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Abstract 

In our multisensory world, we often rely more on auditory information than on visual 

input for temporal processing. One typical demonstration of this is that the rate of auditory 

flutter assimilates the rate of concurrent visual flicker. To date, however, this auditory 

dominance effect has largely been studied using regular auditory rhythms. It thus remains 

unclear whether irregular rhythms would have a similar impact on visual temporal processing; 

what information is extracted from the auditory sequence that comes to influence visual 

timing; and how the auditory and visual temporal rates are integrated together in quantitative 

terms. We investigated these questions by assessing, and modeling, the influence of a 

task-irrelevant auditory sequence on the type of ‘Ternus apparent motion’: group motion 

versus element motion. The type of motion seen critically depends on the time interval 

between the two Ternus display frames. We found that an irrelevant auditory sequence 

preceding the Ternus display modulates the visual interval, making observers perceive either 

more group motion or more element motion. This biasing effect manifests whether the 

auditory sequence is regular or irregular, and it is based on a summary statistic extracted from 

the sequential intervals: their geometric mean. However, the audiovisual interaction depends 

on the discrepancy between the mean auditory and visual intervals: if it becomes too large, no 

interaction occurs – which can be quantitatively described by a partial Bayesian integration 

model. Overall, our findings reveal a crossmodal perceptual averaging principle that may 

underlie complex audiovisual interactions in many everyday dynamic situations. 

Keywords: Perceptual averaging; Auditory timing; Visual apparent motion; Multisensory 

interaction; Bayesian integration 
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Public Significance Statement 

The present study shows that auditory rhythms, regardless of their regularity, can 

influence the way in which the visual system times (subsequently presented) events, thereby 

altering dynamic visual (motion) perception. This audiovisual temporal interaction is based 

on a summary statistic derived from the auditory sequence: the geometric mean interval, 

which is then combined with the visual interval in a process of partial Bayesian integration 

(where integration is unlikely to occur if the discrepancy between the auditory and visual 

intervals is too large). We propose that this crossmodal perceptual averaging principle 

underlies complex audiovisual interactions in many everyday dynamic perception scenarios. 
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Most stimuli and events in our everyday environments are multisensory. It is thus no 

surprise that our brain often combines a heard sound with a seen stimulus source, even if they 

are in conflict. One typical such phenomenon, in a performance we enjoy, is the ventriloquism 

effect (Chen & Vroomen, 2013; Occelli, Bruns, Zampini, & Roder, 2012; Recanzone, 2009; 

Slutsky & Recanzone, 2001): we perceive the ventriloquist’s voice as coming from the mouth 

of a dummy as if it was the dummy that is speaking. Of note in the present context, 

audiovisual integration has not only been demonstrated in spatial localization, but also in the 

temporal domain. In contrast to the dominance of vision in audiovisual spatial perception, 

audition dominates temporal processing, such as in rhythms and intervals. As an example, 

think of how we tend to ‘auditorize’ a conductor’s arm movements coordinating a musical 

passage, or Morse code flashes emanating from a naval ship. In fact, neuroscience evidence 

has revealed that information for time estimation is encoded in the primary auditory cortex for 

both visual and auditory events (Kanai, Lloyd, Bueti, & Walsh, 2011). This is consistent with 

the proposal that the perceptual system automatically abstracts temporal structure from 

rhythmic visual sequences and represents this structure using an auditory code (Guttman, 

Gilroy, & Blake, 2005).  

Another compelling demonstration of how auditory rhythm influences visual tempo is 

known as the auditory driving effect (Boltz, 2017; Gebhard & Mowbray, 1959; Knox, 1945; 

Shipley, 1964): the phenomenon that variations in auditory flutter rate may noticeably 

influence the rate of perceived visual flicker. This influence, though, is dependent on the 

disparity between the auditory and visual rates (Recanzone, 2003). Quantitatively, this 

influence has been described by a Bayesian model of audiovisual integration (Roach, Heron, 

& McGraw, 2006), which assumes that the brain takes into account prior knowledge about the 

discrepancy between the auditory and visual rates in determining the degree of audiovisual 

integration. Auditory driving is a robust effect that generalizes across different types of tasks, 

including temporal adjustment and production (Myers, Cotton, & Hilp, 1981) and perceptual 

discrimination (Welch, DuttonHurt, & Warren, 1986), and it may even be seen in the effect of 

one single auditory interval on a subsequent visual interval (Burr, Della Rocca, & Morrone, 

2013).  

It should be noted, however, that auditory driving has primarily been investigated using 
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regular rhythms, the implicit assumption being that the mean auditory rate influences the 

mean visual rate. On the other hand, studies on ensemble coding (Alvarez, 2011; Ariely, 

2001) suggest that perceptual averaging can be rapidly accomplished even from a set of 

variant objects or events; for example, we can quickly estimate the average size of apples in a 

supermarket display, or the average tempo of a piece of music. With regard to the present 

context, audiovisual integration, it remains an open question how the average tempo in 

audition quantitatively influences the temporal processing of visual events – an issue that 

becomes prominent as the mechanisms underlying perceptual averaging processes themselves 

are still a matter of debate. There is evidence that the mental scales underlying the 

representation of magnitudes (e.g., visual numerosity and temporal durations) are non-linear 

rather than linear (Allan & Gibbon, 1991; Dehaene, Izard, Spelke, & Pica, 2008; Nieder & 

Miller, 2003). It has also been reported that, in temporal bisection (i.e., comparing one 

interval to two reference intervals), the subjective mid-point between one short and one long 

reference duration is closer to their geometric, rather than their arithmetic, mean (Allan & 

Gibbon, 1991). However, it remains to be established whether temporal rate averaging obeys 

the principle of the arithmetic mean or the geometric mean, which might have implications 

for a broad range of mechanisms coding ‘magnitude’ in perception (Walsh, 2003). 

 On these grounds, the aim of the present study was to quantify temporal rate averaging 

in a crossmodal, audiovisual scenario using irregular auditory sequences. To this end, we 

adopted and extended the Ternus temporal ventriloquism paradigm (Shi, Chen, & Müller, 

2010), which we used previously to investigate crossmodal temporal integration. In the 

standard Ternus temporal ventriloquism paradigm, two auditory beeps are paired with two 

visual Ternus frames. Visual Ternus displays (see Figure 1) can elicit two distinct percepts of 

visual apparent motion: element or group motion, where the type of apparent motion is 

mainly determined by the visual inter-stimulus interval (ISIV) between the two display frames 

(with other stimulus settings being fixed). Element motion is typically observed with short 

ISIV (e.g., of 50 ms), and group motion with long ISIV (e.g., of 230 ms) (see Figure 1A, 1B). 

When two beeps are presented in temporal proximity to, or synchronously with, the two 

visual frames, the beeps can systematically bias the transition threshold between the two types 

of visual apparent motion: either towards element motion (if the auditory interval, ISIA, is 
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shorter than the visual interval) or towards group motion (if ISIA is longer than the visual 

interval) (Shi et al., 2010). Similar temporal ventriloquism effects have also been found with 

other tasks, such as temporal order judgments (for a review, see Chen & Vroomen, 2013). 

Here, we extended the Ternus temporal ventriloquism paradigm by presenting a whole 

sequence of beeps prior to the Ternus display frames, in addition to the two beeps paired with 

Ternus frames (see Figure 1C; recall that previous studies had presented just the latter two 

beeps) to examine the influence of the temporal averaging of auditory intervals on visual 

apparent motion.  

 Experiment 1 was designed, the first instance, to demonstrate an auditory driving effect 

using this new paradigm. In Experiment 2, we went on to examine whether temporal 

averaging with irregular auditory sequences would have a similar impact on visual apparent 

motion. In Experiment 3, we manipulated the variability of the auditory sequence to examine 

for (and quantify) influences of the variability of the auditory intervals on visual apparent 

motion. In Experiment 4, we further determined which types of temporal averaging statistics, 

the arithmetic or the geometric mean of the auditory intervals, influences visual Ternus 

apparent motion. And Experiment 5 was designed to rule out a potential confound, namely, a 

‘recency’ effect – with the last auditory interval dominating the Ternus motion percept – in 

the crossmodal temporal averaging. Finally, we aimed to identify the computational model 

that best describes the crossmodal temporal interaction: mandatory full Bayesian integration 

versus partial integration (Ernst & Banks, 2002; Roach et al., 2006).     

Materials and Methods 

Participants 

 A total of eighty-four participants (21, 22, 16, 12, 12 in Experiments 1-5; ages ranging 

from 18–33 years) took part in the main experiments. All observers had normal or 

corrected-to-normal vision and reported normal hearing. The experiments were performed in 

compliance with the institutional guidelines set by the Academic Affairs Committee of the 

Department of Psychology, Peking University (approved protocol of “#Perceptual averaging 

(2012-03-01)”). All observers provided written informed consent according to the 
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institutional guidelines prior to participating and were paid for their time on a basis of 20 

CNY/hour. 

 The number of participants recruited for Experiments 1 and 2 was based on the effect 

size in our previous study of the temporal Ternus ventriloquism effect (Shi et al., 2010), 

where the pairing of auditory beeps with the visual Ternus displays yielded a Cohen’s d 

greater than 1 for the modulation of the Ternus motion percept . We thus used a conservative 

effect size of 0.25 and a power of 0.8 for the estimation and recruited more than the estimated 

sample size (of 15 participants). Given that the effects we aimed to examine turned out quite 

reliable, we used a standard sample size of 12 participants in Experiments 4 and 5.   

 

Apparatus and Stimuli 

 The experiments were conducted in a dimly lit (luminance: 0.09 cd/m2) cabin. Visual 

stimuli were presented in the central region of a 22-inch CRT monitor (FD 225P), with a 

screen resolution of 1024 x 768 pixels and a refresh rate of 100 Hz. Viewing distance was 57 

cm, maintained by using a chin rest.  

  A visual Ternus display consisted of two stimulus frames, each containing two black 

discs (l0.24 cd/m2; disc diameter and separation between discs: 1.6° and 3° of visual angle, 

respectively) presented on a gray background (16.1 cd/m2). The two frames shared one 

element location at the center of the monitor, while containing two other elements located at 

horizontally opposite positions relative to the center (see Figure 1). Each frame was presented 

for 30 ms; the inter-stimulus interval (ISIV) between the two frames was randomly selected 

from the range of 50–230 ms, with a step size of 30 ms.   
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Figure 1. Ternus display and stimulus configurations. Two alternative motion percepts of the 

Ternus display: (A): ‘element’ motion for short ISIs, with the middle dot perceived as 

remaining static while the outer dots are perceived to move from one side to the other. (B) 

‘group’ motion for long ISIs, with the two dots perceived as moving in tandem. (C) Schematic 

illustration of the stimulus configurations used in the experiments. The auditory sequence 

consisted of 8 to 10 beeps. Two of the beeps (the 6th and the 7th) were synchronously paired 

with two visual Ternus frames which were separated by a visual ISI (ISIV(isual)) that varied 

from 50 to 230 ms (for the critical beeps, ISIV(isual) = ISIA(ditory)). The other auditory ISIs 

(ISIA(ditory)) were systematically manipulated such that the mean of the ISIA preceding the 

visual Ternus display was 50–70 ms shorter than, equal to, or 50–70 ms longer than the 

transition threshold between the element- and group-motion percepts of the visual Ternus 

events. The transition threshold was first estimated individually for each observer in a 

pre-test session. During the experiment, observers were simply asked to indicate the type of 

visual motion (‘element’ or ‘group’) that they had perceived, while ignoring the beeps. 

 

  Mono sound beeps (1000 Hz, 65 dB, 30 ms) were generated and delivered via an 

M-Audio card (Delta 1010) to a headset (Philips, SHM1900). To ensure accurate timing of 

the auditory and visual stimuli, the duration of the visual stimuli and the synchronization of 

the auditory and visual stimuli were controlled via the monitor’s vertical synchronization 
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pulses. The experimental program was written with Matlab (Mathworks Inc.) and the 

Psychophysics Toolbox (Brainard, 1997).  

Experimental Design  

Practice 

 Prior to the formal experiment, participants were familiarized with visual Ternus 

displays of either typical element motion (with an ISIV of 50 ms) or typical group motion 

(ISIV of 260 ms) in a practice block. They were asked to discriminate the two types of 

apparent motion by pressing the left or the right mouse button, respectively. The mapping 

between response button and type of motion was counterbalanced across participants. During 

practice, when a response was made that was inconsistent with the typical motion percept, 

immediate feedback appeared on the screen showing the typical response (i.e., element or 

group motion). The practice session continued until the participant reached a conformity of 

95%. All participants achieved this criterion within 120 trials, given that the two extreme ISIs 

used (50 and 260 ms, respectively) gave rise to non-ambiguous percepts of either element 

motion or group motion.   

Pre-test 

 For each participant, the transition threshold between element and group motion was 

determined in a pre-test session. A trial began with the presentation of a central fixation cross 

for 300 to 500 ms. After a blank screen of 600 ms, the two Ternus frames were presented 

synchronized with two auditory tones (i.e., baseline: ISIV = ISIA); this was followed by a 

blank screen of 300 to 500 ms, prior to a screen with a question mark prompting the 

participant to make a two-forced-choice response indicating the type of perceived motion 

(element or group motion). The ISIV between the two visual frames was randomly selected 

from one of the following seven intervals: 50, 80, 110, 140, 170, 200, and 230 ms. There were 

40 trials for each level of ISIV, counterbalanced with left- and rightward apparent motion. The 

presentation order of the trials was randomized for each participant. Participants performed a 

total of 280 trials, divided into 4 blocks of 70 trials each. After completing the pre-test, the 

psychometric curve was fitted to the proportions of group motion responses across the seven 

intervals (see Data Analysis and Modeling). The transition threshold, that is, the point of 

subjective equality (PSE) at which the participant was equally likely to report the two motion 
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percepts, was calculated by estimating the ISI at the point on the fitted curve that 

corresponded to 50% of group motion reports. The just noticeable difference (JND), an 

indicator of the sensitivity of apparent motion discrimination, was calculated as half of the 

difference between the lower (25%) and upper (75%) bounds of the thresholds from the 

psychometric curve.  

Main Experiments 

 In the main experiments, the procedure of visual stimulus presentation was the same as 

in the pre-test session, except that prior to the occurrence of the two Ternus display frames, an 

auditory sequence consisting a variable number of 6–8 beeps was presented (see below for the 

details of the onset of the Ternus display frames relative to that of the auditory sequence). As 

in the pre-test, the onset of the two visual Ternus frames (each presented for 30 ms) was 

accompanied by a (30-ms) auditory beep (i.e., ISIV = ISIA). A trial began with the 

presentation of a central fixation marker, randomly for 300 to 500 ms. After a 600-ms blank 

interval, the auditory train and the visual Ternus frames were presented (see Figure 1c), 

followed sequentially by a blank screen of 300 to 500 ms and a screen with a question mark at 

the screen center prompting participants to indicate the type of motion they had perceived: 

element versus group motion (non-speeded response). Participants were instructed to focus on 

the visual task, ignoring the sounds. After the response, the next trial started following a 

random inter-trial interval of 500 to 700 ms. 

 In Experiment 1 (regular sound sequence), the audiovisual Ternus frames was preceded 

by an auditory sequence of 6–8 beeps with a constant inter-stimulus interval (ISIA), 

manipulated to be 70 ms shorter than, equal to, or 70 ms longer than the transition threshold 

estimated in the pre-test. The total auditory sequence consisted of 8–10 beeps, including those 

accompanying the two visual Ternus frames, with the latter being inserted mainly at the 6th–

7th positions, and followed by 0–2 beeps (number selected at random), to minimize 

expectations as to the onset of the visual Ternus frames. Visual Ternus frames were presented 

on 75% of all trials (504 trials in total). The remaining 25% were catch trials (168 trials) to 

break up anticipatory processes. All trials were randomized and organized in 12 blocks, each 

of 56 trials. The ISIV between the two visual Ternus frames was randomly selected from one 

of the following seven intervals: 50, 80, 110, 140, 170, 200, and 230 ms.  
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 In Experiment 2 (irregular sound sequence), the settings were the same as in 

Experiment 1, except that the auditory trains were irregular: the ISIA between adjacent beeps 

in the auditory train (except the ISIA between the beeps accompanying the visual Ternus 

frames) were varied ±20 ms uniformly and randomly around (i.e., they were either 20 ms 

shorter or 20 ms longer than) a given mean interval (three levels: 70 ms shorter than, equal to, 

or 70 ms longer than the individual transition threshold). 

 Experiment 3 introduced two levels of variability in the auditory-interval sequences 

with 8–10 beeps: a low coefficient of variance (CV, the standard deviation divided by the 

mean) of 0.1 and, respectively, a high CV of 0.3. For each CV condition, three arithmetic 

mean intervals were used: 50 ms shorter than, equal to, or 50 ms longer than the estimated 

transition threshold. The intervals were randomly generated from a normal distribution with a 

given mean and CV. The number of the experimental trials was 1008, and the catch trials 

totaled 336. All trials were randomized and organized in 24 blocks, each block containing 56 

trials. 

 Experiment 4 used three types of auditory sequences, each consisting of 6 intervals: (i) 

Baseline auditory sequence: three intervals, of 110, 140, and 170 ms, were repeated twice in 

random order; in this baseline condition, the arithmetic mean (AM = 140 ms) was near-equal 

to the geometric mean (GM = 138 ms). (ii) AM-deviated sequence: 6 intervals were 

constructed from ISIA of 70, 140, and 280 ms, which were arranged randomly (AM = 163 ms 

> GM = 140 ms); (iii) GM-deviated sequence: 6 intervals constructed from ISIA 50, 140, and 

230 ms, arranged randomly (GM = 117 ms < AM = 140 ms). The audiovisual Ternus frames 

were appended at the end of these sequences. The number of experimental trials was 504 

(there were no catch trials), which were presented randomized and organized in 12 blocks, 

each of 42 trials. 

 To exclude potential confounding by a recency effect, in Experiment 5, we compared 

two auditory sequences: one with a geometric mean 70 ms shorter than the transition 

threshold of visual Ternus motion (henceforth referred to as ‘Short’ condition), and the other 

with a geometric mean 70 ms longer than the transition threshold (‘Long’ condition). Instead 

of completely randomizing the five auditory intervals (excepting the final synchronous 

auditory interval with the visual Ternus interval), the last auditory interval before the onset of 
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the Ternus display was fixed at the transition threshold for both sequences. The remaining 

four intervals were chosen randomly such that the CV of the auditory sequence was in the 

range between 0.1 and 0.2. This manipulation was expected to minimize the influence of any 

potential recency effect engendered by the last auditory interval. The audiovisual Ternus 

frames were appended at the end of these sequences on trials (i.e., 672 out of a total of 784 

trials) on which the Ternus display appeared at the end of the sound sequence (the ‘onset’ of 

the first visual frame was synchronized with 6th beep). The remaining (112) trials were catch 

trials, with 56 trials each on which the Ternus displays occurred at the beginning of the sound 

sequence (i.e., the onset of the first visual frame was synchronized with the second beep) or, 

respectively, at middle temporal locations (i.e., the onset of the first visual frame was 

synchronized with the 4th beep). These catch trials were introduced to prevent participants 

from consistently anticipating the visual events to occur at the end of the sound sequence. The 

total 784 trials were randomized and organized in 14 blocks, each of 56 trials. 

 

Data analysis and Modeling 

 We used the R package Quickpsy (Linares & López-Moliner, 2016) to fit psychometric 

curves with upper and lower asymptotes, which provide better estimates of the thresholds 

(Wichmann & Hill, 2001). Bayesian modeling was also conducted with R. We first calculated 

the response proportions for the baseline tests with (audio-) visual Ternus apparent motion 

and for the formal experiments, as well as fitting the corresponding cumulative Gaussian 

psychometric functions. Based on the psychometric functions, we could then estimate the 

discrimination variability of Ternus apparent motion (i.e., 𝜎𝑚 ) based on the standard 

deviation of the cumulative Gaussian function. The parameters of the Bayesian models (see 

Bayesian modeling section below) were estimated by minimizing the prediction errors using 

the R optim function. Our raw data together with the source code of statistical analyses and 

Bayesian modeling are available at the github repository: 

https://github.com/msenselab/temporal_averaging.   

 

 Results 
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Experiments 1 and 2:  Both regular and irregular auditory intervals alter the visual 

motion percept.  

We manipulated the intervals between successive beeps (i.e., the ISIA prior to the Ternus 

display) to be either regular or irregular, but with their arithmetic mean being either 70 ms 

shorter, equal to, or 70 ms longer than the transition threshold (measured in the pre-test) 

between element- and group-motion reports (for both regular and irregular ISIA). Auditory 

sequences with a relatively long mean auditory interval, as compared to a short interval, were 

found to elicit more reports of group motion, as indicated by the smaller PSEs (Figure 2), for 

both regular intervals, F(2,40)=12.22, p<0.001, 𝜂𝑔
2 = 0.112 , and irregular intervals, 

F(2,42)=8.25, p<0.001, 𝜂𝑔
2 =0.04. That is, the perceived visual interval (which determines the 

ensuing motion percept) was assimilated by the average of the preceding auditory intervals, 

regardless of whether the auditory intervals were regular or irregular. Post-hoc Bonferroni 

comparison tests revealed that this assimilation effect was mainly driven by the short auditory 

intervals in both experiments: ps were 0.001, 0.00001, and 0.57 for the comparisons -70 vs. 0 

ms, -70 vs. 70 ms, and, respectively, 0 vs. 70 ms for the regular intervals; and 0.015, 0.0002, 

0.77 for the comparisons of the irregular intervals (Figure 2C and 2D).  
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Figure 2.  The average means of both regular and irregular auditory sequences influence 

the visual motion percept. (A) Regular auditory-sequence condition: For a typical 

participant, mean proportions of group-motion responses as a function of the probe visual 

interval (ISIv), and fitted psychometric curves, for auditory sequences with different 

(arithmetic) mean intervals relative to the individual transition thresholds; the 

relative-interval labels (-70, 0, and 70) denote the three conditions of the mean auditory 

interval being 70 ms shorter than, equal to, and 70 ms longer than the pre-test transition 

threshold, respectively. (B) Irregular auditory-sequence condition: for a typical participant, 

mean proportions of group-motion responses and fitted psychometric curves. (C) Mean PSEs 

as a function of the relative auditory interval for the regular-sequence condition; error bars 

represent standard errors of the means. (D) Mean PSEs as a function of the relative auditory 

interval for the irregular-sequence condition; error bars represent standard errors of the 

means. 

 

The fact that a crossmodal assimilation effect was obtained even with irregular auditory 

sequences suggests that the effect is unlikely due to temporal expectation, or a general effect 

of auditory entrainment (Jones, Moynihan, MacKenzie, & Puente, 2002; Large & Jones, 

1999). In addition, the assimilation effect observed is unlikely due to a recency effect. To 

examine for such an effect, we split the trials into two categories according to the auditory 

interval that just preceded the visual Ternus interval: short and long preceding intervals with 

reference to the auditory mean interval. The length of the immediately preceding interval 

failed to produce any significant modulation of apparent visual motion, F(1, 22) = 2.14, p = 

0.15. An account in terms of a recency effect was further ruled out by a dedicated control 

experiment that directly fixed the last auditory interval (see Experiment 5 below). 

Furthermore, in the regular condition, the mean JNDs (±SE) for the three ISIV conditions 

[34.9 (±3.1), 30.5 (±3.4), and 28.4 (±2.9) ms for the ISIV 70 ms shorter, equal to, and, 

respectively, 70 ms longer relative to the transition threshold] were larger than the JND for 

the threshold (baseline) condition (18.8 (±1.2) ms; p=0.001, p=0.002, and p=0.033 for the 

shorter, equal, and longer conditions vs. the 'threshold'), without differing amongst 

themselves (all ps > 0.1). The same held true for the irregular condition [JNDs of 31.8 (±3.2), 
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p=0.001, 30.6 (±2.3), p=0.005, and 27.2 (±2.2) ms compared to the baseline 18.6 (±2.1) ms, 

without differing amongst themselves (all ps>0.1). The worsened sensitivities in the three 

conditions with auditory beep trains suggest that the assimilation effect observed here was not 

attributable to attentional entrainment, as attentional entrainment would have been expected 

to enhance the sensitivity.  

 

Experiment 3: Variability of auditory intervals influences visual Ternus apparent 

motion.  

According to quantitative models of multisensory integration (Ernst & Di Luca, 2011; 

Shi, Church, & Meck, 2013), the strength of the assimilation effect would be determined by 

the variability of both the auditory intervals and the visual Ternus interval, assuming that 

information is integrated from all intervals. According to optimal full integration, high 

variance of the auditory sequence would result in a low auditory weight in audiovisual 

integration, leading to a weaker assimilation effect compared to low variance. To examine for 

effects of the variance of the auditory intervals on visual Ternus apparent motion, we directly 

manipulated the relative standard deviation of the auditory intervals while fixing their 

arithmetic mean. One key property of time perception is that it is scalar (Church, Meck, & 

Gibbon, 1994; Gibbon, 1977), that is, the estimation error increases linearly as the time 

interval increases, approximately following Weber’s law. Given this, we used coefficients of 

variance (CVs), that is, the ratio of the standard deviation to the mean, to manipulate 

standardized variability across multiple auditory intervals. Specifically, we compared a low 

CV (0.1) with a high CV (0.3) condition, with an orthogonal variation of the (arithmetic) 

mean auditory interval: 50 ms shorter, equal to, or 50 ms longer than the pre-determined 

transition threshold. 

The main effect of mean interval was significant, F(2,30)=11.8, p<0.001, 𝜂𝑔
2 =

0.078, with long intervals leading to more reports of group motion (i.e., lower PSEs: mean 

PSE of 132±4.6 ms), short intervals to fewer reports of group motion (i.e., higher PSEs: mean 

PSE of 147±6.7 ms), and equal intervals to an intermediate proportion of group-motion 

reports (mean PSE of 138±5.3 ms). Post-hoc Bonferroni comparisons revealed this pattern to 

be similar to that observed in Experiments 1 and 2: significant differences between the short 
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and equal intervals (p<0.01) and the short and long intervals (p<0.001), but not between the 

equal and long intervals (p = 0.49). Interestingly, the main effect of CV was significant 

(though the effect size is small), F(1,15) = 5.29, p<0.05, 𝜂𝑔
2 = 0.044, while the interaction 

between mean interval and CV was not, F(2, 30)=0.31, p=0.73, 𝜂𝑔
2 = 0.0008 (Figure 3). 

Further examination for a (potentially confounding) recency effect, adopting the same 

comparison as for the previous experiments, yielded no evidence that the main effects we 

obtained are attributable to the length of the auditory interval immediately preceding the 

visual interval, F(1,15) = 0.33, p = 0.55.   

 

 

Figure 3. PSEs between element- and group-motion reports for auditory beep trains with a 

low and a high coefficient of (auditory-interval) variance (CV, 0.1 or 0.3), as a function of the 

(arithmetic) mean auditory interval (50 ms shorter, equal to, or 50 ms longer than the pre-test 

transition threshold). 

 

These results are interesting in two respects. First, according to mandatory, full Bayesian 

integration (see Modeling section below for details), auditory-interval variability should affect 

the weights of the crossmodal temporal integration (Buus, 1999; Shi et al., 2013), with greater 

variance lessening the influence of the average auditory interval. Accordingly, the slopes of 
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the fitted lines in Figure 2 would be expected to be flatter under the high compared to the low 

CV condition, yielding an interaction between mean interval and CV. The fact that this 

interaction was non-significant suggests that the ensemble mean of the auditory intervals is 

not fully integrated with the visual interval (we will return to this point in the next, Modeling 

section). Second, the downward shift of the PSEs in the low, compared to the high, CV 

condition indicates that the perceived auditory mean interval (that influences the audio-visual 

integration) is actually not the arithmetic mean (‘AM’) that we manipulated. An alternative 

account of this shift may derive from the fact the auditory sequences with higher CV have a 

lower geometric mean (‘GM’) than the sequences with low variance, that is: the perceived 

ensemble mean is likely geometrically encoded. Experiment 4 was designed to address this 

(potential) confound by directly comparing the effects of ensemble coding based on the 

geometric versus the arithmetic mean.  

 

Experiment 4: Perceptual averaging of auditory intervals assimilates the visual interval 

towards the geometric, rather than the arithmetic, mean.  

In Experiment 4, we compared three types of auditory sequence in our audiovisual 

Ternus apparent motion paradigm: a baseline sequence, an AM-deviated sequence, and a 

GM-deviated sequence. The PSEs were 136 (±5.46), 148 (±6.17), and 136 (±6.2) ms for the 

AM-deviated (AriM), the GM-deviated (GeoM), and the baseline conditions, respectively, 

F(2, 22)=8.81, p<0.05, ηg
2 = 0.08 (Figure 4). Bonferroni-corrected comparisons revealed the 

transition threshold to be significantly larger for the GeoM compared to the baseline 

condition, p<0.01, whereas there was no difference between the AriM and the baseline 

condition, p=1. This pattern indicates that ensemble coding of the auditory interval 

assimilates the visual interval towards the geometric, rather than the arithmetic, mean.   

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/362665doi: bioRxiv preprint 

https://doi.org/10.1101/362665
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
 

 

Figure 4. Auditory geometric mean assimilates visual Ternus apparent motion. (A) For a 

typical participant, mean proportions of group-motion responses as a function of the probe 

visual interval (ISIv), and fitted psychometric curves, for the three auditory-sequence 

conditions: (i) sequence of intervals with larger arithmetic mean (AriM); (ii) sequence of 

intervals with smaller geometric mean (GeoM); (iii) baseline sequence with equal arithmetic 

and geometric means (140 ms). (B) Mean PSEs (with error bars representing standard errors 

of the means) for the three auditory-sequence conditions. Compared to the baseline sequence, 

the GeoM sequence (with the smaller geometric mean) produced a significant shift of the 

visual transition threshold, whereas the AriM sequence (with the larger arithmetic mean) did 

not. 

 

Experiment 5: Auditory sequences with the last interval fixed 

In Experiments 1–3, we split the data according to the last interval (i.e., the interval 

preceding the visual Ternus display) of the auditory sequence into two categories (short vs. 

long), which failed to reveal any influence of the last interval. In Experiment 5, we formally 

manipulated the last interval by fixing it at the respective transition threshold for the ‘Short’ 

and ‘Long’ auditory sequences (i.e., sequences with the smaller and, respectively, larger 

geometric means). Figure 5 depicts the responses of a typical participant from Experiment 5. 

The PSEs were 153.1 (±7.3) and, respectively, 137.9 (±9.1) for the ‘Short and ‘Long’ 

conditions, respectively, t(11)=3.640, p<0.01. That is, reports of element motion were more 
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dominant in the ‘Short’ than in the ‘Long’ condition, replicating the findings of the previous 

experiments. In other words, it was the mean auditory interval, rather than the last interval 

(prior to the Ternus frames), that assimilated visual Ternus apparent motion. Given this, the 

audiovisual interactions we found here are unlikely attributable to a recency effect.    

 

Figure 5. Mean proportions of group-motion responses from a typical participant as a 

function of the probe visual interval (ISIv), and fitted psychometric curves, for the two 

geometric mean conditions: the ‘Short’ sequence (with the smaller geometric mean) and the 

‘Long’ sequence (with the larger geometric mean). 

Bayesian modeling 

To account for the above findings, we implemented, and compared two variants of 

Bayesian integration models: mandatory full Bayesian integration and partial Bayesian 

integration. If the ensemble-coded auditory-interval mean (𝐴) and the audiovisual Ternus 

display interval (𝑀) are fully integrated according to the maximum likelihood estimation 

(MLE) principle (Ernst & Banks, 2002), and both are normally distributed (e.g., fluctuating 

due to internal Gaussian noise) – that is: 𝐴 ∼ 𝑁(𝐼𝑎 , 𝜎𝑎), 𝑀 ∼ 𝑁(𝐼𝑚 , 𝜎𝑚) – the expected 

optimally integrated audio-visual interval, which yields minimum variability, can be predicted 

as follows: 

𝐼̂𝑓𝑢𝑙𝑙 = 𝑤𝐼𝑎 + (1 − 𝑤)𝐼𝑚 ,        (1) 

where 𝑤 =
1

𝜎𝑎
2 /(

1

𝜎𝑎
2 +

1

𝜎𝑚
2 )  is the weight of the averaged auditory interval, which is 

proportional to its reliability. Note that full optimal integration is typically observed when the 
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two ‘cues’ are close to each other, but it breaks down when their discrepancy becomes too 

large (Kording et al., 2007; Parise, Spence, & Ernst, 2012; Roach et al., 2006). In our study, 

the Ternus interval and the mean auditory interval could differ substantially on some trials 

(e.g., visual interval of 50 ms paired with mean auditory interval of 210 ms). Given this, a 

more appropriate model would need to take a ‘discrepancy’ prior and the causal structure 

(Kording et al., 2007) of audio-visual temporal integration into consideration. Thus, similar to 

(Roach et al., 2006), here we assume that the probability of full integration 𝑃𝑎𝑚 depends on 

the discrepancy between the mean auditory and Ternus intervals: 

𝑃𝑎𝑚 ∼ 𝑒−(𝐼𝑎−𝐼𝑚)2/𝜎𝑎𝑚
2

,        (2) 

where 𝜎𝑎𝑚
2  is the variance of the sensory measures of the discrepancy between the ensemble 

mean of the auditory intervals and the visual interval. 𝑃𝑎𝑚 will vary from trial to trial, 

depending on the discrepancy between the mean auditory interval and the visual interval. 

Thus, a more general, partial integration model would predict: 

𝐼̂ 𝑎𝑣 = 𝑃𝑎𝑚 𝐼̂𝑓𝑢𝑙𝑙 + (1 − 𝑃𝑎𝑚)𝐼𝑣.       (3) 

Combined with equation (1), equation (3) can be simplified as follows: 

𝐼̂ 𝑎𝑣 = (1 − 𝑤𝑃𝑎𝑚)𝐼𝑣 + 𝑤𝑃𝑎𝑚𝐼𝑎 .       (4) 

To compare the full-integration and partial-integration models, we took into account the 

data from those of our experiments that manipulated the auditory-interval regularity and 

variability (Experiments 1–3; we excluded Experiments 4 and 5, as these did not include a 

baseline task of Ternus apparent-motion perception; see Methods section). Given that the 

baseline task provided an estimate of 𝜎𝑚 , there is one parameter – 𝜎𝑎  – for the 

full-integration model and two parameters – 𝜎𝑎 and 𝜎𝑎𝑚 – for the partial-integration model, 

which require parameter fitting. This was carried out using the optimization algorithm 

L-BFGS in R (see our source code at https://github.com/msenselab/temporal_averaging). We 

assessed the goodness of the resulting fits by means of coefficients of determination (𝑅2) and 

Bayesian information criteria (BIC). The BIC and 𝑅2 scores are presented in Table 1. As can 

be seen, the BIC differences between the partial- and full-integration models are large for all 
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experiments, clearly favoring the partial-integration model (Kass & Raftery, 1995). The 𝑅2 

values also confirms this.  

 

Table 1. Model comparison using BIC and 𝑹𝟐 for the partial- and full-integration model 

Experiments Partial Integration Full Integration  

BIC  𝑅2  BIC  𝑅2  𝜟BIC 

Irregular -1859 0.86 -1392 0.63 467 

Regular -1932 0.91 -1772 0.88 160 

Variance -2894 0.91 -2878 0.91 16 

Note. The differential BICs scores revealed the partial-integration model to outperform 

the full-integration model across all experiments (very strong evidence in all 

experiments: 𝜟BIC >10).  

To visualize how well the partial-integration model predicts behavioral performance, we 

calculated the predicted mean responses based on the partial-integration model for individual 

visual ISIs across all experimental conditions. Figure 6 illustrates the predictions, indicated by 

curves, together with the observed mean responses, indicated by shape points. As can be seen, 

the predicted mean responses are within one standard error of the observed mean responses 

(Figure 6).  
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Figure 6. Mean behavioral responses (proportion of group-motion reports, indicated by 

shape points) and responses predicted by the partial-integration model (indicated by curves) 

as a function of the ISIV of the Ternus display, separately for auditory sequences with 

different (arithmetic) mean intervals relative to the individual transition thresholds. The 

relative-interval labels (-70, -50, 0, 50, and 70 [ms]) denote the magnitude of the difference 

between the mean auditory interval and the transition threshold. Error bars denote standard 

errors of means (±SEM). 

 

The key difference between the full- and partial-integration models is that the latter takes 

the probability of crossmodal integration into account; accordingly, the weight of the auditory 

ensemble intervals (i.e., 𝑤𝑃𝑎𝑚) depends on the difference between the ensemble mean of the 

auditory intervals and the visual interval. This can be seen in Figure 7, which illustrates the 

dynamic changes of the auditory weights across the various audio-visual interval discrepancy 

conditions. All three experiments exhibit a similar pattern: weights are at their peak when the 

visual interval and the auditory mean intervals are close to each other. For example, the peaks 

for the relative intervals of 0 ms (i.e., the auditory mean intervals were set to the individual 

visual thresholds) are around 140 ms, close to the mean visual transition threshold (134.6 ms 
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for regular and 135.3 ms for irregular sequences, and 139.0 ms for low and 144.8 ms for high 

variance). For relative intervals of 70 ms, the peaks are shifted rightwards; and for relative 

intervals of -70 ms, they are shifted leftwards.  

 

Figure 7. Predicted weights (i.e., 𝑤𝑃𝑎𝑚 , based on the partial-integration model) of the 

auditory ensemble intervals as a function of the ISIV of the Ternus display, separately for 

auditory sequences with different (arithmetic) mean intervals relative to the individual 

transition thresholds. The relative-interval labels (-70, -50, 0, 50, and 70 ms) denote the 

magnitude of the difference between the mean auditory interval and the transition threshold. 

Based on the responses predicted by the partial-integration model, we further calculated 

the predicted PSEs. Figure 8 shows a linear relation between the observed and predicted PSEs 

for all experiments. Linear regression revealed a significant linear correlation, with a slope of 

0.978 and an adjusted 𝑅2 = 0.983. The full-integration model, by contrast, produced flat 

psychometric curves for 6% of the individual conditions in Experiments 1 and 2 (due to the 

weight of the mean auditory interval approaching 1), which yielded unreliable estimates of 

the corresponding PSEs. This led to lower predictive power compared to the 

partial-integration model, as evidenced by the BIC and R2 scores (Table 1). Thus, taken 

together, the partial-integration model can well explain the behavioral data that we observed.  
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Figure 8. Predicted PSEs versus observed PSEs for all experiments. Each dot represents the 

PSE of one particular observer in a given experimental condition. Shape points represent the 

four auditory-sequence manipulations. Linear regression revealed a significant high 

correlation (𝑅2 = 0.983) and a slope of 1.008. 

General Discussion 

Using an audiovisual Ternus apparent motion paradigm, we conducted five experiments 

on audiovisual temporal integration with regular and irregular auditory sequences presented 

prior to the (audio-) visual Ternus display. We found that perceptual averaging of both regular 

(Experiment 1) and irregular auditory sequences (Experiments 2 and 3) greatly influenced the 

timing of the subsequent visual interval, as expressed in systematic changes of the transition 

threshold in visual Ternus apparent motion: longer mean auditory intervals elicited more 

reports of group motion, whereas shorter mean intervals gave rise to dominant element 

motion. In Experiment 4, we further found that the geometric mean of the auditory intervals 

can explain the audiovisual interaction better than the arithmetic mean. Further (post-hoc) 

analyses and a purpose-designed experiment (Experiment 5) effectively ruled out an 

explanation of these findings in terms of a recency effect, that is, a dominant influence of the 

last interval prior to the Ternus frames. Using a Bayesian integration approach, we showed 

that the behavioral responses are best predicted by partial-cue integration, rather than by full 

integration. Thus, our results reveal the processing – in particular, the temporal averaging – of 
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a train of beeps that forms the background context of the visual task to play a critical role in 

crossmodal temporal integration, even when participants are asked to ignore the auditory 

stimuli. 

Perceptual averaging and crossmodal temporal rate interaction  

Extracting key statistical information from sets of objects or events in our environment 

would provide us with a perceptual strategy to cope with limitations in attentional and 

working memory capacity (Allik, Toom, Raidvee, Averin, & Kreegipuu, 2014; Chetverikov, 

Campana, & Kristjansson, 2016) – given that we can have conscious access to only very few 

items from the total amount of information received by our senses at any one time (e.g., 

Bundesen, Habekost, & Kyllingsbaek, 2005; Cohen, Dennett, & Kanwisher, 2016; Cowan, 

2001; Marois & Ivanoff, 2005). In this situation, perceptual averaging would endow us with 

an efficient and, in evolutionary terms, competitive solution to overcome bandwidth 

limitations (McClelland & Bayne, 2016), thus constituting one of the underlying 

computational principles for selecting appropriate actions to achieve our current behavioral 

goals. Clearly, timing is fundamental for dynamic perception, and therefore unlikely to be an 

exception with regard to perceptual averaging (Hardy & Buonomano, 2016; McDermott & 

Simoncelli, 2011). For instance, when listening to a piece of music, we can immediately tell 

the average tempo, even though the individual ‘notes’ may not be well remembered. And 

when watching a field of runners in a competition, we immediately know whether it is a slow 

or a fast race overall.  

Research on the audiovisual interaction in (crossmodal) event timing has shown auditory 

rate to have a pronounced influence on visual rate perception (Recanzone, 2003, 2009; Roach 

et al., 2006; Shipley, 1964). The visual temporal rate is often assimilated to the auditory rate, 

owing to the higher temporal resolution of audition compared to vision. Of note, however, the 

extant studies have used only regular temporal sequences, thus leaving it an open question 

whether the mechanism underlying the assimilation effect is perceptual averaging, temporal 

entrainment, or a recency effect from the latest auditory interval. On this background, the 

present study examined how irregular auditory sequences influence visual interval timing – 

measured in terms of the transition threshold of Ternus apparent motion – and showed that it 
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is the temporal averaging of the auditory sequence (regardless of its regularity) that exerted a 

great influence on the visual interval.  

Temporal averaging and geometric encoding 

The present results indicate that the geometric mean well encapsulates the summary 

statistics of the temporal structure hidden in a complex multisensory stream (Hanson, Heron, 

& Whitaker, 2008; Heron, Roach, Hanson, McGraw, & Whitaker, 2012). Previous work on 

numerosity had already suggested that the mental scales underlying the representation of 

visual numerosity and temporal magnitudes are best characterized as being non-linear, as 

opposed to linear, in nature (Dehaene, 2003; Dehaene et al., 2008; Nieder & Miller, 2003, 

2004; Rips, 2013). For example, adults from the Mundurucu, an Amazonian indigenous tribe 

with a limited number lexicon, map numerical quantities onto space in a logarithmic fashion 

( Dehaene et al., 2008; but see Cicchini, Arrighi, Cecchetti, Giusti, & Burr, 2012). A seminal 

study by Allan and Gibbon also showed that temporal bisection coincided with the geometric 

mean of the two reference durations (Allan & Gibbon, 1991). Our findings reveal that 

extraction of the geometric mean also underlies temporal averaging – and this might well be a 

principle shared by a broad range of mechanisms coding ‘magnitude’ in perception (Walsh, 

2003).  

Partial integration in crossmodal temporal processing 

Research on multisensory integration has shown that the ‘proximity’ and ‘similarity’ of 

the spatiotemporal structure of multisensory signals – technically, their cross-correlation in 

time (and space) – is critical for inferring an underlying common source to both signal 

streams (Parise & Ernst, 2016; Parise et al., 2012). Accordingly, highly correlated audiovisual 

events are likely perceived as arising from a single, multisensory source. Roach and 

colleagues (2006) quantified this for audiovisual rate perception by introducing a disparity 

prior, that is, their model assumes that the strength of crossmodal temporal integration is 

dependent on the disparity between the auditory and visual temporal rates.  

In the present study, by comparing two variants of Bayesian integration models, full and 

partial integration, our findings also quantitatively elucidate the way in which geometric 
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averaging of the preceding, task-irrelevant auditory intervals assimilates the subsequent, 

perceived visual interval between the Ternus display frames. The modeling results indicate 

that the ensemble mean of the auditory intervals only partially integrates with the visual 

interval, dependent on the time disparity between the two: when the mean of the auditory 

intervals is close to the visual interval, they are optimally integrated according to the MLE 

principle; in contrast, if the ensemble mean deviates grossly from the visual interval, partial 

integration, based on the crossmodal disparity, provides a superior account of the behavioral 

data to mandatory, full integration. However, in contrast to full integration, partial integration 

requires participants to take both the mean statistics and the crossmodal disparity into 

account. This is consistent with a large body of literature on temporal contextual modulation, 

within the broader framework of Bayesian optimization (Jazayeri & Shadlen, 2010; Roach, 

McGraw, Whitaker, & Heron, 2017; Shi et al., 2013), where prior information (e.g., history 

information or a discrepancy prior) is incorporated in multisensory integration.  

Perceptual averaging and temporal entrainment 

 One important question to be considered is whether the assimilation effect induced by 

perceptual averaging can be distinguished, at root, from attentional entrainment. In the typical 

auditory entrainment paradigm, the rhythm itself is irrelevant with respect to the visual target 

events that are to be detected (or discriminated), though temporal expectations induced by the 

rhythm influence attentional selection of the target (Lakatos, Karmos, Mehta, Ulbert, & 

Schroeder, 2008). Rhythmically (i.e., with temporal attention) anticipated target events are 

detected or discriminated more rapidly than early or late events that are out of phase with the 

peaks of the attentional modulation induced by the entrainment (Ronconi & Melcher, 2017). 

Irregular rhythms, by contrast, have been shown to disrupt temporal attention, as evidenced 

by reduced benefits for responding to the target events (Miller, Carlson, & McAuley, 2013). 

Importantly, in present study, both regular and irregular auditory sequences did reduce (rather 

than enhance) the sensitivity of discriminating Ternus apparent (i.e., element vs. group) 

motion, as evidenced by the increased JNDs. In contrast, the averaged temporal intervals, 

whether these formed a regular or irregular series, were automatically integrated with the 

subsequent visual interval, as expressed in the systematic biasing of the reported visual 
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motion percepts. This ‘dissociation’ implies that the assimilation effects demonstrated here 

reflect a genuine, automatic perceptual averaging mechanism that operates independently of 

attentional entrainment processes.   

Irrelevant context in multisensory perceptual averaging 

One might ask why the brain would at all take into account entirely task-irrelevant 

contexts – such as, in the present study, the (mean of the) intervals of an irrelevant auditory 

sequence – in multisensory integration. As revealed by our experiments, the discrimination 

sensitivity for visual apparent motion became actually worse and the motion percept became 

biased by including the irrelevant auditory sequence. Note however that, in the real world, 

there are normally strong associations and correlations in the multisensory inputs – so that 

drawing on this additional information often increases the reliability of perceptual estimates. 

For example, the rhythmic sound pattern produced by a train moving along the track would 

help us improve our estimation of the train’s speed, given that the tempo of the track sound is 

linearly correlated with the speed of the train. Indeed, convergent evidence suggests that 

multisensory integration can reduce the uncertainty of the final estimates in many situations 

(Ernst & Banks, 2002; Ernst & Di Luca, 2011). However, integrating multiple sources of 

information that deviates from the currently relevant information may engender unwanted 

biases. Such contextual modulations have been reported in various forms. For example, when 

performing a series of time estimations, observers’ judgment of a given interval is biased 

toward the intervals that they just experienced (Jazayeri & Shadlen, 2010) – which is known 

as a central-tendency effect (Petzschner, Glasauer, & Stephan, 2015; Shi & Burr, 2016; Shi et 

al., 2013). A similar contextual modulation is also at work in the so-called time-shrinking 

illusion, in which the percept of the last auditory interval is assimilated by the preceding 

intervals (Nakajima, ten Hoopen, Hilkhuysen, & Sasaki, 1992; Nakajima et al., 2004), as well 

as in audiovisual interval judgments when auditory and visual intervals are presented 

sequentially (Burr et al., 2013). The present study demonstrated that such an audiovisual 

integration still occurs even when participants are explicitly told to ignore the (task-irrelevant) 

auditory sequence, suggesting that processes of top-down control cannot fully shield visual 

motion perception from audiovisual temporal integration.   
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Conclusion 

It has long been known that auditory flutter drives visual flicker (Shipley, 1964) – a 

typical phenomenon of audiovisual temporal interaction with regular auditory sequences. 

Here, in five experiments, we demonstrated that irregular auditory sequences also capture 

temporal processing of subsequently presented visual (target) events, measured in terms of the 

biasing of Ternus apparent motion. Importantly, it is the geometric averaging of the auditory 

intervals that assimilates the visual interval between the two visual Ternus display frames, 

thereby influencing decisions on perceived visual motion. Further work is required to 

examine whether the principles of geometric averaging and partial crossmodal integration 

demonstrated here (for an audiovisual dynamic perception scenario) generalize to other 

perceptual mechanisms underlying magnitude estimation in multisensory integration. 

Context of the Research 

Perceptual averaging of sensory properties, such as the mean number, size, and spatial 

layout of objects in a scene, has been documented extensively in the visuospatial domain. It 

allows us to capture our environment at a glance, in summary terms – overcoming attentional 

and working-memory capacity limitations. This phenomenon prompted us to ask whether and, 

if so, how processes of perceptual averaging may also be applied in the temporal domain, 

specifically in (crossmodal) scenarios involving multiple interacting sensory systems. Thus, 

we designed a paradigm combining a task-irrelevant temporal sequence of auditory events 

with task-relevant Ternus apparent motion – a phenomenon where we see two aligned dots 

either move together (e.g., to the left or right) or only one dot ‘jumping’ across the other 

(apparently stationary) dot. What we see (group vs. element motion) is critically influenced 

by the temporal interval between the two Ternus display frames. What we found is that the 

irrelevant auditory sequence preceding the visual Ternus display alters the visual interval, 

thus biasing observers to see either more group motion or more element motion, depending 

the geometric mean of the preceding auditory intervals. This interaction depends on the 

discrepancy between the (mean) auditory and the visual interval: if the discrepancy becomes 

too large, no interaction occurs. Conceptually, the finding of temporal averaging over a 

sequence of auditory intervals and its subsequent influence on the visual interval makes a 
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connection to the psychophysically well-established central-tendency effect, in which the 

prior sampled distribution – here: of the auditory intervals – ‘assimilates’ the estimate – here: 

the visual interval. Although we have provided a formal (partial Bayesian integration) 

description of this crossmodal assimilation effect, further, purpose-designed research is 

required to provide a complete picture of underlying, interacting neural mechanisms.  
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