

1 **Increased oxidative stress tolerance by Superoxide dismutase overexpression in**
2 ***Mesorhizobium loti***

3
4 Gonzalez Pablo J.¹, Lozano Mauricio², Lascano Hernán R.^{3 4}, Lagares Antonio², Melchiorre
5 Mariana N.^{1 4}

6 1-Instituto de Fisiología y Recursos Genéticos Vegetales IFRGV -Centro de Investigaciones
7 Agropecuarias CIAP Instituto Nacional de Tecnología Agropecuaria INTA. Córdoba, Argentina.
8 Camino 60 Cuadras km 5 ½ (X5020ICA) Córdoba Argentina

9 2-Instituto de Biotecnología y Biología Molecular IBBM, CONICET – Departamento de Ciencias
10 Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. La Plata,
11 Argentina.

12 3-Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad
13 Nacional de Córdoba. Córdoba, Argentina.

14 4-Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, IFRGV. Córdoba,
15 Argentina.

16 Corresponding author: melchiorre.mariana@inta.gob.ar

17 **ABSTRACT**

18 Drought and salinity conditions are the major factors affecting nitrogen fixation by legume-
19 rhizobium symbiosis. A global response to these stress conditions is the increase of intracellular
20 ROS leading to activation of antioxidant system to ensure cellular homeostasis. Under the
21 hypothesis that overexpression of *sod* gene in *M. loti* improve tolerance to oxidative stress we
22 decide to investigate the response of constitutive overexpression of the *Mesorhizobium loti*
23 MAFF303099 *sod* gene on tolerance to oxidative stress under free-living conditions. The gene
24 *mlr7636* was overexpressed constitutively under the *nptII* promoter of pFAJ1708 plasmid. Our
25 study revealed that the *sod* overexpressing mutant had five-fold increased SOD activity in

26 periplasmic space and a better tolerance to superoxide and hydrogen peroxide in bacterial killing
27 assays.

28 **IMPORTANCE**

29 In this study, we report that the homologous superoxide dismutase overexpression in
30 *Mesorhizobium loti* improves its tolerance to oxidative stress under free-living conditions.

31 Keywords: Stress response Rhizobia Microbial physiology Enzymes Proteomics Superoxide
32 dismutase Overexpression *Mesorhizobium loti*.

33 **INTRODUCTION**

34 Reactive oxygen species (ROS) are unavoidable by-products of aerobic life and their signaling
35 role during plant-microbe interactions has been extensively demonstrated. ROS are constantly
36 produced during normal metabolic processes, but their levels are increased under abiotic stress
37 conditions.

38 In rhizobia, the antioxidant system allows bacteria to modulate ROS levels produced during both
39 the free-living stage and the symbiotic interaction. One of the key enzymes involved in redox
40 modulation of these processes is Superoxide dismutase (SOD, EC 1.15.1.1). SODs are
41 metalloenzymes that act as the primary line of defense against the first free radical produced in
42 the ROS cascade, the superoxide radical (O_2^-), and they have been found in nearly all
43 organisms examined to date (1).

44 In bacteria, there are three general classes of SODs, which differ in their metal co-factors: the
45 manganese-containing MnSOD (SOD A), the Fe-containing FeSOD (SOD B) and the
46 cambialistic Fe/Mn SODs (CamSOD); the three SODs share high protein sequence and
47 structure similarity (2, 3).

48 Rhizobiales have shown variability in their superoxide dismutase enzymes: in *Sinorhizobium*
49 *meliloti* Rm5000, *sodA* is the only gene encoding an active cambialistic SOD with either
50 manganese or iron as co-factor (2). In *Bradyrhizobium japonicum* USDA 110, four genes
51 encoding superoxide dismutases have been reported (genome.microbedb.jp/rhizobase). Two of

52 these genes, *bll7559*, a Fe-Mn SOD (ChrC), and *bll7774* SOD, *sodF*, have been reported as
53 inducible under drought stress (4).

54 In *Mesorhizobium loti* MAFF 303099, SOD is encoded by the *mlr7636* gene and has been
55 described as a Mn/Fe co-factor binding protein (genome.microbedb.jp/rhizobase). SOD activity
56 (and other cellular processes) produces hydrogen peroxide. In *M. loti*, hydrogen peroxide
57 scavenging occurs through the action of two different catalases, a monofunctional catalase and
58 a bifunctional catalase-peroxidase encoded by *mlr2101* and *mlr6940*, respectively
59 (genome.microbedb.jp/rhizobase).

60 It has been reported that disruption of the *sod* gene in *S. meliloti* affects its symbiotic properties
61 with alfalfa, with the mutant bacteria being affected in the initiation of nodulation, infection and
62 bacteroid development (1). However, to our knowledge, there are no reports about the effect of
63 bacterial SOD overexpression on tolerance to oxidative and salt stress conditions. In this work, a
64 SOD overexpressing *M. loti* was obtained, and its free-living phenotype was investigated. Our
65 results suggest that *sod* overexpression in *Mesorhizobium loti* improves its survival during
66 oxidative stress.

67 RESULTS

68 Effect of saline and osmotic stress on *M. loti* growth

69 The effect of saline and osmotic stress conditions on *M. loti* overexpressing *sod* gen (*sod1708*),
70 the wild-type strain (WT) and the transformed strain with the empty vector (1708) were evaluated
71 in YEM media (control), YEM containing 150 mM NaCl and 15% PEG. Under control conditions,
72 the three strains had equivalent growth rates, whereas in saline treatment, all strains showed
73 slightly higher growth rate than in control condition. PEG treatment showed a 50% decrease in
74 bacterial growth rate, demonstrating that the strains were sensitive to osmotic stress (Fig. 1).

75 Effect of saline and osmotic stress on SOD and CAT activities

76 To evaluate the effect of salt and osmotic stress on the bacterial SOD and CAT, total activities
77 were determined in whole extracts from cells grown under 150 mM NaCl and PEG 15%. Under

78 salt stress, the WT strain showed higher levels of SOD and CAT activities than in control
79 conditions, with approximately 4.8 and 2.8-fold increments, respectively (Table 2). However,
80 under osmotic stress condition, only CAT showed increased activity, whereas SOD decreased.
81 The overexpression of *mlr7636* gene in *sod1708* strain led to 3.4-fold increase in SOD activity
82 with respect to WT strain and 3.6-fold with respect to 1708 strain under control conditions. Under
83 salt stress condition, no differences in SOD activity were found between the overexpressor
84 *sod1708*, WT and 1708 strains (Table 2). Similar responses were found under PEG-induced
85 osmotic stress treatment, with a 4.1- and 4.5-fold increase in SOD activity being detected in
86 *sod1708* strain compared with WT and 1708 strains, respectively.
87 CAT activity increased significantly in *sod1708* strain in control conditions and saline stress
88 treatment, but it showed no differences from the osmotic treatment.

89 **Increase of periplasmic SOD activity in *M. loti* sod strain**

90 Specific SOD activity determined at an early growth stage ($DO_{600} \sim 0.1$) was lower than at the
91 late exponential phase; however, no differences in whole cell lysates were found between
92 strains. The analysis of specific SOD activity in the periplasmic fraction revealed that *sod1708*
93 strain showed a 5-fold increase of enzyme specific activity compared to non-overexpressing
94 strains (Fig. 2). In order to assess the cytosolic contamination of the periplasmic extract, the
95 specific G6PDH activities of both the whole cell extract and the periplasmic fraction were
96 determined (Fig. 3). The results showed low specific G6PDH activity levels for the periplasmic
97 fractions with less than 12, 6 and 2% of the specific activity of the whole cell lysate for WT, 1708
98 and *sod1708* respectively.

99 **Isoforms and localization of SOD in *M. loti* sod**

100 The expression of SOD isoforms revealed in zymograms using whole cell and periplasmic
101 protein fractions showed changes in activity patterns among the WT, 1708 and *sod1708* strains.
102 A unique activity band, which we named basal sod (BSOD) in this report, was observed in whole
103 cell extracts of all strains, whereas the *sod1708* strain showed three extra bands (Fig. 4 A). In

104 periplasmic fractions, BSOD was absent in WT, whereas the sod1708 and the 1708 strains
105 shared the same activity profile with similar relative mobility (Rf) to those found in whole cell
106 extracts, including the three extra bands. Moreover, the three extra activity bands were inhibited
107 by 10 mM H₂O₂, indicating that these isoforms used iron as cofactor (Fig. 4 B).

108 **WESTERN-blot analysis**

109 Western blot analysis with FeSOD antiserum detected bands of 20.1 kDa in periplasmic extracts
110 from all strains. On the other hand, this band was not detected in whole cell extracts. However,
111 the 20.1 kDa protein in periplasmic extracts is not in agreement with the theoretical molecular
112 weight of 22.7 kDa predicted for the protein encoded by *mlr7636* gene. Therefore, the difference
113 in 2.6 kDa mass obtained in the periplasmic extracts could be due to scission of a signal
114 peptide. Nevertheless, the presence of signal peptide for Sec or TAT pathway could not be
115 predicted in the first 70 amino acids of the N-terminal end of the amino acid sequence.

116 **Bacterial tolerance to superoxide and H₂O₂ in killing assay**

117 To assess the effect of the SOD overexpression on *M. loti* under excess of reactive oxygen
118 species production, we performed a bacterial killing assay using cultures of sod1708, WT and
119 1708 strains, subjected to exogenously generated O₂⁻ by the addition of hypoxanthine and
120 xanthine oxidase. The results showed a 20% reduction in CFU/mL in sod1708 strain after 30 min
121 of treatment. This survival reduction was not statistically significant with respect to the untreated
122 control and no further decrease was recorded up to 120 min (Fig. 6 A). In contrast, both WT and
123 1708 strains showed more than 90% reduction in viability compared to the untreated control 30
124 min after O₂⁻ treatment, with no viable cells being detected even after 60 min. Catalase
125 supplementation (1 U/mL) to the hypoxanthine/xanthine oxidase system restored the growth of
126 the overexpressing sod1708 strain to similar levels to those of the untreated control (Fig. 6 B).
127 On the other hand, exogenously added catalase restored the CFU/mL values to those of
128 untreated cells up to 30 min, whereas a decrease of approximately 55% was observed starting
129 at 60 min.

130 To test whether increased superoxide tolerance of the sod1708 strain may be due to enhanced
131 H₂O₂ tolerance, survival percentage was determined by adding 1 mM H₂O₂ to the growth media.
132 Survival of *M. loti* sod strain was not significantly affected compared with the untreated control
133 up to 60 min, whereas at 120 min only 26% of bacteria survived. In contrast, the CFU/mL of the
134 WT and 1708 strains showed a reduction of 27% and 90% after 30 and 60 min, respectively, of
135 hydrogen peroxide treatment (Fig. 7).

136 **Phylogenetic analysis of rhizobia Sod genes**

137 The consensus phylogenetic tree with 11 SOD sequences from Rhizobase database, that had
138 ≥50% identity with Mlr7636 sequence, showed two clusters (Fig. 8). Cluster I includes the
139 product of the *mlr7636* gene between putative *SodB* of *Rhizobium leguminosarum* bv. *viciae*
140 3841 and *SodB* of *Rhizobium etli* CFN42 (RHE CH01203). Moreover, this subgroup was related
141 to *SodB* FeSOD of *Sinorhizobium meliloti* 1021 (SMc00043) and *SodB* Mn-SOD of *Rhizobium*
142 sp. NGR234 (NGR c07300). Also in cluster I three SODs capable to use Fe or Mn as co-factor
143 were located: SODB from *Bradyrhizobium* sp. BTAi1 (BBta 1335), SOD of *Bradyrhizobium* sp.
144 ORS278 (BRADO6273) and SOD of *B. japonicum* USDA110 (bll7774). Cluster II includes
145 sequences that showed lower identity levels with the Mlr7636 sequence, and it was composed
146 by FeSOD of *K. pneumoniae* Kp342 (GKPORF B1093), SOD of *C. taiwanensis* LMG19424
147 (RALTA A0566) and Fe/Zn/MnSOD of *Azospirillum* sp. B510 (AZL014560).

148 **DISCUSSION**

149 The genome of *M. loti* MAFF303099 includes the *mlr7636*, *mlr2101* and *mlr6940* genes, which
150 encode a superoxide dismutase, a catalase and a catalase / peroxidase, respectively
151 (genome.microbedb.jp/rhizobase). The complex detoxification mechanism of ROS in *M. loti*
152 MAFF303099 involves the catabolism of superoxide and H₂O₂, therefore, superoxide dismutase
153 and catalase are two of the main enzymes involved in superoxide and hydrogen peroxide
154 catabolism.

155 Our results showed that exposure of *M. loti* to saline stress increased both SOD and CAT
156 activities. Moreover, under osmotic stress, SOD activity was reduced and CAT presented the
157 highest induction in response to both saline and osmotic stress. Induction of SOD and CAT
158 activities under stress conditions are in agreement with results reported by Cytryn *et al.* (4), who
159 described the induction of genes of *B. japonicum* exposed to reduced water activity.

160 **Overexpression**

161 The *sod1708* strain showed 3.4 fold increased SOD activity in comparison with the WT and 1708
162 strains under control conditions, whereas no differences were found between the strains when
163 they were exposed to osmotic and salt stress. SOD was detected in the periplasmic fractions
164 from the three strains, but *sod1708* strain showed higher SOD activity than the non-
165 overexpressing strains, indicating that it was exported to the periplasmic space. Furthermore,
166 zymograms revealed the presence of three additional SODs in the overexpressing *M. loti* *sod*
167 strain. These bands were inhibited by H₂O₂ indicating that they were FeSOD (21). In contrast,
168 lack of inhibition with H₂O₂ demonstrated that the common BSOD corresponded to a MnSOD. It
169 is difficult to explain why the BSOD migration of 1708 and *sod1708* were somewhat different
170 from the wild type strain, although it could be due to metabolic changes occurring in transformed
171 cells (22).

172 The homologous gene overexpression as well as the multiple activity bands differentially
173 inhibited by H₂O₂ in zymograms, support the idea that SOD from *M. loti* MAFF303099 could
174 have a cambialistic behavior able to form a complex with either Fe or Mn (2), further
175 investigation will be required to elucidate this aspect.

176 On the other hand, the Western blot analysis revealed the presence of single bands of
177 approximately 20.1 kDa in periplasmic extracts of all strains. In addition, the calculated
178 molecular weight of the detected protein was 2.6 kDa lower than the theoretically predicted for
179 the *mlr7636* product. Although the signal peptide prediction showed no detectable Sec or TAT
180 signal peptide (18, 19), the difference could be due to scission of a signal peptide during

181 translocation to periplasmic space using an alternative mechanism as it was described in *R.*
182 *leguminosarum* bv. *viciae* (10). The consensus phylogenetic tree of Mlr7636 revealed that it was
183 highly related to *R. leguminosarum* bv. *viciae* 3841, and clustered with FeSOD of *Sinorhizobium*
184 *meliloti* 1021 (SMc00043) as well as with MnSOD of *Rhizobium* sp. NGR234 (NGR c07300)
185 sequences. The other sub group in cluster I included sodB from *Bradyrhizobium* sp. BTAi1 and
186 BRADO6273 from *Bradyrhizobium* sp. ORS 278; both of them can use Fe and Mn as co-factor.

187 **SOD overexpression protects against oxidative stress by inducing catalase activity**

188 The protective effect of superoxide dismutase overexpression against oxidative stress in free-
189 living *Mesorhizobium loti* has been demonstrated in killing assays. In the presence of
190 exogenously generated superoxide, the sod1708 strain showed substantially higher tolerance
191 than the controls WT and 1708 strains. The CFU reduction of the *M. loti* sod strain was 20%
192 under oxidative stress condition caused by superoxide, whereas the control strains were non-
193 viable.

194 The dismutation of superoxide anion by SOD produces H_2O_2 and water, so that the addition of
195 catalase to the hypoxanthine/xanthine oxidase reaction in the bacterial killing assay restored the
196 initial CFU values to those reached by the untreated strain. A similar effect was observed in
197 control strains when catalase was added, but in these cases the restored CFU values reached
198 only 45%. These results clearly show that the resulting H_2O_2 , from superoxide dismutation
199 induced by SOD activity is more lethal on bacteria than superoxide anion per se. Furthermore,
200 our data suggest that homologous superoxide dismutase overexpression increases tolerance to
201 oxidative stress in *M. loti* because of the high SOD activity *per se* contributes to fast superoxide
202 dismutation to H_2O_2 and O_2 , and additionally the induced catalase activity reduces the hydrogen
203 peroxide levels.

204 **MATERIALS AND METHODS**

205 **Bacterial strains and growth conditions**

206 *Mesorhizobium loti* MAFF303099 (WT), 1708 and sod1708 strains were grown in YEM medium
207 (5) aerobically at 28°C. For saline and osmotic stress conditions, YEM medium was
208 supplemented with 150 mM NaCl and 15% (W/V) polyethylene glycol 8000 (PEG) to obtain a
209 water potential equal to -0.84 MPa. Values of water potential were measured using isopiestic
210 thermocouple psychrometry (Wescar® Point Microvoltmeter HR-337 Dew). *Escherichia coli*
211 DH5α and S17-1 strains and were grown Luria-Bertani (LB) (6). Strains harbouring plasmids
212 pFAJ1708 and pFAJsod were grown on Tetracycline 10 µg/mL supplemented medium. The
213 bacterial strains and plasmids used are listed in Table 1.

214 **Growth kinetics**

215 Cell growth was evaluated in triplicate using a pre-inoculum of 0.8 (OD₆₀₀) with an initial OD₆₀₀~
216 0.01 in 50 mL fresh media at 28°C in an orbital shaker (160 rpm). Growth was monitored at
217 OD₆₀₀ in a DU-640 Beckman spectrophotometer (Beckman Coulter, USA) for 64 hours.

218 **Determination of tolerance to oxidative stress**

219 Tolerance to ·O₂ was determined by conventional bacterial killing assays, in which bacteria were
220 exposed to exogenous ·O₂ generated by the oxidation reaction of xanthine by Xanthine oxidase
221 enzyme (7). Cells were grown up to 0.5 OD₆₀₀ in YEM; then they were centrifuged and
222 resuspended at 10⁹ CFU/mL in sterile phosphate-buffered saline (PBS) and treated with 250 µM
223 hypoxanthine and 0.1 U/mL of Xanthine oxidase. In order to discriminate the effect of ·O₂ and
224 the H₂O₂, produced by SOD activity, bovine catalase (1 U/mL) was added to
225 hypoxanthine/xanthine oxidase reaction to reduce the H₂O₂ presence and subsequent Fenton
226 chemistry, and to ensure that killing of bacteria was only in response to ·O₂ radicals. The number
227 of viable bacteria was determined at 0, 30, 60, and 120 min of incubation by plating serial
228 dilutions on YEM agar plates. A similar protocol was used for examining the susceptibility to
229 H₂O₂. Cultures were treated with 1 mM H₂O₂ and number of viable bacteria was determined at
230 the same time intervals. Bacterial colonies were counted after 48 h and expressed as log₁₀
231 CFU/mL.

232 **Superoxide dismutase cloning and plasmid construction**

233 After genomic DNA extraction by CTAB method (8), the *mlr7636* gene was amplified by
234 polymerase chain reaction (PCR) using the specific forward primer SOD-XbaI-F (5'-
235 ATATTCTAGACCACGAGGGAGTACTACCC**ATGG**-3', the *Xba*I restriction site is underlined and
236 the bold letters represent the start codon of *mlr7636* gene) and SOD-BamHI-R (5'-
237 ATATGGATCCTCACTTGCCTTTCTAGAGC 3', the *Bam*HI restriction site is underlined), for
238 directional cloning in pFAJ1708 downstream of the constitutive *nptII* promoter. PCR reaction was
239 performed as follows: initial denaturation at 94°C for 3 min; 35 cycles at 94°C for 20 sec,
240 annealing at 65°C for 20 sec and extension at 68°C for 1 min. The 639-bp PCR product and
241 pFAJ1708 plasmid were digested by *Xba*I and *Bam*HI enzymes, and DNA fragments were
242 purified from agarose using Qiagen Gel Extraction QiaexII kit. The *mlr7636* gene was cloned into
243 pFAJ1708 with T4 DNA ligase (Promega) at 4°C during 16 h. The resulting recombinant plasmid
244 pFAJsod was transformed into *E. coli* DH5α using the heat shock method. Clones were
245 sequenced to confirm the insertion of *mlr7636* in frame with *nptII* promoter, and used to
246 transform Electrocompetent *E. coli* S17-1 by electroporation with a Gene Pulser Xcell, Bio Rad,
247 2.5 KV /5 ms.

248 **Transformation of *M. loti***

249 Biparental conjugation was performed in YEM medium using *M. loti* MAFF303099 (WT) as
250 recipient and *E. coli* S17-1 carrying pFAJsod or pFAJ1708 as donors (9). The donor/recipient
251 ratio was 1:1. Transconjugant *M. loti* cells were selected with Tc 20 µg/mL.

252 **Protein extraction**

253 For the analysis of whole cell fraction, *M. loti* cultures were grown up to 0.1 OD₆₀₀ in 50 mL liquid
254 YEM medium. Cells were harvested by centrifugation at 15000 g at 4°C for 15 min, washed with
255 5 mL of 0.9% (W/V) NaCl and resuspended in 200 µl of 50 mM KH₂PO₄ pH 7.8 buffer. Cells
256 were sonicated (Ultrasonic Vibracell VCX600) at 33% amplitude by pulses of 3 seconds with

257 intervals of 3 seconds for 2 min. The samples were maintained in an ice-water bath during
258 sonication. Extracts were centrifuged at 14000 g for 20 min and the supernatant was recovered.
259 Periplasmic proteins were obtained by hypo-osmotic shock treatment (10). Cells were harvested
260 by centrifugation at 15000 g and 4°C for 15 min, washed with 5 mL of 0.9% (W/V) NaCl and
261 briefly resuspended in 0.2 mL of hyperosmotic buffer containing 20% (W/V) sucrose in 30 mM
262 Tris/HCl pH 8.0 supplemented with 5 µl lysozyme (100 mg/mL in 30 mM Tris/HCl, pH 8). After 1
263 hour of incubation in ice, cells were pelleted by centrifugation for 5 min (10000 g at 4°C) and
264 resuspended in 0.2 mL of ice-cold distilled water. After additional 15 min on ice, cells were
265 pelleted by centrifugation at 10000 g at 4°C for 30 min. The supernatant contained the
266 periplasmic proteins. Protein concentrations were determined by the Lowry method (11) using
267 bovine serum albumin (BSA) as a standard.

268 **Polyacrylamide gel electrophoresis and western blotting**

269 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was performed as
270 described by Laemmli (12). Non-denaturing polyacrylamide gel electrophoresis (ND-PAGE) was
271 performed using the same buffer system with the omission of SDS from all buffers. Western blot
272 analysis was conducted in a submerged system (Bio-Rad); the proteins separated by PAGE
273 were blotted onto a nitrocellulose membrane (Amersham Biosciences). Polyclonal antibodies
274 rabbit anti-FeSOD (Agrisera AS 06 125) and anti-MnSOD (N-20, Santa Cruz, SC18503) were
275 used as primary antibodies. Goat anti-rabbit and rabbit anti-goat Alkaline phosphatase
276 conjugates were used as secondary antibodies.

277 **Enzyme activities**

278 SOD activity was determined spectrophotometrically at 560 nm (13). One Unit of SOD was
279 defined as the amount that inhibits the photoreduction of nitrotetrazolium blue chloride (NBT) by
280 50%. The reaction mixture was composed of 50 mM potassium phosphate pH 7.8 containing
281 777 µM methionine, 448 µM NBT, 0.54 µM EDTA and 3.32 µM riboflavin. In the absence of the

282 enzyme, the mixture was calibrated to reach an $OD_{560} = 0.25$ after 10 min incubation in UV light
283 (360 nm) at 25 °C. Specific activity was expressed in SOD units ($\mu\text{g of total protein}^{-1}$).
284 SOD zymogram was obtained after electrophoresis in 12% ND-PAGE. SOD activity was
285 developed by incubating gels with 2.5 mM NBT during 25 min in dark, followed by incubation for
286 20 min in 50 mM potassium phosphate pH 7.8 containing 28 μM riboflavin and 28 mM
287 tetramethyl-ethylene diamine (TEMED). The reaction was continued for 10 to 15 min under white
288 light and then stopped by a brief wash in water (14).
289 To determine the metallic co-factor of SOD in zymogram, the ND-PAGE were pre-incubated with
290 potassium cyanide (KCN 5 mM) or hydrogen peroxide (H_2O_2 10 mM) at RT for 30 min in order to
291 inhibit CuZnSOD and FeSOD, respectively. After incubation, the enzyme activity was assayed
292 as described above.
293 Catalase (CAT) activity was determined with a reaction mixture containing 50 mM potassium
294 phosphate pH 7.4 with the sample, and the reaction was started by adding 5 mM H_2O_2 . Activity
295 was determined spectrophotometrically by measuring the decreasing rate of H_2O_2 at 240 nm at
296 37°C for 1 min. Specific activity was expressed in CAT units ($\mu\text{g of total protein}^{-1}$) (15).
297 SOD and CAT activities were evaluated in rhizobia grown in NaCl 150 mM and PEG 15%.
298 Glucose 6 Phosphate Dehydrogenase (G6PDH) activity: Absence of cytoplasmic content in
299 periplasmic fraction was evaluated by measuring G6PDH activity (16). The reaction mixture
300 contained 100 mM Tris-ClH buffer pH 8, 10 mM $MgCl_2$, 0.18 mM $NADP^+$ and 1 mM D-Glucose-
301 6-Phosphate. The reaction was initiated by adding the sample, and followed by formation of
302 reduced NADPH at 340 nm in spectrophotometer at 25°C. One Unit of G6PDH was defined as
303 the amount of enzyme required to catalyze the reduction of 1 μmole of $NADP^+$ per min at 25°C.
304 Specific activity was expressed in G6PDH units ($\text{mg of total protein}^{-1}$).

305 **Phylogenetic analysis**

306 A phylogenetic tree was constructed with the Mlr7636 amino acid sequence based on the
307 alignment of the 11 SOD sequences from the Rhizobase database sharing more than 50% of

308 identity. The analysis was performed by the neighbor joining method (1000x bootstrap
309 replications) using Mega 5.2 software (17).

310 **Bioinformatic analysis for signal peptide prediction**

311 Protein sequence corresponding to the open reading frame of the locus *mlr7636* of *M. loti*
312 MAFF303099 was obtained from genome.microbedb.jp/Rhizobase and was entered as query
313 sequence in the SignalP 4.1 for Gram negative and TatP 1.0 algorithms (18, 19), using the
314 default criteria.

315 **Statistical analysis**

316 Values of enzymatic activity were expressed as mean \pm standard error (SE). In all experiments,
317 replicates were analyzed statistically by ANOVA using the DGC Test (Di Rienzo *et al.* 2002) at
318 $p \leq 0.05$ in InfoStat software (20).

319 **FIGURE LEGENDS**

320 **Figure 1.** Growth curves of the WT, 1708 and sod1708 strains under osmotic and saline stress
321 conditions. YEM medium was supplemented with 15% PEG or 150 mM NaCl, both of which
322 lowered water potential to -0.84 Mpa. Data are the mean of three independent replicates with
323 the error bars indicating the standard error.

324 **Figure 2.** Specific SOD activity of the WT, 1708 and sod1708 strains in whole and periplasmic
325 extracts. Data are representative of at least three independent replicates. Different letters
326 indicate significant differences in the mean ($p \leq 0.05$ DGC test).

327 **Figure 3.** G6PDH activity as cytoplasmic marker and control of contamination in periplasmic
328 preparation of the *M. loti* strains. Data are representative of three independent replicates. Error
329 bars represent the standard error.

330 **Figure 4.** A- Total SOD activity revealed by ND PAGE of the WT, 1708 and sod1708 strains.
331 Lanes 1-3 correspond to whole cell (WC) and lanes 4-6 correspond to periplasmic (PP) extracts.
332 B- SOD Inhibition by 10 mM H₂O₂.

333 **Figure 5.** Western-blot analysis using anti-FeSOD antibody of the WT, 1708 and sod1708
334 strains. Lanes 1-3 correspond to whole cell (WC), lanes 4-6 correspond to periplasmic (PP)
335 extracts. Lane M corresponds to prestained SDS-PAGE broad range standard (Bio-Rad).

336 **Figure 6.** A- Survival of the sod1708 strain to superoxide anion in killing assay ($\cdot\text{O}_2^-$ generating
337 conditions). B- Survival in killing assay with addition of 1U/mL catalase. Data are the mean of
338 three independent replicates. Error bars represent the standard error.

339 **Figure 7.** Survival of the sod strain to H_2O_2 1 mM. Data are the mean of three independent
340 replicates. Error bars represent the standard error.

341 **Figure 8.** Neighbor-joining phylogenetic tree based on aligned sequences of 11 sod amino acid
342 sequences from the Rhizobase database sharing more than 50% identity with the *mlr7636*
343 product.

344 **Acknowledgements**

345 This work was supported financially by Instituto Nacional de Tecnología Agropecuaria INTA,
346 Argentina. Projects PNAGUA 1133032 and PNCYO 1127033.

347 **Conflict of Interest**

348 The data acquisition for this work has not been in legal conflict with the authorities where the
349 work was carried out. The authors have no conflicts of interest to declare.

350 **REFERENCES**

- 351 1. Santos R, Hérouart D, Puppo A, Touati D. 2000. Critical protective role of bacterial superoxide
352 dismutase in rhizobium-legume symbiosis. *Mol Microbiol* **38**(4): 750–759.
- 353 2. Santos R, Bocquet S, Puppo A, Touati D. 1999. Characterization of an atypical superoxide
354 dismutase from *Sinorhizobium meliloti*. *J Bacteriol* **181**(15): 4509–4516.
- 355 3. Asensio AC, Marino D, James EK, Ariz I, Arrese-Igor C, Aparicio-Tejo PM, Arredondo-Peter R,
356 Moran JF. 2011. Expression and Localization of a Rhizobium-Derived Cambialistic Superoxide
357 Dismutase in Pea (*Pisum sativum*) Nodules Subjected to Oxidative Stress. *Mol Plant Microbe
358 Interact* **24**(10): 1247–1257.
- 359 4. Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang WS, Stacey G, Emerich
360 DW, Joshi T, Xu D, Sadowsky MJ. 2007. Transcriptional and physiological responses of

Bradyrhizobium japonicum to desiccation-induced stress. *J Bacteriol* **189**(19): 6751–6762.

5. Vincent JM. 1970. A manual for the practical study of the root-nodule bacteria. IBP Handbook No. 15, Blackwell Scientific Publishers, Oxford.
6. Sambrook J, Russel D. 2001. Molecular Cloning: A Laboratory Manual (3rd ed.). Cold Spring Harbor Laboratory Press.
7. Melillo AA, Mahawar M, Sellati TJ, Malik M, Metzger DW, Melendez JA, Bakshi CS. 2009. Identification of *Francisella tularensis* live vaccine strain CuZn superoxide dismutase as critical for resistance to extracellularly generated reactive oxygen species. *J Bacteriol* **191**(20): 6447–6456.
8. Wilson K. 2001. Preparation of Genomic DNA from Bacteria. *Curr Protoc Mol Biol*, Hoboken, NJ, USA: John Wiley and Sons, Inc., p. Unit 2.4.
9. Simon R, Priefer U, Pühler A. 1983. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. *Nat Biotechnol* **1**(9): 784–791.
10. Krehenbrink M, Edwards A, Downie JA. 2011. The superoxide dismutase SodA is targeted to the periplasm in a SecA-dependent manner by a novel mechanism. *Mol microbiol* **82**(1): 164–179.
11. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. *J Biol Chem* **193**(1): 265–275.
12. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* **227**(5259): 680–685.
13. Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. *Anal Biochem* **44**(1): 276–287.
14. Rao MV, Hale BA, Ormrod DP. 1995. Amelioration of Ozone-Induced Oxidative Damage in Wheat Plants Grown under High Carbon Dioxide (Role of Antioxidant Enzymes). *Plant Physiol* **109**(2): 421–432.
15. Jamet A, Sigaud S, Van de Sype G, Puppo A, Hérouart D. 2003. Expression of the bacterial catalase genes during *Sinorhizobium meliloti-Medicago sativa* symbiosis and their crucial role during the infection process. *Mol Plant Microbe Interact* **16**(3): 217–225.
16. Banerjee S, Fraenkel DG. 1972. Glucose-6-phosphate dehydrogenase from *Escherichia coli* and from a “high-level” Mutant. *J Bacteriol* **110**(1): 155–160.
17. Petersen TN, Brunak S, von-Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. *Nat Methods* **8**(10): 785–786.
18. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S. 2005. Prediction of twin-arginine signal peptides. *BMC Bioinformatics* **6**, 167.
19. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. 2016. InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL <http://www.infostat.com.ar>

397 20. Beyer WF, Fridovich I. 1987. Effect of hydrogen peroxide on the iron-containing superoxide
398 dismutase of *Escherichia coli*. *Biochemistry* **26**(5): 1251–1257.

399 21. Wang Z, Xiang L, Shao J, Wegrzyn A, Wegrzyn G. 2006. Effects of the presence of ColE1
400 plasmid DNA in *Escherichia coli* on the host cell metabolism. *Microb Cell Fact* **5**, 34.

401 22. Dombrecht B, Vanderleyden J, Michiels J. 2001. Stable RK2-derived cloning vectors for the
402 analysis of gene expression and gene function in gram-negative bacteria. *Mol Plant Microbe
403 Interact* **14**(3): 426–430.

404 23. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K,
405 Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno
406 A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M,
407 Tabata S. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium
408 *Mesorhizobium loti*. *DNA Res* **7**(6): 331-338.

409 24. Hanahan D. 1985. DNA Cloning, ed. Glover, DM (IRL Press, Oxford) **1**: 109-135.

410

411 **TABLES**

412 **Table 1.** Bacterial strains and plasmids used in this study.

Bacterial Strains	Relevant characteristics	Source
<i>M. loti</i> strains		
WT	Wild type MAFF303099 sequenced strain	(23)
1708	MAFF303099 with pFAJsod, Tc ^R	This work
sod1708	MAFF303099 with pFAJ1708, Tc ^R SOD	This work
<i>E. coli</i> strains		
S17-1	RP4-2-Tc::Mu-Km::Tn7 integrated into the chromosome	(9)
DH5 α	F- 80dlacZ M15 (lacZYA-argF) U169 recA1 endA1hsdR17(rk-, mk+)	(24)
Plasmids		
pFAJ1708	Broad-host-range plasmid, Tc ^R , containing <i>nptII</i> promoter	(22)
pFAJsod	pFAJ1708 containing mlr7636 cloned downstream <i>nptII</i> promoter for gene expression	This work

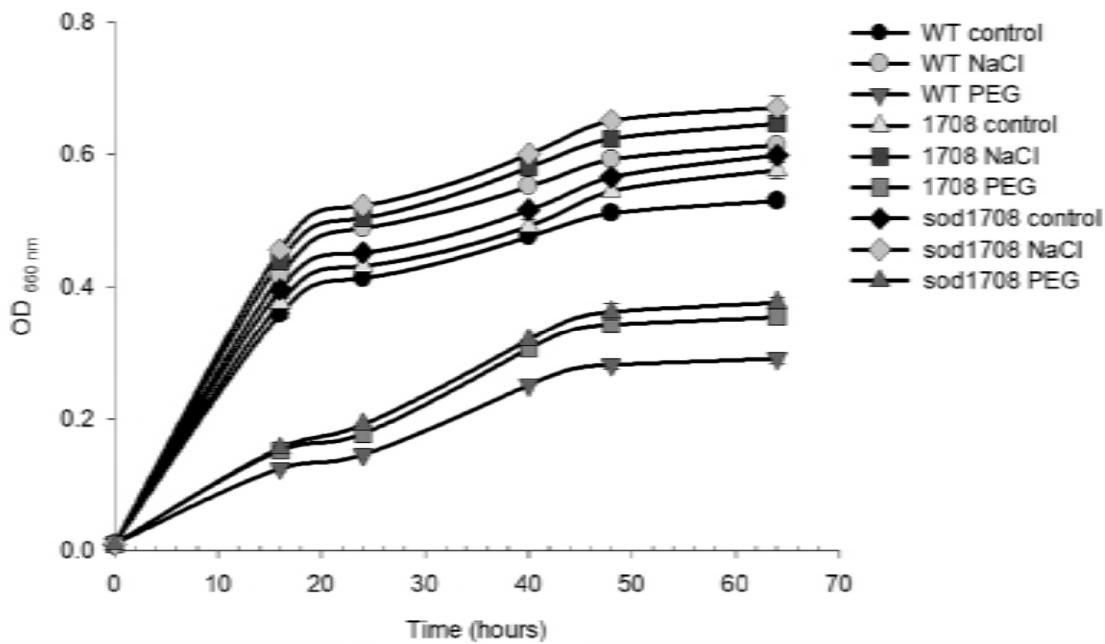
413

414

415 **Table 2.** Specific activities of SOD and CAT of WT, 1708 and sod1708 strains, under NaCl and

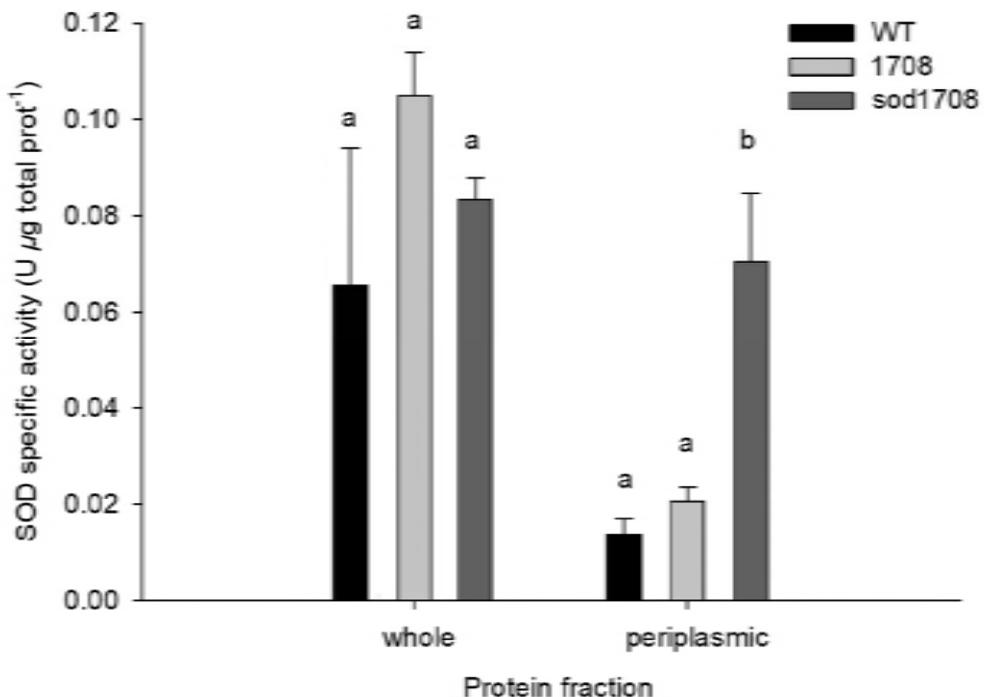
416 PEG conditions.

Strains	SOD activity			CAT activity		
	Control	NaCl	PEG	Control	NaCl	PEG
WT	0.20 \pm 0.04a	0.97 \pm 0.11a	0.10 \pm 0.01a	0.13 \pm 0.05a	0.37 \pm 0.09a	0.58 \pm 0.08a
1708	0.19 \pm 0.04a	1.01 \pm 0.09a	0.09 \pm 0.03a	0.16 \pm 0.04a	0.36 \pm 0.02a	0.54 \pm 0.06a
sod1708	0.69 \pm 0.06b	1.16 \pm 0.13a	0.41 \pm 0.05b	0.45 \pm 0.11b	0.68 \pm 0.10b	0.74 \pm 0.05a

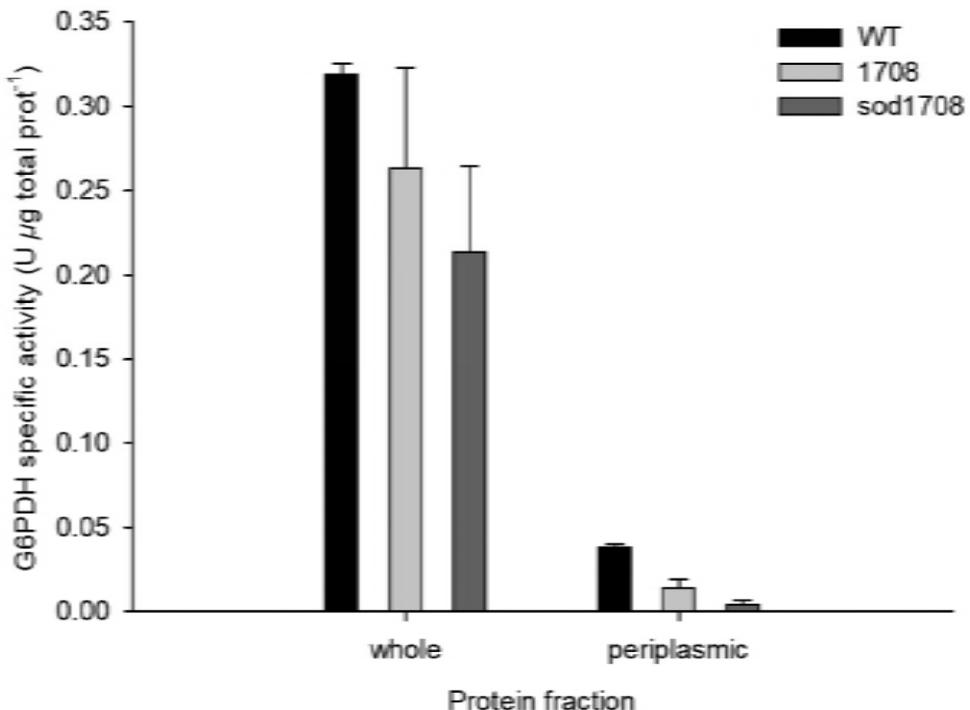

417 Results of enzyme activities are presented in U (μ g protein)⁻¹

418 Each value is expressed as mean \pm SE (n=3)

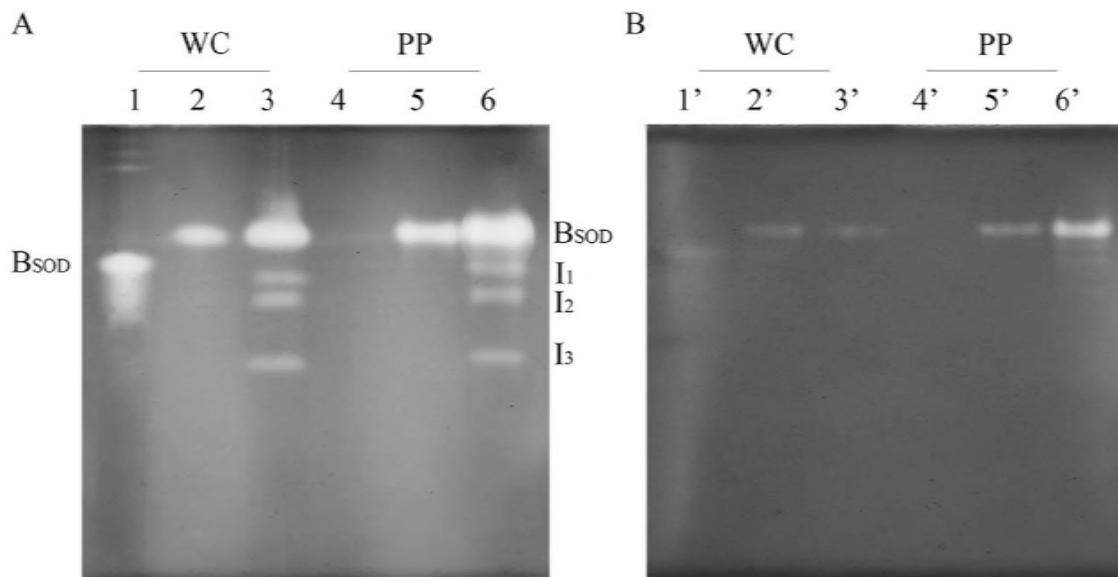
419 Different letters in each column indicate significant differences ($p\leq 0.05$ DGC test)


420

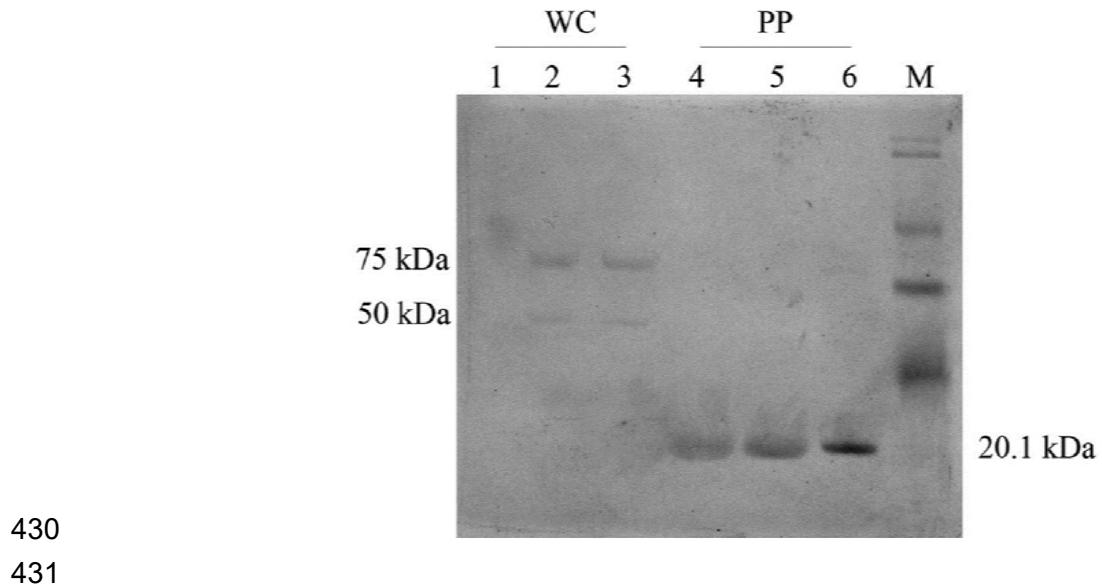
421

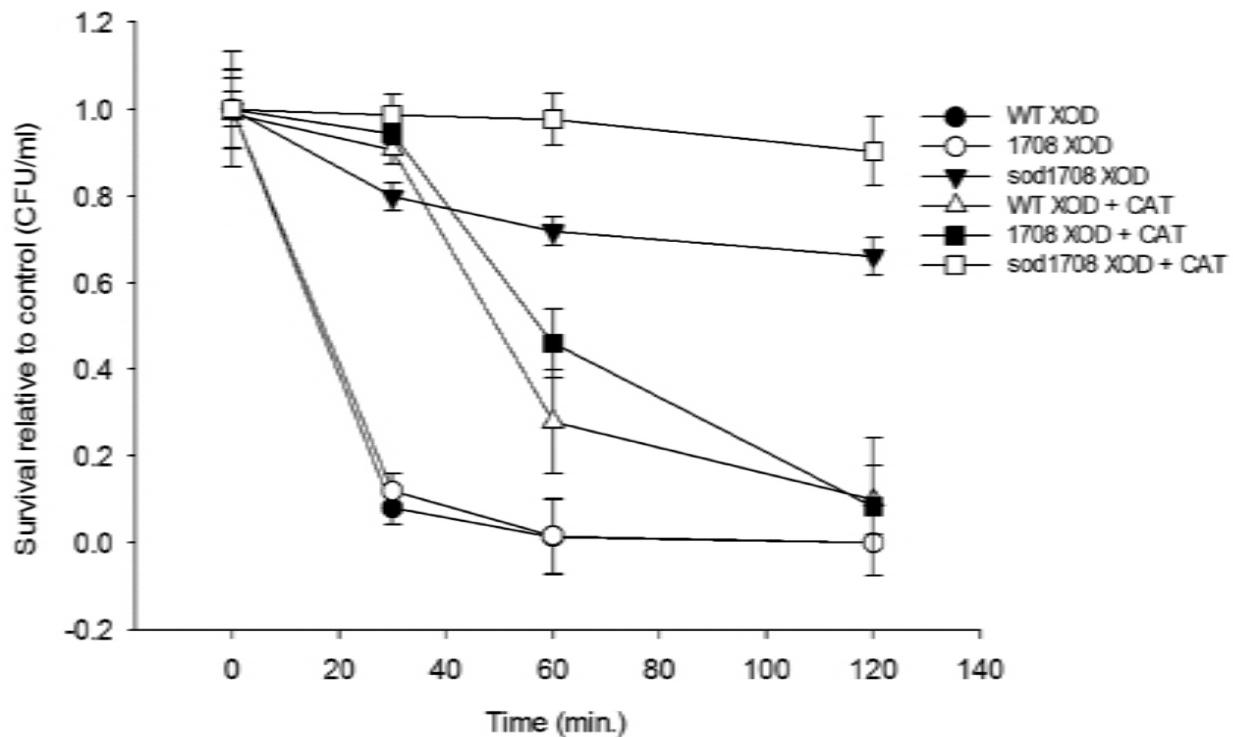

422

423

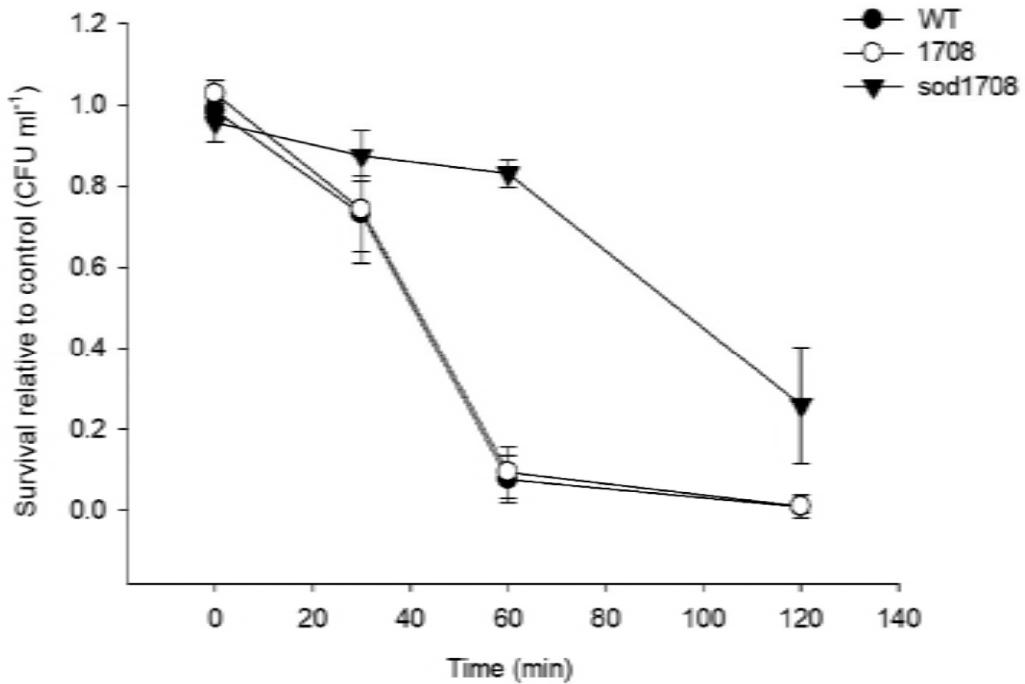

424

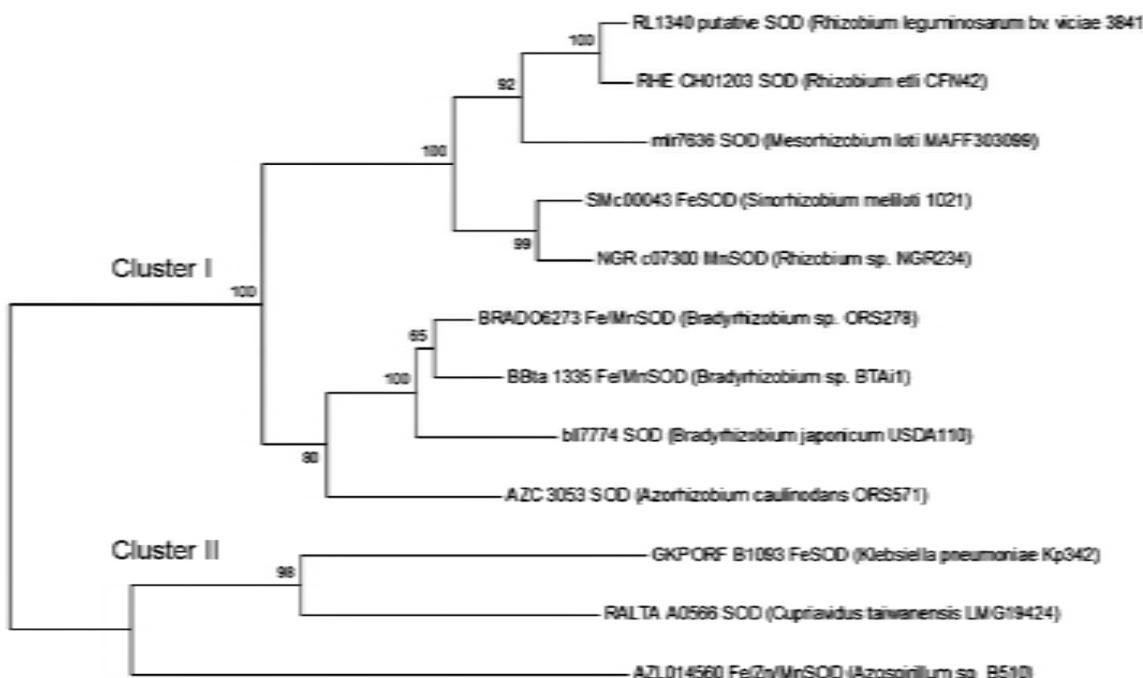
425


426


427

428


429


432

433

434

435

436