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ABSTRACT

Lupus nephritis is a potentially fatal autoimmune disease, whose current treatment is ineffective
and often toxic. To gain insights into disease mechanisms, we analyzed kidney samples from
lupus nephritis patients and healthy controls using single-cell RNA-seq. Our analysis revealed
21 subsets of leukocytes active in disease, including multiple populations of myeloid, T, NK and
B cells, demonstrating both pro-inflammatory and resolving responses. We found evidence of
local activation of B cells correlated with an age-associated B cell signature, and of progressive
stages of monocyte differentiation within the kidney. A clear interferon response was observed
in most cells. Two chemokine receptors, CXCR4 and CX3CRL1, were broadly expressed,
pointing to potential therapeutic targets. Gene expression of immune cells in urine and kidney
was highly correlated, suggesting urine may be a surrogate for kidney biopsies. Our results
provide a first comprehensive view of the complex network of leukocytes active in lupus

nephritis kidneys.
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Immune-mediated injury of the kidney, referred to as lupus nephritis (LN), is a frequent
complication of systemic lupus erythematosus (SLE)* 2. Current immunosuppressive therapies
for LN are both toxic and insufficiently effective, and a substantial number of patients progress
to end stage renal disease and death? 2. Despite the rapid pace of immunologic discovery, most
clinical trials of rationally designed therapies have failed in both general SLE and LN, and only
one new drug has been approved for the treatment of SLE in the last 5 decades? “. Thus, there

is a pressing need to decipher the immune mechanisms that drive target organ damage in LN.

To meet this goal, we set out to identify the types and activation states of immune cells in the
kidneys of LN patients, as part of the NIH Accelerating Medicines Partnership (AMP) RA/SLE
consortium, with the eventual goal of collecting and analyzing immune responses in hundreds of
patients. Here, we report the development of a standardized protocol to process kidney samples
acquired across a distributed clinical and research network, and to analyze them using single-
cell transcriptomics. We applied this pipeline to study a proof-of-concept cohort composed of LN
patients and healthy living allograft donors (LD). Our analysis delineates, for the first time, the
complex network of leukocytes active in LN kidneys. In addition, we analyzed gene expression
in single cells isolated from urine samples of LN patients, showing that these have the potential
to be used as surrogates for kidney biopsies in assessing the molecular activation state of renal

immune cells.

RESULTS

Isolation and processing of LN and LD kidney cells for single-cell transcriptomics

In order to establish a uniform pipeline to analyze kidney biopsy samples acquired at multiple
institutions, we evaluated several strategies for their preservation and transport.
Cryopreservation of intact, viable kidney tissue offered a method to preserve samples rapidly
after acquisition, transport samples with flexible scheduling, and perform sample processing at a
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central site. We evaluated the feasibility of this method using kidney tissue obtained from tumor
nephrectomy samples and then validated the developed workflow using LN and LD biopsies.
Kidney tissue samples cryopreserved in a 10% DMSO-containing solution provided robust
leukocyte yields, with ~50% reduction compared to freshly dissociated tissue (Supplementary
Fig. 1a). Cryopreserved intact kidney samples yielded higher leukocyte counts than samples
that were cryopreserved after tissue dissociation, and comparable leukocyte yields and
frequencies to samples shipped overnight in a saline solution on wet ice (Supplementary Fig.
1b,c). Leukocytes from cryopreserved kidney tissue samples showed intact staining for lineage
markers by flow cytometry and yielded bulk RNA-seq transcriptomes of equivalent quality to
those from non-frozen samples (Supplementary Fig. 1d,e). These results demonstrate that high
quality flow cytometric and transcriptomic data can be obtained from leukocytes derived from

cryopreserved kidney tissue.

We implemented this pipeline of viable tissue cryopreservation, followed by batched
dissociation, cell sorting, and single cell transcriptomics to analyze kidney biopsies from 24 LN
patients (Fig. 1a; Supplementary Table 1). A total of 3,541 leukocytes and 1,621 epithelial cells
were sorted from LN kidney samples. Ten control samples were acquired from LD kidney
biopsies prior to implantation in the recipient, with 438 leukocytes and 572 epithelial cells sorted
from these samples. Approximately half of the LN samples provided leukocyte yields well above
those obtained from control tissue samples (Supplementary Fig. 2a). High cell yields from LN
samples did not segregate with proliferative or membranous glomerulonephritis histologic
classification (Supplementary Fig. 2b). Flow cytometric analysis revealed B cells, T cells,

macrophages, and other leukocytes in LN samples (Supplementary Fig. 2c,d).

Viable cells were sorted into 384-well plates, and single-cell RNA-seq (ScCRNA-seq) was
performed using a modified version of the CEL-Seq2 protocol, followed by sequencing of ~1
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million paired-end reads per cell. Since our focus was on characterizing the immune cells active
in LN kidneys, 90% of the cells sequenced from each sample were CD45" cells, and the rest
were CD45CD10" cells. To exclude low-quality cells and doublets, we filtered out cells that had
less than 1,000 or more than 5,000 detected genes, or in which the percentage of mitochondrial
genes was larger than 25%. The quality of the collected sequencing data was comparable
across plates, and higher in leukocytes compared to epithelial cells, reflecting the lower viability
of the latter in the processed samples (Supplementary Fig. 1f-g). Principal component analysis
performed on the gene expression data from the remaining 2,736 leukocytes and 145 epithelial
cells indicated that the main sources of variability in the data corresponded to cell types, rather

than batch or technical factors (Supplementary Fig. 2e-f).

Step-wise cell clustering identifies cells of the myeloid, T, NK, B and epithelial lineages
In order to identify the lineage of the cells extracted from kidney samples and to characterize
their activation state, we clustered them based on their gene expression data, taking a step-
wise approach (Fig. 1b). Starting with low-resolution clustering of all kidney cells, we identified
10 clusters (Supplementary Fig. 2g), which we labeled as myeloid cells (clusters C4 and C6),
T/NK cells (CO, C1, C2 and C5), B cells (C3, C8), dividing cells (C9) and kidney epithelial cells
(C7). Cluster labeling was based on the expression of canonical lineage markers and other
genes specifically upregulated in each cluster. Extensive sensitivity analysis demonstrated that
while the specific number of clusters at this stage varied with changes in clustering parameters,
the assignment of cells to a general lineage or state (myeloid, T/NK, B, epithelial or dividing

cells) was highly robust (Supplementary Table 2).

To further resolve cell states, we clustered the cells of each lineage separately based on the
most variable genes per lineage, and identified 22 clusters - 21 immune cell clusters and a
single epithelial cell cluster (Fig. 2a) - each of which containing cells from multiple patients and
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plates (Fig. 2b; Supplementary Tables 3-4); this indicates that the identified clusters were
largely defined by the types and states of cells rather than patient or batch. Most clusters, with
the exception of two (described below), were either absent or present at negligible frequency in

LD control samples (Fig. 2b).

Type | interferons have long been known to be elevated in the peripheral blood of lupus
patients®. In line with this observation, most immune cells in the kidneys of LN patients
expressed upregulated levels of interferon-stimulated genes (ISGs), as compared to cells from
LD controls (Fig. 2c). Two clusters, one containing B cells and the other CD4* T cells (CB3 and
CT6; see below) demonstrated a particularly high expression level of these genes. Interestingly,
the majority of cells in these two clusters were extracted from a single patient (patient ID 200-
0841), and most of the remaining cells from a second patient (patient ID 200-0874)
(Supplementary Table 3). The fact that these two patients also featured B cells and CD4* T cells
with a substantially less prominent interferon response suggests that the secretion of this

cytokine may be spatially localized to distinct niches, at least in some patients.

Classification and annotation of myeloid cell clusters reveal resident and infiltrating
populations

Focused analysis of the 466 cells in myeloid clusters C4 and C6 revealed 5 finer clusters
(clusters CM0-CM4, Fig. 3a; Supplementary Fig. 3a-c). We determined the putative identity of
the cells in these clusters by comparing their global gene expression patterns to those of
published reference monocyte/dendritic cell (DC) clusters identified in blood samples of healthy
individuals using scRNA-seq® (Fig. 3b,c; Supplementary Fig. 3d), and by the expression of
canonical lineage markers. Cluster CM3 was closest to CD1c* DCs (reference clusters DC2 and
DC3) or Clec9a* DCs (reference cluster DC1), in accordance with the expression of the
canonical DC markers CD1C and FLT3, as well as the lack of expression of monocyte markers
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CD14 and CD16. Cluster CMO cells were most similar to CD16* patrolling monocytes (reference
clusters Mono2 and DC4) with very high expression of CD16 (FCGR3A) and CX3CR1 and low
expression of CD14 and CCR2. Clusters CM1 and CM4 were also most similar to reference
cluster Mono2; however, CM1 cells expressed lower levels of CX3CR1 and CD16 than CMO,
while CM4 cells expressed even lower levels of these two genes and in contrast higher levels of
CD14 and CD64 (FCGR1A). These 3 clusters likely represent infiltrating kidney
monocyte/macrophage subsets as they constitute a small minority of myeloid cells in normal

kidney (Fig. 2b).

We next determined whether the pattern of gene expression in each cluster could indicate
functional capabilities such as phagocytosis and inflammation, which represent major
macrophage activities in damaged tissues’ & ° (Supplementary Fig. 3a). Cluster CM1 expressed
upregulated levels of phagocytic receptors CD36 (SCARB3), SCARB2, CD68, CD163, NR1H3
(LXR), and GPNMB and cluster CM4 expressed VSIG4, MSR1, CD163, MERTK, STAB1 and
CD209. Cells in CM1 and especially CM4 had upregulated expression of C1Q, which not only
acts as an opsonin for phagocytosis but also promotes apoptotic cell clearance by enhancing
the expression of MERTK (in the presence of other molecules, such as HMGB1) and its soluble
ligand GAS6 11, Clusters CM1 and CM4 also expressed the highest levels of the sialic acid
binding immunoglobulin lectin CD169 (SIGLEC1), an endocytic receptor that has been detected
on infiltrating macrophages in a variety of human renal inflammatory diseases and that is
associated with a phagocytic and reparative phenotype?. Cluster CMO had the highest level of
expression of inflammatory genes including TNF, S100A8, S100A9, NFKB1 and the Wnt
pathway activator TCF7L2. By contrast, CM4 expressed many genes associated with
alternatively activated macrophages, including CD163 and SLC40A1 (ferroportin), which control
iron homeostasis!®. CM4 also abundantly expressed IGF1 and DAB2, both drivers of the
alternatively activated phenotype!# ** and folate receptor beta (FOLR2), a receptor expressed
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on alternatively activated CD14* macrophages that are found in multiple inflammatory and

malignant tissues?®.

Finally, since CM2 was the main cluster found in normal kidneys (Fig. 2b), it likely corresponds
to steady-state kidney macrophages. This cluster demonstrated low expression of CD14, CD16,
CX3CR1 and CCR2, and no clear similarity to the published reference clusters of peripheral
myeloid subsets (Fig. 3b). In comparison to the other macrophage subsets in the kidney, CM2
upregulated several genes associated with tissue remodeling including MMP2, ADAMTS10 and
HTRAL. The functions of several other genes preferentially expressed by CM2 are not well
defined in macrophages; however, they did express BHLHE41, a gene that is also expressed in
microglia and lung resident macrophage populations?’, consistent with CM2 representing
resident cells. Compared to CM2 cells from LD controls, lupus CM2 cells expressed higher
levels of interferon stimulated genes, as well as anti-inflammatory genes (GRN, TMSB4X,
CREBS5) and inhibitors of TLR signaling (GIT2, TNFAIP8L2), and lower levels of pro-

inflammatory genes (ALOX15B, WNT5A) (Supplementary Table 5)*.

In summary, a single cluster found in normal and lupus kidneys is likely a resident population
(CM2), and four clusters that appeared only in the kidneys of lupus patients - a conventional
DCs cluster (CM3) and three CD16* monocyte/macrophage clusters (CM0O, CM1, CM4) — are

infiltrating myeloid cells.

Putative transitions between myeloid cell clusters suggest patrolling monocytes become
phagocytic or alternatively activated

An important question is how these cell types are related to each other, and whether transitions
between the three infiltrating monocyte/macrophage clusters in particular could be inferred from
the presence of intermediate states. Indeed, dimensionality reduction using either diffusion
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maps?® (Fig. 3d) or t-Distributed Stochastic Neighbor Embedding®® (tSNE; Fig. 2a) indicated
possible transitions between these 3 clusters, with CM1 linking CM0 and CM4. Furthermore,
since the cells in cluster CMO tended to be the most similar out of these 3 clusters to peripheral
blood CD16" monocytes, while the cells in cluster CM4 were the least similar to their blood
counterparts (Fig. 3c), the suggested progression is from an inflammatory blood monocyte
(CMO) to a phagocytic (CM1) and then an alternatively activated (CM4) phenotype. As
examples of genes reflecting such a progression, we found a gradual reduction along the
trajectory from CMO to CM4 in the expression of NFKB1, an inflammatory gene (Fig. 3e); a
transient increase in CD36, an important phagocytic receptor (Fig. 3f); and a continuous
increase in MERTK, a key signaling receptor induced by CD36 (Fig. 3g)?°. We note, however,
that other schemes of transitions (or their absence) between these clusters are possible, and

further investigation is required to decide between them.

LN kidneys contain 2 clusters of NK cells and 3 clusters of CD8"* T cells

Clusters CO, C1, C2 and C5, comprising 1,764 cells, contained T cells and NK cells. A focused
clustering of these cells separated them into 7 finer clusters of NK, CD8* T and CD4* T cells
(clusters CTO-CT86, Fig. 4a; Supplementary Fig. 4a). Cluster CT1 contained NK cells, which
could be identified by the lack of CD3E and CD3D combined with expression of CD56 (NCAM1)
and DAP12 (TYROBP), as well as high expression of cytotoxic genes including PRF1, GZMB,
and GNLY. Cluster CT2 featured CD8" T cells expressing a characteristic cytotoxic T
lymphocyte (CTL) program including high expression of GZMB, PRF1, and GNLY, similar to the
NK cells in cluster CT1. Granzyme B* cells have been identified by immunohistochemistry in LN
kidneys and are reported to correlate with more severe disease?!. A second population of CD8*
T cells, demonstrating high levels of a distinct granzyme, GZMK??, instead of GZMB and GNLY,
populated cluster CT4. These cells expressed relatively low levels of PRF1 compared to cluster
CT2 and also showed high expression of HLA-DR/DP/DQ molecules and CCR5, consistent with
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a prior report?®. Cluster CT5 contained a mixture of CD8" T cells and NK cells, as indicated by
its expression patterns of CD3E, CD3D, CD8A, CD56 and TYROBP. Accordingly, it could be
further split into two subclusters (Fig. 4b; Supplementary Fig. 4b): a third CD8" T cell population
(cluster CT5a), and a small population of NK cells (CT5b). The cells in cluster CT5a had
features of resident memory cells, including expression of ZNF683 (HOBIT), ITGAE, ITGAL,
and XCL1 and lack of KLF2%* 25, In line with this proposed identity, CT5a was the most
abundant CD8* T cell cluster in normal kidney biopsies (Fig. 2b). Cluster CT5b cells expressed
TYROBP and CD56, suggesting NK cell identity, and differed from CT1 NK cells by higher
expression of KIT, TCF7, IL7R, and RUNX2, and lower expression of PRF1, GZMB, FCGR3A,
TBX21, and S1PR5. This expression pattern is consistent with the identification of these cells as
tissue-resident CD56"""CD16™ NK cells, in contrast to the CD569™CD16* NK cell features

observed in CT1%.

Of note, none of the three CD8* T cell clusters expressed a clear exhaustion signature
(Supplementary Fig. 4c), contrary to the identification of such a signature in peripheral blood

CD8" T cells in lupus patients, previously reported?’.

Analysis of CD4* T cell subsets identifies 5 clusters, including T follicular helper-like
cells

Clusters CTO, CT3, CT6 contained CD4* T cells. Cells in cluster CT3 expressed genes
associated with T regulatory cells (Tregs), including FOXP3 and IKZF2 (Helios). Interestingly,
CT3 also contained cells that expressed genes characteristic of T follicular helper (TFH) cells,
including CXCL13, CXCR5, PDCD1, MAF, and CD200 (Fig. 4c; Supplementary Fig. 4d).
Indeed, CT3 could be further divided into 2 subclusters, with one subcluster (CT3a) containing
CD4* FOXP3* Tregs and a second subcluster (CT3b) consisting of cells with low FOXP3 and
features consistent with TFH cells.
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Cluster CTO featured a mixture of CD4* T cells and could be further split into two subclusters,
the first containing primarily effector memory CD4* T cells (CTOa), with more frequent
expression of PRDM1, CCL5, and CXCR6, and the second consisting of mostly CCR7* SELL"
TCF7* central memory T cells (CTOb, Fig 4d; Supplementary Fig. 4e). The similar expression of
CD69 in both clusters suggests that CTOb cells are more likely to be central memory than naive
CDA4* T cells. Expression of TCF7, KLF2, and LEF1 may indicate an early central memory T
cells (Tcm) phenotype of CTOb cells, in contrast to the late effector phenotype of CTOa cells?8.
Interestingly, CTOa was the only CD4* T cell cluster found with substantial frequency in LD
samples (Fig. 2b). Comparing gene expression across the two study subject groups, we
identified a dysregulated expression of IFN-induced genes in the LN samples (Supplementary

Table 5).

Notably, while some LN kidney T cells have been previously annotated as Thl and Th17 cells,
in our data CD4* T cells did not segregate into distinct clusters with characteristic effector
lineage features (e.g. Thl, Th2, Th17). IFNG and CXCR3 could be identified in some CTO cells,
primarily within CTOa (Supplementary Fig. 4e). In contrast, IL17A, IL17F, and CCR6 were very
rarely detected, and no IL4, IL5, or IL13 expression was observed. TBX21 and RORC were
found in a minority of CTO cells, with TBX21 much more frequently expressed in CD569"CD16*
NK cells (cluster CT1) and CTLs (CT2; Supplementary Fig. 4a). Taken together, these results

suggest that Thl cells outnumber Th17 cells in LN kidneys.

Finally, cluster CT6 contained CD4" T cells demonstrating exceptionally higher levels of ISGs,
including ISG15, MX1, RSAD2, OAS3, IFIT1 and IFIT2, compared to other T cells

(Supplementary Fig. 4a).
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Identification of B cell clusters reveals age-associated B cells

A finer analysis of the 435 cells mapped to clusters C3 and C8 identified 4 different B cell
clusters in LN samples, but no B cells in healthy kidneys (clusters CB0-CB3, Fig. 2b, Fig. 5a;
Supplementary Fig. 5a). Cluster CB1 clearly contained plasmablasts/plasma cells, expressing
high levels of XBP1 and MZB1, as well as immunoglobulin genes. The cells in cluster CB3
demonstrated high levels of several ISGs, including IFIT1, IFIT2, IFIT3, ISG15, OAS3 and
RSAD?2. Expression of these genes was also detected in the other B cell clusters, but at

substantially lower levels.

Cluster CBO cells had upregulated expression of activation markers such as CD27, CD86, I1GJ,
IGHG1, and low levels of IGHD and IGHM, observations that point to these cells being activated
B cells. Furthermore, we could detect in this cluster a gene expression signature consistent with
age-associated B cells (ABCs) (Fig. 5b). These cells are implicated to have a role in both aging
and autoimmunity?® and express elevated levels of several genes, including CD19, CD11C
(ITGAX), TBX21, FCGR2B, IL2RA, IL6R, IL10RA, IL21R, TACI (TNFRSF13B), FAS, SLAMF7,
FCRL3, FCRL5, TLR7, TBK1, ZEB2 and IRF4, while downregulating CXCR5, CCR7, CR2,
TRAF5, ETS1, TNFAIP3, IRF8, BACH2 and TCF7 (I. Sanz, personal communication). Taking
into account both the genes upregulated in ABCs and those downregulated in them, we
computed for each cell in cluster CBO a score representing the extent to which its gene
expression pattern matches that expected by an ABC (“ABC score”). A continuous range of
values of this score could be observed in cluster CBO, rather than a clear separation into distinct

subpopulations of cells (Fig. 5b).

A closer look at the tSNE plot for the B cells suggested that cluster CB2 may contain multiple
subsets (Supplementary Fig. 5b). Furthermore, some of the markers distinct to this cluster, such
as CD4, PTPRS and GZMB are not known to be expressed in B cells. On further analysis we
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were able to split the cells in cluster CB2 into two subclusters (Fig. 5c¢; Supplementary Fig. 5c):
the first of these (CB2a), expressing the B cell markers CD19 and CD20 (MS4Al),
demonstrated upregulation of genes typical of naive B cells, including high levels of IGHD,
IGHM, TCL1A and IL4R, and had nearly undetectable expression of CD27; the other cluster
(CB2b) expressed genes known to be upregulated in pDCs (Fig. 5¢; Supplementary Fig. 5c¢),
including PTPRS, GZMB, CLEC4C, CD123 (IL3RA) and CD317 (BST2). To further validate this
hypothesized identification, we calculated the Pearson correlation in gene expression between
each cell in cluster CB2 and three independent sets of reference samples. These sets included
FANTOM52%3 containing bulk RNA-seq data from 360 cell types, 17 of which are immune cell
subsets; bulk RNA-seq data from 13 immune cell populations sorted from healthy individuals
(Browne et al., manuscript in preparation); and a scRNA-seq dataset, which includes data from
10 different clusters of dendritic cells and monocytes isolated from healthy blood®. This analysis
classified all CB2b cells as pDCs, using any of the 3 reference data sets (Supplementary Fig.
5d-f). Furthermore, as predicted almost all of the CB2a cells were classified as naive B cells,
when compared to the data from Browne et al. (the only dataset of the three tested that
contained multiple B cell populations). These observations lend support to the identification of

the CB2a cells as naive B cells and the CB2b cells as pDCs.

Indirect evidence for B cell activation and differentiation into age-associated B cells in
the kidney

We next asked whether B cell activation and differentiation may take place in the inflamed
kidney. Our sequencing data, which is composed of short, 3’ end fragments, is not suitable for a
direct analysis of BCR repertoires and their distribution across the B cell clusters. We therefore
approached this question looking at indirect evidence, and in particular the existence of
intermediate states between the identified B cell subsets. Projecting the gene expression data of
the B cells onto 2 dimensions using diffusion maps*®, we found that the naive (CB2a) and
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activated (CBO) B cells formed a continuum of states, demonstrating a gradual increase in
CD27 expression and a parallel decrease in IGHD expression, consistent with local activation
(Fig. 5d-f). Furthermore, traversing the trajectory from CB2a to CBO coincided with a continuous
increase in the ABC score (Fig. 5g), indicating that activation and differentiation into age-
associated B cells are highly correlated processes occurring in LN kidneys. In contrast, very few
cells occupied intermediate states between plasma and naive or plasma and activated B cells,
implying that differentiation into plasma cells does not take place in the inflamed kidney.
However, as it was previously suggested that age-associated B cells are pre-plasma cells, this

guestion requires a more direct investigation, in particular employing BCR repertoire analysis.

The dividing cells cluster includes T and NK cells

A focused analysis of cluster C9 found that it can be further partitioned into 3 finer clusters
(Supplementary Fig. 6a). The cells in two of these clusters (CD1, CD2) expressed mitochondrial
genes and genes associated with a stress response (Supplementary Fig. 6b), indicating lower
viability and/or quality. We therefore excluded these cells from subsequent analyses. The cells
in cluster CDO demonstrated upregulated levels of genes participating in cell division, including
MKI67, TOP2A, CENPE, CENPF, CDC6, CDC25A, CDK1, SPDL1 and MAPREL. Classification
of these cells by comparison to FANTOMS indicated the presence of dividing CD8 T cells, NK

cells and CD4 Tregs (Supplementary Fig. 6c¢).

Cluster-specific expression of genes associated with disease risk

Genome-wide association studies (GWAS) have identified numerous risk alleles and their
susceptibility genes in SLE and LN32 33, We analyzed the expression of these genes across the
22 clusters identified in kidneys, and found both expected and surprising cluster-specific
expression patterns (Fig. 6a). For example, TLR7, whose role in nucleic acid sensing, B cell
activation and differentiation is well established®* 3® is expressed in our data in pDCs, myeloid

15


https://doi.org/10.1101/363051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/363051; this version posted July 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

cells and B cells. Lesser known, HIP1, suggested by one report to possibly regulate DC cell
immune activity®®, is expressed in resident memory CD8* T cells (cluster CT5a), CD56""9"CD16
NK cells (CT5b), cDCs (CM3) and pDCs (CB2b). Another lesser-known gene, LBH, may
modulate synovial hyperplasia®’. Here we found LBH expression in T and B cell subsets, thus
raising the possibility that the LBH risk locus impacts both fibroblasts and specific lymphocyte
subsets. We also found cluster-specific expression of several poorly annotated SLE
susceptibility genes, including WDFY4, CXorf21, and TMEM39A. Interestingly, many of the SLE
GWAS genes are transcription factors, supporting the notion that aberrantly regulated gene
expression networks in multiple cell types contribute to SLE®. Our analysis identified both
innate and adaptive immune cell subsets in which these transcription factors (ARID5B, CIITA,

ETS, IKZF1, IKZF2, IRF7, IRF8 and PRDM1) are expressed.

We further analyzed the change of some of these genes along the putative trajectory from
cluster CMO to cluster CM4 (Fig. 3d, Fig. 6b-g). We found that CSK and LYN, which regulate the
Src family kinase response to weak signals and act as a rheostat for inflammatory signaling®°
are downregulated along this trajectory, making the macrophages less inflammatory as they
transition. A concurrent upregulation of CIITA and HLA-DQA1 suggests an increasing role in
antigen presentation. Finally, since it is known that CD44 is required for macrophage infiltration
into other organs, the upregulation of ITGAM and downregulation of CD44 raises the hypothesis
that these cells become less motile and more adhesive as they transition into the interstitium of

the kidney.

Cellular networks mediated by chemokines and cytokines

To identify signals modulating the activity of leukocytes infiltrating the kidney, we analyzed the
expression patterns of chemokine and cytokine receptors. We focused on receptors that were
expressed by a relatively large fraction (> 30%) of the cells in at least one cluster (this threshold
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was set based on the observed distribution of expression frequency, considering all receptors;
Supplementary Fig. 7a). Most receptors demonstrated cell type-specific expression patterns
(Fig. 7a). However, we found that a single chemokine receptor, CXCR4, was expressed in the
majority of infiltrating cells in nearly all clusters (Supplementary Fig. 7b). A second chemokine
receptor, CX3CR1, was expressed in most myeloid cells, as well as CD569™CD16* NK cells
(cluster CT1) and CTLs (CT2) (Supplementary Fig. 7c). Of note, the expression frequency of
other chemokine receptors previously implicated in LN, such as CCR5, CXCR3 and CCR2, was
found to be much lower (Supplementary Fig. 7d-f). For cytokine receptors, we observed that
IL2RG, encoding the common gamma chain and important for signaling of several cytokines,
was frequently expressed in almost all clusters. TGFBR2, a subunit of the receptor for TGF
was also expressed on the majority of cells. ILI0RA, IL27RA, IL17RA and TNFRSF1B were

expressed by a large fraction of cells in all clusters, with the exception of the B cells.

By analyzing the expression patterns of the corresponding ligands, one may hope to identify
putative interactions between the cells acting in the inflamed kidney. We found that the CXCR4
ligand, CXCL12, was expressed mainly in the cells in cluster CM4, as well as in the epithelial
cells (Fig. 7b, Supplementary Fig. 7g). The latter were also the main source of the CX3CR1
ligand, CX3CL1 (Fig. 7c; Supplementary Fig. 7h). Interestingly, CM4 cells were in addition the
top producers of CCL2 and CCL8 (Supplementary Fig. 7i), the ligands of CCR2, which is
expressed in a high fraction of plasma cells (cluster CB1) and pDCs (cluster CB2b). These
findings indicate a possible central role played by the kidney epithelial cells and the M2-like

macrophages in cluster CM4 in coordinating the traffic of immune cells infiltrating the kidney.

Comparison of urine and kidney leukocytes
Leukocytes isolated from urine samples of LN patients were processed in the same way as
kidney cells (Fig. 1a). Urine leukocytes tended to have fewer detectable genes, compared to
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kidney leukocytes (Supplementary Fig. 1h). We therefore applied lower thresholds onto the
number of genes detected when discarding low-quality urine cells. Following filtering, 577 high-
quality cells, collected from 8 patients, were included in subsequent analyses. Only 3 patients
had matching kidney and urine samples with substantial cell numbers; we therefore focused on
comparing urine and kidney cells across all patients taken together, rather than performing a

patient-based analysis.

We first assigned each urine cell to a cluster of kidney cells, choosing the cluster to which it was
most correlated in its gene expression data. We found that compared to kidney, urine samples
had an overrepresentation of myeloid cells (in particular cluster CM1) and fewer T cells (Fig.
8a). We next compared gene expression across corresponding urine and kidney clusters,
restricting the comparison to clusters that had more than 5 urine cells. High correlations were
observed, typically ranging from 0.85 to 0.95 (Fig. 8b). This suggests that gene expression
measurements in urine clusters can serve as estimates of kidney gene expression in
corresponding clusters; in particular, such estimates were found to be more accurate for genes

demonstrating a medium or high expression level (Supplementary Fig. 8a-b).

DISCUSSION

The advent of single cell transcriptomics has enabled analysis of cells from patient samples in
unprecedented detail. Here, we used this approach to study, for the first time, kidney samples
obtained from LN patients and LD controls. Our analysis revealed the complexity of the immune
populations acting in LN kidneys, and showed that these contain several subsets of myeloid,
NK, T and B cells, most of which are not found in the kidneys of LD controls. We consider this a
first draft map of the immune cell types and states in LN and LD kidneys; sampling of more

patients and cells will be required to determine its degree of completeness.
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The analysis of T cell clusters revealed several important findings. Remarkably, dividing cells in
the kidney were composed almost entirely of T cells and NK cells, suggesting these are actively
stimulated and maintained in activated states, consistent with the lack of highly-expressed
exhaustion markers in any of the T cell subsets. We identified a large population of
CD569™CD16* NK cells that are a major source of IFNy and of cytolytic molecules (granzyme B,
perforin, granulysin); the global transcriptomes will now allow further evaluation of their
functional programs. In addition, we identified three distinct populations of CD8* T cells that
could not be easily distinguished by surface markers. One population (CT2) appears to be
cytotoxic CD8* T cells with expression of effector molecules similar to the NK cells. A second
population is distinguished by high expression of granzyme K instead of granzyme B, a pattern
that has also been noted in circulating CD8* T cells?? 23, Furthermore, we found a resident
memory CD8" T cell population, identified based on gene expression similarity to T-RM cells
described in other tissues?* 25, and present in LD and LN samples. Prior immunohistochemical
analyses have revealed CD8" T cells localized to different areas of the kidney“?; it will therefore
be of interest to determine whether the observed CD8* T cell populations, as well as NK cells,

show distinct renal localization and functions in autoimmunity.

Our transcriptomic analysis also identified multiple CD4* T cell populations, including a
population that expressed features of TFH cells, consistent with prior reports*: 42, The clustering
together of TFH-like cells and FoxP3* Helios* regulatory T cells further raises the possibility that
T follicular regulatory cells are also present*® 44, A distinct set of effector CD4* T cells could be
subdivided into effector memory and central memory cells. While clusters were not associated
with Thl or Th17 populations, a small number of CD4* T cells did have features of Th1l and
rarely Th17 cells, suggesting that T cell polarization may not be a major feature of CD4* T cells

in lupus kidneys, and that the bulk of IFNy is produced by CD8* T cells and NK cells.
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B cells are found in more than half of the lupus biopsies but not in healthy samples*. The
organization of B cell infiltrates can vary from scattered cells, to B-T cell clusters and, rarely,
fully formed germinal centers*®: 47, Clonal expansions of B cells are common, with antigenic
specificity frequently directed to local renal antigens*®, suggesting that immune responses to
damaged tissue are being driven in situ*®. Our finding of B cells spanning a spectrum of states
between naive and activated cells, together with the presence of TFH-like cells, is consistent
with this view. Interestingly, we found that B cell activation correlates with the expression of
molecular features of age-associated B cells (ABCs), a subset of antigen experienced cells that
appear to be preferentially driven by BCR/TLR ligands®. Understanding whether these cells are
clonally expanded or enhance inflammation locally in LN patients, and determining the clonal
relatedness of naive, activated and antibody-secreting B cells will require a larger dataset,

combined with analysis of BCR sequences.

Tissue resident myeloid cells have considerable developmental and functional differences from
circulating subsets® °! and their gene expression profile is shaped by their microenvironment®®
5253 Further changes are induced in cells that phagocytose dead material®®. In line with this, we
identified a putative resident population of renal macrophages that have an interferon signature

but also express a number of anti-inflammatory genes.

During tissue injury, monocytes can enter tissues from the peripheral blood and can further
differentiate into inflammatory macrophages and reparative/resolving macrophages in situ®® ¢
57_If the cells are chronically exposed to damage-associated molecular pattern molecules
(DAMPs) and endosomal TLR ligands, resolution may fail, and macrophages with mixed
functions may emerge®®. We identified three distinct sub-populations of infiltrating macrophages,
all with a gene expression pattern that most resembled that of peripheral CD16*/CD149™
monocytes. These “patrolling” cells function to monitor the integrity of endothelial cells®® but can
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be activated through TLR7 and TLR8 to produce inflammatory cytokines via sensing of nucleic
acids produced by damaged cells®®. Glomerular CD68" macrophages have been reported in
many histologic studies of LN, suggesting patrolling behavior, and are associated with more
severe clinical disease in a subset of LN patients® 61, Our study suggests that the three
subpopulations of CD16" related macrophages identified here may transition through an
inflammatory to a resolution phase. Interestingly, CD209 (DC-SIGN), a marker limited to CM4, is
known to be expressed predominantly by interstitial macrophages in LN biopsies®?, showing that
this subset has infiltrated the tissue. Expression of CD163, which marks an alternatively
activated macrophage phenotype that is highly represented in LN kidneys®, was less useful

here in distinguishing the macrophage subsets.

DCs may also enter injured kidneys from the peripheral blood, have a short half-life and are
most often located within interstitial lymphoid infiltrates®4. We confirmed that pDCs, myeloid DCs
and CLEC9A" DCs are all present in the kidneys of LN patients. Renal infiltration of these
classic DC cell types is associated with the later stages of renal injury and fibrosis in human

glomerular diseases®.

A prominent feature of the gene expression pattern of most of the identified cell types is the
expression of IFN inducible genes. While all cells showed this signature to some extent, it was
more prominent in some cell types than in others, including subsets of B cells and CD4 T, and
varied both between and within patients suggesting that there is spatial heterogeneity with

respect to the microenvironment in which this activation occurs.

Our analysis of urine samples showed that while the relative cluster frequencies in the kidney
are not accurately reflected in urine, gene expression is highly correlated in these two
compartments. This suggests that urine samples can be used to monitor changes over time in
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the molecular pathways activated in the kidney, in the course of disease and in response to

treatment.

Overall, the work presented here demonstrates the feasibility of profiling kidney samples using
single cell transcriptomics. Furthermore, our novel strategy to cryopreserve viable kidney tissue
immediately after acquisition allowed us to study samples collected at multiple sites, while
avoiding major confounding signals due to inter-site or technical variability. A proposed future
study, to be performed as part of the AMP consortium, will utilize this strategy to analyze a
much larger cohort, in order to investigate how the presence and activation states of particular
cell infiltrates are related to disease manifestations and treatment responses. Other extensions
will include increasing the number of cells collected from each sample using droplet- or
nanowell-based scRNA-seq platforms; sequencing TCRs and BCRs, in order to analyze T and
B cell clonality; and profiling stromal renal cells together with leukocytes, in order to elucidate
their interactions. The results discovered in such studies will be further validated using tissue

staining, functional studies in cell lines or primary human cells, and animal models of disease.

METHODS

Human kidney tissue and urine acquisition

Renal tissue and urine specimens from LN patients were acquired at 10 clinical sites in the
United States. Institutional review board approval was received at each site. Research biopsy
cores were collected from consented subjects either as an additional biopsy pass obtained
specifically for research during a clinically-indicated biopsy procedure (9 sites), or as a portion of
a biopsy specimen acquired for diagnostic pathology during a clinically-indicated biopsy
procedure (1 site). Control kidney samples were obtained at a single site by biopsy of a living

donor kidney after removal from the donor and prior to implantation in the recipient.
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After acquisition, kidney biopsy samples were placed into HypoThermosol FRS preservation
solution for 10-30 minutes on ice and then transferred to a cryovial containing 1 ml of CryoStor
CS10 cryopreservation medium (BioLife Solutions). The cryovial was incubated on ice for 20-30
min and was then placed in a Mr. Frosty freezing container (Nalgene, #5100-0001) and
transferred to a -80°C freezer overnight. Cryopreserved samples were then stored in liquid
nitrogen and shipped on dry ice to the central processing site, where they were stored in liquid

nitrogen until processing.

Kidney tissue thawing and dissociation into a single cell suspension

Kidney samples were thawed and processed in batches of 4 samples, with most batches
containing both LN and control kidney samples. The cryovial containing the kidney tissue was
rapidly warmed in a 37°C water bath until almost thawed. The sample was then poured into a
well of a 24-well dish and rinsed in a second well containing warmed RPMI/10%FBS. The tissue
was incubated for 10 minutes at room temperature. Specimens were cut into 2-3 pieces and
placed into a 1.5 ml centrifuge tube containing 445uL of Advanced DMEM/F-12 (ThermoFisher
Scientific, #12634-028) and 5uL of DNase | (Roche, #04536282001, 100U/ml final
concentration). 50uL of Liberase TL (Roche, #05401020001, 250ug/mL final concentration) was
added, and the tube was placed on an orbital shaker (300-500 rpm) at 37°C for 12 minutes. At 6
minutes into the digestion, the mixture was gently pipetted up and down several times using a
cut 1 mL pipette tip. After 12 minutes, 500uL of RPMI/10% FBS was added to stop the
digestion. The resulting cell suspension was filtered through a 70-um filter into a new 1.7 ml
microfuge tube. The cells were washed with RPMI/10%FBS, centrifuged at 300g at 4°C for 10
min, and resuspended in cold PBS for downstream analyses. Quantification of cell yields was
performed by hemocytometer with trypan blue exclusion and by flow cytometry with propidium

iodide-exclusion. Yields of cell subsets (leukocytes, epithelial cells) were quantified by acquiring

23


https://doi.org/10.1101/363051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/363051; this version posted July 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

the entire sample through the flow sorter and plotting the number of intact, Pl-negative cell

events with the appropriate surface markers. Cell yields were normalized to input tissue mass.

Urine cell pellet collection and cryopreservation protocol

Midstream urine samples were collected from LN patients prior to kidney biopsy. The total urine
volume (15-90 mL) was split into two 50 mL Falcon tubes. Urine cells were pelleted by
centrifugation at 200g for 10 minutes, and then resuspended in 1 ml of cold X-VIVO10 medium
(Lonza BE04-743Q). Cells were transferred to a microcentrifuge tube, washed once in 1mL of
X-VIVO10 medium, and then resuspended in 0.5 mL of cold CryoStor CS10. Cells were
transferred into a 1.8 mL cryovial, placed in a Mr. Frosty freezing container, stored in at -80°C
overnight, and then transferred to liquid nitrogen. For downstream analyses, cryopreserved
urine cells were rapidly thawed by vigorous shaking in a 37°C water bath, transferred into warm

RPMI/10%FBS, centrifuged at 300g for 10 minutes, and resuspended in cold HBSS/1%BSA.

Flow cytometric cell sorting

An 11-color flow cytometry panel was developed to identify epithelial cells and leukocyte
populations within dissociated kidney cells. Antibodies include anti-CD45-FITC (HI30), anti-
CD19-PE (HIB19), anti-CD11c-PerCP/Cy5.5 (Bulb), anti-CD10-BV421 (HI10A), anti-CD14-
BV510 (M5E2), anti-CD3-BV605 (UCHT1), anti-CD4-BV650 (RPA-T4), anti-CD8-BV711 (SK1),
anti-CD31-AlexaFluor700 (WM59), anti-PD-1-APC (EH12.2H7), and propidium iodide (all from
BioLegend). Kidney or urine cells were incubated with antibodies in HBSS/1%BSA for 30
minutes. Cells were washed once in HBSS/1%BSA, centrifuged, and passed through a 70
micron filter. Cells were sorted on a 3-laser BD FACSAria Fusion cell sorter. Intact cells were
gated according to FSC-A and SSC-A. Doublets were excluded by serial FSC-H/FSC-W and
SSC-H/SSC-W gates. Non-viable cells were excluded based on propidium iodide uptake. Cells

were sorted through a 100 micron nozzle at 20 psi. For each sample, 10% of the sample was
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allocated to sort CD10*CD45" epithelial cells as single cells, and the remaining 90% of the
sample was used to sort CD45" leukocytes as single cells. Single cells were sorted into 384-well
plates containing 0.6pL of 1% NP-40 with index sorting, and plates were immediately frozen and
stored at -80 degrees. Flow cytometric quantification of cell populations was performed using

FlowJo 10.0.7.

Library preparation and RNA sequencing

Single cell RNAseq (scRNA-Seq) was performed using the CEL-Seq2 method® with the
following modifications. Single cells were sorted into 384-well plates containing 0.6uL 1% NP-40
buffer in each well. Then, 0.6uL dNTPs (10mM each; NEB) and 5nl of barcoded reverse
transcription primer (1ug/uL) were added to each well along with 20nL of ERCC spike-in (diluted
1:800,000). Reactions were incubated at 65°C for 5min, and then moved immediately to

ice. Reverse transcription reactions were carried out and as previously described® and cDNA
was purified using 0.8X volumes of AMPure XP beads (Beckman Coulter). In vitro transcription
reactions (IVT) were performed as described followed by EXO-SAP treatment. Amplified RNA
(aRNA) was fragmented at 80°C for 3min and purified using RNACIlean XP beads (Beckman
Coulter). The purified aRNA was converted to cDNA using an anchored random primer and
lllumina adaptor sequences were added by PCR. The final cDNA library was purified using
AMPure XP beads (Beckman Coulter). Paired-end sequencing was performed on the HiSeq
2500 in Rapid Run Mode with a 5% PhiX spike-in using 15 bases for Readl, 6 bases for the

Illumina barcode and 36 bases for Read?.

RNA-seq Data Processing

We used a modified version of the Drop-seq pipeline developed by the McCarroll lab
(http://mccarrolllab.com/wp-content/uploads/2016/03/Drop-
seqAlignmentCookbookvl1.2Jan2016.pdf) adapted for CEL-Seq2, to perform all steps necessary
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to produce gene by cell expression matrices of reads as well as UMIs. These steps include
demultiplexing, quality filtering, polyA and adapter trimming, aligning, and collapsing reads with
unique combinations of cell+gene+UMI. We used STAR-2.5.1b to align reads to the Hg19
human genome reference. Only uniquely mapped reads were counted. UMIs with fewer than 10
reads were filtered out before creating the final expression matrices, to minimize reads cross-
contamination across cells. For each cell, the computed gene expression counts were then

normalized for read depth and log transformed.

Cell Filtering and Quality Control

High quality cells were defined as having at least 1,000 detected genes (i.e. with positive count
values). We further required the percentage of mitochondrial genes per cell to be lower than
25%. To remove wells that were suspected to contain mMRNA from multiple cells, we required

the number of genes per cell to be smaller than 5,000.

To minimize the effect of technical factors, we tested different regression models, taking into
account such variables as the plate ID, number of UMIs per cell, and the percentage of
mitochondrial genes per cell. We found that using such models had a negligible effect on the
gene by cell expression matrix, as well as the overall results of clustering. We therefore decided

to avoid employing them in cleaning the data for subsequent analyses.

Cell Clustering

Clustering of cells was done using Seurat (v1.4.0.8)%, in a step-wise manner. We initially
performed low-resolution clustering, analyzing all cells together, then labeled each of the
resulting clusters as either myeloid cells, T/NK cells, B cells, dividing cells or epithelial cells. The
cells of each such general class were then analyzed separately, in order to identify finer
clusters. In some cases, as described in the main text, the resulting clusters further split into
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subclusters. In each case, clustering was done following PCA, based on context-specific

variable genes that were identified independently for each set of analyzed cells.

Sensitivity analysis was performed in each clustering step, with a particular focus on the low-
resolution clustering stage. Briefly, all parameters in the clustering process, including the
number of variable genes and principal components considered, were varied, and the
robustness of the results was determined. To assess this robustness, we computed in each
case a consistency score, based on a reference clustering run: looking at a large number
(1,000) of random pairs of cells, we counted how many pairs were either included in the same
cluster in both of the compared clustering runs, or not included in the same cluster, and referred
to these as consistent pairs; we then calculated the fraction of consistent pairs out of all random
cell pairs considered. We repeated this procedure 100 times, to calculate the mean consistency

score.

Classification by correlation

In determining their putative identity, we compared the gene expression of individual cells to
external gene expression datasets of reference samples. In each comparison, we computed the
Pearson correlation between the log-transformed gene expression data of the cell and the

reference sample, and chose the reference sample that produced the maximal correlation value.

Myeloid cells were compared to the scRNA-seq data published in Villani et al., such that each
cluster in that study was represented by the average expression over the cells included in it,
taking into account only genes showing high variability in that dataset. Similar results were
found if all genes, or only cluster markers, were considered. Comparison to FANTOMS and the
data from Browne et al. was done based on the median of reference sample replicates,
considering all genes.
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Differential expression analysis

Identification of genes differentially expressed between LN patients and LD controls was done
using the framework proposed by McDavid et al.®’, as implemented by Seurat. P-values were
corrected for multiple comparisons using the Benjamini-Hochberg method®®. DE analysis was

performed separately for each cluster with at least 10 cells in both patient groups.

Trajectory analysis
Trajectory analysis was performed based on dimensionality reduction using diffusion maps, as
implemented in the Destiny software package (v2.6.2)8. In each case, only the cells relevant to

the question at hand were analyzed.

Calculation of an age-associated B cell score (ABC score)

For each cell in cluster CBO, we defined the ABC score as the average of the scaled (Z-
normalized) expression of the genes known to be upregulated in age-associated B cells, minus
the average of the scaled expression of the genes known to be downregulated in these cells

(see the main text for the lists of upregulated and downregulated genes).

Analysis of GWAS genes expression

We analyzed the expression patterns of 180 genes previously reported in GWAS studies of
either SLE or lupus nephritis. For each such gene, we calculated its average scaled (Z-
normalized) expression in each cell cluster, taking into account only cells coming from LN
samples. For Bi-clustering of GWAS genes and cell clusters, we kept only genes that had an
average scaled expression value of more than 1 or less than -1 in at least one cell cluster, such

that bi-clustering was based only on the GWAS genes that were relatively variable in our data.
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Bi-clustering was then performed, based on the average scaled expression in each cell cluster

and using a Euclidean distance metric.

Analysis of chemokine/cytokine receptors

Analysis of chemokine/cytokine receptors was based on a receptor-ligand pairs list downloaded
from the IUPHAR/BPS database (http://www.guidetopharmacology.org/download.jsp) and
extended manually to incorporate a number of missing, previously published pairs. For each
receptor, we calculated the percentage of cells expressing it in each cell cluster, where a
receptor was said to be expressed by a cell if it had at least one mapped read (the results
reported here were found to be robust to changes in this threshold). For bi-clustering of
receptors and cell clusters, we kept only receptors that appeared in at least 30% of the cells in

at least one cluster.

Assignment of urine cells to kidney clusters
For each urine cell, we computed its Pearson correlation with each kidney cluster, taking the
average over the kidney cells included in the cluster. The urine cell was then assigned to the

cluster that produced the highest correlation value.

Code availability
All R scripts used to analyze the data reported in this publication are available from the

corresponding authors upon request.

Data availability

The data reported in this publication are deposited in the ImmPort repository and accessible

with accession code SDY997.
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FIGURE LEGENDS

Figure 1. An overview of the approach used for analyzing the cellular contents and molecular
states of kidney and urine samples. a, Pipeline for collecting and processing kidney and urine
samples. Both types of samples were frozen upon collection, then shipped to a central
processing cite, in order to minimize batch effects. b, Step-wise clustering of kidney cells.
Initially, all cells were analyzed together (left heatmap), and the identified clusters were labeled
as containing either myeloid cells (red), B cells (green), T/NK cells (blue), dividing cells (gray) or
epithelial cells. Each lineage, with the exception of epithelial cells, was then analyzed separately
(middle heatmaps), to identify finer clusters. One B cell cluster and three T cell clusters were

further re-clustered separately, to generate an even finer description of cell subsets (right).
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Figure 2. A summary of the step-wise clustering of kidney cells. a, 22 clusters were identified,;
their putative identities are specified on the right. b, The fraction of each cluster out of all kidney
cells (not including the epithelial cells cluster, CEO), specified for all LN patients and LD controls
taken together (top heatmap), and separately for each LN patient that had more than 70 cells
passing quality filters (bottom heatmap). ¢, The expression of a selected set of genes induced
by type | interferon (ISGs), shown for all kidney cells. The cells of LD controls are displayed on
the left side of the heatmap, and all cells are further grouped by cell cluster (separately for LD
controls and LN patients). While the expression of ISGs was particularly high in two clusters of
cells (CB3 and CT6), these genes were upregulated in almost all cells extracted from LN
patients, as compared to LD controls.

Figure 3. Focused analysis of kidney myeloid cells. a, 5 clusters of myeloid cells were identified.
The heatmaps show the expression of either canonical lineage markers (top) or genes
differentially upergulated in each cluster (bottom). b, The results of classifying the kidney
myeloid cells by correlating their gene expression to a set of 10 reference clusters (Monol-
Mono4, DC1-DC6), taken from Villani et al. For each of the 5 clusters identified in our data, the
bars denote the percentage of cells most similar to each of the reference clusters. The
percentage of cells mapped to the most frequent reference cluster in each case is specified on
the bars. ¢, The distribution of Pearson correlation values, comparing the cells in clusters CMO
(red), CM1 (purple) and CM4 (blue) to the reference clusters DC4 and Mono2 in Villani et al. (for
each cell, the maximum of the two correlation scores is reported). d, The cells of clusters CMO
(red), CM1 (purple) and CM4 (blue), presented in two dimensions using diffusion maps. The
arrow represents the direction of the putative transition between these 3 clusters, as explained
in the text. e-g, The changes in the expression of 3 selected genes, along the trajectory shown
in (d); “pseudotime” represents the ordering of the cells along this trajectory. The violin plots
(shades) show the distribution of expression levels in equally-spaced intervals along the

pseudotime axis (and do not directly correspond to cell clusters).

Figure 4. Focused analysis of kidney T cells and NK cells. a, Preliminary analysis identified 7
clusters. The heatmaps show the expression of either canonincal markers defining T cell and
NK cell subsets (top) or genes differentially upergulated in each cluster specifically (bottom). b,
The splitting of cluster CT5 into two subclusters, representing resident memory CD8" T cells
(CT5a) and CD56"9"CD16° NK cells (CT5b). ¢, Cluster CT3 can be split into two subclusters,
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putatively corresopnding to Tregs (CT3a) and TFH-like cells (CT3b). d, Subclustering the cells
of cluster CTO reveals two populations of cells, one putatively identified as early effector
memory CD4* T cells (CT0a), the other late central memory CD4* T cells (CTOb).

Figure 5. Focused analysis of kidney B cells. a, Preliminary analysis identified 4 clusters. The
heatmaps show the expression of either canonincal markers defining B cell subsets (top) or
genes differentially upergulated in each cluster specifically (bottom). b, Cluster CBO
demonostrates a coordinated expression of genes previously found to be differentially
expressed in age-associated B cells (ABCs). The top heatmap pertains to genes known to be
upregulated in ABCs, the bottom heatmap to genes downregulted in this subset. Columns are
sorted by the ABC score, defined as the difference between the average expression of these
two sets of genes. A continuous change in this score is observed (bottom plot), implying a
continuum of states rather than the presence of a distinct subpopulation of ABCs. ¢, The
splitting of cluster CB2 into two subclusters, one corresponding to naive B cells (CB2a), the
other to pDCs (CB2b). d, Projection of the cells in clusters CBO, CB1 and CB2a onto a 2-
dimensional plane, using diffusion maps. A clear separation of the plasma cells (CB1) from
naive (CB2a) and activated (CBO) cells is observed. In contrast, the latter two populations form
a trajectory of state changes. The arrow represents a hypothesized direction of transition along
this trajectory, from naive to activated B cells. e-f, The changes in the expression of CD27 and
IGHD along the trajectory shown in (d). g, The change in the ABC score along this trajectory. In
panels e-g, the violin plots (shades) show the distribution of expression levels in equally-spaced

intervals along the pseudotime axis (and do not directly correspond to cell clusters).

Figure 6. The expression of GWAS genes in lupus nephritis kidneys. a, The heatmap shows, for
each gene, the scaled average expression across all cells in each cluster. Included are genes
previously indicated in lupus by genome-wide association studies, considering only genes that
demonstrated high variability across clusters in our data. b-g, Changes in the expression of
selected GWAS genes, along the trajectory from cluster CMO to cluster CM4. Violin plots (shades)
show the distribution of expression levels in equally-spaced intervals along the pseudotime axis

(and do not directly correspond to cell clusters).

Figure 7. Chemokine- and cytokine-mediated cellular networks. a, The pattern of chemokine
receptors expression over the cell clusters. The color codes for fraction of cells expressing each

receptor. Shown are receptors that are expressed in at least 30% of the cells of at least one
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cluster. b, The producers-consumers cellular network corresponding to the chemokine CXCL12
and its receptor CXCRA4. ¢, The producers-consumers cellular network of the chemokine
CX3CL1 and its receptor CX3CRL1.

Figure 8. The comparison of cells extracted from urine samples and from kidney samples. a,
Differences in the relative frequencies of each cluster. b, Pearson correlation values between
gene expression data of urine and kidney clusters, computed using the average gene
expression taken over the cells in each cluster, and considering only clusters that had at least 5

urine cells.
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