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Abstract

Single-cell RNA sequencing has spurred the development of computational methods that enable
researchers to classify cell types, delineate developmental trajectories, and measure molecular
responses to external perturbations. Many of these technologies rely on their ability to detect genes
whose cell-to-cell variations arise from the biological processes of interest rather than
transcriptional or technical noise. However, for datasets in which the biologically relevant
differences between cells are subtle, identifying these genes is a challenging task. We present the
self-assembling manifold (SAM) algorithm, an iterative soft feature selection strategy to quantify
gene relevance and improve dimensionality reduction. We demonstrate its advantages over other
state-of-the-art methods with experimental validation in identifying novel stem cell populations of
Schistosoma, a prevalent parasite that infects hundreds of millions of people. Extending our
analysis to a total of 56 datasets, we show that SAM is generalizable and consistently outperforms

other methods in a variety of biological and quantitative benchmarks.
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Introduction

Single-cell RNA sequencing (scRNAseq) datasets typically contain tens of thousands of
genes, although many of them may not be informative for differentiating between cell types or
states. Feature selection is thus commonly used to select a subset of genes prior to downstream
analyses, such as manifold reconstruction and cell clustering (Crow et al., 2018; Satija et al., 2015;
Vallejos et al., 2015). However, current approaches have two major limitations.

First, feature selection methods filter genes based on arbitrarily or empirically chosen
thresholds, small changes in which may result in different gene sets (Vallejos et al., 2017). In
addition, the selection of features typically operates under the assumption that genes with highly
variable expression between individual cells capture biologically meaningful variation. Because
single-cell transcriptomes are inevitably contaminated by a combination of random transcriptional
and technical noise (Grin et al., 2014), the variation in biologically relevant genes may be hard to
distinguish from the background noise, especially when the differences between cell populations
are subtle. Resolving these differences, or “signals”, is essential to study a variety of biological
problems, including identifying cell subtypes (Olsson et al., 2016; Treutlein et al., 2014; Lénnberg
et al., 2017; Fincher et al., 2018; Baron et al., 2016) and quantifying the effects of molecular
perturbations to otherwise homogeneous populations of cells (Lane et al., 2017). In such datasets,
only a small fraction of the genes, and therefore only a small fraction of the total variation, may
contain the signals relevant for distinguishing cell types. Choosing these features ahead of time
without a priori knowledge remains an unmet computational challenge.

The second limitation is that existing methods have been almost exclusively benchmarked
on well-annotated, gold standard datasets with clearly distinguishable cell types (Wang et al.,

2017; Kiselev et al., 2017; Duo et al., 2019; Bahlo et al., 2018). These datasets are not informative
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for distinguishing the performance between methods, because the differences between cell types
are relatively straightforward to detect. However, evaluating the performance of feature selection
and/or dimensionality reduction methods on datasets with more subtle signals is difficult as their
ground truth labels are typically ambiguous or nonexistent.

To overcome the shortcomings of current feature selection approaches, here, we introduce
the Self-Assembling Manifold (SAM) method, an unsupervised, "soft feature selection™ algorithm
that iteratively rescales gene expressions to refine a nearest neighbor graph of cells until the graph
converges to a stable solution. At each iteration, SAM assigns more weight to genes that are
spatially variable across the constructed graph, and this weighted gene expression is then used to
improve the next nearest neighbor assignment. SAM presents two advantages: it rescales all genes
according to their weights, solving the problem of thresholding, and it prioritizes genes that are
variable across the intrinsic manifold of the data rather than selecting genes that are variable across
individual cells.

Second, in order to better distinguish the performance between methods, we define a
network sensitivity measure to identify datasets with subtle signals. With limited annotations in
most high-sensitivity datasets, we introduce unsupervised graph-based metrics to quantify the
degree of structure within the reconstructed manifolds for comparison between methods. In
addition, we perform benchmarking using known ground truth labels on simulated datasets
spanning a wide range of sensitivities by introducing increasing levels of noise to well-annotated
datasets. These analyses reveal that SAM consistently improves feature selection and cell
clustering.

To demonstrate the utility of SAM in practice, we provide an in-depth analysis of two

datasets that are challenging to analyze using existing methods: stem cells in a human parasitic
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71 worm, Schistosoma, and activated macrophages (Lane et al., 2017). We show that SAM can
72 capture novel biology undetectable by other methods and validate these results with experimental

73  evidence.
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Results
The SAM algorithm

The SAM algorithm begins with a random k-nearest neighbor (KNN) graph and averages
the expression of each cell with its k nearest neighbors: C = %NE, where N is the directed

adjacency matrix and E is the gene expression matrix (Figure 1a). For each gene i, SAM computes
a spatial dispersion factor of the averaged expressions C;, which measures variation across

neighborhoods of cells rather than individual cells (Methods). These dispersions are used to
calculate the gene weights, which then rescale the expression matrix: E = E\/W,,, where W}, is a

diagonal matrix with gene weights along the diagonal. Using the rescaled expressions E, we
compute a pairwise cell distance matrix and update the assignment of each cell’s k-nearest
neighbors accordingly. This cycle continues until the gene weights converge.

To demonstrate the implementation and utility of SAM, below we analyze a challenging
dataset comprised of a few hundred relatively homogeneous stem cells isolated from Schistosoma
mansoni (Figure 1-Figure supplement 1), a widespread human pathogen (Hoffman et al., 2014).
Using a protocol we have established previously (Wang et al., 2018), these cells were collected by
sorting dividing cells from juvenile parasites harvested from their mouse hosts at 2.5 weeks post
infection. At this stage, the parasites use an abundant stem cell population (~15-20% of the total
number of cells) for rapid organogenesis and growth (Wang et al., 2013; Wang et al., 2018).
Testing several existing methods (Wang et al., 2017; Kiselev et al., 2017; Satija et al., 2015), we
found that they were not able to identify distinct cell populations in this dataset. In contrast, SAM
finds a stable solution independent of initial conditions (Figure 1b). A graph structure with clearly
separated cell populations self-assembles through the iterative process (Figure 1c). In parallel, the

gene weights converge onto the final weight vector. Eventually, only a small fraction of genes
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97  (~1%) are strongly weighted and useful for separating cell clusters, reflecting the inherent

98 difficulty of analyzing this dataset.

99 Figure 1d shows that SAM iteratively improves a series of graph characteristics, including
100 the network-average clustering coefficient (NACC), modularity, and Euclidean norm of the spatial
101  dispersions (Methods). The NACC and modularity quantify the degree of structure within the
102  graphs — graphs with high NACC and modularity have regions of high density separated by regions
103  of low density. The dispersion quantifies the spatial organization of gene expression — the higher
104  the spatial dispersion the less uniformly distributed the gene expressions are along the graph.
105 Importantly, we verified that SAM does not artificially boost these metrics in data that lack
106 inherent structure: when applying SAM to a randomly shuffled expression matrix, none of these
107  metrics increased from the random initial conditions.

108

109  SAM identifies novel subpopulations within schistosome stem cells

110 Visualizing the converged graph in two dimensions using Uniform Manifold
111 Approximation and Projection (UMAP, Becht et al., 2019), we find that cells can be separated into
112  three main populations, with Louvain clustering (Blondel et al., 2008) further splitting one of these
113  clusters into two subpopulations (Figure 2a). In contrast, other commonly-used dimensionality
114 reduction methods, such as principal component analysis (PCA), Seurat (Satija et al., 2015), and
115 SIMLR (Wang et al., 2017), failed to distinguish these cell populations (see Methods for the
116  selection of algorithms for comparison). Supplementary Table 1 lists genes with high SAM
117  weights, which includes most markers that were previously implicated to be enriched in subsets of
118  schistosome stem cells (Wang et al., 2013; Wang et al., 2018).

119 Figure 2b shows that the three populations include previously characterized 6'-cells, which
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120  specifically express an RNA binding protein nanos-2 (Smp 051920), and e-cells, which are
121 marked by the expression of eledh (eled, Smp_041540) (Wang et al., 2018). More importantly,
122  SAM reveals a novel stem cell population, u, comprising ~30% of all sequenced cells (u denotes
123 muscle progenitors as discussed below). While u-cells express ubiquitous stem cells markers (e.g.,
124 ago2-1, Smp_179320; cyclin B, Smp_082490) and cell cycle regulators (Figure 2-Figure
125  supplement 1a) (Collins et al., 2013; Wang et al., 2013; Wang et al., 2018), they are also strongly
126  enriched for a large set of genes, with a calcium binding protein (cabp, Smp_005350), an actin
127  protein (Smp_161920), an annexin homolog (Smp_074140), a helix-loop-helix transcription factor
128  (dhand, Smp_062490), and a phosphatase (dusp10, Smp_034500) as the most specific markers of
129  this population in comparison to other stem cells (Figure 2—Figure supplement 1b).

130 Fluorescent in-situ hybridization (FISH) in conjunction with EdU labeling of dividing cells
131  reveals that p-cells (cabp*EdU™) are distributed near the parasite surface right beneath a layer of
132  post-mitotic differentiated cells that also express cabp (Figure 2c). Close to the parasite surface,
133  there are two major cell types intertwined in space: the skin-like tegumental cells and the body
134  wall muscle cells. However, u-cells express none of the recently identified markers in tegumental
135  progenitors (Wendt et al., 2018), suggesting that they may be associated with the muscle lineage.
136  To test this idea, we performed double FISH experiments and observed in post-mitotic cabp™ cells
137  the coexpression of a set of canonical muscle markers (Witchley et al., 2013), including
138  tropomyosin (Smp_031770), myosin (Smp_045220), troponin (Smp_018250), and collagen
139  (Smp_170340) (Figure 2d). These results suggest that cabp is a specific marker for parasite body
140  wall muscles and u-cells are the muscle progenitors. Why the juvenile parasites maintain such an
141  active pool of muscle progenitors will be an important question for future studies.

142 In addition, SAM identifies two subpopulations among e-cells: eq.-Cells that are highly
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143  enriched for an aschaete-scute transcription factor (astf, Smp_142120), and eg-cells that
144  abundantly express another basic helix-loop-helix protein (bhlh, Smp_087310) (Figure 2b, right
145  panels). FISH experiments confirm these cells to be in close spatial proximity but with no
146  coexpression of astf and bhlh (Figure 2e). Moreover, we observed with FISH that there are fewer
147  astf* cells in larger, more matured juveniles, suggesting £q-cells are a dynamic population during
148  development. To verify this observation, we sequenced another ~370 stem cell from juveniles at a
149 later developmental time point (3.5 weeks post infection). After correcting for batch effects in the
150 combined 2.5- and 3.5-week datasets using the mutual nearest neighbors (MNN) algorithm
151  (Haghverdi et al., 2018), we find that &'-, u-, and eg-cells remain relatively constant throughout
152 both time points, whereas gq-Cells comprise a significantly smaller fraction of the stem cells at 3.5
153  weeks (7%) compared to 21% at 2.5 weeks (Figure 2f). Taken together, these analyses
154  demonstrate that SAM can identify experimentally validated stem cell populations that are
155  previously too subtle to separate using other methods but are closely associated with the
156  schistosome development.

157 The critical difference between SAM and other methods lies in how they select genes for
158  manifold reconstruction. SAM prioritizes genes with variable expressions across neighborhoods
159  of cells rather than individual cells as in other methods (e.g., Seurat). Figure 2g shows that genes
160  with high standardized dispersion across individual cells often have low SAM weights, indicating
161 that these highly variable genes (HVGSs) are irrelevant to the topological relationships between
162  cells. Other methods (e.g. SC3, Kiselev et al., 2017) identify marker genes based on differential
163  gene expression between cell clusters, but this approach suffers when cell cluster assignment is
164  poor, especially when discrete cell groups are difficult to separate or absent. Indeed, SC3 failed in

165 the default mode as it incorrectly predicted there to be only one cluster in the schistosome dataset.
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166  After we manually increased the number of clusters, SC3 could recover a few of the marker genes
167  associated with only one (u-cells, blue symbols in Figure 2h) of the populations detected by SAM.
168  Furthermore, changing the number of clusters resulted in different solutions and large variability
169  in SC3 scores for its top ranked genes.

170

171  SAM outperforms other state-of-the-art methods in extensive quantitative benchmarking

172 Below, we assess the general applicability of SAM by benchmarking its performance
173  against state-of-the-art SCRNAseq analysis methods on a large collection of datasets. We focus on
174  three methods, i.e., Seurat, SIMLR, and SC3, as they are mostly unsupervised, have been broadly
175  used, and were shown to outperform other methods through extensive benchmarking (Kiselev et
176  al., 2017; Wang et al., 2017; Duo et al., 2019; Bahlo et al., 2018; Tian et al., 2019, see Methods
177  for the selection of algorithms for comparison). We first benchmark against nine datasets
178  (Supplementary Table 2) that have high-confidence annotations to evaluate the accuracy of SAM
179  inassigning cell clusters. We find that SAM has the highest Adjusted Rand Index (ARI, a measure
180  of clustering accuracy) (Hubert and Arabie, 1985) on eight out of the nine datasets and does not
181  over cluster the data (Figure 3a). Furthermore, SAM converges to the same set of gene weights
182  for all datasets analyzed (Figure 3b, Figure 3-Figure supplement 1a) and its performance is
183  robust to the choice of parameters and random initial conditions (Figure 3-Figure supplement
184  1b-c). In contrast, applying SAM to randomly generated datasets (Methods), the resulting gene
185  weights are highly dissimilar across random initial conditions (Figure 3b), indicating that SAM
186  does not converge to a stable solution on datasets with no intrinsic structure. Finally, the scalability
187 of SAMis similar to that of Seurat, capable of analyzing hundreds of thousands of cells in minutes

188  (Figure 3c), whereas SIMLR and SC3 are orders of magnitudes slower and thus excluded from

10
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189  further benchmarking which requires the analysis of many more datasets.

190 Because these nine datasets are all comprised of clearly distinguishable cell types, they
191  may not represent the performance of methods on other datasets that contain cell populations that
192  are only subtly different. To identify such datasets, we introduce a network sensitivity metric that
193  quantifies the changes in the cell-to-cell distances when randomly selecting a subset of features
194  from the gene expression matrices (Methods). High network sensitivity indicates that changes to
195 the selected features strongly alters the resulting topological network. Networks that are robust to
196 the selected features correspond to datasets that have many redundant signals or genes
197  corroborating that network structure. In the datasets we compiled (Supplementary Table 2), all
198  broadly-used benchmarking datasets have lower sensitivities whereas the schistosome dataset,
199  which we have shown to be challenging to analyze for other methods, has the highest sensitivity
200  (Figure 4a). The fraction of genes with large SAM weights (>0.5) is negatively correlated with
201  the network sensitivity, suggesting that the biologically relevant variation in datasets with high
202  sensitivity is captured by relatively fewer genes (Figure 4b). Analyzing all 56 datasets, we found
203  that SAM improves the clustering, modularity, and spatial organization of gene expression across
204  the graph in comparison to Seurat as the datasets become increasingly sensitive (Figure 4c).

205 Evaluating the clustering accuracy for the highly sensitive datasets, however, is
206  challenging, because many of them have incomplete or nonexistent cell type annotations.
207  Therefore, we use the nine well-annotated benchmarking datasets to simulate data across a wide
208  spectrum of sensitivities. For this, we corrupt the data by randomly permuting gradually increasing
209 fractions of the gene expressions. As illustrated by the Darmanis dataset (Darmanis et al., 2015),
210  Figure 5a shows that the sensitivity increases along with the corruption. SAM’s ARI scores only

211  marginally decrease as the corruption (and thereby sensitivity) increases, whereas Seurat’s

11
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212  performance rapidly deteriorates. A similar contrast was observed with the NACC, modularity,
213  and spatial dispersion between SAM and Seurat. Importantly, passing the genes with high SAM
214  weights into Seurat rescued its performance across all metrics, indicating that SAM is able to
215  consistently capture the genes relevant to the underlying structure of the data even with increasing
216  levels of noise and illustrating the robustness of its feature selection strategy compared to the HVG
217  filtering approach of Seurat. These observations generalize to all nine benchmarking datasets,
218 quantified by the area under the curves (AUC) of the metrics with respect to corruption (Figure
219  5b).

220

221  SAM clusters macrophages by their activation dynamics with proper temporal ordering

222 We next highlight another dataset to show that SAM can recover biologically meaningful
223  information that other methods fail to capture. We chose this example, which contains ~600
224 macrophages treated with lipopolysaccharide (LPS) when individually trapped in microfluidic
225 channels (Lane et al., 2017), because it has high network sensitivity (Figure 4a) and has
226  accompanying single cell functional data of macrophage activation dynamics that may help
227  validate the results of our analysis. Applied to this dataset, SAM initially identifies two clusters
228  (Figure 6a, top). Performing gene set enrichment analysis (GSEA, Methods, Subramanian et al.,
229  2005), we find that genes with high SAM weights are dominated by cell cycle-related processes,
230  with one of the clusters heavily enriched for cell cycle genes (e.g., Top2a, MKi67, Figure 6-Figure
231  supplement 1a). After removing the cell cycle effects (Methods), SAM identifies two different
232  clusters in which cells are properly ordered by the time since LPS induction, with the highly
233  weighted genes being primarily involved in immune signaling (Figure 6a, bottom). These

234 observations demonstrate that, in conjunction with GSEA, the quantitative gene weights output by

12
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235 SAM can be used to infer the biological pathways that drive the clustering of cells.

236 One of the two clusters is enriched for TNFa expression (Figure 6b). It is known that LPS
237  activates two independent pathways, one through the innate immune signal transduction adaptor
238  (Myd88) and the other through the TIR-domain-containing adapter-inducing interferon-p (TRIF)
239  (Lee et al., 2009). While the Myd88 pathway directly activates NF-kB, the TRIF pathway first
240  induces the secretion of TNFa, which subsequently binds to its receptor, TNFR, to prolong the
241  activation of NF-xB (Figure 6c¢). Figure 6d and Figure 6-Figure supplement 1b show examples
242  of genes that are highly enriched with TNFa, a number of which are inflammatory factors known
243  to accumulate due to prolonged NF-«xB activation (Lane et al., 2017). These results suggest that
244  SAM grouped the cells based on their activated signaling pathways: one cluster is activated
245  through both Myd88 and TRIF pathways (MT) while the other is only activated through Myd88
246 (M).

247 To further verify that the separation between the MT and M clusters truly reflects the
248  dichotomy in cellular response to LPS induction, we noted that this dataset combines SCRNAseq
249  with live-cell imaging of NF-kB activity in single cells. This allows us to directly test if the MT
250 and M clusters correspond to different signaling dynamics (Methods). We found that most of the
251  cells with prolonged NF-«B response (i.e., cells showing broad peaks of NF-«kB activation in time)
252 arein fact in the MT cluster (Figure 6e-f, and Figure 6-Figure supplement 2a), consistent with
253  the expectation that TNFa signaling prolongs NF-kB activation. Although our interpretation of the
254  data matches that provided in the original study, we were able to analyze the dataset with almost
255  noapriori knowledge. In contrast, the original study required extensive manual curation, analyzed
256  only a subset of the dataset, and could not group cells by their NF-xB activation dynamics from

257  the gene expression data alone. Similarly, Seurat and SIMLR were unable to order the cells by the

13
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258  time since LPS induction or group cells based on their activation dynamics after removing the cell

259  cycle effects (Figure 6g, and Figure 6-Figure supplement 2b-c).

14
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260  Discussion

261 Here, we introduced a sScRNAseq analysis method, SAM, that uses an unsupervised, robust,
262 and iterative strategy for feature selection and manifold reconstruction. As demonstrated by our
263  analysis of the schistosome stem cells and activated macrophages, SAM can capture biology that
264 is undetectable by other methods. While SAM has consistently higher clustering accuracy than
265  other state-of-the-art methods on datasets containing clearly distinct cell types, its advantages are
266  especially apparent on datasets in which cell states or types are only distinguishable through subtle
267  differences in gene expression.

268 The strength of SAM lies in the integration of three algorithmic components: spatial
269  dispersion to measure feature relevance, soft feature selection, and the iterative scheme. By
270  averaging the gene expression of a cell with that of its neighbors, the spatial dispersion quantifies
271  the variation across neighborhoods of cells rather than individual cells. Genes with high spatial
272  dispersion are more likely to be biologically relevant as they are capable of separating cells into
273  distinct topological locations. Soft feature selection includes all genes and weights their
274  contribution to the manifold reconstruction by their spatial dispersions. This mitigates the
275  shortcoming of existing approaches in which the selection of features is a binary decision: genes
276  are either included or not depending on arbitrarily chosen thresholds.

277 The conceptual challenge here is that calculating the gene weights requires the manifold,
278  but reconstructing the manifold requires the gene weights for feature selection. SAM thus uses an
279  iterative strategy to converge onto both the gene weights and the corresponding graph topology
280 from a random initial graph. Each successive iteration refines the gene weights and network
281  structure until the algorithm converges. Empirically, for all datasets analyzed we have shown that

282  SAM converges onto a stable solution and is robust to the random initial conditions. Practically,

15
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283  we could initialize SAM using the graph output of another method such as Seurat, but using
284  random initial conditions avoids potential biases in the analysis and enables the evaluation of the
285  stability of SAM.

286 To demonstrate the strengths of SAM in practice, we analyzed the schistosome stem cells
287  and identified novel stem cell populations that were validated by FISH experiments (Figure 2). In
288  the analysis of activated macrophages, we showed that SAM can simultaneously order cells by the
289 time since LPS induction and group cells according to their respective activated signaling
290 pathways. We have validated this result using the live-cell imaging data presented in the original
291  study (Figure 6).

292 We expect the application of SAM is not limited to feature selection, cell clustering, and
293  manifold reconstruction; it can be readily integrated with existing analytical pipelines as its gene
294  weights and reconstructed manifolds can be used in downstream analyses. For example, we have
295  shown how the genes ranked by their SAM weights can be used as input to GSEA to determine
296 the biological processes enriched among the highly weighted genes (Figure 6), thus directly
297  testing if the weights reflect biologically relevant genes. Additionally, the manifold reconstructed
298 by SAM can be used as input to pseudotemporal ordering algorithms (Setty et al., 2016; Trapnell
299 etal., 2014).

300 Beyond the two example case studies, we have rigorously evaluated SAM on a total of 56
301 datasets. While previous studies benchmarked on datasets with clearly defined cell populations,
302  we defined a network sensitivity measure to rank the datasets based on the inherent difficulty of
303  their analysis (Figure 4). Using these datasets, we showed that SAM consistently outperforms
304  other methods in terms of both cell clustering accuracy measured by ground truth annotations, and

305 manifold reconstruction measured by quantitative graph characteristics. These improvements can
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306 be attributed to the robust selection of features relevant for cell clustering and manifold
307  reconstruction even in the presence of significant amounts of random noise, as shown in the
308  corruption tests (Figure 5). Overall, the network sensitivity and quantitative benchmarking metrics
309  should help in characterizing the performance of future sScRNAseq analysis methods across a wider

310  variety of datasets.
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311  Materials and Methods
312
313 Code and data availability. The SAM source code and tutorials can be found at

314  https://github.com/atarashansky/self-assembling-manifold. The schistosome stem cell SCRNAseq

315 data generated in this study is available through the Gene Expression Omnibus (GEO) under
316  accession number GSE116920.

317

318 Data processing. Supplementary Table 2 summarizes all datasets used in this study as well as
319 the methods used to convert raw sequence read counts to gene expression, such as TPM (transcripts
320  per million), CPM (counts per million), RPKM (reads per kilobase per million), or FPKM
321  (fragments per kilobase per million). Datasets with asterisks next to their accession numbers are
322  sourced from the conquer database (Soneson and Robinson, 2018). The nine benchmarking
323  datasets used with high-confidence labels are marked by crosses. Gene expression is measured in
324  log space with a pseudocount of 1 (e.g., l0g2(TPM+1)). Genes expressed (log2(TPM+1)>1) in
325  fewer than 1% or more than 99% of cells are excluded from downstream analysis as these genes
326  lack statistical power. To reduce the influence of technical noise near the molecular detection limit,
327  we set gene expression to zero when log2(TPM+1)<1. We denote the resulting expression matrix
328 askE.

329 In the SAM algorithm (see below), we either standardize the gene expression matrix E to
330 have zero mean and unit variance per gene (which corrects for differences in distributions between
331  genes) or normalize the expressions such that each cell has unit Euclidean (L2) norm (which
332  prevents cells with large variances in gene expressions from dominating downstream analyses)
333  prior to dimensionality reduction. In the below section, we denote the standardized or normalized

334  expression matrix as E. Empirically, we have found that standardization performs well with large,
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335 sparse datasets collected through droplet-based methods, whereas L2-normalization is more
336  suitable for smaller datasets with higher sequencing depth such as those prepared with the Smart-
337  Seq2 protocol (Picelli et al., 2013). This is likely due to the fact that standardization amplifies the
338 relative expression of genes specific to small populations in large datasets, thereby making them
339 easier to identify. In contrast, standardization decreases the relative expression of genes specific
340 to populations comprising larger fractions of the data, as is typically the case in smaller datasets,
341  thereby making distinct populations more difficult to identify. Supplementary Table 2 documents
342  the preprocessing step used for each dataset.

343

344  The SAM algorithm. After first generating a random kNN adjacency matrix, the SAM algorithm
345  goes through three steps that are repeated until convergence.

346

347 1) Calculate the gene weights

348 First, the expression of each cell is averaged with its k-nearest neighbors:
C= ! NE
- k (1)

349  where N is the directed adjacency matrix for the kNN graph, and E is the original n x m gene
350 expression matrix with rows as cells and columns as genes. Here, we do not use E as it may
351  contain negative values, for which dispersion is ill-defined. For each gene i, SAM computes the

352  Fano factor from the averaged expressions C;:

1
== c. (2)
/’LCl nz 'ji
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n
1
¢, = EZ(C]’I: — Hc,)? )
j=1
2
ol
F=-2 (4)
.uCi

353  where uc, is the mean and Uczl- Is the variance. We use the Fano factor to measure the gene

354  expression variance relative to the mean in order to account for the fact that genes with high mean
355  expressions tend to have higher variability. Computing the Fano factors based on the kNN-
356  averaged expressions links gene dispersion to the cellular topological structure: Genes that have
357  highly variable expressions among individual cells but are homogeneously distributed across the
358 topological representation should have small dispersions. k, set by default to 20, determines the
359 topological length scale over which variations in gene expression are quantified. Figure 3-Figure
360 supplement 1b shows that the downstream analysis is robust to the specific choice of k.
361  Additionally, the choice of k does not significantly affect runtime complexity or scalability.

362 To compute the gene weights, we normalize the Fano factors to be between 0 and 1. First,
363  we saturate the Fano factors to ensure that outlier genes with large spatial dispersions do not skew
364  the distribution of weights:

{FilFi > Z} =Z (5)

365  where z is by default the mean of the largest 50 dispersions. In other words, Fano factors exceeding
366  this number are saturated to be z. We then calculate the gene weights as:
F;
Z

W = (6)

367  2) Rescale the expression matrix
368 Having calculated the gene weights, SAM multiplies them into the preprocessed expression
369  matrix:
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E=ESWp )
370  where E is the standardized or normalized expression matrix and Wp, is a diagonal matrix with W;
371 along the diagonal. This matrix multiplication linearly rescales the gene expression variances and
372  gene-gene covariances by their respective weights, attenuating the influence of genes with low
373  dispersions across neighborhoods.
374
375  3) Updating the kNN graph
376 To compute pairwise cell-cell distances, we perform PCA on the rescaled expression
377 matrix E. The variance-scaling operation in Eq. 7 improves the robustness of PCA to variations in
378  genes that are uniformly distributed along the current graph (i.e., genes with low weights).
379  Furthermore, this weighting strategy eliminates the typical requirement of selecting a subset of
380 HVGsto feed into PCA, which often relies on arbitrary thresholds and heuristics. To perform PCA,

381  we first mean center £ to form E,:

~

E,=E——ee"E (8)

S|

382  where e is a column vector of ones with dimension n. We then compute the Singular Value

383  Decomposition (SVD) of E,:

"o (9)
384  with the principal components defined as

P=US (10)

385  The eigenvalues corresponding to the eigendecomposition of the gene-gene covariance matrix

386  are defined in terms of the singular values as
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(11)

387  where Sis a diagonal matrix with singular values along the diagonal. Using the PC matrix P, SAM
388  computes a pairwise cell-cell distance matrix. While typical dimension reduction approaches select
389  a subset of the PCs, which is often subjective or requires computationally intensive maximum-
390 likelihood approaches, we include all PCs and scale their variances by their corresponding

391 eigenvalues:

P =prVA (12)

392  Asaresult, PCs with small eigenvalues are weighted less in the calculation of the distance between

393 cellsiandj, Dpp;- Dpp, is the Pearson correlation or Euclidean distance between rows P; and P;

394 in the PC matrix. Pearson correlation distance is used by default, although Figure 3-Figure
395 supplement 1c shows that SAM is robust to the choice of distance metric. Using the distances to
396  define the k-nearest neighbors for each cell, SAM updates the KNN matrix and repeats steps 1-3.
397  The algorithm continues until convergence, defined as when the RMSE between gene weights in

398 adjacent iterations diminished as defined by:

1 (13)
_Z(Wl'] - Wi+1,j)2 <5x% 10_3

m =

399  where m is the number of genes and W, ; is the weight for gene j at iteration .

400

401  Visualization. To visualize the topological structure identified by SAM, we feed the final
402  weighted PCA matrix, P, into UMAP (Becht et al., 2019) using Pearson correlation as the distance
403  metric by default. To directly visualize the final KNN adjacency matrix (Figure 1c), we used the

404  Fruchterman-Reingold force-directed layout algorithm and drawing tools implemented in the
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405  Python package graph-tool (Peixoto, 2017).

406

407  Choosing the benchmarking methods. We used three main criteria for choosing the benchmark
408 scRNAseq analysis methods: they should be widely used, have done extensive benchmarking
409  against other methods, and be mostly unsupervised. We found on Web of Science that among the
410  highest cited scRNAseq analysis tools in 2017-2018 are Seurat, SC3, SIMLR, Reference
411  Component Analysis (RCA, Li et al., 2017), Monocle (Trapnell et al., 2014), zero-inflated factor
412  analysis (ZIFA, Pierson and Yau, 2015), and Wishbone (Setty et al., 2016), of which we chose
413  Seurat, SC3, and SIMLR.

414 SC3 is aconsensus clustering algorithm that has done rigorous benchmarking against other
415  methods such as SINCERA (Guo et al., 2015), SNN-Clig (Xu and Su, 2015) and pcaReduce
416  (Zurauskien and Yau, 2016) on 12 datasets with ground truth labels. SIMLR, a dimensionality
417  reduction and clustering algorithm, evaluated its clustering performance on four annotated datasets
418 against eight other dimensionality reduction methods, including PCA, Factor Analysis (FA), t-
419  SNE, multidimensional scaling (MDS), and (ZIFA). Both methods have demonstrated the highest
420  clustering accuracy across most of the tested datasets. Additionally, as both methods have built-in
421  functions to estimate the number of clusters present within the data, they are largely unsupervised.
422  We also selected Seurat as one of the benchmarking methods, because it is arguably the most
423  widely used tool for dimensionality reduction and clustering of sScRNAseq data and has performed
424 well in rigorous benchmarking studies against various methods including SC3, SIMLR, RCA, and
425  pcaReduce (Duo et al., 2019; Bahlo et al., 2018).

426 We did not select Reference Component Analysis as it is primarily designed for cases in

427  which an atlas of bulk, cell-type specific, reference transcriptomes is present. Additionally, we did
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428  not benchmark against Monocle and Wishbone, because they are pseudotime analysis methods
429 and are meant for datasets with continuous branching processes such as cell differentiation.
430  However, it is important to note that SAM can be used for dimensionality reduction upstream of
431  pseudotime algorithms for such datasets. Finally, we did not benchmark against ZIFA as it has
432  already been shown to have lower clustering accuracy than SIMLR.

433 In addition to measuring clustering accuracy, we also introduce the unsupervised NACC,
434  modularity, and spatial dispersion metrics to quantify both the degree of structure and spatial
435  organization of gene expression within a nearest-neighbor graph. As such, these metrics can only
436  be applied to dimensionality reduction methods that construct a graph representation of the dataset.
437  Consequently, we cannot use these metrics to evaluate SC3.

438 Although it does technically produce a graph representation of the data, SIMLR should be
439  considered as a hybrid between a clustering and dimensionality reduction method. Because its
440  similarity graph is assumed to have a block structure where the number of blocks is equal to the
441  prespecified number of clusters, the resulting nearest-neighbor graph will, by construction, tend to
442  have a higher degree of structure and therefore artificially inflated NACC and modularity.

443 Furthermore, the poor scalability of SC3 and SIMLR makes them difficult to run for many
444  trials across a large number of datasets. Although SIMLR, in particular, does provide an alternative
445  algorithm that can scale to much larger datasets, it has not been extensively benchmarked. Even
446  so, despite the improved speed of this large-scale implementation, estimating the number of
447  clusters using its built-in function remains a significant computational and memory bottleneck. For
448  example, when applied to the ~10,000 planarian neoblasts, neither implementations of SIMLR
449  could estimate the number of clusters within 2 hours. As a result, we cannot run SIMLR in an

450  unsupervised manner on datasets significantly larger than ~3000 cells.
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451 As there are few practical alternatives for manifold reconstruction that have been as
452  extensively benchmarked and widely used, we primarily compare SAM to Seurat in tests involving
453  the unsupervised, graph-based metrics to highlight the key, advantageous characteristics of SAM
454 as a manifold reconstruction and feature selection algorithm when applied to datasets with varying
455  sensitivities (Figure 4a-c).

456

457  Benchmarking. To generate the convergence curves in Figure 1b, we computed the root mean
458  square error (RMSE) of the gene weights averaged across all pairwise comparisons of ten
459  replicates starting from randomly generated initial graphs. In Figure 3b, we extend this analysis
460 to all datasets analyzed and report the final error. We use randomly generated datasets of varying
461  sizes (ranging from 200 to 5000 cells) as a negative control to show that SAM does not converge
462  onto the same solution across initial conditions when the data has no intrinsic structure. These
463  datasets were randomly generated by sampling gene expressions from a Poisson distribution with
464  mean drawn from a gamma distribution. To generate the convergence curves in Figure 3-Figure
465 supplement 1a, we computed the RMSEs, which are ensemble-averaged across ten replicate runs,
466  between the gene weights in adjacent iterations. We compute the adjacency error between kNN

467  adjacency matrices N; and N; (Figure 1b) as

o _elIN — Njle
L ZBTNie

(14)
468  where e is a column vector of ones. This simply measures the fraction of total edges that are
469  different between the two graphs.

470 To compute the standardized dispersion factors in Figure 2g, we used Seurat’s
471  methodology implemented in Scanpy (Wolf et al., 2018), which groups the genes into 20 bins

472  based on their mean expression values and computes the z-score of each gene’s Fano factor with
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473  respect to the mean and standard deviation of all Fano factors in its corresponding bin. To generate
474 the AUROC scores in Figure 2h, which quantify the likelihood of genes being cluster-specific
475  markers, we ran SC3 on the schistosome data with the number of clusters ranging from 2 to 12.
476  We used the AUROC scores corresponding to 4 clusters for the points on the scatter plot and the
477  standard deviations of the scores across all tested numbers of clusters for the error bars.

478 We evaluated each analysis method on nine gold standard datasets (Figure 3a) using the
479  Adjusted Rand Index (ARI), which measures the accuracy between two cluster assignments X and

480 Y while accounting for randomness in the clustering:

£(3)- 2z ())G) (15
232G

481  where n is the number of cells, and n;;, a;, and b; are elements from a contingency table that

ARI =

482  summarizes the overlap between the assignments X and Y (Hubert and Arabie, 1985). n;; denotes
483  the number of cells assigned to X; that are also assigned to Y;, while a; and b; are the sums of the
484 ith row jth column of the contingency table, respectively.

485 Seurat was implemented using the Scanpy package in Python (Wolf et al., 2018). For
486  Seurat, we selected the top 3000 variable genes according to their standardized dispersions and
487  chose the number of PCs (bounded between 6 and 50) which explain 30% of the variance for
488  dimensionality reduction. From these PCs, we calculated a cell-cell correlation distance matrix.
489  To keep the comparison between SAM and Seurat graphs consistent, this distance matrix was
490  converted into a kNN adjacency matrix with the value of k used by SAM. To assign cluster labels
491 for SAM and Seurat, we applied HDBSCAN (Mcinnes et al., 2017), an unsupervised, density-
492  Dbased clustering algorithm to their respective PCA outputs. As HDBSCAN does not cluster any
493  cell it deems an outlier, we assign the remaining outlier cells to clusters using kNN classification.
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494 For each outlier cell, we identify its 20 nearest neighbors among the clustered cells. Outliers are
495  assigned to the same cluster as that of the majority of its neighbors. This minor extension to
496 HDBSCAN is available as the built-in function hdbknn_clustering in SAM. SC3 was run using
497  default parameters. The SIMLR package was implemented in R and run with the normalization
498  parameter set to “True”, which mean-centers gene expressions after normalizing them to be
499  between 0 and 1. Both SC3 and SIMLR provide their own functions to estimate the number of
500 clusters and cluster assignments.

501 To compare the quality of graphs generated by different methods, we use the NACC,
502  modularity, and spatial dispersion. The NACC is the average of the local clustering coefficient for
503 each node of a graph and quantifies the degree of structure in the graph (Watts and Strogatz, 1998).

504  The local clustering coefficient is defined as

k(i — 1)

a;

(16)

505 where L; is the number of edges between the k; neighbors of node i and measures the degree of
506  connectedness in a particular node’s local neighborhood. We calculate the NACC using the
507 implementation in graph-tool (Peixoto, 2017).

508 The modularity Q of a graph is defined as

c
1 kik;
0=5m2, (Aif - m‘%‘) an

LJ
509  where Ajjis one if there is an edge from cell i to cell j, k; is the degree of cell i, k; is the degree of
510  cell j, m is the total number of edges, and §;; is one if cells i and j are in the same cluster. High
511  modularity indicates that clusters have on average many more edges within clusters than between
512  clusters. To find the optimal modularity for a particular graph, we used Louvain clustering, which
513  searches for a partition in which modularity is maximized.
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514 To quantify the spatial organization of gene expression along the graph, we calculate the

515  Euclidean norm of the largest 500 spatial dispersions. Spatial dispersion is defined as before in the

O.Z

516 SAM algorithm: F; = #—C‘ where F; is the Fano factor of the KNN-averaged expressions, C; =

4

517 %NEL-. N is the directed adjacency matrix output by SAM or Seurat and E; is a column vector of

518  expression values for gene i.

519 To measure the inherent sensitivity of each dataset, we randomly perturbed the gene
520  expression matrices of each dataset by randomly sampling 2000 genes and applied PCA to the
521  subsampled data. A correlation distance matrix was calculated from the top 15 PCs and
522  perturbations were repeated 20 times to generate distance matrix replicates. Sensitivity is then
523  defined as the average error across all pairwise comparisons between replicates. The error between

524  two distance matrices j and k, Sy, is defined as the average correlation distance between

525  corresponding pairs of rows in the distance matrices d; and d:

n
1
Sjk = ;z D{d;;, dy.i} (18)
=1

526  where D{d;;, d, } is the Pearson correlation distance between the distances from cell i in distance
527  matrices j and k.

528 We simulated datasets with increasing sensitivity by introducing increasing degrees of
529  corruption in each of the nine annotated datasets. To corrupt a dataset, we swapped random pairs
530 of elements in the expression matrix. The number of swaps, p, corresponds to the degree of
531  corruption, with p varying from 0 to half of the total number of elements in the matrix. For each
532  annotated dataset, we simulated 10 replicates per value of p. SAM and Seurat were run with default
533  values on each corrupted dataset, clustering was performed using the hdbknn_clustering function

534  in SAM, and the ARI, NACC, modularity, and spatial dispersion metrics were recorded. The Area
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535  Under the Curve (AUC) was calculated for each metric with respect to the fraction of elements
536  swapped, p, using the trapezoidal rule. Finally, to rescue the performance of Seurat, we used as
537  input to Seurat the top 3000 genes with the highest SAM weights.

538

539  Gene set enrichment analysis (GSEA). GSEA (Subramanian et al., 2005) is typically run on a
540 gene expression matrix with user-defined cluster assignments to quantify the differential
541  expression for each gene. By default, differential expression is quantified using a signal-to-noise
542  metric and the resulting scores are used to rank the genes in descending order. However, GSEA
543  can also run in an alternative mode in which the user provides a predefined list of gene rankings.
544  Therefore, we used the genes ranked by their SAM weights as input to GSEA to determine the
545  biological processes enriched among the highly weighted genes. As shown in Figure 6a, we can
546  directly test if SAM captures the relevant biological processes. GSEA provides a number of
547  statistical measures to assess the significance of enriched gene sets, of which we use the False
548 Discovery Rate (FDR). The FDR quantifies the likelihood that a highly enriched gene set
549  represents a false positive. The significance threshold typically used with FDR is 25%, which
550 implies that the results are likely to be valid 75% of the time.

551

552  Removal of cell cycle effects. To remove cell cycle effects from the macrophage dataset, we
553  adopted a simpler version of the strategy used in ccRemover (Barron and Li, 2016), in which we
554  subtract from the data PCs that are significantly associated with known cell cycle genes. Letting P
555  represent the PCs and L be the gene loadings, we quantify the association between the set of cell

556  cycle genes G and PC j as
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1
4y =157 ) Wl (19)

lEG
557  PC j is selected if its association 4; is at least two standard deviations above the mean of the
558  associations for all PCs. In the particular case of the macrophage data, we identified the set of PCs
559 S ={P,, P;, Pg} as being significantly associated with the cell cycle genes. We next reconstruct the
560  data using these PCs, which thus captures the cell-cycle effects, and subtract the reconstructed data

561  from the expression matrix E:

Eremovea = E — Z PJ'L]'\/W (20)

JES

562  When reconstructing the data, we scale the gene loadings by the SAM weights W so that only the
563  highly weighted SAM genes (which are initially dominated by cell cycle genes) contribute to the
564  cell cycle removal, as there may be genes involved in other biological processes that could also be
565  correlated with the PCs in S. To run SAM on the data with cell cycle effects removed, we use E
566 as opposed to E,.moveq fOr the calculation of spatial dispersions, because the latter may contain
567  negative values, for which dispersion is ill-defined. This method is made available as a part of the
568 SAM package in the functions calculate_regression_PCs and regress_genes.

569

570  Clustering the NF-kB activity time series. In the original study, Lane et al. combined imaging
571 and transcriptomics to link NF-kB nuclear translocation dynamics to changes in gene expression
572  within single cells. Macrophages stimulated with LPS were individually trapped in microfluidic
573  chambers and imaged for various lengths of time (75-300 min) prior to scRNAseq library
574  preparation. NF-xB was tagged with a fluorescent protein, and its activation was measured as the
575  nuclear-localized fluorescence intensity. Based on the imaging data, the authors identified three

576  main classes of NF-kB dynamics, the first with a transient initial response, the second with a
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577  prolonged initial response, and the third with a recurrent response. Because the recurrent response
578 is found only in the 300 min time point and comprises only ~8% of these cells, we primarily
579  focused on clustering cells based on their initial dynamics. To do this, we used the tslearn
580 (Tavenard, 2017) python package to group cells based on their NF-xB activity time series. Because
581 these time series are quite noisy, we were conservative in labeling cells as having a prolonged
582 initial response in an effort to avoid false positives. As a result, these cells comprise only ~30% of
583  the dataset.

584 For the cells sampled at 75 and 150 min after LPS stimulation, we used the time series k-
585  means algorithm with the softdtw distance metric to cluster them each into three groups, which
586  resulted in representative time series with transient, intermediate, and prolonged responses.
587  Merging the cells with transient and intermediate responses into one cluster (which we simply
588 labeled as transient response), we obtained the 75 and 150 min (black and blue, respectively)
589  representative time series shown in Figure 6e. Because the cells sampled at 300 min displayed
590  much more variability in their NF-kB time series, we clustered them into 6 groups, labeling the
591 cluster whose representative time series had the broadest initial peak as the prolonged response
592  cluster (red in Figure 6e, right). The remaining groups were labeled as the transient response
593  cluster (red in Figure 6e, left).

594

595 Mapping the schistosome datasets. We used the Mutual Nearest Neighbors algorithm
596  (Haghverdi et al., 2018) with default values to generate an expression matrix E .y, recteq iN Which
597  the batch effects between the 2.5-week and 3.5-week datasets were corrected for. To run SAM on
598 the batch-corrected data, we use E for the calculation of spatial dispersions as opposed to

599 Ecorrected-
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600

601 scRNAseq of schistosome stem cells. Schistosome stem cells were isolated from juvenile
602 parasites retrieved from infected mice at 2.5 and 3.5 weeks post infection. We followed the
603  protocol as previously described (Wang et al., 2018). Briefly, we retrieved juvenile parasites from
604  schistosome-infected mice (Swiss Webster NR-21963) by hepatic portal vein perfusion. Parasites
605 were cultured at 37°C/5% CO. in Basch Medium 169 supplemented with 1X Antibiotic-
606  Antimycotic for 24-48 hr to allow complete digestions of host blood cell in parasite intestines. In
607  adherence to the Animal Welfare Act and the Public Health Service Policy on Humane Care and
608  Use of Laboratory Animals, all experiments with and care of mice were performed in accordance
609  with protocols approved by the Institutional Animal Care and Use Committees (IACUC) of
610  Stanford University (protocol approval number 30366).

611 Before dissociation, parasites were permeabilized in PBS containing 0.1% Triton X-100
612 and 0.1% NP-40 for 30 seconds and washed thoroughly to remove the surfactants. The
613  permeabilized parasites were dissociated in 0.25% trypsin for 20 min. Cell suspensions were
614  passed through a 100 um nylon mesh (Falcon Cell Strainer) and centrifuged at 150 g for 5 min.
615  Cell pellets were gently resuspended, passed through a 30 pm nylon mesh, and stained with
616  Vybrant DyeCycle Violet (DCV; 5 uM, Invitrogen), and TOTO-3 (0.2 uM, Invitrogen) for 30-45
617  min. As the stem cells comprise the only proliferative population in schistosomes, we flow-sorted
618  cells at Go/M phase of the cell cycle on a SONY SH800 cell sorter. Dead cells were excluded based
619 on TOTO-3 fluorescence. Single stem cells were gated using forward scattering (FSC), side
620  scattering (SSC), and DCV to isolate cells with doubled DNA content compared to the rest of the
621  population (Wang et al., 2018). Cells that passed these gates were sorted into 384-well lysis plates

622  containing Triton X-100, ERCC standards, oligo-dT, dNTP, and RNase inhibitor.
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623 cDNA was reverse transcribed and amplified on 384-well plate following the Smart-Seq?2
624  protocol (Picelli et al., 2013). For quality control, we quantified the histone h2a (Smp_086860)
625 levels using gPCR, as h2a is a ubiquitously expressed in all schistosomes stem cell (Collins et al.,
626 2013; Wang et al., 2013; Wang et al., 2018). We picked wells that generated Ct values within 2.5
627  Craround the most probable values (~45% of total wells, Figure 1-Figure supplement 1). cDNA
628  was then diluted to 0.4 ng/uL for library preparation. Tagmentation and barcoding of wells were
629  prepared using Nextera XT DNA library preparation kit. Library fragments concentration and
630  purity were quantified by Agilent bioanalyzer and gPCR. Sequencing was performed on a NextSeq
631 500 using V2 150 cycles high-output kit at ~1 million reads depth per cell. Raw sequencing reads
632  were demultiplexed and converted to fastq files using bcl2fastg. Paired-end reads were mapped to
633 S. mansoni genome version WBPS9 (WormBase Parasite) using STAR. In 2.5-week dataset, 338
634  cells with more than 1700 transcripts expressed at >2 TPM were used for downstream analysis. In
635 the 3.5-weeks dataset, 338 cells with more than 1350 transcripts expressed at >2 TPM were used
636  for downstream analysis (Figure 1-Figure supplement 1).

637

638 In situ hybridization and EdU labeling. RNA FISH experiments were performed as detailed in
639  previous publications (Collins et al., 2013; Wang et al., 2013; Wang et al., 2018). Clones used
640  for riboprobe synthesis were generated as described previously, with oligonucleotide primers
641 listed in Supplementary Table 3. Juvenile parasites were cultured with 10 uM EdU overnight,
642  killed in 6 M MgCl:for 30s, and then fixed in 4% formaldehyde with 0.2% Triton X-100 and 1%
643  NP-40. Fixed parasites were sequentially dehydrated in methanol, bleached in 3% H-20: for 30
644  min, and rehydrated. Parasites were permeabilized by 10 pg/mL proteinase K for 15 min and

645  post fixed with 4% formaldehyde. The hybridization was performed at 52°C with riboprobes
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646  labeled with either digoxigenin-12-UTP (Roche) or fluorescein-12-UTP (Roche). For detection,
647  samples were blocked with 5% horse serum and 0.5% of Roche Western Blocking Reagent, and
648  then incubated with anti-digoxigenin-peroxidase (1:1000; Roche) or anti-fluorescein peroxidase
649  (1:1500; Roche) overnight at 4°C for tyramide signal amplification (TSA). For double FISH, the
650 first peroxidase was quenched for 30 min in 0.1% sodium azide solution before the detection of
651  the second gene. After FISH, EdU detection was performed by click reaction with 25uM Cy5-
652  azide conjugates (Click Chemistry Tools). Samples were mounted in scale solution (30%

653  glycerol, 0.1% Triton X-100, 4 M urea in PBS supplemented with 2 mg/mL sodium ascorbate)

654  and imaged on a Zeiss LSM 800 confocal microscope.
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799  Figure legends

800 Figure 1. The SAM algorithm. (a) SAM starts with a randomly initialized kNN adjacency matrix
801 and iterates to refine the adjacency matrix and gene weight vector until convergence. (b) Root
802 mean square error (RMSE) of the gene weights (top) and the fraction of different edges of the
803  nearest-neighbor adjacency matrices (bottom) between adjacent iterations (blue) and between
804  independent runs at the same iteration (orange) to show that SAM converges to the same solution
805 regardless of initial conditions. The differences between the gene weights and nearest-neighbor
806  graphs from independent runs are relatively small, indicating that SAM converges to the same
807  solution through similar paths. (c) Graph structures and gene weights of the schistosome stem cell
808 data converging to the final output over the course of 10 iterations (i denotes iteration number).
809  Top: nodes are cells and edges connect neighbors. Nodes are color-coded according to the final
810 clusters. Bottom: weights are sorted according to the final gene rankings. (d) Network properties
811 iteratively improve for the graphs reconstructed from the original data (red) but not on the
812 randomly shuffled data (blue). Dashed lines: metrics measured from the Seurat-reconstructed
813  graphs.

814

815 Figure 2. SAM identifies novel subpopulations within schistosome stem cells. (a) UMAP
816  projections of the manifolds reconstructed by SAM, PCA, and Seurat. SIMLR outputs its own 2D
817  projection based on its constructed similarity matrix using a modified version of t-SNE. The
818  schistosome cells are color-coded by the stem cell subpopulations p, §°, €q, and g3 determined by
819  Louvain clustering. (b) UMAP projections with gene expressions of subpopulation-specific
820 markers (eledh, nanos-2 cabp, astf, bhlh,) and a ubiquitous stem cell marker, ago2-1, overlaid.

821 Insets: magnified views of the expressing populations. (c) FISH of cabp and EdU labeling of
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822  dividing stem cells in juvenile parasites at 2.5 weeks post infection show that p-cells (cabpEdU?,
823  arrowheads) are close to the parasite surface and beneath a layer of post-mitotic cabp™ cells.
824  Dashed outline: parasite surface. Right: magnified views of the boxed region. (d) FISH of cabp
825 and a set of canonical muscle markers, troponin, myosin, tropomyosin, and collagen, shows
826  complete colocalization in post-mitotic cabp® cells. Images in (c-d) are single confocal slices. ()
827  FISH of astf and bhlh shows their orthogonal expression in adjacent EAU™ cells (arrowheads).
828  Bottom: magnified views of the boxed region. Image is a maximum intensity projection of a
829  confocal stack with a thickness of 12 um. (f) UMAP projection of stem cells isolated from
830 juveniles at 2.5 and 3.5 weeks post infection. Cell subpopulation assignments based on marker
831  gene expressions are specified. Right: a magnified view to show the mapping of €.~ and gp-cells.
832  (g) Standardized dispersions as calculated by Seurat plotted vs. the SAM gene weights. (h) SC3
833  AUROC scores plotted vs. the SAM gene weights. Error bars indicate the standard deviation of
834  SC3 AUROC scores between trials using different chosen numbers of clusters. In (g) and (h), the
835  top 20 genes specific to each subpopulation are colored according to the color scheme used in (a).
836

837  Figure 3. SAM improves clustering accuracy and runtime performance. (a) Accuracy of
838 cluster assignment quantified by adjusted rand index (ARI) on nine annotated datasets (left). Right:
839  differences between the number of clusters found by each method and the number of annotated
840 clusters. Smaller differences indicate more accurate clustering. (b) RMSE of gene weights output
841 by SAM averaged across ten replicate runs with random initial conditions for 56 datasets (blue)
842  and simulated datasets with no intrinsic structure (green, Methods). (c) Runtime of SAM, SC3,
843  SIMLR, and Seurat as a function of the number of cells in each dataset. SC3 and SIMLR were not

844  run on datasets with >3000 cells as the run time exceeds 20 minutes.
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845

846  Figure 4. SAM improves the analysis of datasets with varying network sensitivities. (a)
847  Network sensitivity of all 56 datasets ranked in descending order. Blue: the nine benchmarking
848  datasets used in Figure 3a. Sensitivity measures the robustness of a dataset to changes in the
849  selected features (Methods). (b) The network sensitivity plotted against the fraction of genes with
850 SAM weight greater than 0.5 (in log scale) with Spearman correlation coefficient specified in the
851  upper-right corner. (c) Fold improvement of SAM over Seurat for NACC, modularity, and spatial
852  dispersion with respect to sensitivity for all 56 datasets. These ratios are linearly correlated with
853  network sensitivity with Pearson correlations (r?) specified in the upper-left corner of each plot.
854

855  Figure 5. Robust feature selection improves cell clustering and manifold reconstruction. (a)
856  Network sensitivity, ARI, NACC, modularity, and spatial dispersion with respect to corruption of
857  the Darmanis dataset, in which we swap random pairs of gene expressions with the number of
858  swaps ranging from 0-50% of the total number of elements in the data (Methods). Performance is
859  compared between SAM (blue), Seurat (red), and Seurat rescued with the top-ranked SAM genes
860  (indigo). Error bars indicate the standard deviations across 10 replicate runs. The errors for points
861  with no bars are too small to be seen. (b) Comparison of the area under curve (AUC) of the metrics
862 in (a) with respect to data corruption for all nine datasets. Error bars indicate the standard
863  deviations across 10 replicate runs. The errors for data with no error bars are too small to be seen.
864

865  Figure 6. SAM captures the cellular activation dynamics in a stimulated macrophage dataset.
866 (a) GSEA analysis (left) and SAM projections (right) of the activated macrophages’ before (top)

867 and after (bottom) removing cell cycle effects. Teal: significantly enriched gene sets determined
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868 by the significance threshold of 0.25 for the False Discovery Rate (FDR, dashed lines). Bottom:
869 the two clusters are denoted as MT and M with colors representing the time since LPS induction.
870  Arrows: evolution of time. (b) TNFa is enriched in the MT cluster. (¢) Diagram of NF-xB
871 activation in response to LPS stimulation via the Myd88 and TRIF signaling pathways. (d) Logz
872  fold changes of the average expressions of selected inflammatory genes in the MT cluster vs. the
873 M cluster. All genes are significantly differentially expressed between the two clusters according
874  to the Welch’s two-sample t-test (p < 5 - 1073). (e) Representative traces for transient (left) and
875  prolonged (right) NF-kB activation (Methods). (f) Cells with prolonged NF-«B response (denoted
876  asP) are primarily in the MT population. (g) Seurat and SIMLR projections show that they fail to
877  order the cells by time since LPS induction and do not identify cell clusters representing the
878  different modes of NF-«xB activation.

879

880  Figure 1 — Figure supplement 1. Quality control of library preparation and sequencing of
881 the schistosome stem cells. (a) Histograms of h2a g°PCR measurements in 2.5- (left) and 3.5-
882  (right) week samples. (b) Scatter plot of gene count (>2 TPM) vs mapped read count of individual
883  sequenced cells. Cells with low gene count or h2a expression are discarded and filtered from
884  analysis (red) and the remaining cells are analyzed (blue). The number of final cells kept for
885 analysis is annotated on the top left corner of each plot.

886

887  Figure 2 — Figure supplement 1. u-cells express ubiquitous stem cell marker and population
888  specific genes. UMAP projections with gene expressions of (a) stem cell markers and (b) u-cell-
889  specific genes overlaid.

890

43


https://doi.org/10.1101/364166
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/364166; this version posted June 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

891  Figure 3 — Figure supplement 1. SAM converges to a stable solution independent of random
892 initial conditions and is robust to the number of nearest neighbors and choice of distance
893 metric. (a) RMSE of gene weights between adjacent iterations within a run, averaged across ten
894  replicate runs. (b-c) Average ARI scores for the nine annotated benchmarking datasets when
895 varying (b) the number of nearest neighbors, k, from 10 to 30 or (c) the choice of distance metric
896 (Euclidean or Pearson correlation). Error bars indicate standard deviations of ARI scores across
897  the different values of k and distance metrics. The errors for data with no error bars are too small
898  to be seen.

899

900 Figure 6 — Figure supplement 1. Cluster-specific marker genes before and after removing
901 cell cycle effects. UMAP projections with marker genes specific to the dividing cells (a) and the
902  MT cluster (b) overlaid.

903

904  Figure 6 —Figure supplement 2. SAM groups cells based on NF-kB activation dynamics while
905 other methods cannot. (a) UMAP projection of the macrophage cells after the removal of cell
906 cycle effects. Cells with prolonged NF-xB dynamics are highlighted in red. (b) UMAP and t-SNE
907  projections for Seurat and SIMLR, respectively, after the removal of cell cycle effects. Cells with
908 prolonged NF-kB dynamics are highlighted in red. (¢) UMAP projections with three MT-specific

909  marker gene expressions overlaid.
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923  Figure 1 - Figure supplement 1.
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Figure 2 — Figure supplement 1.
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927  Figure 3 — Figure supplement 1.
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929  Figure 6 — Figure supplement 1.
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931  Figure 6 — Figure supplement 2.
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933  Supplementary Table legends:

934

935 Supplementary Table 1: Ranked gene list with high SAM weights in the schistosome stem
936 cell data. Gene IDs and annotations are given in the S. mansoni genome version 9 (WormBase,
937  WS268). Genes are assigned to the cluster corresponding to the marker gene, nanos-2, cabp, astf,
938  or bhih, that they have the highest correlation with. Genes found in our prior work®? to be enriched
939 in subsets of stem cells are specified.

940

941 Supplementary Table 2: Datasets used in this study. Accession numbers, library size
942 normalization methods, data preprocessing methods, sensitivity scores, and corresponding
943  references are provided for each dataset. Accession numbers with asterisks indicate datasets that
944  are sourced from the conquer database (Soneson and Robinson, 2018). Accession numbers with
945  crosses indicate the nine well-annotated datasets that were used for benchmarking.

946

947  Supplementary Table 3: Cloning primer sequences used for generating riboprobes for the
948  FISH experiments. Functional annotations of the genes were given in the S. mansoni genome

949  version 9 (WormBase, WS268).
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