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Abstract:

Introduction: Recurrent urinary tract infections have been linked to increased risk of bladder
cancer, suggesting a potential role of the urinary microbiome in bladder cancer pathogenesis.

Objective: Compare the urinary microbiomes in mice with and without bladder.

Methods: Longitudinal study of mice exposed to a dilute bladder-specific carcinogen (0.05% n-
butyl-n-(4-hydroxybutyl) nitrosamine, BBN mice, n=10), and control mice (n=10). Urine was
sampled monthly from individual mice for 4 months. Microbial DNA was extracted from the
urine, and the V4 region of the 16S rRNA gene sequenced. Animals were sacrificed and their
bladders harvested for histopathology. Bladder sections were graded by a blinded pathologist.
The composition and diversity of the urinary microbiome were compared between the BBN and
control mice. Metabolic pathway analysis was completed using PICRUST.

Results: Bladder histology in the BBN group showed normal tissue with inflammation (BBN-
normal, n=5), precancerous pathologies, (BBN-precancerous, n=3), and invasive cancer (BBN-
cancer, n=2). Alpha diversity did not differ between the mice exposed to BBN and the control
mice at any timepoint. There were no differences in the urinary microbiomes between the BBN
and control mice at baseline. At month 4, mice exposed to BBN had higher proportion of both
Gardnerella and Bifidobacterium compared to control mice. There were no differences in
proportions of specific bacteria between either the BBN-precancer or BBN-cancer and controls
at month 4. However, the BBN-normal mice had higher proportions of Gardnerella,
Haemophilus, Bifidobacterium, and Ureaplasma Actinobaculum, and lower proportions of
Actinomyces, compared to control mice at month 4. Functional pathway analysis demonstrated
increases in genes related to purine metabolism, phosphotransferase systems, peptidases,
protein folding, and bacterial toxins in the BBN-mice compared to control mice at month 4.

Conclusion: Mice exposed to 4 months of BBN, a bladder-specific carcinogen, have distinct
urine microbial profiles compared to control mice.
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Introduction: Bladder cancer is the 4™ most common malignancy among men in the U.S. [1]
However, despite the high prevalence of bladder cancer, death rates from this neoplasm have
decreased only slightly for women and not at all for men. These mortality rates are in part driven by
late initial diagnosis of advanced bladder cancer, and poor ability to predict which patients with
originally non-muscle-invasive cancer will progress to muscle-invasive disease. The ability to
identify patients who are at risk for cancer, or progression of disease, through non-invasive means

would have a significant impact in this population.

A number of risk factors for the development of bladder cancer have been identified, including
an association between urinary tract infections (UTI) and bladder cancer. While there is a well-
established causative relationship between infections with the urogenital parasite Schistosoma
haematobium and bladder cancer,[5] [6] the association between bacterial urinary tract infections
and bladder cancer is less clear. Data from large epidemiological studies suggest that an
association may be present,[7][8] with other work suggesting that recurrent UTIs may be a
particular risk factor for squamous cell carcinoma of the bladder [11]. However, other work has
not found such an relationship between UTI and bladder cancer.[9][10] Conversely, the
presence of asymptomatic bacteriuria has been associated with lower recurrence rate and
longer disease-free survival in patients with non-muscle invasive bladder cancer.[12] The
hypothesis behind this observed protective effect of asymptomatic bacteriuria is that activation
of the immune system as a result of bacteriuria inhibits tumor formation.[13] Taken together, this
suggests that immune responses to bacteria within the bladder may play a role in bladder

oncogenesis.

Although urine has been classically considered to be sterile, technological advances have led to
identification of a diverse community of bacteria within the bladder, known as the urinary
microbiome [16—18]. Given the potential immune-associated effect of bacteriuria on bladder

oncogenesis, we postulated that there may be specific patterns within the urinary microbiome
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that would exert either a protective or harmful effect on tumor development in those at risk for
bladder cancer. Indeed, prior work focusing on the microbiomes of other organ systems have
documented microbial changes in the setting of cancer, including oral squamous cell
carcinoma,[19] cervical cancer,[20] and colon cancer.[21] Therefore, we sought to determine
whether there were changes in the urinary microbiome in an experimental mouse model of
bladder cancer, and whether we could identify distinct profiles associated with specific lesions
along the spectrum of bladder oncogenesis. To test our hypothesis that mice with bladder
cancer would harbor a distinct urinary “oncobiome”, we used an established model in which a
dilute bladder-specific carcinogen (n-butyl-n-(4-hydroxybutyl) nitrosamine, BBN) is administered
to mice in their drinking water. The BBN model, a widely used and well-established model of
bladder carcinogenesis, [22,23] reliably leads to tumor formation in both mice and rats. Although
the incidence of cancer is not 100%, this can be seen as an advantage given that an array of
pathologies are obtained. Work by our group and others has shown that BBN-induced bladder
cancers in mice closely resemble human cancers, both histologically [24], and by gene
expression analysis, with a particular resemblance to muscle-invasive disease noted by several

groups [25-27].

Methods:

Mice: Twenty female C57BL/6 mice (received at 5 weeks of age from Jackson Laboratories, Bar
Harbor, ME) were used in this work. Ten mice were treated with the bladder-specific carcinogen
BBN (n-butyl-n-(4-hydroxybutyl) nitrosamine, Sigma-Aldrich, St. Louis, MO) at 0.05% in their
drinking water ad libitum (tap water filtered through a Milli-Q Academic system, MilliporeSigma,
Burlington, MA) over a period of five months, and ten mice were given unmanipulated tap water

(municipal water supply, Rockville, MD). All ten BBN-treated mice were housed together in a
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single cage, as were the ten control mice. The bedding (Aspen Chip®, Northeast Products
Corporation, Warrensburg, NY) and chow (LabDiet® Prolab® RMH 1000, PMI Nutrition,
Brentwood, MO) were the same between the two groups. Mice were housed in adjacent cages

in the same holding room of the animal facility.

Urine Collection: Urine samples were collected at baseline, beginning 1 week after arrival to
allow for acclimation to our facility, and then at monthly intervals following the initiation of
exposure to BBN. At each time point, urine samples were collected from individual mice over
the course of three days. At each time point, urine samples ranging from 10 — 100 pl were
collected from each mouse. Parafiim® (Bemis Company, Inc., Oshkosh, WI) was used to cover
a tube rack such that the sterile surface of the parafilm was exposed. Mice were then placed on
the sterile surface and pressure was placed on the lower abdominal area until urination
occurred. Mice were limited from walking around to avoid contamination of the parafilm, and any
samples contaminated with feces were discarded. Urine was collected from the clean areas of
the parafilm using a sterile barrier tip. Following collection, samples were stored at -80 °C until

the completion of the study, at which point all the samples were processed as a single batch.

Microbiome Analysis: DNA was isolated from mouse urine using Qiagen DNeasy Powersoil Kit
(Hilden, Germany); bacterial DNA in each sample was quantified using Femto Bacterial DNA
Quantification kits (Zymo Research, Irvine, CA) to determine the fraction of bacterial DNA in
each DNA sample. V4 regions of 16S rRNA genes were amplified using primers 5’-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-3 and 5'-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTWTCTAAT-3' (IDT
DNA, Coralville, IA) and the following reagent concentrations: 600 mM Tris-SO,4 (pH 8.9), 180
MM (NH,), SO4, 20 mM MgSOy,, 2mM dGTP,2mM dTTP, 2nM dCTP, 10% glycerol, and

thermostable AccuPrime protein (Thermo Fisher Scientific, Waltham, MA) and 25 ng of template
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DNA in 20 pl total volume. Amplification conditions were 2 minutes at 95°C initial denaturation
followed by 28 cycles of 20 seconds denaturation at 95°C, 15 seconds annealing at 55°C and a
5-minute extension at 72°C, and a 5-minute final extension at 72°C. Amplification products were
purified with the AMPure XP system (Beckman Coulter Life Sciences Division, Indianapolis, IN)
and quantified by a Qubit dsDNA assay (Thermo Fisher Scientific). Quality and size of
amplification products were also verified with an Agilent 2100 Bioanalyzer kit (Agilent
Technologies, Santa Clara, CA). Indexing and pooling of amplification products were carried out
according to lllumina’'s 16S Metagenomic Sequencing Library Preparation protocol. The
resulting library was sequenced using lllumina MiSeq Reagent Kits v2 (500 cycles) at the
Georgetown University Genomics and Epigenomics Shared Resource (Georgetown University,

Washington, DC).

Histology: Bladders were harvested from all BBN-exposed mice and two randomly chosen
control mice after five months. Bladders were prepared for sectioning and staining by standard
methods, briefly summarized here. Tissues were fixed in 10% formalin, dehydrated through a
graded series of alcohols, embedded in paraffin, and stained with haematoxylin and eosin.
Tissue sectioning and staining was performed by the Research Pathology Core Laboratory at
the George Washington University (Washington, DC). Bladders were analyzed by a pathologist

trained in bladder biology (OH), who assessed them in a blinded fashion.

Statistical Analysis: After removing primer sequences present from FASTQ files using CutAdapt
[28], these files were processed using Mothur [29]. In brief, the paired-end FASTQ reads were
combined, after which ambiguous reads as well as reads longer than 275 bp were removed.
We followed this step by merging all duplicate reads. These sequences were then aligned to the
V4 region of the Silva reference database. Specifically, we used release 132 of the Silva

reference database. The Silva file can be downloaded at this link:
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https://www.mothur.org/w/images/3/32/Silva.nr_v132.tgz

Chimeric sequences were then removed using the VSEARCH command [30]. Finally, our
sequences were clustered using the opticlust algorithm [31]. The operational taxonomic units
(OTUs) generated were then classified taxonomically. We followed the Miseq protocol available

on https://www.mothur.org/wiki/MiSeqg SOP.

For further analysis, we used STAMP [32]. The groups were primarily compared in a pairwise
manner, using the Bonferroni correction for multiple comparisons. For statistical significance, we
used Welch'’s two-sided t-test and confidence intervals of 95%. Principal component analysis
(PCA) plots along with extended error bar plots were generated using STAMP. We also used
Phyloseq for further analysis[33]. Specifically, principal coordinate analysis (PCoA) plots were
generated using Phyloseq and ggplot2[34]. For functional analysis, we used PICRUSt [35].
Data generated by PICRUSt was then loaded to STAMP for statistical analysis and chart

generation.

Results:

In the BBN-treated group, a range of pathologies were observed. Of the ten mice who received
BBN, five did not develop cancer, and had histology consistent with inflammation (“normal-
like”),(Figure 1, panel b) three had either urothelial dysplasia, hyperplasia, or carcinoma in situ
on histology (“precancer”),(Figure 1, panel c) and two developed invasive urothelial carcinomas
(“cancer”), one of which had features of a squamous cell carcinoma.(Figure 1, panel d) The

bladders of the control mice showed normal histology, as expected.(Figure 1, panel a)

There was no significant difference in either the Shannon diversity index or the chaol index
between the aggregate BBN-treated mice and the control mice at either month 0 or month 4

(Figure 2A). There was also no difference in either the Shannon diversity index or the chaol
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index between mice in either the BBN-normal, BBN-precancer, or BBN-cancer and the control
mice at month O (Figure 2B) or month 4. (Figure 2C). Similarly, there was no change in either

the Shannon diversity or Chaol index for the between control mice at month 0 and month 4.

Principal component analysis (PCA) demonstrated clustering of the microbiome for most mice at
month O, while there was divergence at month 4 between the BBN-treated mice and the controls
(Figure 3). However, separate clusters correlating to histology was not observed. Of note, the
one major outlier at month 0 went on to develop invasive carcinoma. The urinary microbiome of
that mouse at month 0 was composed of different bacteria than the other mice in this work
(Figure 4A). The most prevalent bacteria in the urinary microbiome of the outlying mouse were:
Rubellimicrobium, Escherichia, Roseococcus, Roseomonas, Kaistobacter, and Sphingomonas
(Figure 4B). Comparatively, the most common bacteria in the remaining urinary microbiomes

were: Escherichia, Prevotella, Veillonella, Streptococcus, Staphyloccoccus, and Neisseria.

There were no significant differences in proportions of specific bacteria at months 0 through
month 3 between the aggregate BBN-treated (regardless of histology) and control mice.
However, at month 4, the aggregate BBN-treated mice had significantly higher proportion of
Gardnerella (corrected p-value = 0.047) and Bifidobacterium (corrected p-value 0.045)
compared to the control mice. (Figure 5A) The corresponding functional analysis by PICRUST
demonstrated that the urinary microbiome in the BBN-treated mice at month 4 had increases in
multiple pathways compared to the control mice at month 4. A total of 44 pathways were
differentially expressed, including: purine metabolism, phosphotransferase systems, peptidases,
protein folding, and bacterial toxins. (Figure 6) There were no other differences noted in the

functional analysis between any other months.
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When comparing control mice to the individual BBN sub-divisions, there were no differences in
the relative abundance of microbial groups between the control and either BBN-precancer or
BBN-cancer at any time point. However, BBN-normal mice had significantly higher proportions
of Gardnerella, Haemophilus, Bifidiobacterium, and Ureaplasma, and significantly lower
proportions of Actinomyces compared to the control mice at month 4. (Figure 5B) PCA plots
demonstrated clustering of both the BBN-normal, BBN-precancer and the BBN-cancer group at
month 4, which is distinct from their respective baseline urinary microbiomes. The control mice
have urinary microbiomes at both month 0 and month 4 that cluster together, which is disparate
from the month 4 cluster of the BBN mice. (Figure 3) There were no differences between

controls and any individual BBN sub-division by PICRUSt analysis.

Discussion:

Here, we show that there are distinct urinary microbial profiles in mice exposed to 4 months of
BBN compared to control mice. We report significant differences in several bacteria between the
BBN-treated mice and control mice at month 4, but not in previous months. Further, we

demonstrate stability in the urinary microbiome of control mice over a 4-month period.

While the overall shift in the composition of the microbial community is likely significant, there
are also implications stemming from the specific bacterial operational taxonomic units (OTUSs)
that differ between these two groups. There were significantly higher proportions of Gardnerella
and Bifidobacterium in the BBN-treated mice compared to control mice at month 4. Gardnerella
has also been associated with cervical cancer. Women with cervical cancer had a higher
incidence of Gardnerella in their vaginal flora compared with women with benign gynecological
disease.[36] Further, there is a correlation between presence of Gardnerella and dysplastic

changes in women undergoing screening for cervical cancer,[37] although more recent work in
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women with cervical cancer have not found this association.[38] In addition to Gardnerella, there
were also significantly higher proportions of Bifidobacterium in the BBN-treated mice at month 4.
While Gardnerella is associated with the development of cancer, Bifidobacterium has been
shown to exert antitumor immunity in various mouse models.[39] Further, Bifidobacterium was
also one of several components of the microbiota in patients with metastatic melanoma who
responded to immunotherapy.[40] Similarly, patients with an increased risk of advanced
colorectal cancers demonstrated a significantly lower proportion of Bifidobacterium in their fecal
microbiota compared to patients with normal risk.[41] The significant increase in proportion of
Bifidobacterium in the cohort of BBN-treated, but not control, mice suggests its involvement in
oncogenensis. However, as we are underpowered to investigate the various sub-groups of
mice (i.e. pre-cancer versus cancer versus normal), it is possible that the increase in
Bifidobacterium in the BBN mice is seen only in the mice who were exposed to BBN, but did not
develop cancer. Further work is heeded to fully investigate the specific role of Bifidobacterium

in bladder cancer.

We identified differentially increased proportions of bacteria in the BBN-treated mice that had
histologically normal bladders, but with neither precancer nor cancer. One potential explanation
is the low numbers of mice in the precancer and cancer sub-groups; Three mice had histology
consistent with precancerous lesions, and only two mice developed cancer. These numbers
may be too small to identify a difference in the proportion of individual members of their
respective microbial communities. However, given the separation of clusters seen on the PCA
chart, it is likely that we are underpowered to find a difference. Interestingly, one BBN-treated
mouse with a distinct urinary microbiome at month 0 (Figure 1) went on to develop cancer. The
predominant organisms in the baseline urinary microbiome of this mouse were largely different
from those in the remaining mice. The most common organism in the urinary microbiome of the

outlying mouse was Rubellimicrobium, followed by Escherichia, and then Kaistobacter.


https://doi.org/10.1101/364000
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/364000; this version posted July 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Escherichia was highly prevalent in controls and BBN-treated mice, thus its role in this model is
difficult to discern. In contrast, Rubellimicrobium and Kaistobacter were highly prevalent only in
the outlier. Rubellimicrobium is a gram negative organism, found mostly in soil.[42] There is little
in the literature about this organism, with no reports of association with diseases. Similarly,
Kaistobacter is also found within the soil, with no reported association with specific disease
states.[43] The implications of the presence of these organisms is unknown given the paucity of
data within the literature. As this data is from a single mouse, we were not powered to examine
the effects of alterations in the baseline microbiome with increased risk of bladder cancer.

However, this hypothesis warrants further exploration in future work.

The proposed role of the urinary microbiome in bladder cancer raises the potential of the utility
of therapeutic probiotics. However, this is not a novel idea. Indeed, the one of the most effective
agents used for the management of bladder cancer is the intravesical administration of Bacillus
Calmette-Guérin (BCG). Although not fully elucidated, the proposed mechanism by which BCG
exerts an anti-tumor effect is thought to be due to activation of the immune system and immune-
mediated cytotoxicity, as well as potential cytotoxic effects of BCG itself.[44] Other bacterial
agents have also shown to have therapeutic potential in bladder cancer. Lactobacillus casei,
Shirota strain, has demonstrated anti-tumor properties in several murine models of
cancer,[45,46] with comparable effects to BCG. The hypothesized mechanism by which L. casei
exerts its anti-tumor effect is stimulation of macrophages to produce cytokines with anti-tumor
properties, such as IL-12 and tumor necrotic factor alpha.[47] The successful use of these
microbiome-modulating agents in the treatment of bladder cancer provides further support for

the existence of the bladder oncobiome.

While the role of asymptomatic bacteriuria in the urinary microbiome is unclear, data suggests

that recurrent asymptomatic bacteriuria offers a protective effect against bladder cancer.[12]
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The mechanisms by which epithelial cells recognize pathogenic versus commensal organisms
may offer a partial explanation for this observation, and allow for a more complete
understanding of the role of the urinary microbiome in the pathogenesis of bladder cancer. The
epithelial response to commensal organisms includes inhibition of the inflammatory response
through the NF-KB pathway.[48] This anti-inflammatory effect on epithelial tissues has been
demonstrated by a variety of commensal bacteria, including strains of Lactobacillus,[49]
Bifidobacterium,[50] and Fusobacterium[51] . Conversely, pathogenic bacteria — specifically
uropathogenic E. coli (UPEC) — can stimulate the inflammasome in urothelial cells, whereas
non-pathogenic strains of E. coli do not.[52] Taken together, these data suggest that the
response of host tissue to specific bacteria within the microbiome may modulate cancer-
associated inflammation. Indeed, dysregulation of the extracellular matrix (ECM), which can
occur as a result of age or a variety of diseases, plays a critical role in tumorigenesis through
generation of a tumorigenic environment, including facilitation of angiogenesis and
inflammation.[53] Further, inflammation induces ECM remodeling and generation of reactive
oxygen species, leading to DNA damage, mutations, and ultimately oncogenesis.[54] There are,
however, additional hypotheses as to how the urinary microbiome influences the development
of bladder cancer. These include the metabolism of pro-carcinogenic environmental toxins, the
direct effect of various bacterial virulence factors, and directly genotoxic bacterial metabolites

(reviewed by Xu et al. [14] and Whiteside et al. [15]).

Another potential mechanism through which changes in the microbiome can lead to
development of cancer is through the presence of biofilms. Biofilms have been implicated in the
development of colon cancer: Dejea et al. demonstrated an association between colon cancer
and the presence of dysbiotic biofilms. Their data also suggests that the presence of a biofilm in

healthy controls is associated with procarcinogenic inflammation.[55] These authors
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hypothesize that biofilm formation increases permeability of the colonic epithelium that enables
bacteria to directly interact with the unprotected epithelium surface, which facilitate development
of procarcinogenic inflammation.[55] Given this hypothesized role of biofilms in colon cancer,
and the potential association between recurrent UTIs and bladder cancer, it is plausible that
biofilms also mediate procarcinogenic inflammation in the bladder. Indeed, species of
Gardnerella, which were significantly increased in BBN-treated mice at month 4 compared to
controls, can form biofilms,[56] and in this capacity may play a role in oncogenesis. Biofilms are
also known to occur in the setting of UTI. E. coli forms intracellular biofilms,[57] while other
bacteria form biofilms associated with indwelling devices, such as urinary catheters.[58] Our
data provide some support for this: bacterial gene pathways predicted to be significantly
expressed at increased levels in the urinary microbiota of the BBN mice at 4 months include

those that would increase inflammation of the epithelium, e.g., peptidase and toxin production.

There are several other examples of cancers associated with changes in their respective
microbiomes. Patients with grade 4 oral squamous cell carcinoma have significant differences
in their oral microbiome compared to healthy controls, with changes in community complexity,
as well as composition. Further, the proportion of Fusobacterium increased while the
proportions of Streptococcus, Haemophilus, Porphyromonas, and Actinomyces progressively
decreased with increased disease severity, with the largest differences seen in stage 4
carcinoma.[59] Similar work has been conducted in cervical cancer, where women with
increasingly severe grades of carcinoma in situ have decreasing proportions of Lactobacillus in
their vaginal microbiomes.[60] Patients with cirrhosis who progress to develop hepatocellular
cancer have different gut microbiomes than those who do not develop cancer.[61] These data
suggest that altered microbial profiles exist in a variety of oncologic conditions, including bladder

cancer.
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Limitations of this study include the small number of mice that developed bladder cancer.
Further, the exposure to BBN may have affected our results independent of the changes in
histology. Finally, the use of 16S rRNA sequencing, rather than whole genome sequencing,
limits our ability to make inferences about the metagenomes in bladder cancer. Most of the
OTUs we identified in this work were classified to the genus level, and some only to the family
level. Resolving the data to the species or even strain level would be more informative. Future
work will include a larger number of mice, the use of additional mouse models of bladder cancer
to ensure that these results are due to the presence of bladder cancer rather than result of

exposure to BBN, and use whole genome sequencing.

Conclusion: Mice exposed to 4 months of BBN, a bladder-specific carcinogen, have distinct
urine microbial profiles compared to control mice. This suggests that there are specific urine
microbial profiles associated with the development of bladder cancer, which we propose

represents the existence of a “urinary oncobiome”.

Figure Legends:

Figure 1. Representative histology from BBN-treated and control mice. Bladders from control or
BBN-treated mice were harvested after 5 months, and formalin-fixed paraffin-embedded tissue
sections were stained with hematoxylin and eosin. Compared to the normal urothelium in the
control mice (A, 100X), the BBN-treated mice exhibited a range of disease states from normal-
like with chronic inflammation (B, 100X) to dysplasia (C, 400X) to invasive bladder cancer with

features of transitional cell and squamous cell carcinoma (D, 200X).

Figure 2. Comparison of indices of alpha diversity between groups. A) There is no difference in
either the Shannon Diversity Index or Chaol Index between mice exposed to BBN (red) and

control mice (blue) at month 0 or month 4. There is no difference between either the Shannon
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Diversity Index of the Chaol Index between control mice (red) and the BBN-normal (green),

BBN-pre-cancer (blue), or BBN-cancer (purple) at month 0 (panel B) or month 4 (panel C).

Figure 3. Principal component analysis (PCA) plots of urine “oncobiomes”. Urine samples were
collected at baseline and at monthly intervals from control or BBN-treated mice over 4 months
and the bacterial communities profiled by 16S v4 rRNA gene sequencing. At study completion,
bladders were harvested and analyzed histologically, indicating a range of pathologies. BBN
data sets were then subdivided by histological findings [BBN Normal (normal-like with
inflammation, n = 5), BBN Pre-Ca (precancerous lesions, n = 3), BBN Cancer (invasive cancers,
n = 2)] for comparison to control samples (n = 6). BBN and control samples largely clustered
together at baseline (Month 0). However, by month 4, while the control samples still mostly
clustered with the baseline samples, the BBN samples were predominantly grouped in a distinct
cluster. An outlier at Month O (upper right of plot) later developed invasive carcinoma from BBN

treatment. Plots were generated using STAMP (STatistical Analysis of Metagenomic Profiles).

Figure 4. Relative abundance charts. A) Relative abundancies of the nine most prevent
bacteria in the urinary microbiome at month 0. The arrow indicates the mouse whose urinary
microbiome at month 0 was an outlier on the PCA chart that developed cancer. B) Relative
abundancy chart of the eight most common bacteria in the urinary microbiome of the outlying

mouse at month 0.

Figure 5: Mean proportion charts. A) Mean proportion chart comparing the proportion of the
bacteria in the urinary microbiome of control (black) versus BBN-exposed (green) mice at month
4. Proportions of Gardernella and Bifidobacterium were significantly higher in the BBN-exposed

month compared to the controls. B) Mean proportion chart comparing the urinary microbiome of
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BBN-normal versus control mice at month 4, with higher proportions of Gardernella,

Haemophilus, Bifidobacterium, and Ureaplasma in the BBN-normal mice, and Actinomyces in

the control mice.

Figure 6: Inferred functional profiles of BBN-treated mice versus control mice at month 4.

Multiple pathways are inferred to be differentially upregulated in either group. Pathways with

black point are increased in the control mice, and those with the blue point are increased in the

BBN-treated mice.
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Figure 6: Inferred functional profiles of BBN-treated Mice and Control Mice at Month 4
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