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ABSTRACT

The contactin-associated protein-like 2 (CNTNAP2) gene is a member of the neurexin
superfamily. CNTNAP2 was implicated in the cortical dysplasia-focal epilepsy (CDFE)
syndrome, a recessive disease characterized by intellectual disability, epilepsy, language
impairments and autistic features. Associated SNPs and heterozygous deletions in CNTNAP2
have also frequently been reported in autism, schizophrenia and other psychiatric or
neurological disorders. We aim here to gain conclusive evidence for the role of CNTNAP?2 in
susceptibility to psychiatric disorders by the comprehensive analysis of large genomic datasets.
In this study we used: 1) summary statistics from the Psychiatric Genomics Consortium (PGC)
GWAS; ii) examined all reported CNTNAP?2 structural variants in patients and controls; iii)
performed cross-disorder analysis of functional or previously associated SNPs; iv) and
conducted burden tests for pathogenic rare variants using sequencing data (4,483 ASD and
6,135 schizophrenia cases, and 13,042 controls).

In a CNV mircroarray study, we previously identified a 131kb deletion in CNTNAP2 intron 1,
removing a FOXP2 transcription factor binding site in an extended BD family. Here we
perform a quantitative-PCR validation showing imperfect segregation with disease (5 bipolar
disorder relatives). The distribution of CNVs across CNTNAP2 in psychiatric cases from
previous reports was no different from controls of the database of genomic variants. Gene-
based association testing did not implicate common variants in autism, schizophrenia or other
psychiatric phenotypes. The association of proposed functional SNPs rs7794745 and
rs2710102, reported to influence brain connectivity, was not replicated; nor did functional
SNPs yield significant results in meta-analysis across psychiatric disorders. Disrupting
CNTNAP?2 rare variant burden was not higher in autism or schizophrenia compared to controls.
This large comprehensive candidate gene study indicates that CNTNAP2 may not be a robust

risk gene for psychiatric phenotypes.
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AUTHOR SUMMARY

Genetic mutations that disrupt both copies of the CNTNAP2 gene lead to severe disease,
characterized by profound intellectual disability, epilepsy, language difficulties and autistic
traits. Researchers hypothesized that this gene may also be involved in autism given some
overlapping clinical features with this disease. Indeed, several large DNA deletions affecting
one of the two copies of CNTNAP2 were found in some patients with autism, and later also in
patients with schizophrenia, bipolar disorder, ADHD and epilepsy, suggesting that this gene
was involved in several psychiatric or neurologic diseases. Other studies considered genetic
sequence variations that are common in the general population, and suggested that two such
sequence variations in CNTNAP2 predispose to psychiatric diseases by influencing the
functionality and connectivity of the brain. In the current study, we report the deletion of one
copy of CNTNAP2 in a patient with bipolar disorder from an extended family where five
relatives were affected with this condition. To better understand the involvement of CNTNAP?2
in risk of mental illness, we performed several genetic analyses using a series of large publically
available or in-house datasets, comprising many thousands of patients and controls. Despite
the previous consideration of CNTNAP?2 as a strong candidate gene for autism or schizophrenia,
we show that neither common, deletion nor ultra-rare variants in CNTNAP2 are likely to play

a major role in risk of psychiatric diseases.
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83 INTRODUCTION
84  The contactin-associated protein-like 2 (CNTNAP?2) is located on chromosome 7q35-36.1, and
85  consists of 24 exons spanning 2.3Mb, making it one of the largest protein coding genes in the
86  human genome. This gene encodes the CASPR2 protein, related to the neurexin superfamily,
87  which localises with potassium channels at the juxtaparanodal regions of the Ravier nodes in
88 myelinated axons, playing a crucial role in the clustering of potassium channels required for
89  conduction of axon potentials [1]. CNTNAP2 is expressed in the spinal cord, prefrontal and
90 frontal cortex, striatum, thalamus and amygdala; this pattern of expression is preserved
91 throughout the development and adulthood [2, 3]. Its function is related to neuronal migration,
92  dendritic arborisation and synaptic transmission [4]. The crucial role of CNTNAP2 in the
93  human brain became clear when Strauss et a/, reported homozygous mutations in Old Order
94  Amish families segregating with a severe Mendelian condition, described as cortical dysplasia-
95 focal epilepsy (CDFE) syndrome (OMIM 610042) [5]. In 2009, additional patients with
96 recessive mutations in CNTNAP2 were reported, with clinical features resembling Pitt-Hopkins
97 syndrome [6]. To date 33 patients, mostly from consanguineous families, have been reported
98  with homozygous or compound deletions and truncating mutations in CNTNAP2 [5-9], and are
99  collectively described as having CASPR2 deficiency disorder [7]. The common clinical
100 features in this phenotype include severe intellectual disability (ID), seizures with age of onset
101  at two years and concomitant speech impairments or language regression. The phenotype is
102  often accompanied by dysmorphic features, autistic traits, psychomotor delay and focal cortical
103  dysplasia.
104 CNTNAP? is also thought to contribute to the phenotype in patients with interstitial or
105 terminal deletions at 7q35 and 7q36. Interstitial or terminal deletions encompassing CNTNAP?2
106  and several other genes have been described in individuals with ID, seizures, craniofacial

107  anomalies, including microcephaly, short stature and absence of language [10]. The severe
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108 language impairments observed in patients with homozygous mutations or karyotypic
109  abnormalities involving CNTNAP?2 suggested a possible functional interaction with FOXP2, a
110  gene for which heterozygous mutations lead to a monogenic form of language disorder [11].
111 Interestingly, Vernes et al., found that the FOXP2 transcription factor has a binding site in
112 intron 1 of CNTNAP2, regulating its expression [12]. Considering that a large proportion of
113  autistic patients show language impairments and most individuals with homozygous mutations
114  in CNTNAP2 manifest autistic features, several studies investigated the potential involvement
115  of CNTNAP2 in autism spectrum disorder (ASD). In particular, two pioneering studies showed
116  that single nucleotide polymorphism (SNP) markers rs2710102 and rs7794745 were associated
117  with risk of ASD [13, 14]. Moreover, in subsequent studies, rs2710102 was implicated in early
118 language acquisition in the general population [15], and showed functional effects on brain
119  activation in neuroimaging studies [16-19]. Furthermore, genotypes at rs7794745 were
120  associated with reduced grey matter volume in the left superior occipital gyrus in two
121 independent studies [20, 21], and alleles of this SNP were reported to affect voice-specific
122 brain function [22]. Genetic associations with ASD for these, and several other SNPs in
123 CNTNAP2, have been reported in a number of studies [23-28]. Along with the first reports of
124  variants associated with ASD, copy number variant (CNV) deletions have also been described
125  in ID or ASD patients, which were proposed to be highly penetrant disease-causative mutations
126 [13, 29-38]. To better understand the role of CNTNAP2 in ASD pathophysiology, knockout
127  mice were generated. Studies of these mice reported several neuronal defects when both copies
128 of CNTNAP2 are mutated: abnormal neuronal migration, reduction of GABAergic
129  interneurons, deficiency in excitatory neurotransmission, and the delay of myelination in the
130  neocortex [2, 39, 40].

131 These intriguing findings prompted additional investigations of CNTNAP2 across other

132 psychiatric disorders or language-related traits, with additional reports of variants being


https://doi.org/10.1101/363846
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/363846; this version posted July 6, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

133 associated with schizophrenia (SCZ), bipolar disorder (BD), specific language impairment
134  (SLI) and several other phenotypes or traits [12, 15, 41-50]. Consecutively, other studies
135  reported CNV deletions in CNTNAP2 in other psychiatric phenotypes such as schizophrenia
136 [51, 52], bipolar disorder [52-54], and ADHD [55]; neurological disorders [56-61]; and
137  language-related phenotypes [61-65]. Interestingly, several of these structural variants were
138  found in intron 1 of CNTNAP2, encompassing the FOXP2 transcription factor binding site.

139 Our group recently performed CNV analysis in extended families with bipolar disorder
140  [66], and found an intronic deletion in one individual which removed the FOXP2 binding site,
141  prompting the need for a segregation analysis in this family. We therefore aimed in this current
142 study to examine the evidence for a role of the CNTNAP2 gene in multiple psychiatric
143 phenotypes, performing a comprehensive analysis of common and rare variants, CNVs and de

144  novo mutations using both in-house data and publically available datasets.

145
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146 RESULTS

147  Examination of an intronic deletion in CNTNAP2 in an extended family with bipolar disorder

148  CNV microarray analysis was performed in two affected individuals from an extended family
149  which included five relatives affected with bipolar I disorder. A drop in signal intensity for 340
150  consecutive probes was compatible with a deletion of 131 kb in intron 1 of CNTNAP2
151 (hgl9/chr7:146203548-146334635; Fig 1A). The deletion encompasses the described binding
152  site for the transcription factor FOXP2 (hg19/chr7:146215016-146215040) [12]. The deletion
153  was detected in one of the two affected individuals examined. To infer deletion segregation
154  amongst relatives, WES-derived genotypes were used to create haplotypes across chromosome
155 7935 (Fig 1B). The WES-derived haplotype analysis was uninformative due to incomplete
156  genotype data (unaffected descendants of deceased patient 8404 not included in the WES
157  study) and a likely recombination at 7q35 in the family. Thus experimental validation (in
158  patient 8401) and CNV genotyping via quantitative PCR (qPCR) was performed in all
159  individuals with DNA available from this family to assess the presence of the CNTNAP2
160 intronic deletion. The deletion was validated in subject 8401, and was also detected in one
161  unaffected descendant of deceased patient 8404 (Fig 1C), implying that this CNV would have
162  been present in affected subject 8404, had DNA been available. The structural variant did not
163  segregate with disease status in this family, and is unlikely to be a highly penetrant variant as
164 it was observed also in an unaffected relative (Fig 1B).

165
166  Structural variants affecting CNTNAP2 amongst psychiatric phenotypes

167  Several deletions and duplications have been described in neuropsychiatric phenotypes thus
168  far. In Fig 2, we present a comprehensive representation of all previously reported structural
169  variants found in CNTNAP2 in psychiatric disorders such as ASD or ID [13, 29-3§],

170  schizophrenia or bipolar disorder (including the 131kb deletion found in the present study) [51-
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171 54], ADHD [55], neurologic disorders such as epilepsy, Tourette syndrome or Charcot-Marie-
172 Tooth [56-60]; and finally language-related phenotypes such as speech delay, childhood
173  apraxia of speech and dyslexia [62-65]. Interestingly, the structural variants reported so far
174  frequently map in intron 1, overlapping with the 131kb deletion found in our extended family,
175 and extend in some cases up to exon 4. The distribution of those structural variants across
176  different phenotypes does not vary with those found in control populations from the database

177  of genomic variants (http://dgv.tcag.ca/dgv/app/home) (Fig 2), suggesting that structural

178  variants in CNTNAP?2 are not rare events associated exclusively to disease but are present with

179  rare frequency in the general population.

180

181  Analysis of CNTNAP2 common and rare variation in the susceptibility of psychiatric disorders
182  During the last decade, several association studies have been performed to assess the role of
183  common variants of CNTNAP2 in several psychiatric phenotypes. The functional relationship
184  between CNTNAP2 and the language-associated transcription factor FOXP2 prompted many
185  studies to focus on language traits in autism or speech-related phenotypes [12-15, 23-28, 46-
186 48, 50], but later, additional associations were also reported in other psychiatric phenotypes
187  [41-45, 49]. In Table 1, we summarise all markers found significantly associated in these
188  previous studies, and report the corresponding P-value from the Psychiatric Genomics
189  Consortium GWAS for seven major psychiatric disorders: ADHD, anorexia nervosa, ASD,
190  bipolar disorder, MDD, OCD and schizophrenia. Nominal associations were found with ASD
191  for the following markers: rs802524 (P=0.016), rs802568 (P=0.008), rs17170073 (P=0.008),
192  and rs2710102 (which is highly correlated with 4 SNPs: rs759178, rs1922892, rs2538991,
193  1s2538976) (P=0.036); with schizophrenia for rs1859547 (P=0.044); with ADHD for
194 151718101 (P=0.038); in MDD for rs12670868 (P=0.047), rs17236239 (P=0.006), rs4431523

195 (P=0.001); and with anorexia nervosa for rs700273 (P=0.013). The nominal association at
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196 151770073 and rs2710102 in ASD represents the only case in which the phenotype matches
197  between the original report and the PGC dataset. The two SNPs rs7794745 and rs2710102,
198  which were repeatedly reported as being associated and proposed to be functional SNPs, were
199  not strongly associated with any phenotype (the most significant signal being P=0.036 for
200 1s2710102 in autism). None of those associations survived corrections for multiple
201  comparisons (Table 1).
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220 Table 1. Common SNPs in CNTNAP2 previously associated in psychiatric diseases, and their evidence for association in PGC datasets.
221

PGC Results (P-Value)

SNP Location  Disease (Ref) ASD  SCZ BD ADHD MDD AN OCD
rs34712024  Promoter  ASD [25] 0.672~  0.45 0.099 0.442 N/A 0.283  0.295
rs802524 Intron 1 SCZ, BD [41] 0.016~ 0.081  0.058 0.210 0.070 0.143  0.039
rs802568 Intron 1 SCZ, BD [41] 0.008" 0.061 0.312 0.047 0.054 0.321 0.279
rs17170073  Intron 1 ASD [26] 0.008 0903  0.558 0.883 0.306 0.031 0.101
rs1718101 Intron 1 ASD [27] 0.076~ 0.257  0.215 0.038 0.255 0.243  0.029
rs700273 Intron 1 ALD [42] 0.840 0.655  0.837 0.544 0.338 0.013 0.554
rs7794745 Intron 2 ASD [14, 23, 24] 0.906 0.734  0.498 0.393 0.173 0.877 0.503
1510251794  Intron 3 OPN [43] 0.301 0365  0.155 0.452  0.047 (rs12670868) 0.648  0.351
rs7804520 Intron 3 ASD [28] 0378 0277  0.236 0.155 0.568 0.506 0.682
151603450 Intron 8 LAN [15] 0.445 0.166  0.643 0.141 0.010 0.951 0.577
1s826824 Intron 9 MDD (male only) [44] 0.218 0.181  0.256 0.317 0.266 0.736  0.199
rs1859547 Intron 11  SCZ [45] 0.697 0.044 0.431 0.225 0.939 0.729  0.154
rs851715% Intron 13 SLI[12] 0.448 0.496  0.572 0.067 0.601 0920 0411
rs10246256% Intron 13 SLI[12, 46] 0.429 0.613  0.508 0.070 0.601 (rs851715)  0.871 0.454

ASD, SLI, DYS, SM,
rs2710102%  1Intron 13 ANX, LAN, MDD [12, 13,

15, 23, 46-49] 0.036 0.893 0.801  0.911 0.346 0.383  0.351
rs759178%  Intron 13  SLI, LAN[12, 15] 0.037 0.890 0.799  0.929 0.332 0.363  0.347
rs1922892%  Intron 13 SLI[12] 0.039 0908 0.794 0940  0.332(rs759178)  0.359  0.346
rs2538991%  Intron 13 SLI[12] 0.041 0852 0797 0989  0.332(s759178)  0.366  0.338
ASD, SCZ, SLI[12, 23, 27,
rs17236239  Intron 13 0491 0.142 0290 0278  0.883 0.006 0.622  0.954
rs2538976*  Intron 13 SLI SSD[12, 50] 0.051 0718 0.692  0.812 0.358 0.408  0.424
rs2215798  Intron 13 ASD [26] 0.5 0469 0361  0.742 0.030 0.568  0.281
rs4431523  Intron 13 SLI[12] 0275 0.844 0.676 0.614  0.001 (rs2708267) 0.933  0.972
rs2710117  Intron 14  SLI, MDD [12, 46, 49] 0.1477 0.6701 0.7566 02106 0.894 (rs2710121)  0.993  0.321

rs2710093 Intron 14 ASD [26] 0.4077 0.2891 0.02819 0.2943  0.090 (rs2710091) 0.8416 0.2767
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223 The disease for which association at each listed SNP is given, along with the reference number
224  for each study and the approximate location of each variant within the CNTNAP2 gene
225  structure. On the right, the P-value from each Psychiatric Genomics Consortium (PGC) dataset
226  is reported. Where the associated SNP was not found in the GWAS summary statistic data,
227 results for an alternative SNP are shown in parenthesis (r>=1). Putative functional SNPs
228 187794745 and rs2710102 are underlined. No association survives correction for multiple
229  independent tests (P <3.8E-04), but P-values < 0.05 are shown in bold. Abbreviations: ASD,
230 autism spectrum disorder; SLI, specific language impairment; DYS, dyslexia; ANX, social
231  anxiety; LAN, language in general population; SCZ, schizophrenia; BD, bipolar disorder;
232 ALD, Alcohol dependence; OPN, Openness general population; MDD, major depressive
233 disorder; SSD, speech sound disorder; N/A, SNP not genotyped; &, r2>0.97 across the
234 following SNPs: rs851715 and rs10246256; #, 12>0.97 across the following SNPs: rs2710102,
235  15759178,1s1922892, 152538991 and rs2538976; , summary data at this SNP was not included
236  in the latest autism GWAS (PGC2) but was present in the previous data set which included
237 5,305 ASD cases and 5,305 controls.

12
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238 Next, we explored the contribution of common variants across CNTNAP2 by
239  performing a gene-based association study in European populations using GWAS summary
240  statistics from PGC data of seven psychiatric disorders (Table 2).

241

242 Table 2. Gene-based tests for association of CNTNAP2 across seven psychiatric disorders
243 using GWAS summary statistics of the PGC data sets.

N Cases — N SNPs  Gene-based Top SNP P-

Disease Controls tested P-value Top SNP value

ADHD? 19,099 - 34,194 7,538 0.16 rs370840971 4.8E-04
AN? 3,495-10,982 9,318 0.33 rs138287908 8.5E-05
ASD? 6,197 - 7,377 5,946 0.54 rs1089600 0.0018
BD? 20,352 - 31,358 11,345 0.34 rs181471483 3.6E-04
MDDP 9,240 - 9,519 1,214 0.029 154725752 9.3E-04
OCD? 2,688 - 7,037 8,631 0.30 rs6976859 8.7E-05
SCz? 33,640 - 43,456 12,264 0.11 rs78093069 1.1E-04

244 The numbers (N) of cases and controls in each dataset examined are given, along with the
245  number of SNPs tested in each dataset. The name and P-value of the SNP with most significant
246  association is given. Abbreviations: ADHD, attention-deficit/hyperactivity disorder; AN,
247  anorexia nervosa; ASD, Autism spectrum disorder; BD, bipolar disorder; MDD, major
248  depressive disorder; OCD, obsessive compulsive disorder; SCZ, schizophrenia; 2, European
249  individuals from the PGC2 data sets; ®, European individuals from the PGC1 data sets.

250

251  The test included a dense coverage of SNPs across CNTNAP2: from 1,214 SNPs in MDD up
252 to 12,264 SNPs in schizophrenia. The results suggest that common variants overall do not
253  contribute to disease susceptibility of these phenotypes (Table 2). The most significant
254  association observed was for MDD phase 1 analysis (P=0.029), which is the dataset with the
255  most modest coverage of markers.

256 In our final analysis of the PGC datasets, we selected 63 predicted functional SNPs in
257  CNTNAP?2 and performed a cross-disorder meta-analysis, aimed to test evidence for association
258  with common functional variants across psychiatric disorders. Nominal significance of
259  association was observed for 11 predicted functional SNPs with P-values ranging from 0.01

260 and 0.05, but none survive correction for multiple comparisons (Table 3).

261

13
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262 Table 3. Cross psychiatric disorders meta-analysis of predicted functional SNPs.

SNPs Allele Function Datasets | P-val OR

rs17480644 A/G TFBS ADHD, AN, BD, OCD, SCZ 8 0.083 1.039
rs1260124 A/T TFBS ADHD, AN, ASD, BD, OCD, SCZ 0 0.635 0.996
1s35796336 T/C TFBS AN, ASD, BD, OCD, SCZ 0 0.049 1.027
1s10277276 T/C TFBS BD, OCD, SCZ 0 0.764 0.992
134712024 A/G TFBS ADHD, AN, BD, OCD, SCZ 32 0.626 1.012
12462603 A/G TFBS ADHD, AN, ASD, BD, OCD, SCZ 0 0.303 0.993
rs1639484 A/T SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.376  1.005
rs12703814 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.965 0.999
rs1639447 A/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.376  0.990
rs769344 C/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.778 0.996
rs10280967 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.639 0.996
rs10243142 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.738 1.002
rs12535047 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 0 0.327 0.993
1347201 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.089 1.011
rs13234249 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 2 0.101 1.011
1s12666908 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.914 0.999
1s11972428 T/G SeqCons ADHD, AN, BD, OCD, SCZ 0 0.672 1.012
rs34222835 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ 4 0.045 0.979
rs10261412 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 52 0.808 0.995
rs1826843 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 20  0.153  0.990
rs17170356 A/G SeqCons ADHD, AN, BD, OCD, SCZ 0 0.137 0972
rs4726831 A/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ 18 0.294 0.990
rs10279700 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 26 0.857 0.998
rs35701811 A/G SeqCons ADHD, AN, BD, OCD, SCZ 0 0.899 0.998
1s899617 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.026 1.014
1s747140 C/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.025 1.014
1s7798078 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 0 0.091 1.011
1s34592169 A/G Splicing ADHD, AN, ASD, BD, OCD, SCZ 15  0.067 1.014
rs6970064 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 7 0.462 1.004
rs17170640 A/G SeqCons ADHD, AN, BD, OCD, SCZ 0 0.018 1.041
rs16883690 A/C SeqCons BD, SCZ 66 0.673 1.066
187797724 T/C SeqCons BD, SCZ 0 0.047 1.592
rs851659 A/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ 9 0.349 0.993
rs35815165 -/AA SeqCons ADHD, AN 0 0.831 1.002
rs13247212 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.797 0.996
rs1177007 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 0 0.238 1.008
rs12154883 T/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.645 1.006
rs13438769 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 0 0.057 1.018
12707580 T/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.146  0.990
rs2707581 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.156 0.990
rs2141955 A/G SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.032 1.015
134347668 A/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ 0 0.973 1.000
14725756 A/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 0 0.015 0.984
rs2888540 T/C SeqCons ADHD, AN, ASD, BD, OCD, SCZ, MDD 0 0.023 1.014
rs17170789 A/T SeqCons ADHD, AN, BD, OCD, SCZ 0 0.566 1.010
rs17170801 A/C SeqCons ADHD, AN, BD, OCD, SCZ 0 0.643 0.989
rs10279343 T/C SeqCons ADHD, AN, BD, OCD, SCZ 1 0.568 1.014
rs1122622 A/C SeqCons AN, BD, OCD, SCZ 66 0.745 1.026
rs5888312 -/A SeqCons ADHD, AN 70  0.744 1.010

SeqCons,

1s9648691 A/G Splicing ADHD, AN, ASD, BD, OCD, SCZ, MDD 64 0.806 1.002
rs987456 A/C miRNA ADHD, AN, ASD, BD, OCD, SCZ, MDD 29 0.570 1.004
rs2717809 C/G miRNA AN, BD, OCD, SCZ 0 0.746 0.989
rs2530312 A/G miRNA ADHD, AN, ASD, BD, OCD, SCZ 70 0485 0.990
rs3194 A/C miRNA ADHD, AN, ASD, BD, OCD, SCZ, MDD 68 0.797 1.003
rs10243309 C/T miRNA AN, MDD 15 0.125 1.149
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rs17170999  A/G miRNA AN, BD, OCD, SCZ, MDD 0 0.026 00917
152530311 A/G miRNA ADHD, AN, ASD, BD, OCD, SCZ, MDD 66 0975 0.999
rs17171000  T/C miRNA ADHD, AN, BD, OCD, SCZ, MDD 0 0.583 0.988
1s10251347  C/G miRNA ADHD, AN, BD, OCD, SCZ, MDD 0 0.428 0.986
1s2717829 C/G miRNA ADHD, AN, ASD, BD, OCD, SCZ, MDD 50 0.820 0.997
rs10280038  A/G miRNA AN, BD, OCD, SCZ, MDD 0 0.031 1.087
rs2530310 T/C miRNA ADHD, AN, ASD, BD, OCD, SCZ, MDD 67 0.666 0.994
rs17171006  T/C miRNA ADHD, AN, BD, OCD, SCZ 0 0.493  0.985

263  For each predicted functional SNP, the alternative alleles and predicted function are listed. P-
264  values were calculated considering fixed-model effect, except SNPs with evidence of
265  heterogeneity (I>50) where odds ratios (OR) were considered under random-effects.
266  Nominally significant associations are indicated in bold (P-values<(.05), but none exceed
267  correction for multiple testing (P <7.9E-04). Abbreviations: TFBS, transcription factor binding
268  site; SeqCons, sequence conserved nucleotide across species; miRNA, predicted miRNA
269  binding site; Splicing, exonic splicing enhancer (ESE).

270

271  The only SNP predicted to be functional and which was previously reported as being associated
272 with autism was rs34712024 (Table 2) [25], but this variant was not associated with autism in
273  PGC dataset (P=0.67), nor other psychiatric phenotypes examined (Table 2).

274 De novo variants in protein-coding genes which are predicted to be functionally
275 damaging are considered to be highly pathogenic and have been extensively explored to
276  implicate genes in psychiatric diseases, especially in ASD and schizophrenia [67]. We explored
277  publically available sequence data from previous projects in psychiatric disorders to assess the
278 rate of coding de mnovo variants in CNTNAP2 using two databases (NPdenovo,
279  http://www.wzgenomics.cn/NPdenovo/; and denovo-db, http://denovo-
280  db.gs.washington.edu/denovo-db/). No truncating or missense variants were identified across
281  CNTNAP2 in 15,539 families (including 2,163 controls), and synonymous variants were
282  reported in only two probands with developmental disorder (Table 4).
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Table 4. CNTNAP2 de novo variants identified across several disease-specific sequencing
projects.

Phenotype N Families Intronic  Synonymous Missense
ASD 6,171 106 - -
SCZ 1,164 - - -
EE 647 - - -
ID 1,101 - - -
DD 4,293 - 2 -
Controls 2,163 13 - -

The number (N) of families in each dataset examined is given. The full list of de novo variants
observed is listed in S2 Table. Abbreviations: ASD, autism spectrum disorder; SCZ,
schizophrenia; EE, epilepsy; ID, intellectual disability; DD, developmental disability.

Finally, we explored the potential impact of pathogenic ultra-rare variants (URV) in
CNTNAP? using available sequencing datasets of 4,483 patients with ASD and 6,135 patients
with schizophrenia compared with 13,042 controls. We considered only those variants
predicted to be pathogenic in both SIFT and Polyphen and which are ultra-rare (MAF<0.0001
in Non-Finnish European population). No difference in the total number of URV was observed
between ASD and controls (P=0.11), or between schizophrenia patients and controls (P=0.78)

(Table 5).

Table S. Burden analysis of CNTNAP2 ultra-rare variants (URVs) in ASD and SCZ.

N Individuals N Pathogenic URVs P-Value

Controls 13,042 59
SCZ 6,135 26 0.78
ASD 4,483 29 0.11

The selection of variants included missense variants which are predicted to be pathogenic,
truncating variants and canonical splice-site variants. The full list of URVs observed is
provided in S3 Table. Abbreviations: SCZ, schizophrenia; ASD, autism spectrum disorder
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306 DISCUSSION

307 During the last decade, the CNTNAP2 gene has received considerable attention in the
308 psychiatric genetics field, with a large body of studies examining gene dosage, common or rare
309 variants across multiple major psychiatric disorders, which together provided compelling
310 evidence that CNTNAP2 may be a risk gene with pleiotropic effects in psychiatry. While
311  homozygous mutations in this gene lead to a rare and severe condition described as CASPR2
312  deficiency disorder (CDD) [7], characterized by profound intellectual disability, epilepsy,
313  language impairment or regression [7, 8], heterozygous mutations or common variants have
314  been suggested to be implicated in autism, whose features overlap with some observed in CDD.

315 CNTNAP? is categorised in the SFARI database (https://gene.sfari.org) as a strong candidate

316  gene for ASD (category 2.1). Heterozygous deletions encompassing the CNTNAP2 gene were
317  described not only in autism but also in a wide range of phenotypes, including psychiatric or
318 neurologic disorders, and language-related deficiencies. These structural variants were
319  generally described as causative or highly penetrant [13, 29, 31, 55, 57, 59].

320 Here, we describe a new deletion in a bipolar disorder patient encompassing intron 1 of
321  CNTNAP2, which overlaps with structural variants described in a number of other psychiatric
322  patients. This heterozygous deletion, which removes the FOXP2 transcription factor binding
323  site, was found in an individual with bipolar I disorder from an extended family with five
324  affected members. This deletion was observed in only two of the affected relatives and was
325 absent from two affected relatives, but was also observed in one unaffected relative who
326  underwent diagnostic interview at age >40 and therefore beyond the typical age of symptom
327 onset. Hence, the deletion was not segregating with the disease and is unlikely to represent a
328  highly penetrant risk variant in this family. Examination of the distribution of all structural
329  variants described thus far in psychiatric or neurologic patients showed comparable mapping

330 with those found in the general population, suggesting that structural variants affecting
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331  CNTNAP2 may be less relevant in disease susceptibility than previously considered. Eleven
332 CNVs are described in the general population against sixteen expected (z=0.43) in ExAC
333  database (http://exac.broadinstitute.org), and the haploinsufficiency score (0.59) is relatively
334  moderate [68], suggesting that CNTNAP2 has a moderate tendency to be intolerant to structural
335 variants. However, a case-control CNV analysis is needed in psychiatric disorders, but would
336  require a very large sample due to the rarity of CNVs at this locus. A close clinical psychiatric
337  examination of the 66 parents with heterozygous deletions across CNTNAP2 of CDD provide
338 information on the prevalence of psychiatric conditions in individuals carrying CNTNAP2
339 CNVs. All heterozygous family members carrying deletions or truncating mutations were
340  described as phenotypically healthy, suggesting a lack of correlation between these deletions
341  and any major psychiatric condition. Furthermore, parents who were carriers for heterozygous
342  deletions in psychiatric/neurologic patients were described as unaffected at the time of
343  reporting [13, 29, 31, 37, 54, 62], with the exception of one father of a proband with neonatal
344  convulsion or another father of an epileptic patient reported as affected [56, 59]. Moreover,
345  discordant segregation for deletions in CNTNAPZ2 was also observed in an ASD sib-pair [13].
346  Several psychiatric patients who were reported to carry heterozygous structural variants in
347  CNTNAP?2 were also described with translocations or other chromosomal abnormalities [29,
348 30, 33, 34, 56, 58, 62-65], therefore it is possible that these aberrations may explain the
349  phenotype independently from the observed CNVs in CNTNAP2.

350 CNTNAP2" knock-out mice have been proposed as valid animal model for ASD
351  considering the phenotypic similarities between ASD and the CASPR2 deficiency disorder [2].
352  CNTNAP2" knock-out mice showed abnormalities in the arborisation of dendrites, maturation
353  of dendritic spines, defects in migration of cortical projection neurons, and reduction of
354  GABAergic interneurons [2, 4]. Controversially, ASD is not a core feature in the most recent

355  patient series reported with CASPR2 deficiency disorder [7, 8]. The association previously
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356  proposed around the relationship between heterozygous deletions in CNTNAP2 and ASD does
357 not have a support from mouse models, as heterozygous mice did not show any behavioural or
358 neuropathological abnormalities that were observed in homozygous knockouts [2].
359  Notwithstanding this, it is possible that the combination of heterozygous CNTNAP2 deletions
360 in a genomic background of increased risk (through inheritance of other common and rare risk
361  variants at other loci) may lead to psychiatric, behavioural or neuropathological abnormalities.
362 Common variants in CNTNAP2 are another class of genetic variation associated with
363  several psychiatric or language-related phenotypes. The most interesting finding from these
364  studies converge on markers rs7794745 and rs2710102, originally reported in ASD [13, 14],
365 and replicated later in ASD or implicated in other phenotypes [12, 15, 23, 24, 46-48].
366  Neuroimaging studies have supported the notion that these common variants play a role in
367  psychiatric disorders. SNP rs2710102 has been implicated in brain connectivity in healthy
368 individuals [16, 18, 19], and rs7794745 was implicated in audio-visual speech perception [69],
369  voice-specific brain function [22], and was associated with reduced grey matter volume in left
370  superior occipital gyrus [20, 21]. These studies focused principally on language tasks in general
371  population, given the reported suggestive implications of CNTNAP2 in language impairment
372  traits of ASD or language-related phenotypes. However, the direct role of CNTNAP2 in
373  language is still unclear; indeed the language regression observed in patients with CASPR2
374  deficiency are concomitant with seizure onset and may represent a secondary phenotypic effect
375 caused by seizures [7]. On the other hand, the first genetic association of rs7794745 and
376 152710102 with ASD, as well as the other psychiatric diseases were based in studies with
377 limited sample size, and recent studies failed to replicate associations between the two markers
378 and ASD [70, 71]. Individual alleles associated in the past with limited numbers of patients
379  warrant replications in adequately powered samples to ascertain bona fide findings considering

380 the small size effects of common variants [72], which we attempted here using the largest case-
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381  control cohorts currently publicly available (PGC datasets). We did not find evidence for
382  significant association of previous reported common variants, nor did we find functional SNPs
383  with a role across disorders, or observe a combined effect for common variants of CNTNAP?2
384 in the susceptibility of psychiatric disorders.

385 Rare variants of CNTNAP?2 both in the promoter or coding region were also reported to
386  play a role in the pathophysiology of ASD [25, 33]. A recent study including a large number
387  of cases and controls did not find association of rare variants of CNTNAPZ2 in ASD [73]. Here
388  we report the largest sample investigated thus far in ASD and schizophrenia for rare variants
389 in CNTNAP2, which suggest that rare variants from this gene do not play a major role in these
390 two psychiatric disorders. Furthermore, the identification of de novo variants in CNTNAPZ2 in
391 combined psychiatric sequencing projects of over 15,500 trios suggest that de novo variants in
392  this gene do not increase risk for psychiatric disorders.

393 While functional studies show a relationship between certain deletions or rare variants
394  of CNTNAP2 with neuronal phenotypes relevant to psychiatric illness [25, 54, 74], we show
395 that the genetic link between these variants and psychiatric phenotypes is tenuous. However,
396 this does not dispel the evidence that the CNTNAP2 gene, or specific genetic variations within
397 this gene, may have a real impact on neuronal functions or brain connectivity.

398 Nowadays we are able to combine large datasets to ascertain the real impact of
399 candidate genes described in the past in psychiatric disorders. Here we performed analyses
400  using large publically available datasets investigating a range of mutational mechanisms which
401  impact variability of CNTNAPZ2 across several psychiatric disorders. In conclusion, our results
402  converge to show a limited or likely neutral role of CNTNAP2 in the susceptibility of
403  psychiatric disorders.

404

405
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406 MATERIALS AND METHODS

407  Extended family with bipolar disorder and CNV in CNTNAP2

408  The extended family presented here (Fig 1B) provides a molecular follow-up from a previously
409  reported whole exome sequencing (WES) study of multiplex BD families, augmented with
410  CNV microarray data [66]. This multigenerational pedigree, was collected through the Mood
411  Disorders Unit and Black Dog Institute at the Prince of Wales Hospital, Sydney, and the School
412 of Psychiatry (University of New South Wales in Sydney) [75-79]. Consenting family
413  members were assessed using the Family Interview for Genetic Studies (FIGS) [80], and the
414  Diagnostic Interview for Genetic Studies (DIGS) [81]. The study was approved by the Human
415  Research Ethics Committee of the University of New South Wales, and written informed
416  consent was obtained from all participating individuals. Blood samples were collected for DNA
417  extraction by standard laboratory methods. Three of the five relatives with bipolar disorder
418  type I (BD-I) had DNA and WES-derived genotype data available, and six unaffected relatives
419  with DNA and WES data were available for haplotype phasing and segregation analysis (Fig
420 1B).

421 Genome-wide CNV analysis was performed via CytoScan® HD Array (Affymetrix,
422  Santa Clara, CA, USA) in 2 distal affected relatives (individuals 8410 and 8401; Fig 1B), using
423  the Affymetrix Chromosome Analysis Suite (ChAS) software (ThermoFisher, Waltham, MA,
424  USA). Detailed information on CNV detection and filtering criteria have been previously
425  described [66]. We identified a 131kb deletion in intron 1 of CNTNAP2 in individual 8401.
426  WES-derived genotypes were used for haplotype assessment to infer CNV segregation
427  amongst relatives, as previously described [66]. Next, we experimentally validated the
428  CNTNAPZ2 CNV via quantitative PCR (qPCR) in all available family members. Validation was
429  performed in quadruplicate via a SYBR Green-based quantitative PCR (qPCR) method using

430 two independent amplicon probes, each compared with two different reference amplicon
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431  probes in the FOXP2 and RNF20 genes (S1 Table). Experimental details are available upon
432  request.

433

434  Common variant association in CNTNAPZ2 using publically available datasets

435  We sought to replicate previously reported CNTNAP2 SNP associations in a range of
436  psychiatric phenotypes or traits using GWAS summary-statistic data of the Psychiatric
437  Genomics Consortium (https:// med.unc.edu/pgc/results-and-downloads).

438 Firstly, we report the corresponding P-values of specific previously associated markers
439  for case-control cohorts with autism spectrum disorder (ASD), schizophrenia (SCZ), bipolar
440  disorder (BD), attention-deficit hyperactivity-disorder (ADHD), major depressive disorder
441  (MDD), anorexia nervosa (AN), and obsessive compulsive disorder (OCD). If a specific SNP
442  marker was not reported in an individual GWAS dataset, we selected another marker in high
443  linkage disequilibrium (r>~1, using genotype data from the CEU, TSI, GBR and IBS European
444  populations in 1000genomes project; http://www.internationalgenome.org).

445 Next, a gene-based association for common variants was calculated with MAGMA
446  [82], using variants within a 5 kb window upstream and downstream of CNTNAP?2. Selected
447  datasets were of European descent, derived from GWAS summary statistics of the Psychiatric
448  Genomics Consortium (https://med.unc.edu/pgc/results-and-downloads): SCZ (33,640 cases
449  and 43,456 controls), BD (20,352 cases and 31,358 controls), ASD (6,197 and 7,377 controls),
450  ADHD (19,099 cases and 34,194 controls) and MDD (9,240 cases and 9,519 controls) [83-87].
451  Analyses were performed combining two different models for higher statistical power and
452  sensitivity when the genetic architecture is unknown: the combined P-value model, which is
453  more sensitive when only a small proportion of key SNPs in a gene show association; and the
454  mean SNP association, which is more sensitive when allelic heterogeneity is greater, and a

455  larger number of SNPs show nominal association.
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456 Finally, we selected SNPs predicted to be functional within a 5kb window
457  upstream/downstream of CNTNAP?2 (e.g. located in transcription factor binding sites, miRNA

458  binding sites etc; https://snpinfo.niehs.nih.gov), and assessed a potential cross-disorder effect

459  using GWAS summary statistics data of the PGC by performing a meta-analysis in PLINK
460  [88]. The Cochran’s Q-statistic and I? statistic were calculated to examine heterogeneity among
461  studies. The null hypothesis was that all studies were measuring the same true effect, which
462  would be rejected if heterogeneity exists across studies. For all functional SNPs, when
463  heterogeneity between studies was [>50% (P<0.05), the pooled OR was estimated using a
464  random-effects model.

465

466  Analysis of rare variants in CNTNAPZ2 in ASD and schizophrenia, and de novo variants across
467  psychiatric cohorts

468  The impact of rare variants of CNTNAP2 was assessed using sequencing-level data from the
469  following datasets: WES from the Sweden-Schizophrenia population-based Case-Control
470  cohort (6,135 cases and 6,245 controls; dbGAP accession: phs000473.v2.p2); ARRA Autism
471  Sequencing Collaboration (490 BCM cases, BCM 486 controls, and 1,288 unrelated ASD
472  probands from consent code cl; dbGAP accession: phs000298.v3.p2); Medical Genome
473  Reference Bank (2,845 healthy Australian adults; https://sgc.garvan.org.au/initiatives/mgrb);
474  individuals from a Caucasian Spanish population (719 controls [89, 90]); in-house ASD
475  patients (30 cases; [91]); and previous published data set in ASD (2,704 cases and 2,747
476  controls [73]). The selection of potentially etiologic variants was performed based on their
477  predicted pathogenicity (missense damaging in both SIFT and polyphen 2, canonical splice
478  variants, stop mutation and indels) and minor allele frequency (MAF<0.0001 in non-Finnish
479  European populations using the Genome Aggregation Database;

480  http://gnomad.broadinstitute.org/). A chi square statistic was used to compare separately the
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481  sample of schizophrenia patients (6,135 cases) and the combined ASD data sets (4,512 cases)
482  with the combined control data sets (13,042 individuals).

483 Two databases for de novo variants were used to identify de novo variants in CNTNAP2
484  [92, 93], which comprise data for the following samples: autism spectrum disorder (6,171
485  families), schizophrenia (1,164 families), epilepsy (647 families), intellectual disability (1,101
486  families), developmental disorders (4,293 families) and controls (2,163).
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853 FIGURES

854

855 Fig 1. CNV deletion encompassing intron 1 of CNTNAP2 in an extended family with
856  bipolar disorder. A) CytoScan HD array output image shows the position of the drop in signal
857 intensity of 340 probes, indicating a deletion spanning 131kb (chr7:146203548-146334635;
858  GRCh37/hgl19) found in the patient 8401. The position of the FOXP2 binding site within the
859  deletion is shown above. B) The bipolar pedigree includes five patients with bipolar disorder I
860  (BPI) across two generations. Symbols: , individuals with DNA available; &, individuals with
861  whole exome data; #, individuals analysed for genome-wide CNVs through the CytoScan HD
862  array; blue squares, individuals included in CN'V qPCR validation and genotyping analysis, for
863  which heterozygous deletion carriers are indicated as “+/del” and non-carriers are indicated as
864  “+/+”. Inferred genotypes are in parentheses. C) Gene dosage results of the qPCR experiments
865  validating the deletion in patient 8401, and showing the deletion in unaffected subject 8407.

866 Fig 2. Overview of heterozygous CNVs spanning the CNTNAP2 gene across several
867  diseases. Abbreviations: ID (Intellectual disability), ASD (autism spectrum disorder), SCZ
868  (schizophrenia), BD (bipolar disorder), ADHD (Attention-deficit/hyperactivity disorder), EP
869  (epilepsy), TS (Tourette syndrome), CMT2 (axonal Charcot-Marie-Tooth), and SS (Speech
870  spectrum: speech delay, childhood apraxia of speech and dyslexia). In parenthesis is reported
871  the reference to each study. PS refers to this present study. *, additional rearrangements
872  reported in this patient. The dashed lines represent the exons and the upper box shows the
873  position of the FOXP2 binding site. In dark shading, CNVs>80kb found in the general
874  populations from the Database of Genomic Variants are shown.
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886 SUPPORTING INFORMATION
887 S1 Table. Primers used in the CNV validation for the CNTNAP2 intronic deletion.
888  S2 Table. Full list of de novo variants in CNTNAP2 gene.

889  S3 Table. Full list of Ultra-Rare Variants (URVs) in available sequencing datasets.
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