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The modelbase package is a free expandable Python package for building and analysing dynamic
mathematical models of biological systems. Originally it was designed for the simulation of metabolic
systems, but it can be used for virtually any deterministic chemical processes. modelbase provides
easy construction methods to define reactions and their rates. Based on the rates and stoichiometries,
the system of differential equations is assembled automatically. modelbase minimises the constraints
imposed on the user, allowing for easy and dynamic access to all variables, including derived ones, in
a convenient manner. A simple incorporation of algebraic equations is, for example, convenient to
study systems with rapid equilibrium or quasi steady-state approximations. Moreover, modelbase
provides construction methods that automatically build all isotope-specific versions of a particular
reaction, making it a convenient tool to analyse non-steady state isotope-labelling experiments.
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(1) Overview

Introduction

Well designed mathematical models are excellent theoretical frameworks to analyse and understand
the dynamics of a biological system. Here, the design process itself is the first important scientific
exercise, in which biological knowledge is collected, organised and represented in a new, systematic
way, that allows defining the model assumptions and formulating them in the language of mathematics.
A working model then enables testing new hypotheses and allows for novel predictions of the system’s
behaviour. Kinetic models allow simulating the dynamics of the complex biochemistry of cells.
Therefore, they have the power to explain which processes are responsible for observed emergent
properties and they facilitate predictions on how the system behaves under various scenarios, such
as changed environmental conditions or modification of molecular components. Unfortunately, the
construction of mathematical models is often already a challenging task, hampered by the limited
availability of measured physiological and kinetic parameters, or even incomplete information regarding
the network structure. It is therefore highly desirable to make the overall process of model construction
as easy, transparent and reproducible as possible. Providing a toolbox with a wide range of methods
that flexibly adapt to the scientific needs of the user, modelbase greatly simplifies the model-building
process, by facilitating a systematic construction of kinetic models fully embedded in the Python
programming language, and by providing a set of functionalities that help to conveniently access and
analyse the results.
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Despite the fact that mathematical models vary significantly in their complexity, from very simple
and abstract models to extremely detailed ones, they share a set of universal properties. The process
of building a kinetic model can be divided into a number of mandatory steps such as i) establishing
the biological network structure (the stoichiometry), ii) defining the kinetic rate expressions, iii)
formulation of the differential equations, iv) parametrisation, v) validation and, finally, vi) application
[1]. modelbase supports researchers in every step of model development and application with its
simple design aimed at being minimally restrictive. It has been written in Python, an open source,
general-purpose, interpreted, interactive, object-oriented, and high-level programming language. Due
to a long list of its general features, such as clear syntax, useful built-in objects, a wealth of general-
purpose libraries, especially NumPy and SciPy, Python has become a widely used scientific tool [2].
Needless to say, the usage of Python over other, proprietary software such as MATLAB or Wolfram
Mathematica, decreases the risk of limited reproducibility and transparency, two critical factors while
conducting research. Unfortunately, several powerful models of central biochemical pathways [3, 4]
have been published before this need became apparent. As a consequence, some of these models are
extremely difficult to implement to even attempt to reproduce their results. Therefore, modelbase
provides an environment for relatively easy implementation of models that were published without
source code, in a general-purpose and reusable format. Moreover, modelbase supports the export
of a structural (stoichiometric) model into Systems Biology Markup Language (SBML) for further
structural analysis with the appropriate software.

In recent years, several other Python-based modelling tools have been developed, such as ScrumPy
[5]; or PySCeS [6]. They allow performing various analyses of biochemical reaction networks, ranging
from structural analyses (null-space analysis, elementary flux modes) to kinetic analyses and calculation
of control coefficients. To the best of our knowledge they do not provide dedicated methods for model
construction inside Python, and the standard usage relies on loading previously assembled model
definition files.

The modelbase package presented here provides an alternative toolbox, complementing the func-
tionalities of existing programs for computer modelling. Its power lies mainly in integrating the model
construction process into the Python programming language. It is envisaged that modelbase will
greatly facilitate the model construction and analysis process as an integral part of a fully developed
programming environment.

Motivation

In the course of our photosynthetic research, we identified several shortcomings that are not adequately
met by available free and open source research software. When constructing a series of similar models,
which share the same basic structure but differ in details, it is, in most modelling environments,
necessary to copy the model definition file (or even pieces of code) and perform the desired modifications.
This makes even simple tasks, such as changing a particular kinetic rate law, hideous and unnecessarily
complicated, affecting the overall code readability. To facilitate a systematic and structured model
definition, exploiting natural inheritance properties of Python objects, our intention was to fully
integrate the model construction process into the Python programming language, allowing for an
automated construction of model variants. The necessity for this fully Python-embedded approach
became further evident for isotope label-specific models [7], where an automatic construction of
isotope-specific reactions from a common rate law and an atom transition map is desired. Such models
are, for example, required to explain complex phenomena, such as the asymmetric label distribution
during photosynthesis, first observed by Gibbs and Kandler in the 1950s [8, 9].

Implementation and architecture

modelbase is a console-based application written in Python. It supplies methods to construct various
dynamic mathematical models, using a bottom-up approach, to simulate the dynamic equations, and
analyse the results. We deliberately separated construction methods from simulation and analysis,
in order to reflect the experimental approach. In particular, a model object constructed using
the Model class can be understood as a representation of a model organism or any subsystem, on
which experiments are performed. Instances of the Simulator class in turn correspond to particular
experiments. The software components of modelbase are summarised in the UML diagram in Figure 1.
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Figure 1: Diagrammatic representation of software components.
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Model construction

The user has the possibility to build two types of models, using one of the classes defined in the module
model: Model, for differential-equation based systems, or LabelModel, for isotope-labelled models.

Class Model
Every model object is defined by:

1. model parameters,
2. model variables,
3. rate equations,

4. stoichiometries.

Model parameters can be simply defined in a dictionary, d. To build a mathematical model the user
needs first to import the modelbase package and instantiate a model object (called m).

import modelbase
m = modelbase.Model(d)

After instantiation, the keys of the parameter dictionary d become accessible as attributes of an object
of the internal class modelbase.parameters.ParameterSet, which is stored as the model’s attribute
m.par.

To add reacting entities of the described system (referred to as species in SBML), e.g., metabolites,
we pass a list of compounds names to the set_cpds method:

m.set_cpds(list_of_compounds)

Each of the added compounds becomes a state variable of the system. The compounds are accessible
by their name (string). The full list of all variables is stored in the attribute m.cpdNames.

If S denotes the vector of concentrations of the biochemical reactants (as defined with the method
set_cpds), the temporal change of the concentrations is governed by

ds
i No(S, k), (1)
where N denotes the stoichiometric matrix and v(S, k) the vector of reaction rates as functions
of the substrate concentrations S and parameters k. The system of ordinary differential equa-
tions is assembled automatically after providing all reaction rates and their stoichiometries to the
method m.add_reaction(). The stoichiometric matrix of a model can be retrieved by the method
m.print_stoichiometries() orm.print_stoichiometries_by_compounds(), for the transposed ma-
trix. A detailed example of instantiating objects and solving a simple biochemical system with three
reactions and two metabolites is provided in Box 1.
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Box 1: Basic model use

We use modelbase to simulate a simple chain of reactions, in which the two state variables X and Y describe
the concentrations of the intermediates. We assume a constant influx rate vo, a reversible conversion of X to Y,
described with mass action kinetics with forward and backward rate constants ki, and kim, respectively, and
an irreversible eflux of Y described by mass action kinetics with the rate constant ks.

Vo Vi Y \%)

We import the modelbase package, define a list of metabolite species and a dictionary with parameters

import modelbase

cmpds = [’X’,°Y’]

p=1{v0’:1,’klp’:0.5,’kim’:1,°k2’:0.1}

We instantiate a model object of class Model

m = modelbase.Model(p)

and pass metabolites to the model (variables are always defined by names)
m.set_cpds (cmpds)

In the next step we define reaction rates functions. The rate functions always accept the model parameters as
first argument, whilst the remaining arguments are metabolite concentrations.

v0 = lambda p: p.vO0

def vi(p,x,y):
return p.klp*x - p.kim*xy

def v2(p,y):
return p.k2*y

and then pass them to the model using add_reaction()
m.add_reaction(’v0’, vO, {’X’:1})

m.add_reaction(’vi’, vi, {’X’:-1,’Y’:1}, ’X’, ’Y’)
m.add_reaction(’v2’, v2, {’Y’:-1}, ’Y’).

To perform the computation we generate an instance of the class Simulator
s = modelbase.Simulator (m)

To integrate the system over a given period of time (T=np.1linspace(0,100,1000) ), with the initial concentrations
set to 0 (yO=np.zeros(2)), we use the method timeCourse()

s.timeCourse(T, yO0).
Convenient access to the results of simulation through various get*() methods enables easy graphical display.

—x
0-— "

ul

plt.figure()
plt.plot(s.getT(),s.getY())
plt.legend(m.cpdNames)

metabolite concentration [a.

time fa.u.]

Working with algebraic modules

A particularly useful function of the class Model has been developed to facilitate the incorporation of
algebraic expressions, by which dependent variables can be computed from independent ones. Examples
include conserved quantities, such as the sum of adenine phosphates, which is often considered to
be constant, and rapid-equilibrium or quasi steady-state approximations, which are applicable for
systems with time-scale separation and allow calculation of fast from slow variables. The function
add_algebraicModule() accepts as arguments a function describing the rule how the dependent
variables are calculated from independent ones, the name of the newly created module, and lists
of names of the independent and dependent variables. After definition of an algebraic module, all
dependent variables become directly accessible. The full list of independent and dependent variables
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can be accessed using the method allCpdNames ().

Class LabelModel for isotope-labelled models

The modelbase package includes a class to construct isotope-labelled versions of developed models.
In order to simulate the dynamic distribution of isotopes, modelbase defines dynamic variables
representing all possible labelling patterns for all intermediates. In contrast to instances of the class
Model, for instances of the class LabelModel for every compound the number of potentially labelled
atoms (usually carbon) needs to be defined. This done with the method add base_cpd(), which
accepts the name and the number of labelled atoms of the compound. It automatically creates all 2%
isotope variants of the compound, where N denotes the number of labelled atoms. Finally, the method
add_carbonmap_reaction() automatically generates all isotope-specific versions of a reaction. It
accepts as arguments the reaction name, rate function, carbon map, list of substrates, list of products
and additional variables to be passed.

m = modelbase.LabelModel ()

With an instance of this class, for example the dynamic incorporation of radioactive carbon during
photosynthesis can be easily defined and simulated, using the Simulator class described below. An
example of how to use this class is provided in the Box 2.

Integration methods and Simulator subpackage

The Simulator class of modelbase provides computational support for dynamic simulations. It is
instantiated by

s = modelbase.Simulator (m)

and provides methods to numerically simulate the differential equation system and to analyse the results.
Simple applications to run and plot a time course are given in boxes 1 and 2. By default, the dynamic
equations are numerically integrated using a CVODE solver for stiff and non-stiff ordinary differential
equation (ODE) systems. The default solver uses the Assimulo simulation package [10], with the most
central solver group originating from the SUNDIALS (a SUite of Nonlinear and DIfferential /ALgebraic
equation Solvers) package [11]. If Assimulo is not available, standard integration methods from the
SciPy library [12] are used. When needed, almost every integrator option can be overridden by the
user by simply accessing

s.integrator

Additionally, the Simulator class includes methods to integrate the system until a steady-state
is reached (sim2SteadyState()), and to estimate the period of smooth limit cycle oscillations
(estimatePeriod()). The solution arrays are accessed with the methods getT() and getY(). The
advantage of using this method over using Assimulo’s integrator.ysol is that getY() also returns
the result for all the derived variables (for which algebraic modules have been used). The powerful
python plotting library matplotlib [13] provides numerous methods for graphical display of the results.
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Box 2: Isotope-labelled model

A minimal example of an isotope-label specific model simulates equilibration of isotope distribution in a system
consisting of the two reactions of triose-phosphate isomerase and fructose-bisphosphate aldolase:

GAP ¢——» DHAP

GAP = DHAP (2)
GAP + DHAP — FBP (3)

We define a dictionary of parameters and instantiate the model of class LabelModel

p ={’kf_TPI’: 1,’Keq_TPI’: 21,’kf_Ald’: 2000, ’Keq_Ald’: 7000%}.

m = modelbase.LabelModel ()

Compounds are added with an additional argument defining the numbers of carbons

m.add_base_cpd(’GAP’, 3)

m.add_base_cpd (’DHAP’, 3)

m.add_base_cpd(’FBP’, 6)

leading to an automatic generation of 80 = 26 4+ 23 4 23 isotope-specific compounds. All reactions are assumed
to obey mass-action rate laws. Standard rate laws are defined in the modelbase.ratelaws module.

import modelbase.ratelaws as rl

def vif(p,y):
return rl.massAction(p.kf_TPI,y)

All isotope-specific rates are generated by the add_carbonmap_reaction() method, based on a list defining in
which positions the carbons appear in the products.
m.add_carbonmap_reaction(’TPIf’,v1if,[2,1,0],[*GAP’], [’DHAP’], ’GAP’).
We set the initial conditions such that the total pools are in equilibrium, but carbon 1 of GAP is fully labelled
GAPO = 2.5e-5
DHAPO = GAPO * m.par.Keq_TPI
yod = {’GAP’: GAPO,

’DHAP’ : DHAPO,

’FBP’: GAPO * DHAPO * m.par.Keq_Ald}
yO = m.set_initconc_cpd_labelpos(yOd,labelpos={’GAP’:0})
and simulate equilibration of the labels for 20 arbitrary time units
s = modelbase.LabelSimulate(m)
T = np.linspace(0,20,1000)
s.timeCourse(T,y0)

and plot the result using the getLabelAtPos() method.
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Simple analysis with Analysis subpackage

The class Analysis of modelbase provides more advanced analysis methods complementing the
simulations. Currently, it provides methods to numerically calculate elasticities and the Jacobian, find
steady states by attempting to solve the algebraic equations, and to calculate concentration control
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coeflicients. We expect the range of analysis methods to increase continuously in the future.

Systems Biology Markup Language (SBML)

modelbase supports export of a structural (stoichiometric) version of a created model into an XML
file in the computer-readable SBML format. Structural and stoichiometric analyses are currently not
implemented in modelbase, therefore such export allows to take advantage of other SBML compatible
modelling environments developed for such tasks (e.g. PySCeS or CobraPy [14]). The import of SBML
models into modelbase is currently not supported, mainly because of the complementary purpose for
which it was developed. The modelbase framework simplifies construction of kinetic models, allowing
to perform this task with minimal modelling experience. Therefore, the main purpose of modelbase
is the model design process itself, rather than importing a predefined construct to perform complex
computations. However, a full SBML export and import functionality is currently under development
to allow model sharing across different environments and platforms.

Quality control

modelbase has been continuously developed and used within our lab since 2016. It has been successfully
applied to study the complexity of photosynthesis and carbon assimilation in plants [7] and is being
further maintained and developed.

(2) Availability

Operating system

modelbase is compatible with all platforms with working Python distribution.

Programming language

modelbase is written in the Python programming language, a general-purpose interpreted, interactive,
object-oriented, and high-level programming language. It is available for every major operating system,
including GNU/Linux, Mac OSX and Windows and has been tested with Python 3.6.

Additional system requirements

None

Dependencies

Dependencies are provided in the setup.py file and include:
e numpy 1.14.3
e scipy == 1.1.0
e numdifftools == 0.9.20
e assimulo == 2.9
e pandas == 0.22.0
e python-libsbml == 5.17.0

Support for the differential equation solver sundials (CVODE) through the python package assimulo
requires moreover
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Sundials-2.6.0 (for 64bits machines, install Sundials using -fPIC)

Cython 0.18

C compiler

Fortran compiler

List of contributors

In alphabetic order: Marvin van Aalst, Oliver Ebenh6h, Anna Matuszynska, Nima Saadat.

Software location:

Archive

Name: Python Package Index (PyPI)
Persistent identifier: https://pypi.org/project/modelbase/
Licence: GP14
Publisher: Oliver Ebenhoh
Version published: 0.2.3
Date published: 25/06/18
Code repository
Name: GitHub
Persistent identifier: https://github.com/QTB-HHU/modelbase
Licence: GNU General Public License v3.0
Date published: 25/06/18

Language

modelbase was entirely developed in English.

(3) Reuse potential

The strength of our package lies in its flexibility to be applied to simulate and analyse various distinct
biological systems. It can be used for the development of new models, as well as reconstruction tool.
We demonstrate its power by reconstructing three mathematical models that have been previously
published without providing the source code (Table 1). This includes a model of the photosynthetic
electron transport chain, originating from our lab, that initially has been developed in MATLAB [15].

Process Original GitHub.com Developer
publication | /QTB-HHU

Pentose Phosphate Pathway [4, 16] ./ppmodel-modelbase T.N.

Calvin-Benson-Bassham Cycle [17] ./cbb-modelbase M.v.A.

Photosynthetic Electron Transport Chain | [15] ./petc-modelbase A.M.

Table 1: Mathematical models originally published without the source-code, reconstructed in our lab
using the modelbase package. The source code and examples are available from the GitHub
repository of our lab https://github.com/QTB-HHU/

Modelling photoprotective mechanisms

Part of our research focuses on understanding the dynamics of various photoprotective mechanisms
present in photosynthetic organisms [15, 18, 19]. The foundation of our further work constitutes
the model of the photosynthetic electron transport chain in green algae Chlamydomonas reinhardtii

Ebenhoh et al. Page 9 of 14


https://doi.org/10.1101/362954
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/362954; this version posted July 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Submitted to the Journal of Open Research Software

published in 2014 [15]. We have reimplemented the original work in Python and reproduced the
results published in the main text (Figure 2), providing a photosynthetic electron transport chain
core, compatible with other modelbase-adapted modules, to further our studies on the dynamics of
light reactions of photosynthesis.
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Figure 2: Reproduction of the Figures from the [15]. Simulated fluorescence trace obtained through
Pulse Amplitude Modulation (PAM) under light induced (left) and anoxia induced (right)
conditions. The dynamics of the fluorescence decrease corresponds to the activation of a
specific photoprotective mechanism called state transitions, while the increase in the signal
after the inducer (light or anoxia) is switched off relates to the relaxation of the mechanism.

Dynamics of the carbon assimilation

Using modelbase, we have re-implemented a model of the Calvin-Benson-Bassham (CBB) Cycle by
Poolman et al. [17]. The model is a variant of the Pettersson and Pettersson [3] model, where the
strict rapid equilibrium assumption is relaxed and fast reactions are modelled by simple mass action
kinetics. Its main purpose is to study short to medium time scale responses to changes in extra-stromal
phosphate concentration and incident light. The concentrations of NADPH, NAD+, CO, and H
are considered constant, leaving the 13 carbohydrate cycle intermediates, ATP, ADP and inorganic
phosphate as dynamic variables. The model further incorporates a simplified starch production using
glucose 6-phosphate and glucose-1-phosphate and a simple ATP recovery reaction. We used the
modelbase implementation of the Poolman model to simulate the steady state concentrations of the
metabolites depending on the extra-stromal phosphate concentration (Figure 3), reproducing original
work by Pettersson and Pettersson [3]. We have observed that the system is not stable any more for
[Peoyt] > 1.5, a feature not discussed in the Poolman paper [17].

The compatible mathematical representation of the two photosynthetic subsystems, the ATP-
producing light reactions and the ATP-consuming CBB cycle, is a prerequisite to merge those two
models. Technically, in the modelbase framework, this is a straight forward process. Scientifically, it
turned out to be not a trivial task (unpublished work).

Pentose phosphate pathway

We envisage that especially our LabelModel extension will find a wide application in metabolic network
analysis. Radioactive and stable isotope labelling experiments constitute a powerful methodology for
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Figure 3: Metabolite steady state concentrations dependent on the extra-stromal phosphate concen-
tration simulated with the Poolman implementation of the Pettersson and Pettersson model
of the CBB cycle [17].

estimating metabolic fluxes and have a long history of application in biological research [20]. Here, we
showcase the potential of modelbase for the isotope-labelled experiments by reimplementing the model
of the F-type non-oxidative Pentose phosphate pathway (PPP) in erythrocytes originally proposed
by McIntyre et al. [4]. This was later adapted by Berthon et al. for label experiments and in silico
replication of *Carbon nuclear magnetic resonance (NMR) studies [16]. We have reproduced the
results obtained by the authors, including the time course of diverse Glucose-6-phosphate isotopomers
(Figure 4).

Among many other applications, modelbase provides tools to reproduce the 'photosynthetic Gibbs
effect’. Gibbs and Kandler described it in 1956 and 1957 [8, 9], when they observed the atypical and
asymmetrical incorporation of radioactive *CO, in hexoses. An example of label incorporation by
the CBB cycle intermediates is presented schematically in Figure 5.

Finally, our package provides a solid foundation for additional extensions to the framework archi-
tecture, its classes and modelling routines. To encourage its use and to facilitate the first steps to
apply the modelbase package, we have prepared an interactive tutorial using a Jupyter Notebook
[21], which showcases basic implementation of modelbase and each of its classes in easy to follow and
thoroughly explained examples (see https://github.com/QTB-HHU /modelbase/tutorial.ipybn).
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Figure 4: Formation of diverse Glc6P isotopomers in a haemolysate, obtained by solving the adapted
model by Berthon et al. [16] reimplemented using modelbase.

Paper Author Roles

O.E. initiated the project, developed the code and provided teaching examples; M.v.A. and A.M
developed further the code; M.v.A. reimplemented the Calvin-Benson-Bassham Cycle model as an
example of modelbase utility, T.N. reimplemented the Pentose-Phosphate-Pathway model and A.M.
reimplemented the photosynthetic electron transport chain model; N.P.S. provided export support for
SBML models; A.M. prepared the Jupyter Notebook with the tutorial and wrote the first draft of the
manuscript. All authors have read the manuscript and contributed to its final version.

Ebenhoh et al. Page 12 of 14


https://doi.org/10.1101/362954
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/362954; this version posted July 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Submitted to the Journal of Open Research Software
14C02

GAP

RUBP §+§ =2X

DHAP

t
Figure 5: Schematic representation of label incorporation by the CBB cycle intermediates.

References

[1] Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J., and Jirstrand, M., Kinetic models in
industrial biotechnology - Improving cell factory performance, Metabolic Engineering 24 (2014)
38-60. doi:10.1016/j.ymben.2014.03.007.

[2] Oliphant, T. E., Python for scientific computing, Computing in Science and Engineering 9 (3)
(2007) 10-20. doi:10.1109/MCSE.2007.58.

[3] Pettersson, G., and Ryde-Pettersson, U., A mathematical model of the Calvin photosynthesis
cycle., Eur. J. Biochem. 175 (3) (1988) 661-672. doi:10.1111/j.1432-1033.1988.tb14242.x.

[4] McIntyre, L. M., Thorburn, D. R., Bubb, W. A.; and Kuchel, P. W., Comparison of computer
simulations of the F-type and L-type non- oxidative hexose monophosphate shunts with 31P-NMR
experimental data from human erythrocytes, Eur J Biochem 180 (2) (1989) 399-420.

[5] Poolman, M. G., ScrumPy : metabolic modelling with Python, IEE Proc.-Syst. Biol. 153 (5)
(2006) 375-378. doi:10.1049/ip-syb.

[6] Olivier, B. G., Rohwer, J. M., and Hofmeyr, J. H. S.; Modelling cellular systems with PySCeS,
Bioinformatics 21 (4) (2005) 560-561. doi:10.1093 /bioinformatics/bti046.

[7] Ebenhoh, O., and Spelberg, S., The importance of the photosynthetic Gibbs effect in the
elucidation of the Calvin-Benson-Bassham cycle, Biochemical Society Transactions (2018)
BST20170245d0i:10.1042 /bst20170245.

[8] Kandler, O., and Gibbs, M., Asymmetric Distribution of C14 in the Glucose Phosphates Formed
During Photosynthesis., Plant physiology 31 (5) (1956) 411.

[9] Gibbs, M., and Kandler, O., Asymmetric distribution of C$"14$ in sugars formed during photosyn-
thesis, Proc. Natl. Acd. Sci. U.S.A. 43 (1957) 446-451. doi:https://doi.org/10.1073/pnas.43.6.446.

[10] Andersson, C., Claus, F., and Akesson, J., ScienceDirect Assimulo: A unified frame-
work for ODE solvers, Mathematics and Computers in Simulation 116 (2015) 26-43.
d0i:10.1016 /j.matcom.2015.04.007.

[11] Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. A. N. E,
and Woodward, C. S.;, SUNDIALS : Suite of Nonlinear and Differential / Algebraic Equation
Solvers, ACM Transactions on Mathematical Software 31 (3) (2005) 363-396.

[12] Jones, E., Oliphant, T., Peterson, P., and others, Scipy: Open source scientific tools for python
(2001).

Ebenhoh et al. Page 13 of 14


https://doi.org/10.1101/362954
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/362954; this version posted July 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Submitted to the Journal of Open Research Software

[13] Hunter, J. D., Matplotlib: A 2D graphics environment, Computing In Science and Engineering
9 (3) (2007) 90-95. doi:10.1109/MCSE.2007.55.

[14] Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R., COBRApy: COunstraints-Based
Reconstruction and Analysis for Python, BMC Systems Biology 7 (1) (2013) 1. doi:10.1186/1752-
0509-7-74.

[15] Ebenhoh, O., Fucile, G., Finazzi, G. G., Rochaix, J.-D., and Goldschmidt-Clermont, M., Short-
term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical
model, Philosophical Transactions B 369 (1640) (2014) 20130223. doi:10.1098/rstb.2013.0223.

[16] Berthon, H. A., Bubb, W. A., and Kuchel, P. W., 13C n.m.r. isotopomer and computer-simulation
studies of the non-oxidative pentose phosphate pathway of human erythrocytes, Biochem J 296
(1993) 379-387. doi:10.1042/bj2960379.

[17] Poolman, M. G., Fell, D. A., and Thomas, S., Modelling photosynthesis and its control, Journal
of Experimental Botany 51 (90001) (2000) 319-328. doi:10.1093/jexbot/51.suppl_1.319.

[18] Ebenhoh, O., Houwaart, T., Lokstein, H., Schlede, S., and Tirok, K., A minimal mathematical
model of nonphotochemical quenching of chlorophyll fluorescence., Biosystems 103 (2) (2011)
196-204. doi:10.1016/j.biosystems.2010.10.011.

[19] Matuszyniska, A. B., Heidari, S., Jahns, P., and Ebenhoh, O., A mathematical model of non-
photochemical quenching to study short-term light memory in plants, Biochimica et Biophysica
Acta (BBA) - Bioenergetics 1857 (12) (2016) 1-7. doi:10.1016/j.bbabio.2016.09.003.

[20] Crown, S. B., Ahn, W., and Antoniewicz, M. R., Rational design of 13C-labeling experi-
ments for metabolic flux analysis in mammalian cells, BMC' Systems Biology 6 (1) (2012) 43.
doi:10.1186/1752-0509-6-43.

[21] Kluyver, T., Ragan-Kelley, B., Perez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., and Willing, C., Jupyter
Notebooks — a publishing format for reproducible computational workflows, in: Schmidt, F. L.,
and B. (Eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas,
IOS Press, 2016, pp. 87-90.

Ebenhoh et al. Page 14 of 14


https://doi.org/10.1101/362954
http://creativecommons.org/licenses/by-nc/4.0/

