
El Khoury 1 

 

Properties of the epigenetic clock and age acceleration 

 

Louis El Khoury1**, Tyler Gorrie-Stone1, Melissa Smart2, Amanda Hughes2, Yanchun 

Bao2, Alexandria Andrayas1, Joe Burrage3, Eilis Hannon3, Meena Kumari2, Jonathan 

Mill3, Leonard C Schalkwyk1* 

1) School of Biological Sciences, University of Essex, Colchester UK 

2) Institute for Social and Economic Research, University of Essex, Colchester UK  

3) Medical School, University of Exeter, Exeter UK 

 

* Corresponding 

** Current Address: Department of Biochemistry and Molecular Biology, Mayo Clinic, 

Rochester MN USA  

 

 

LEK elkhoury.louis@mayo.edu 

TGS tgorri@essex.ac.uk 

MS mcsmar@essex.ac.uk 

AH a.hughes@essex.ac.uk 

YB ybaoa@essex.ac.uk 

AA aandra@essex.ac.uk 

JB J.Burrage@exeter.ac.uk 

EH E.J.Hannon@exeter.ac.uk 

MK mkumari@essex.ac.uk 

JM J.Mill@exeter.ac.uk 

LS lschal@essex.ac.uk

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 6, 2018. ; https://doi.org/10.1101/363143doi: bioRxiv preprint 

https://doi.org/10.1101/363143
http://creativecommons.org/licenses/by-nd/4.0/


El Khoury 2 

 

 

 

Abstract 

Background: The methylation status of numerous CpG sites in the human genome 

varies with age. The Horvath epigenetic clock used a wide variety of published DNA 

methylation data to produce an age prediction that has been widely used to, predict 

age in unknown samples, and draw conclusions about speed of ageing in various 

tissues, environments, and diseases. Despite its utility, there are a number of 

assumptions in the model that require examination. We explore the characteristics of 

the model in whole blood and multiple brain regions from older people, who are not 

well represented in the original training data, and in blood from a cross-sectional 

population study. 

Results: We find that the model systematically underestimates age in tissues from 

older people. A decrease in slope of the predicted ages were observed at 

approximately 60 years, indicating that some loci in the model may change 

differently with age, and that age acceleration measures will themselves be age-

dependent. This is seen most strongly in the cerebellum but is also present in other 

examined tissues, and is consistently observed in multiple datasets. An apparent 

association of Alzheimer’s disease with age acceleration disappears when age is 

used as a covariate.  Association tests in the literature use a variety of methods for 

calculating age acceleration and often do not use age as a covariate. This is a 

potential cause of misleading findings. 

Conclusions: Associations of phenotypes with age acceleration should be 

evaluated cautiously, and chronological age should be included as a covariate in all 

analyses. 
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Background 

Cellular differentiation and growth are orchestrated by epigenetic modifications. DNA 

methylation is the most stable and easily assayed epigenetic mark and it is indicative 

of many changes that happen throughout life. Different cell types have dramatically 

different DNA methylation profiles and there is a substantial literature on CpG loci 

whose DNA methylation status is associated with participant age in cross sectional 

studies (Hannum et al., 2013; Horvath, 2013; Spiers et al., 2015; Zbieć-Piekarska et 

al., 2015).  These sites thus appear to change over time, which, amongst other 

processes, could reflect developmental changes, cumulative environmental effects, 

and changes in cell-type composition. Identifying these sources of variation could 

give insights into multiple age-related processes, and also provide a way of 

estimating the age of study participants at the time of sample collection. There are 

changes to the epigenome with age, the majority of studies have shown global 

demethylation (Wilson et al., 2007; Bjornsson et al., 2008; Zampieri et al., 2015), 

although there is hypermethylation in CpG islands within gene promoters (Bell et al., 

2012). 

Horvath (2013) used a large collection (n > 8000) of publically available Illumina 

HumanMethylation array data on multiple tissue types to train and test a model for 

age prediction from 353 CpG loci.  This ‘epigenetic clock’ is extremely valuable as a  

way of estimating study participant ages, and possibly as an indicator of whether 

there are alterations in the ageing rate of certain tissues or individuals. With this in 

mind, it is attractive to try to relate these epigenetic changes with age related 

conditions such as dementia and Alzheimer disease (AD) (Zampieri et al., 2015), 

frailty (Breitling et al., 2016) and all-cause mortality (Marioni et al., 2015). However, 

as the model was derived using data collected at a single time point and does not 

include within person changes it therefore does not directly assess ageing.  

Ageing is a complex process described as a slow and gradual decline in 

physiological integrity leading to diminished function (López-Otín et al., 2013). Many 

factors such as genomic instability, epigenetic alterations, mitochondrial dysfunctions 

and others, have been described by Lopez-Otin et al. (2013) as the hallmarks of 

ageing. Although these changes are involved with ageing and longevity, it is still 

unclear how these modifications are affected by the cells’ and tissues’ interaction 
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with the environment. Although the epigenetic clock developed by Horvath (2013) 

provides an estimate of age, the testing data used in generating this clock did not 

have a large representation of brain tissue from elderly individuals and as such it is 

unclear if the clock is accurate in older age groups, or those with age-related 

diseases.  

We have previously published an epigenome-wide association study (EWAS) in AD, 

utilizing four brain tissues and pre-mortem blood, and demonstrated DNA methyation 

differences at specific loci in a tissue-specific manner (Lunnon et al., 2014). This 

dataset offers an ideal opportunity to investigate the properties of the Horvath (2013) 

model on different tissues in both elderly non-demented individuals and AD sufferers.  

We further explore the properties of the model using a cross sectional population 

sample from the Understanding Society study, which has a wide range of ages. 

Because the AD effects found in Lunnon et al (2014) and De Jager et al (2014) are 

quite small in magnitude and in a set of probes not overlapping with the ones used 

by the Horvath (2013) model, we did not expect to see ‘age acceleration’ associated 

with  AD.  For there to be an association the loci included in the model would be 

exhibiting a subtle but pervasive AD effect, too small to be identifiable on a 

probewise analysis, but perhaps reflective of a common variable-rate biological 

ageing clock mechanism. Age acceleration associated with disease states or 

environmental factors might support the notion such a mechanism does exist, but we 

would like to caution that in a field where many variables are being tested against 

age acceleration (which can also be defined in several ways) one would expect a 

number of positive results by chance.   
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Results 

We first used the Horvath Epigenetic Clock to predict the DNAm ages of participants 

from two case-control studies of Alzheimer Disease (AD) included in our original 

publication, 390 brain and blood samples from 92 individuals in the London cohort 

(cohort 1) (Lunnon et al., 2014) and 280 brain samples from 147 individuals in the 

Mount Sinai cohort (cohort 2) (Smith et al., 2018). As shown in table 1, in these 

elderly individuals DNAm ages are consistently underestimated. As can be seen 

from figure 1, DNAm ages clearly correlated with actual ages, but strikingly for all 

tissues of the London cohort the slope is less than 1 (figure 1 A-F, dotted line). 

This picture is further confirmed by the data from the UKHLS population study. Here 

blood samples are obtained from participants across the adult age span and confirm 

the observation that DNAm ages are increasingly underestimated with advanced age 

(figure 1G). In figure 2 we show that the same effect holds across a variety of brain 

tissue data sets listed in table 3. In particular, the cerebellum is severely under 

predicted; far more than other brain and blood tissues (figure 2). Our consistent 

findings in tissue samples, from patients and a population study of healthy 

participants indicates that the results are robust and not specific to population or 

sample characteristics.   

The Horvath (2013) model includes 353 coefficients, but most of the magnitudes are 

clustered near 0 (figure 3a), leading us to hypothesize that the few largest 

coefficients might be particularly influential. In figure 3b, the distribution of DNA 

methylation proportions in cerebellum of the London cohort data is shown in a 

stripchart for each of the 157 loci with positive coefficients in the Horvath (2013) 

model, sorted by magnitude, with the largest coefficients at the right, and figure 3c 

for the negative coefficients (smallest at the left). It is striking that several loci with 

the largest positive and negative age coefficients in the model have low variance in 

this sample and also low DNA methylation.   

One possible mechanism for the attenuated association of many CG sites in the 

model with age would be saturation (i.e. individual loci with positive coefficients 

reaching full methylation or negative coefficient ones reaching zero). To investigate 

this, we estimate the influence of each locus on the age estimate by dividing the 

coefficient from Horvath (2013) by an index of dispersion from our data, the 
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coefficient of variation. In figure 3d we explore this value, and see that the most 

influential probes (black points at the top and bottom of the plot) include examples of 

both small variance (and large coefficient) and large variance (and small coefficient).  

This is further explored in figure 3e in which the ten loci with the highest influence 

are shown, with the ages equivalent to the length of each line protruding out of each 

circle and forming the rug on the right hand side of each strip chart. The rugs, scaled 

to best reflect the age range in the space available, give an indication of the 

noisiness of the relationship of the individual betas with age: the age relationship is 

not immediately visible for individual probes. The coefficients are shown in the 

centre, and the sign is also denoted by the direction of the stripchart, downward 

facing triangles for negative. This shows that of these ten probes there are three 

(cg12830694, cg24580001, and cg02580606) that might be candidates for saturation 

because they are highly methylated and expected to increase further with age. We 

thus fitted a regression line between chronological age and the beta values of each 

of the 353 loci and plotted the slopes against the Horvath coefficients. The 157 

positively correlated and the 196 negatively correlated CpGs with age in Horvath 

(2013) are plotted and the ten most influential loci are highlighted in black (fig 3f). Of 

the ten most influential loci, four have a slope opposite in sign to the Horvath 

coefficient where three loci (cg08090772, cg03019000, and cg04268405) with 

negative Horvath coefficients have a positive slope in the cerebellum, and one locus 

(cg24580001) with a positive Horvath coefficient displays a negative slope in the 

cerebellum.  In the main, the larger coefficients demonstrate the same direction of 

effect in our data as in the Horvath model. Admittedly this analysis is based on one 

tissue and age range, but it appears that many of the smaller coefficients may be 

effectively random with no biological meaning, and present in the model due to 

overfitting.  

It is worth noting that the cerebellum is characterised by elevated levels of 5-

hydroxymethylcytosine (5hmC) (Lunnon et al., 2016). We found that 31 out of the 

353 Horvath clock sites were amongst the 65663 elevated 5hmC probes found in the 

cerebellum by Lunnon et al (2016). Of these, two sites (cg04268405, and 

cg24580001) are among the most influential sites reported in figure3e. Given that 

5hmC is not distinguished from 5mC following bisulfite conversion, it is possible that 
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age-associated changes to the 31 5hmC sites in the Horvath algorithm are offsetting 

the age predictions.  

Finally, we examined whether age acceleration (calculated as the difference between 

DNAm age and chronological age) associates with AD neuropathology (measured 

using Braak score). Our results do show a weak association in some brain tissues 

(table 2). However, when age is included as a covariate, the association between 

age acceleration and AD pathology disappears (table 2). We also see this in the 

Mount Sinai cohort where no correlation was found between age acceleration and 

amyloid plaque levels in either the PFC or the STG when age is included as a 

covariate (table 2). 
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Discussion 

The Horvath (2013) ‘clock’ underestimates age in tissues and blood from older 

individuals.  Following several publications listing loci at which DNA methylation 

associates with age (Hernandez et al., 2011; Koch and Wagner, 2011), Horvath 

(2013) used penalized regression to train a multi-locus, cross tissue predictor of age 

using a large collection of public data. This involved a nonlinear transformation of the 

data to prevent the huge changes of childhood and adolescence from dominating the 

model. The resulting 'epigenetic clock' has been of practical use in predicting the age 

of unknown samples and as a quality check in epigenetic research. Additional widely 

used age predictors specific for blood were published by Hannum (2013) and Levine 

(2018) (phenotype-based). Here we analyse the Horvath (2013) clock, but the 

methods and many of the conclusions may be more widely applicable. 

If the epigenetic clock is an index of an underlying ageing program that adapts to 

health and environment, then it resembles the circadian clock, and a biochemical 

mechanism for it remains to be discovered, particularly for adulthood and old age.  

Alternatively, it may represent the accumulation of DNA methylation change over 

time, analogous to a phylogenetic clock. When comparing DNA methylation profiles 

across tissues, individuals and other variables such as health, the dominant source 

of variation is the tissue, or more precisely the cell type.  It is reasonable to suppose 

that this developmental blueprint can change over time in response to the 

environment, or simply drift or decay. This point of view corresponds roughly with the 

'Epigenetic Maintenance' model posited by Horvath (2013). 

Although the Horvath (2013) paper proposed an ‘epigenetic maintenance’ model of 

the epigenetic clock, which does not require an internal clock mechanism, the same 

work also featured the somewhat contradictory idea of ‘age acceleration’ in which 

discrepancies between DNA methylation (DNAm) age and chronological age might 

tell us something about a clock mechanism and the biological ageing status of the 

organism. These ideas are developed further by Horvath and Raj (2018). It is worth 

highlighting that in the latter third of the human age range, where you might most 

expect to see such associations, negative age acceleration increases with age. This 

means that any phenotype associated with age will appear to be associated with age 
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acceleration as well, and a correct analysis should include chronological age as a 

covariate.  

In a broad but non- comprehensive survey of the literature (table S1), we observe a 

variety of methods of calculating age acceleration, and many studies that do not 

correct for chronological age. Initially Δ-age (the difference between chronological 

age and the DNAm predicted age) was reported but alternative methods have since 

arisen: (1) the residual of regressing DNAm predicted age on chronological age 

(possibly in a model including covariates), (2) AgeAccel (difference between DNAm 

age value and the value predicted by a regression model in the control group), and 

(3) intrinsic (IEAA) and (4) extrinsic epigenetic age acceleration (EEAA) methods. 

Both IEAA and EEAA are methods applicable only on blood tissue since they 

subtract out the effect of blood cell count. One difference between the two, however, 

lies in that IEAA is based on the Horvath clock and does not take into consideration 

age-related decline of immune cells (Levine et al., 2015). Contrarily, EEAA is defined 

on the basis of a weighted average of the epigenetic age from the Hannum clock and 

immune cells known to change with age (Horvath and Ritz, 2015).  

In light of this methodological variety, we are concerned that the different epigenetic 

clocks, and the variety of age acceleration methods to choose from, would be laying 

a multiple testing trap that is overlooked by some colleagues in the field. 

Conclusion  

Every adult experiences change over time in a way that makes the concept of 

'biological age' compelling.  The clock model has extremely interesting and useful 

characteristics but it is an extremely narrow summary of the DNA methylation profile.  

Many studies use age acceleration as the single epigenetic variable, based on only 

353 CpG sites representing 1.15x10-5% of the methylome. Caution is urged when 

using the epigenetic clock, in particular in case control studies where studies should 

be carefully matched for age and may require further adjustment for age. Highly-

powered epigenetic studies will continue to show some intriguing associations 

between age acceleration and varied health outcomes no matter which vision is true. 

Finally, an ideal epigenetic clock and age predictor might be within reach but it would 

require the incorporation of all epigenetic changes observed with age and not just 
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DNA methylation. Until then, it would be recommendable and more accurate to refer 

to the existing clocks as DNA methylation clocks instead. 

Methods 

Samples 

Tissue Samples: 

Brain tissue samples (London cohort) were obtained from individuals diagnosed with 

Alzheimer’s disease (AD, n = 61) and from non-demented elderly control individuals 

(CON, n = 31) through the MRC London Neurodegenerative Disease Brain Bank as 

described in Lunnon et al (2014). In total four brain regions were analyzed (prefrontal 

cortex (PFC), the enthorhinal cortex (EC), the superior temporal gyrus (STG), and 

the cerebellum (CER)) and pre-mortem blood from a subset of individuals, collected 

as part of the Biomarkers of AD Neurodegeneration study. A second independent 

cohort (Mount Sinai cohort) was obtained from the Mount Sinai Alzheimer's disease 

and Schizophrenia Brain Bank. This cohort consisted of two brain regions (PFC and 

STG) for 75 AD and 72 CON donors (Smith et al., 2018). 

 

Population sample:  The UK Household Longitudinal study (UKHLS) 

UKHLS is an annual household-based panel study which started collecting 

information about the social, economic and health status of its participants in 2009.  

Our analysis data set is drawn from one of the arms of UKHLS, namely, the British 

Household Panel Survey (BHPS), which merged with UKHLS in 2010 at the start of 

wave two.  UKHLS collected additional health information, including blood samples 

for genetic and epigenetic analysis, at wave 3 for BHPS. 

(www.understandingsociety.ac.uk) 

 

Methylomic Profiling 

DNA from the London cohort tissue samples were bisulfite-treated using Zymo EZ 96 

DNA methylation kit (Zymo Research) according to the manufacturer protocol. DNA 

methylation levels were assessed on an Illumina HiScan System using the Illumina 

Infinium HumanMethylation450 BeadChip as previously described by Hannon et al. 
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(2015). Raw signal intensities and probes for the London cohort were extracted 

using Illumina Genome Studio software were transformed into beta values using the 

Bioconductor wateRmelon package (Pidsley et al., 2013). These were later 

normalized using the method implemented in the Horvath (2013) script. Data is 

available from both cohorts under GEO accession numbers GSE59685 (London 

cohort) and GSE80970 (Mount Sinai cohort). 

1193 DNA samples from UKHLS were bisulfite-treated using Zymo EZ 96 DNA 

methylation kit (Zymo Research) according to the manufacturer protocol. DNA 

methylation levels were assessed on an Illumina HiScan System (Illumina) using the 

Illumina Infinium Epic Methylation BeadChip and samples were randomly assigned 

to chips and plates to minimise batch effects. Furthermore, in order to resolve any 

experimental inconsistencies, and to approve data quality, a fully methylated control 

(CpG Methylated HeLa Genomic DNA; New England BioLabs, MA, USA) was 

included in a random position on each plate. Raw signal intensities and probes for 

UKHLS were extracted using Illumina Genome Studio software and were 

transformed into beta values using the Bioconductor bigmelon package 

(10.18129/B9.bioc.bigmelon). These were later normalized using dasen function 

from the wateRmelon package (Pidsley et al., 2013). After QC a final n of 1175 was 

reached.  

 

DNA Methylation Age prediction 

DNA methylation (DNAm) age was assessed for all samples of the London and Mt 

Sinai datasets on the the R statistical environment (R Development Core Team, 

2015) using the script provided by Horvath (2013) as well as through the online 

DNAm Age Calculator (https://dnamage.genetics.ucla.edu/). These methods 

predicted age based on the DNAm coefficients of 353 CpG sites. The model 

(although not the custom normalization method) is also implemented in the agep() 

function of the wateRmelon package (version 1.17.0).This function was used to 

predict the ages of the UKHLS samples. 

To assess the weighted average methylation levels, and to maximize the number of 

brain samples included in our assessment of age prediction, publically available 
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450KMethylation brain tissue datasets obtained from GEO (GSE40360, GSE53162, 

GSE59457, GSE61380, GSE61431, GSE67748, GSE67749, and GSE89702) along 

with the London and Mount Sinai cohorts were analysed (table 3). 
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Figures 

 

 

 

Figure 1 Scatterplot of Chronological vs DNAm ages of brain and blood samples. Each 

point corresponds to an independent sample. The dotted line is the y=x bisector line and the 

solid lines correspond to the regression line of each tissue. PFC: prefrontal cortex, EC: 

enthorhinal cortex, STG: the superior temporal gyrus, CER: cerebellum (data from Lunnon et 

al 2014 for panels A-F and Gorrie-Stone et al (2018, under peer-review) for panel G).  
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Figure 2 A) Exploration of Chronological vs DNAm ages and   B) weighted average DNA 

methylation of the 353 Horvath clock CpGs vs chronological age in a dataset combining 

GSE40360, GSE53162, GSE59457, GSE61380, GSE61431, GSE67748, GSE67749, 

GSE89702, the London, and the Mount Sinai cohorts (Frontal lobe n=446, temporal lobe 

n=504, occipital lobe n=72, cerebellum n=246, blood n=80). An increase in divergence is 

observed as chronological age increases and a reduced slope among all samples (dotted 

curve) and especially the cerebellum samples (solid curve) can be noticed starting from the 

age of 60 which suggests the importance of introducing another inflection in the model at 

around that time. The solid line in fig 2a is the y=x bisector line. 
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Figure 3 Exploration of model coefficients in the elderly cerebellum a) stripchart 

showing the distribution of the 353 coefficients form Horvath (2013), b) stripchart showing 

the distribution of DNA methylation values of the 158 CG loci with positive coefficients in 83 

cerebellum samples, c) stripcharts showing the distribution of DNA methylation values of the 

195 CG loci with negative coefficients in 83 cerebellum samples, d) Scatter plot of age 

coefficients against their influence score (coefficient from Horvath (2013)/coefficient of 

variation in our data). The ten most influential loci are plotted in black, e) ten most influential 

loci, with the ages represented as a rug on the right hand side of each strip chart. The 

Horvath coefficients are shown in the center, and their sign is also denoted by the direction 

of the triangles, upward facing for positive and downward facing for negative, f) scatter plot 

of Horvath (2013) coefficients against their linear-model age coefficients in our data. The 10 

most influential probes are shown in black. 
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Table 1 Chronological ages of samples obtained from the London Cohort 

 London CON  London AD  Mt Sinai CON  Mt Sinai AD 

Tissue N CHRN 

Age 

DNAm 

Age 

 N CHRN 

Age 

DNAm 

Age 

 N CHRN 

Age 

DNAm 

Age 

 N CHRN 

Age 

DNAm 

Age 

Prefrontal 

Cortex 

24 78.62 ± 

11.07 

66.74 ± 

7.57 

 60 86.40 ± 

7.53 

71.63 ± 

5.49 

 68 82.76 ± 

7.77 

68.23 ± 

9.26 

 74 88.53 ± 

6.67 

73.30 ± 

5.39 

Enthorhinal 

Cortex 

21 79.62 ± 

10.34 

73.92 ± 

8.58 

 58 86.50 ± 

7.64 

74.97 ± 

6.49 

 - - -  - - - 

Superior 

Temporal 

Gyrus 

26 76.73 ± 

13.16 

66.48 ± 

9.76 

 61 86.34 ± 

7.47 

72.93 ± 

6.08 

 70 83.21 ± 

8.13 

67.99 ± 

8.59 

 74 88.40 ± 

6.76 

72.15 ± 

6.61 

Cerebellum 23 76.00 ± 

13.56 

54.06 ± 

7.23 

 60 86.15 ± 

7.38 

57.61 ± 

4.75 

 - - -  - - - 

Blood 9 80.00 ± 

6.14 

70.74 ± 

6.79 

 48 83.83 ± 

7.00 

74.99 ± 

7.42 

 - - -  - - - 

Values are expressed as means ± SD. The total number of subjects (n) is in parentheses. 

CHRN age: Chronological age 

DNAm age: epigenetic age predicted according to the Horvath (2013) model. 
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Table 2 Regression analysis of epigenetic age acceleration of four brain tissues and blood 

from the London Brain Bank cohort versus brain Braak stage and of two brain tissues from 

the Mount Sinai cohort versus amyloid plaque levels. Both analyses were corrected for the 

chronological ages. 

 London Cohort  London Cohort (age 

in model) 

Mount Sinai Cohort (age 

in model) 

 Coefficient P-value Coefficient P-value Coefficient P-value 

Prefrontal 

Cortex 

0.434 0.164 -0.345 0.107 -0.029 0.629 

Enthorhinal 

Cortex 

0.969 0.004 0.424 0.125 - - 

Sup. Temporal 

Gyrus 

0.653 0.019 -0.062 0.786 0.004 0.944 

Cerebellum 1.127 0.002 -0.059 0.788 - - 

Blood -0.278 0.632 -0.090 0.870 - - 

Shown for each cohort the coefficient and p-value for the regression analysis between age 

acceleration and Braak stages (London cohort) or amyloid plaque levels (Mount Sinai 

cohort) with chronological age as a covariate. 
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Table 3 Breakdown of the phenotypes, tissues, and ages of the additional brain datasets  

GEO  

Accession 

Phenotype Tissue N Age  

Range 

Age  

(mean ± SD) 

Reference 

GSE40360 Multiple 
Sclerosis 

White matter 27 cases 

19 control 

35 – 78 

53 – 81  

55.33 ± 9.99 

66.32 ± 8.50 

Huynh et al., 
2014 

GSE53162 Autism Temporal cortex 6 cases 

10 controls 

2 – 51 

22 – 56  

21.83 ± 17.42 

39.6 ± 13.06 

Ladd-Acosta 
et al., 2014 

  Prefrontal cortex 6 cases 

5 controls 

2 – 29  

19 – 56  

17.5 ± 10.82 

34.8 ± 15.02 

 

  Cerebellum 7 cases 

6 controls 

4 – 39  

2 – 26  

14.00 ± 12.34 

16.67 ± 10.03 

 

GSE59457 HIV Cerebellum 20 cases 

4 controls 

26 – 64  

38 – 63  

43.79 ± 9.49 

51.75 ± 10.31 

Horvath and 
Levine, 2015 

  Frontal lobe 2 cases 

4 controls 

44 – 48  

38 – 63  

46.35 ± 2.48 

51.75 ± 10.31 

 

  Hippocampus  4 controls  38 – 63  51.75 ± 10.31  

  Medial frontal 
cortex 

18 cases 26 – 64  44.34 ± 10.57  

  Midbrain 2 controls 38 – 53  45.5 ± 10.61  

  Occipital cortex  59 cases 

13 controls 

26 – 68 

32 – 64  

49.89 ± 9.23 

49.69 ± 11.57 

 

  Temporal cortex 4 controls 38 – 63  51.75 ± 10.31  

GSE67748 HIV Cerebellum 8 cases 

12 controls 

27 – 64 

15 – 85  

44.00 ± 13.56 

66.67 ± 22.73  

Horvath and 
Levine,2015 

GSE67749 HIV Frontal lobe 8 cases 

25 controls 

27 – 64  

15 – 95  

44.00 ± 13.56 

72.72 ± 17.80 

Horvath and 
Levine, 2015 

GSE61380 Schizophrenia Prefrontal cortex 18 cases 

15 controls 

24 – 73 

21 – 69  

45.50 ± 16.61 

42.20 ± 14.85 

Pidsley et 
al., 2014 

GSE61431 Schizophrenia Cerebellum 21 cases 

23 controls 

31 – 87 

25 – 96  

61.76 ± 16.61 

61.39 ± 17.15 

Pidsley et 
al., 2014 

  Frontal Cortex 20 cases 

23 controls 

32 – 87  

25 – 96  

62.05 ± 14.81 

62.04 ± 17.09 

 

GSE89702 Schizophrenia Striatum 37 cases 

45 controls 

24 – 87 

21 – 96 

55.11 ± 17.58 

56.67 ± 20.08 

Viana et al., 
2016 

  Hippocampus 14 cases 

13 controls 

31 – 79 

25 – 95 

59.71 ± 13.59 

64.46 ± 18.90 

 

  Cerebellum 16 cases 

17 controls 

24 – 70 

21 – 72 

45.69 ± 16.93 

44.59 ± 15.79 
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Distribution of 158 CG loci with positive coefficients in cerebellum
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Distribution of 196 CG loci with negative coefficients in cerebellum
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