of subpopulation-specific 819 

markers (eledh, nanos-2 cabp, astf, bhlh,) and a ubiquitous stem cell marker, ago2-1, overlaid. 820 

Insets: magnified views of the expressing populations. (c) FISH of cabp and EdU labeling of 821 
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dividing stem cells in juvenile parasites at 2.5 weeks post infection show that μ-cells (cabp+EdU+, 822 

arrowheads) are close to the parasite surface and beneath a layer of post-mitotic cabp+ cells. 823 

Dashed outline: parasite surface. Right: magnified views of the boxed region. (d) FISH of cabp 824 

and a set of canonical muscle markers, troponin, myosin, tropomyosin, and collagen, shows 825 

complete colocalization in post-mitotic cabp+ cells. Images in (c-d) are single confocal slices. (e) 826 

FISH of astf and bhlh shows their orthogonal expression in adjacent EdU+ cells (arrowheads). 827 

Bottom: magnified views of the boxed region. Image is a maximum intensity projection of a 828 

confocal stack with a thickness of 12 µm. (f) UMAP projection of stem cells isolated from 829 

juveniles at 2.5 and 3.5 weeks post infection. Cell subpopulation assignments based on marker 830 

gene expressions are specified. Right: a magnified view to show the mapping of εɑ- and εβ-cells. 831 

(g) Standardized dispersions as calculated by Seurat plotted vs. the SAM gene weights. (h) SC3 832 

AUROC scores plotted vs. the SAM gene weights. Error bars indicate the standard deviation of 833 

SC3 AUROC scores between trials using different chosen numbers of clusters. In (g) and (h), the 834 

top 20 genes specific to each subpopulation are colored according to the color scheme used in (a). 835 

 836 

Figure 3. SAM improves clustering accuracy and runtime performance. (a) Accuracy of 837 

cluster assignment quantified by adjusted rand index (ARI) on nine annotated datasets (left). Right: 838 

differences between the number of clusters found by each method and the number of annotated 839 

clusters. Smaller differences indicate more accurate clustering. (b) RMSE of gene weights output 840 

by SAM averaged across ten replicate runs with random initial conditions for 56 datasets (blue) 841 

and simulated datasets with no intrinsic structure (green, Methods). (c) Runtime of SAM, SC3, 842 

SIMLR, and Seurat as a function of the number of cells in each dataset. SC3 and SIMLR were not 843 

run on datasets with >3000 cells as the run time exceeds 20 minutes. 844 
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 845 

Figure 4. SAM improves the analysis of datasets with varying network sensitivities. (a) 846 

Network sensitivity of all 56 datasets ranked in descending order. Blue: the nine benchmarking 847 

datasets used in Figure 3a. Sensitivity measures the robustness of a dataset to changes in the 848 

selected features (Methods). (b) The network sensitivity plotted against the fraction of genes with 849 

SAM weight greater than 0.5 (in log scale) with Spearman correlation coefficient specified in the 850 

upper-right corner. (c) Fold improvement of SAM over Seurat for NACC, modularity, and spatial 851 

dispersion with respect to sensitivity for all 56 datasets. These ratios are linearly correlated with 852 

network sensitivity with Pearson correlations (r2) specified in the upper-left corner of each plot.  853 

 854 

Figure 5. Robust feature selection improves cell clustering and manifold reconstruction. (a) 855 

Network sensitivity, ARI, NACC, modularity, and spatial dispersion with respect to corruption of 856 

the Darmanis dataset, in which we swap random pairs of gene expressions with the number of 857 

swaps ranging from 0-50% of the total number of elements in the data (Methods). Performance is 858 

compared between SAM (blue), Seurat (red), and Seurat rescued with the top-ranked SAM genes 859 

(indigo). Error bars indicate the standard deviations across 10 replicate runs. The errors for points 860 

with no bars are too small to be seen. (b) Comparison of the area under curve (AUC) of the metrics 861 

in (a) with respect to data corruption for all nine datasets. Error bars indicate the standard 862 

deviations across 10 replicate runs. The errors for data with no error bars are too small to be seen. 863 

 864 

Figure 6. SAM captures the cellular activation dynamics in a stimulated macrophage dataset. 865 

(a) GSEA analysis (left) and SAM projections (right) of the activated macrophages7 before (top) 866 

and after (bottom) removing cell cycle effects. Teal: significantly enriched gene sets determined 867 
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by the significance threshold of 0.25 for the False Discovery Rate (FDR, dashed lines).  Bottom: 868 

the two clusters are denoted as MT and M with colors representing the time since LPS induction. 869 

Arrows: evolution of time. (b) TNFα is enriched in the MT cluster. (c) Diagram of NF-κB 870 

activation in response to LPS stimulation via the Myd88 and TRIF signaling pathways. (d) Log2 871 

fold changes of the average expressions of selected inflammatory genes in the MT cluster vs. the 872 

M cluster. All genes are significantly differentially expressed between the two clusters according 873 

to the Welch’s two-sample t-test (𝑝 < 5 ⋅ 10−3). (e) Representative traces for transient (left) and 874 

prolonged (right) NF-κB activation (Methods). (f) Cells with prolonged NF-κB response (denoted 875 

as P) are primarily in the MT population. (g) Seurat and SIMLR projections show that they fail to 876 

order the cells by time since LPS induction and do not identify cell clusters representing the 877 

different modes of NF-κB activation.  878 

 879 

Figure 1 – Figure supplement 1. Quality control of library preparation and sequencing of 880 

the schistosome stem cells. (a) Histograms of h2a qPCR measurements in 2.5- (left) and 3.5- 881 

(right) week samples. (b) Scatter plot of gene count (>2 TPM) vs mapped read count of individual 882 

sequenced cells. Cells with low gene count or h2a expression are discarded and filtered from 883 

analysis (red) and the remaining cells are analyzed (blue). The number of final cells kept for 884 

analysis is annotated on the top left corner of each plot. 885 

 886 

Figure 2 – Figure supplement 1. 𝜇-cells express ubiquitous stem cell marker and population 887 

specific genes. UMAP projections with gene expressions of (a) stem cell markers and (b) 𝜇-cell-888 

specific genes overlaid.  889 

 890 
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Figure 3 – Figure supplement 1. SAM converges to a stable solution independent of random 891 

initial conditions and is robust to the number of nearest neighbors and choice of distance 892 

metric. (a) RMSE of gene weights between adjacent iterations within a run, averaged across ten 893 

replicate runs. (b-c) Average ARI scores for the nine annotated benchmarking datasets when 894 

varying (b) the number of nearest neighbors, k, from 10 to 30 or (c) the choice of distance metric 895 

(Euclidean or Pearson correlation). Error bars indicate standard deviations of ARI scores across 896 

the different values of k and distance metrics. The errors for data with no error bars are too small 897 

to be seen.  898 

 899 

Figure 6 – Figure supplement 1. Cluster-specific marker genes before and after removing 900 

cell cycle effects. UMAP projections with marker genes specific to the dividing cells (a) and the 901 

MT cluster (b) overlaid. 902 

 903 

Figure 6 – Figure supplement 2. SAM groups cells based on NF-κB activation dynamics while 904 

other methods cannot. (a) UMAP projection of the macrophage cells after the removal of cell 905 

cycle effects. Cells with prolonged NF-κB dynamics are highlighted in red. (b) UMAP and t-SNE 906 

projections for Seurat and SIMLR, respectively, after the removal of cell cycle effects. Cells with 907 

prolonged NF-κB dynamics are highlighted in red. (c) UMAP projections with three MT-specific 908 

marker gene expressions overlaid.  909 
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Figures 910 

Figure 1. 911 

  912 
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Figure 2. 913 
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Figure 3. 915 
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Figure 4. 917 
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Figure 5. 919 
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Figure 6. 921 
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Figure 1 – Figure supplement 1. 923 
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Figure 2 – Figure supplement 1. 925 

  926 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/364166doi: bioRxiv preprint 

https://doi.org/10.1101/364166
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 

 

Figure 3 – Figure supplement 1. 927 
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Figure 6 – Figure supplement 1. 929 
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Figure 6 – Figure supplement 2. 931 
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Supplementary Table legends: 933 

 934 

Supplementary Table 1: Ranked gene list with high SAM weights in the schistosome stem 935 

cell data. Gene IDs and annotations are given in the S. mansoni genome version 9 (WormBase, 936 

WS268). Genes are assigned to the cluster corresponding to the marker gene, nanos-2, cabp, astf, 937 

or bhlh, that they have the highest correlation with. Genes found in our prior work12 to be enriched 938 

in subsets of stem cells are specified.  939 

 940 

Supplementary Table 2: Datasets used in this study. Accession numbers, library size 941 

normalization methods, data preprocessing methods, sensitivity scores, and corresponding 942 

references are provided for each dataset. Accession numbers with asterisks indicate datasets that 943 

are sourced from the conquer database (Soneson and Robinson, 2018). Accession numbers with 944 

crosses indicate the nine well-annotated datasets that were used for benchmarking. 945 

 946 

Supplementary Table 3: Cloning primer sequences used for generating riboprobes for the 947 

FISH experiments. Functional annotations of the genes were given in the S. mansoni genome 948 

version 9 (WormBase, WS268). 949 
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