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Abstract

Background: The methylation status of numerous CpG sites in the human genome
varies with age. The Horvath epigenetic clock used a wide variety of published DNA
methylation data to produce an age prediction that has been widely used to, predict
age in unknown samples, and draw conclusions about speed of ageing in various
tissues, environments, and diseases. Despite its utility, there are a number of
assumptions in the model that require examination. We explore the characteristics of
the model in whole blood and multiple brain regions from older people, who are not
well represented in the original training data, and in blood from a cross-sectional
population study.

Results: We find that the model systematically underestimates age in tissues from
older people. A decrease in slope of the predicted ages were observed at
approximately 60 years, indicating that some loci in the model may change
differently with age, and that age acceleration measures will themselves be age-
dependent. This is seen most strongly in the cerebellum but is also present in other
examined tissues, and is consistently observed in multiple datasets. An apparent
association of Alzheimer’s disease with age acceleration disappears when age is
used as a covariate. Association tests in the literature use a variety of methods for
calculating age acceleration and often do not use age as a covariate. This is a
potential cause of misleading findings.

Conclusions: Associations of phenotypes with age acceleration should be
evaluated cautiously, and chronological age should be included as a covariate in all
analyses.
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Background

Cellular differentiation and growth are orchestrated by epigenetic modifications. DNA
methylation is the most stable and easily assayed epigenetic mark and it is indicative
of many changes that happen throughout life. Different cell types have dramatically
different DNA methylation profiles and there is a substantial literature on CpG loci
whose DNA methylation status is associated with participant age in cross sectional
studies (Hannum et al., 2013; Horvath, 2013; Spiers et al., 2015; Zbie¢-Piekarska et
al., 2015). These sites thus appear to change over time, which, amongst other
processes, could reflect developmental changes, cumulative environmental effects,
and changes in cell-type composition. Identifying these sources of variation could
give insights into multiple age-related processes, and also provide a way of
estimating the age of study participants at the time of sample collection. There are
changes to the epigenome with age, the majority of studies have shown global
demethylation (Wilson et al., 2007; Bjornsson et al., 2008; Zampieri et al., 2015),
although there is hypermethylation in CpG islands within gene promoters (Bell et al.,
2012).

Horvath (2013) used a large collection (n > 8000) of publically available lllumina
HumanMethylation array data on multiple tissue types to train and test a model for
age prediction from 353 CpG loci. This ‘epigenetic clock’ is extremely valuable as a
way of estimating study participant ages, and possibly as an indicator of whether
there are alterations in the ageing rate of certain tissues or individuals. With this in
mind, it is attractive to try to relate these epigenetic changes with age related
conditions such as dementia and Alzheimer disease (AD) (Zampieri et al., 2015),
frailty (Breitling et al., 2016) and all-cause mortality (Marioni et al., 2015). However,
as the model was derived using data collected at a single time point and does not

include within person changes it therefore does not directly assess ageing.

Ageing is a complex process described as a slow and gradual decline in
physiological integrity leading to diminished function (Lopez-Otin et al., 2013). Many
factors such as genomic instability, epigenetic alterations, mitochondrial dysfunctions
and others, have been described by Lopez-Otin et al. (2013) as the hallmarks of
ageing. Although these changes are involved with ageing and longevity, it is still

unclear how these modifications are affected by the cells’ and tissues’ interaction
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with the environment. Although the epigenetic clock developed by Horvath (2013)
provides an estimate of age, the testing data used in generating this clock did not
have a large representation of brain tissue from elderly individuals and as such it is
unclear if the clock is accurate in older age groups, or those with age-related

diseases.

We have previously published an epigenome-wide association study (EWAS) in AD,
utilizing four brain tissues and pre-mortem blood, and demonstrated DNA methyation
differences at specific loci in a tissue-specific manner (Lunnon et al.,, 2014). This
dataset offers an ideal opportunity to investigate the properties of the Horvath (2013)
model on different tissues in both elderly non-demented individuals and AD sufferers.
We further explore the properties of the model using a cross sectional population

sample from the Understanding Society study, which has a wide range of ages.

Because the AD effects found in Lunnon et al (2014) and De Jager et al (2014) are
guite small in magnitude and in a set of probes not overlapping with the ones used
by the Horvath (2013) model, we did not expect to see ‘age acceleration’ associated
with AD. For there to be an association the loci included in the model would be
exhibiting a subtle but pervasive AD effect, too small to be identifiable on a
probewise analysis, but perhaps reflective of a common variable-rate biological
ageing clock mechanism. Age acceleration associated with disease states or
environmental factors might support the notion such a mechanism does exist, but we
would like to caution that in a field where many variables are being tested against
age acceleration (which can also be defined in several ways) one would expect a

number of positive results by chance.
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Results

We first used the Horvath Epigenetic Clock to predict the DNAmM ages of participants
from two case-control studies of Alzheimer Disease (AD) included in our original
publication, 390 brain and blood samples from 92 individuals in the London cohort
(cohort 1) (Lunnon et al., 2014) and 280 brain samples from 147 individuals in the
Mount Sinai cohort (cohort 2) (Smith et al.,, 2018). As shown in table 1, in these
elderly individuals DNAmM ages are consistently underestimated. As can be seen
from figure 1, DNAmM ages clearly correlated with actual ages, but strikingly for all

tissues of the London cohort the slope is less than 1 (figure 1 A-F, dotted line).

This picture is further confirmed by the data from the UKHLS population study. Here
blood samples are obtained from participants across the adult age span and confirm
the observation that DNAmM ages are increasingly underestimated with advanced age
(figure 1G). In figure 2 we show that the same effect holds across a variety of brain
tissue data sets listed in table 3. In particular, the cerebellum is severely under
predicted; far more than other brain and blood tissues (figure 2). Our consistent
findings in tissue samples, from patients and a population study of healthy
participants indicates that the results are robust and not specific to population or
sample characteristics.

The Horvath (2013) model includes 353 coefficients, but most of the magnitudes are
clustered near 0 (figure 3a), leading us to hypothesize that the few largest
coefficients might be particularly influential. In figure 3b, the distribution of DNA
methylation proportions in cerebellum of the London cohort data is shown in a
stripchart for each of the 157 loci with positive coefficients in the Horvath (2013)
model, sorted by magnitude, with the largest coefficients at the right, and figure 3c
for the negative coefficients (smallest at the left). It is striking that several loci with
the largest positive and negative age coefficients in the model have low variance in

this sample and also low DNA methylation.

One possible mechanism for the attenuated association of many CG sites in the
model with age would be saturation (i.e. individual loci with positive coefficients
reaching full methylation or negative coefficient ones reaching zero). To investigate
this, we estimate the influence of each locus on the age estimate by dividing the

coefficient from Horvath (2013) by an index of dispersion from our data, the
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coefficient of variation. In figure 3d we explore this value, and see that the most
influential probes (black points at the top and bottom of the plot) include examples of
both small variance (and large coefficient) and large variance (and small coefficient).
This is further explored in figure 3e in which the ten loci with the highest influence
are shown, with the ages equivalent to the length of each line protruding out of each
circle and forming the rug on the right hand side of each strip chart. The rugs, scaled
to best reflect the age range in the space available, give an indication of the
noisiness of the relationship of the individual betas with age: the age relationship is
not immediately visible for individual probes. The coefficients are shown in the
centre, and the sign is also denoted by the direction of the stripchart, downward
facing triangles for negative. This shows that of these ten probes there are three
(cg12830694, cg24580001, and cg02580606) that might be candidates for saturation
because they are highly methylated and expected to increase further with age. We
thus fitted a regression line between chronological age and the beta values of each
of the 353 loci and plotted the slopes against the Horvath coefficients. The 157
positively correlated and the 196 negatively correlated CpGs with age in Horvath
(2013) are plotted and the ten most influential loci are highlighted in black (fig 3f). Of
the ten most influential loci, four have a slope opposite in sign to the Horvath
coefficient where three loci (cg08090772, cg03019000, and cg04268405) with
negative Horvath coefficients have a positive slope in the cerebellum, and one locus
(cg24580001) with a positive Horvath coefficient displays a negative slope in the
cerebellum. In the main, the larger coefficients demonstrate the same direction of
effect in our data as in the Horvath model. Admittedly this analysis is based on one
tissue and age range, but it appears that many of the smaller coefficients may be
effectively random with no biological meaning, and present in the model due to

overfitting.

It is worth noting that the cerebellum is characterised by elevated levels of 5-
hydroxymethylcytosine (5hmC) (Lunnon et al., 2016). We found that 31 out of the
353 Horvath clock sites were amongst the 65663 elevated 5hmC probes found in the
cerebellum by Lunnon et al (2016). Of these, two sites (cg04268405, and
€g24580001) are among the most influential sites reported in figure3e. Given that
5hmC is not distinguished from 5mC following bisulfite conversion, it is possible that
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age-associated changes to the 31 5hmC sites in the Horvath algorithm are offsetting

the age predictions.

Finally, we examined whether age acceleration (calculated as the difference between
DNAm age and chronological age) associates with AD neuropathology (measured
using Braak score). Our results do show a weak association in some brain tissues
(table 2). However, when age is included as a covariate, the association between
age acceleration and AD pathology disappears (table 2). We also see this in the
Mount Sinai cohort where no correlation was found between age acceleration and
amyloid plaque levels in either the PFC or the STG when age is included as a

covariate (table 2).
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Discussion

The Horvath (2013) ‘clock’ underestimates age in tissues and blood from older
individuals. Following several publications listing loci at which DNA methylation
associates with age (Hernandez et al., 2011; Koch and Wagner, 2011), Horvath
(2013) used penalized regression to train a multi-locus, cross tissue predictor of age
using a large collection of public data. This involved a nonlinear transformation of the
data to prevent the huge changes of childhood and adolescence from dominating the
model. The resulting ‘epigenetic clock' has been of practical use in predicting the age
of unknown samples and as a quality check in epigenetic research. Additional widely
used age predictors specific for blood were published by Hannum (2013) and Levine
(2018) (phenotype-based). Here we analyse the Horvath (2013) clock, but the

methods and many of the conclusions may be more widely applicable.

If the epigenetic clock is an index of an underlying ageing program that adapts to
health and environment, then it resembles the circadian clock, and a biochemical
mechanism for it remains to be discovered, particularly for adulthood and old age.
Alternatively, it may represent the accumulation of DNA methylation change over
time, analogous to a phylogenetic clock. When comparing DNA methylation profiles
across tissues, individuals and other variables such as health, the dominant source
of variation is the tissue, or more precisely the cell type. It is reasonable to suppose
that this developmental blueprint can change over time in response to the
environment, or simply drift or decay. This point of view corresponds roughly with the
'Epigenetic Maintenance' model posited by Horvath (2013).

Although the Horvath (2013) paper proposed an ‘epigenetic maintenance’ model of
the epigenetic clock, which does not require an internal clock mechanism, the same
work also featured the somewhat contradictory idea of ‘age acceleration’ in which
discrepancies between DNA methylation (DNAm) age and chronological age might
tell us something about a clock mechanism and the biological ageing status of the
organism. These ideas are developed further by Horvath and Raj (2018). It is worth
highlighting that in the latter third of the human age range, where you might most
expect to see such associations, negative age acceleration increases with age. This

means that any phenotype associated with age will appear to be associated with age

El Khoury 9


https://doi.org/10.1101/363143
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/363143; this version posted July 6, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

acceleration as well, and a correct analysis should include chronological age as a

covariate.

In a broad but non- comprehensive survey of the literature (table S1), we observe a
variety of methods of calculating age acceleration, and many studies that do not
correct for chronological age. Initially A-age (the difference between chronological
age and the DNAm predicted age) was reported but alternative methods have since
arisen: (1) the residual of regressing DNAm predicted age on chronological age
(possibly in a model including covariates), (2) AgeAccel (difference between DNAmM
age value and the value predicted by a regression model in the control group), and
(3) intrinsic (IEAA) and (4) extrinsic epigenetic age acceleration (EEAA) methods.
Both IEAA and EEAA are methods applicable only on blood tissue since they
subtract out the effect of blood cell count. One difference between the two, however,
lies in that IEAA is based on the Horvath clock and does not take into consideration
age-related decline of immune cells (Levine et al., 2015). Contrarily, EEAA is defined
on the basis of a weighted average of the epigenetic age from the Hannum clock and
immune cells known to change with age (Horvath and Ritz, 2015).

In light of this methodological variety, we are concerned that the different epigenetic
clocks, and the variety of age acceleration methods to choose from, would be laying

a multiple testing trap that is overlooked by some colleagues in the field.
Conclusion

Every adult experiences change over time in a way that makes the concept of
'biological age' compelling. The clock model has extremely interesting and useful
characteristics but it is an extremely narrow summary of the DNA methylation profile.
Many studies use age acceleration as the single epigenetic variable, based on only
353 CpG sites representing 1.15x10°% of the methylome. Caution is urged when
using the epigenetic clock, in particular in case control studies where studies should
be carefully matched for age and may require further adjustment for age. Highly-
powered epigenetic studies will continue to show some intriguing associations

between age acceleration and varied health outcomes no matter which vision is true.

Finally, an ideal epigenetic clock and age predictor might be within reach but it would

require the incorporation of all epigenetic changes observed with age and not just
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DNA methylation. Until then, it would be recommendable and more accurate to refer

to the existing clocks as DNA methylation clocks instead.

Methods

Samples

Tissue Samples:

Brain tissue samples (London cohort) were obtained from individuals diagnosed with
Alzheimer’s disease (AD, n = 61) and from non-demented elderly control individuals
(CON, n = 31) through the MRC London Neurodegenerative Disease Brain Bank as
described in Lunnon et al (2014). In total four brain regions were analyzed (prefrontal
cortex (PFC), the enthorhinal cortex (EC), the superior temporal gyrus (STG), and
the cerebellum (CER)) and pre-mortem blood from a subset of individuals, collected
as part of the Biomarkers of AD Neurodegeneration study. A second independent
cohort (Mount Sinai cohort) was obtained from the Mount Sinai Alzheimer's disease
and Schizophrenia Brain Bank. This cohort consisted of two brain regions (PFC and
STG) for 75 AD and 72 CON donors (Smith et al., 2018).

Population sample: The UK Household Longitudinal study (UKHLS)

UKHLS is an annual household-based panel study which started collecting
information about the social, economic and health status of its participants in 2009.
Our analysis data set is drawn from one of the arms of UKHLS, namely, the British
Household Panel Survey (BHPS), which merged with UKHLS in 2010 at the start of
wave two. UKHLS collected additional health information, including blood samples

for genetic and epigenetic analysis, at wave 3 for BHPS.

(www.understandingsociety.ac.uk)

Methylomic Profiling

DNA from the London cohort tissue samples were bisulfite-treated using Zymo EZ 96
DNA methylation kit (Zymo Research) according to the manufacturer protocol. DNA
methylation levels were assessed on an lllumina HiScan System using the lllumina

Infinium HumanMethylation450 BeadChip as previously described by Hannon et al.
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(2015). Raw signal intensities and probes for the London cohort were extracted
using lllumina Genome Studio software were transformed into beta values using the
Bioconductor wateRmelon package (Pidsley et al., 2013). These were later
normalized using the method implemented in the Horvath (2013) script. Data is
available from both cohorts under GEO accession numbers GSE59685 (London
cohort) and GSE80970 (Mount Sinai cohort).

1193 DNA samples from UKHLS were bisulfite-treated using Zymo EZ 96 DNA
methylation kit (Zymo Research) according to the manufacturer protocol. DNA
methylation levels were assessed on an Illumina HiScan System (lllumina) using the
lllumina Infinium Epic Methylation BeadChip and samples were randomly assigned
to chips and plates to minimise batch effects. Furthermore, in order to resolve any
experimental inconsistencies, and to approve data quality, a fully methylated control
(CpG Methylated HeLa Genomic DNA; New England BiolLabs, MA, USA) was
included in a random position on each plate. Raw signal intensities and probes for
UKHLS were extracted using lllumina Genome Studio software and were
transformed into beta values using the Bioconductor bigmelon package

(10.18129/B9.bioc.bigmelon). These were later normalized using dasen function

from the wateRmelon package (Pidsley et al., 2013). After QC a final n of 1175 was

reached.

DNA Methylation Age prediction

DNA methylation (DNAm) age was assessed for all samples of the London and Mt
Sinai datasets on the the R statistical environment (R Development Core Team,
2015) using the script provided by Horvath (2013) as well as through the online

DNAmMm Age Calculator (https://dnamage.genetics.ucla.edu/). These methods

predicted age based on the DNAm coefficients of 353 CpG sites. The model
(although not the custom normalization method) is also implemented in the agep()
function of the wateRmelon package (version 1.17.0).This function was used to

predict the ages of the UKHLS samples.

To assess the weighted average methylation levels, and to maximize the number of

brain samples included in our assessment of age prediction, publically available
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450KMethylation brain tissue datasets obtained from GEO (GSE40360, GSE53162,
GSE59457, GSE61380, GSE61431, GSE67748, GSE67749, and GSE89702) along

with the London and Mount Sinai cohorts were analysed (table 3).
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Figure 1 Scatterplot of Chronological vs DNAm ages of brain and blood samples. Each
point corresponds to an independent sample. The dotted line is the y=x bisector line and the
solid lines correspond to the regression line of each tissue. PFC: prefrontal cortex, EC:
enthorhinal cortex, STG: the superior temporal gyrus, CER: cerebellum (data from Lunnon et
al 2014 for panels A-F and Gorrie-Stone et al (2018, under peer-review) for panel G).
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Figure 2 A) Exploration of Chronological vs DNAmM ages and B) weighted average DNA
methylation of the 353 Horvath clock CpGs vs chronological age in a dataset combining
GSE40360, GSE53162, GSE59457, GSE61380, GSE61431, GSE67748, GSE67749,
GSEB89702, the London, and the Mount Sinai cohorts (Frontal lobe n=446, temporal lobe
n=504, occipital lobe n=72, cerebellum n=246, blood n=80). An increase in divergence is
observed as chronological age increases and a reduced slope among all samples (dotted
curve) and especially the cerebellum samples (solid curve) can be noticed starting from the
age of 60 which suggests the importance of introducing another inflection in the model at

around that time. The solid line in fig 2a is the y=x bisector line.
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Distribution of 157 CG loci with positive coefficients in cerebellum
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Distribution of 196 CG loci with negative coefficients in cerebellum
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Figure 3 Exploration of model coefficients in the elderly cerebellum a) stripchart
showing the distribution of the 353 coefficients form Horvath (2013), b) stripchart showing
the distribution of DNA methylation values of the 158 CG loci with positive coefficients in 83
cerebellum samples, c) stripcharts showing the distribution of DNA methylation values of the
195 CG loci with negative coefficients in 83 cerebellum samples, d) Scatter plot of age
coefficients against their influence score (coefficient from Horvath (2013)/coefficient of
variation in our data). The ten most influential loci are plotted in black, e) ten most influential
loci, with the ages represented as a rug on the right hand side of each strip chart. The
Horvath coefficients are shown in the center, and their sign is also denoted by the direction
of the triangles, upward facing for positive and downward facing for negative, f) scatter plot
of Horvath (2013) coefficients against their linear-model age coefficients in our data. The 10

most influential probes are shown in black.
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Table 1 Chronological ages of samples obtained from the London Cohort

London CON London AD Mt Sinai CON Mt Sinai AD
Tissue N CHRN DNAmM N CHRN DNAmM N CHRN DNAmM N CHRN DNAmM
Age Age Age Age Age Age Age Age
Prefrontal 24 78.62 + 66.74 + 60 86.40 + 71.63 + 68 82.76 + 68.23 + 74 88.53 + 73.30
Cortex 11.07 7.57 7.53 5.49 7.77 9.26 6.67 5.39
Enthorhinal 21 79.62 + 73.92 58 86.50 + 74.97 - - - - - -
Cortex 10.34 8.58 7.64 6.49
Superior 26 76.73 66.48 + 61 86.34 + 72.93 + 70 83.21 + 67.99 + 74 88.40 + 72.15 +
Temporal 13.16 9.76 7.47 6.08 8.13 8.59 6.76 6.61
Gyrus
Cerebellum 23 76.00 £ 54.06 £ 60 86.15 + 57.61 £ - - - - - -
13.56 7.23 7.38 4.75
Blood 9 80.00 + 70.74 £ 48 83.83 + 74.99 + - - - - - -
6.14 6.79 7.00 7.42

Values are expressed as means + SD. The total number of subjects (n) is in parentheses.

CHRN age: Chronological age

DNAm age: epigenetic age predicted according to the Horvath (2013) model.
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Table 2 Regression analysis of epigenetic age acceleration of four brain tissues and blood
from the London Brain Bank cohort versus brain Braak stage and of two brain tissues from
the Mount Sinai cohort versus amyloid plaque levels. Both analyses were corrected for the
chronological ages.

London Cohort London Cohort (age  Mount Sinai Cohort (age
in model) in model)

Coefficient P-value Coefficient P-value Coefficient P-value

Prefrontal 0.434 0.164 -0.345 0.107 -0.029 0.629
Cortex
Enthorhinal 0.969 0.004 0.424 0.125 - -
Cortex
Sup. Temporal 0.653 0.019 -0.062 0.786 0.004 0.944
Gyrus
Cerebellum 1.127 0.002 -0.059 0.788 - -
Blood -0.278 0.632 -0.090 0.870 - -

Shown for each cohort the coefficient and p-value for the regression analysis between age
acceleration and Braak stages (London cohort) or amyloid plague levels (Mount Sinai

cohort) with chronological age as a covariate.
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Table 3 Breakdown of the phenotypes, tissues, and ages of the additional brain datasets

GEO Phenotype Tissue N Age Age Reference
Accession Range (mean + SD)
GSE40360  Multiple White matter 27 cases 35-78 55.33+9.99 Huynh et al.,
Sclerosis 19control  53-81 66.32:850  20r4
GSE53162  Autism Temporal cortex 6 cases 2-51 21.83+17.42 Ladd-Acosta
10 controls  22-56 30.6+1306 o 2014
Prefrontal cortex 6 cases 2-29 17.5+10.82
5 controls 19-56 34.8+15.02
Cerebellum 7 cases 4 -39 14.00 + 12.34
6 controls 2-26 16.67 + 10.03
GSE59457  HIV Cerebellum 20 cases 26-64 43.79+9.49 Horvath and
4contols  38-63 51751031 oVine 2015
Frontal lobe 2 cases 44 - 48 46.35+2.48
4 controls 38—-63 51.75+10.31
Hippocampus 4 controls 38-63 51.75+10.31
Medial frontal 18 cases 26 -64 44.34+10.57
cortex
Midbrain 2 controls 38-53 455+10.61
Occipital cortex 59 cases 26 -68 49.89+9.23
13 controls 32-64 49.69 + 11.57
Temporal cortex 4 controls 38-63 51.75+10.31
GSE67748 HIV Cerebellum 8 cases 27-64 44.00 +13.56 Horvath and
12 controls  15-85 66,67 +22.73 -cne:2015
GSE67749  HIV Frontal lobe 8 cases 27-64 44.00 +13.56 Horvath and
25controls  15-95 7272+17.80 -oVine 2015
GSE61380  Schizophrenia Prefrontal cortex 18 cases 24 -73 4550+16.61  Pidsley et
15controls  21-69 4220+1485 2014
GSE61431  Schizophrenia Cerebellum 21 cases 31-87 61.76 £16.61  Pidsley et
23controls  25-96 61.39+17.15 22014
Frontal Cortex 20 cases 32-87 62.05+14.81
23 controls  25-96 62.04 +17.09
GSE89702  Schizophrenia Striatum 37 cases 24 -87 55.11+17.58 Vianaetal.,
45 controls 21 -96 56.67 +£20.08 2016
Hippocampus 14 cases 31-79 59.71 +13.59
13 controls 25-95 64.46 +18.90
Cerebellum 16 cases 24 -70 45.69 +16.93
17 controls 21 -72 4459 +15.79
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Distribution of 196 CG loci with negative coefficients in cerebellum

1.0

0.8
I
CEENED ©
® [ ]
(B ey _____________NJ
© GEEEED
o 00 GERICGIENRINGHNEDN®
o O D
...*
o @0
[ ]
[ ]

cmmmmmmmassnne ¢
oo
o ¢ cane>csumsmemes ¢° PSS ERENIEED &

0.4
I
o 00 GDERGENED (EERDO
OEENRENSEDe ¢ ¢

g, o &

eee cummmEmS® ¢ ®
PYY
SESVNENNNERN '
o mm—
© conmmmmmmene
° -
o= o
oo meen
° °
°
@ee
cDensnemmEsemsmesne ©
o SI0 GEEEEEDO® @ o
® ©ccomnammmmBee ¢
enap o,
¢ ¢ counmmEEND@ED @wee o
0 cocunsENmSEEEmED G0 © o
oo B eo andhumsssmmm o
crenanememstess ©

———
-

=

—

e
= __
==r .

-—!n_..
=
=—:.

B G A N G2 2 Tp oo Tp 02 L 10 @ SN o Te BT (e c0 07 A7 105 0 02 | .0 NS S ISP N (o Mg (o To To @S\ oo o o e U (e gy To to N To o\ To o @ S o) S\ S NN o7 o) M 00y SV o ey o) WTg o0 hon o2 Lonmsti 32 A AN 10 S A IO L PSSO OLOLOTKD—0O—LONC0TLO: Y000 O0OMOX—NICINSIS
B RN s e Ty e v (o (o) o) e 2 S pr e e Te g o)t & b sp ) Mo Te oo 2 To Mo 0 Pe 2 NS T e N T e v e e o Aom e e ey le s e @s)s b s Tre togs i s Shsiar Yo Lo Tna s o s ey o MIP N 17 s o N ls @ (o NG Oes S\ le NP N Pe e NTe Te NS Te To SN ee 7 3 o Mis S o Ty @ levsteee, Tole M asusiee Tom MaNE s 0o Js\o oy S u ToTe o e To Neer'e) ooy Yoy

OLOAOT XN OO A TE N (N S (oo o Ale Lo g7 50 Ve e AN RS (\Por'ew g\ e o7 o e 05 Lo U ISPS P e e Aoy (o To'e) To orn 1o’ g Bo o p 03 a0 NTple o0 g o ooy N4 S N (S XN O 000 000K SO a0 X NN KOO 00O IONG L OO XX LO— B0 00 ~R00C000 0N NIXO0XOUT~XNCO0)
o1 e Sl e N D e o DI S N e o o LN e L N e /(e 2o\ o), S g Tg ohes \Tp o) @ sme mgp v o Tg do To s Mo NS0 o oy NOT\o0 35 325 02 S T NS Yo Mo sp'o) o) s’ N g To [ Ioe 1o AU me e T TONS 1o Mo N o} o e s pyls er o o o e IV N e te ta T (o @ o be Mo o e\ s @ o N Tp pTe eiSie te S er e o Ve IlosuTs i Tpssdoss Tea S NS AT N (e To s o oo N To ooy
COXOSEI~O— N ST KO0 S OO OO0 T OO 000N LG I O XD ST~ O L L0 KOO OO OIS XN XA AN XONNO OO XIS IOCEIN 0T~ O X O X DA O~ OO NN O I0I0XALO0OIKOLON ~ O~ O—ANXOOXOOALONI0
SO L O L O O 00N X D0 OO IO DX N L O OO I~ T~ N OO =000 L OO0 00— 0 0N (L L OO L O OO X 08 BN SN~ OO S NN 0 o X OO0 X O 000 X O N L S N N X OO0 DSOS IO NS OO O O KON NONLAL AL L OIS N IO O OO AL 0N OO0 SN
OO XTI L0 OO OIS I OOOOONK X0 XOTLNOXA Ol OO X O—OX O OO NN O LU OOX I~ TN OO0 OO COSINONLON TT O ~—C OO0 NN OXOOXOINFIXOOLOCT IO ITNOO
SONENOO—H—O00O—O0O—OON O OO AN NN OO OO NN OO OO OO OO OO OO0k O, NO—OO- OO0 IO OO NO—ONONO—
S s s s e e s tatatatatatata e e alalalala s s st e e e e e e e s e e e e e e e S e e e et e e e e e s s s s s s fatatatatatatatatatalalalalalalaialsis s sttt e e e a e e e e e e S S S S e e et e e s e e s s s s s isiststatatatatatatatalalalalalalaisisisisisisisisistatatatatatatatatatatatalatatatats]



https://doi.org/10.1101/363143
http://creativecommons.org/licenses/by-nd/4.0/

Age coefficient / cv

20

10

-10

-20

Horvath age coefficient



https://doi.org/10.1101/363143
http://creativecommons.org/licenses/by-nd/4.0/

A Pos

Vv Neg

— 9090852002

0.35

— 6£9¢/2260

1.72

— ¥T.T¥2910o

2.55

— 0006T0E00O

—-0.46

— 76656779002

1.86

— T0008GZ0o

0.34

— G08921002

-0.42

L £Gv6SY 100D

-0.35

— 6.SY2yTHho

3.07

0.34

H L ¥690£821H

| | _
- 80 90 o <P ”
Blog


https://doi.org/10.1101/363143
http://creativecommons.org/licenses/by-nd/4.0/

¢00°0

_
1000 000°0

wn|jagaJlad woJj ado|s

100°0-

¢00°0-

Horvath coefficient


https://doi.org/10.1101/363143
http://creativecommons.org/licenses/by-nd/4.0/

