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Abstract

A common complementary strategy in Genome-Wide Association Studies (GWAS)
is to perform Gene Set Analysis (GSA), which tests for the association between one
phenotype of interest and an entire set of Single Nucleotide Polymorphisms (SNPs)
residing in selected genes. While there exist many tools for performing GSA, popular
methods often include a number of ad-hoc steps that are difficult to justify statistically,
provide complicated interpretations based on permutation inference, and demonstrate
poor operating characteristics. Additionally, the lack of gold standard gene set lists can
produce misleading results and create difficulties in comparing analyses even across the
same phenotype. We introduce the Generalized Berk-Jones (GBJ) statistic for GSA, a
permutation-free parametric framework that offers asymptotic power guarantees in cer-
tain set-based testing settings. To adjust for confounding introduced by different gene
set lists, we further develop a GBJ step-down inference technique that can discrimi-
nate between gene sets driven to significance by single genes and those demonstrating
group-level effects. We compare GBJ to popular alternatives through simulation and
re-analysis of summary statistics from a large breast cancer GWAS, and we show how
GBJ can increase power by incorporating information from multiple signals in the same
gene. In addition, we illustrate how breast cancer pathway analysis can be confounded
by the frequency of FGFR2 in pathway lists. Our approach is further validated on two
other datasets of summary statistics generated from GWAS of height and schizophre-
nia.
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Introduction

A common objective in genetic association studies is to search for associations between

phenotypes and genomic constructs that are larger than a Single Nucleotide Polymorphism

(SNP). One popular unit of analysis is the set of all SNPs that are located near a list of

related genes; inference on these sets is generally referred to as gene set analysis (GSA) or

pathway analysis1. In recent years, GSA has successfully identified novel gene sets associated

with a wide range of outcomes2–4.

GSA does not yet possess the popularity of individual SNP approaches5 such as the

Genome-Wide Association Study (GWAS), but there are advantages to testing for associ-

ations at a higher level6. Many biological processes are driven by mechanisms involving

more than one variant, and thus set-based inference may offer more useful interpretations7.

In addition, set-based inference can increase power over individual-SNP methods by pooling

many weaker pieces of evidence into a larger, more detectable signal8. GSA can also improve

power by alleviating the multiple testing burden of GWAS9.

However, realizing the aforementioned benefits is hampered by a lack of consensus

surrounding the most suitable methods for GSA. The literature contains dozens of tools10–18

for performing gene set analysis, but there is little agreement on how to choose between so

many competing ideas19–21. Existing GSA methods are frequently cited for flaws including

insufficient power22, an inability to provide statistically valid tests under certain parameter

settings23, and a reliance on permutation-based inference24. More specifically, many existing

methods fail to control the Type I error rate for genes with unconventional characteristics

- for example, genes with a small number of SNPs or a large amount of correlation25,26.

Permutation offers a valid solution, but complicated resampling schemes often muddle the

null hypotheses being tested and result in confusing interpretations18,27. Permutation can

also be extremely computationally expensive when attempting to control for multiple testing,

e.g. a Bonferroni correction to control the family wise error rate over 10,000 tested pathways

requires approximately ten million iterations.

Another key challenge, which few methods have attempted to address, is the lack

of standardized gene set lists in the public domain28,29. While there exist multiple sources

for such information, gene set definitions can be highly differentiated across databases, and

small differences can lead to large inconsistencies in results. As a representative example,

we consider the case of the FGFR2 gene in breast cancer. In the largest breast cancer

GWAS cohort to date, SNPs near FGFR2 demonstrate association at p < 10−300; these

are the smallest p-values across the entire genome. Subsequent pathway analysis of this

GWAS30 tests approximately 4,000 pathways - 182 containing FGFR2 - and concludes that
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86 of the top 100 pathways all contain FGFR2. Clearly a pathway is extremely likely to be

found significant if it contains FGFR2, and thus pathways unrelated to breast cancer may

be artificially driven to the top of the results based on the decision to include or exclude a

single gene. For instance, the Gene Ontology31 pathway Ear Morphogenesis includes FGFR2

and is ranked among the top 100 most significant gene sets, but as we will show later, the

same pathway defined without FGFR2 possesses minimal association with breast cancer.

Pathway lists that do not include FGFR2 in their version of an ear morphogenesis pathway

may have difficulty replicating a seemingly strong association.

In this paper we make three key contributions toward overcoming the above chal-

lenges. First, we introduce a class of supremum-based goodness-of-fit tests for gene set

analysis, demonstrating how they can be adapted for use in the GSA framework and focus-

ing in particular on use of the Generalized Berk-Jones (GBJ) statistic. Originally developed

for optimal detection of sparse signals in independent data32, the aforementioned class in-

cludes the Higher Criticism (HC) and Berk-Jones (BJ) statistics, which have been adapted

for correlated data through the Generalized Higher Criticism (GHC) and GBJ. These statis-

tics possess, in a certain sense, optimal power for detection of a set-based effect when many

elements of the set may individually demonstrate no association, as in testing for the effect of

a gene set that may contain an appreciable subset of neutral variants. Among tests derived

from this class of statistics, GBJ demonstrates more robust and powerful performance than

the Generalized Higher Criticism33 when testing gene sets in a range of practical settings34,

while other tests in the class have not yet been adapted to account for correlation. Unlike

other GSA methods that rely on permutation to adjust for correlation and frequently sum-

marize information at the gene level with a single value28, GHC and GBJ admit analytic

p-value calculations that avoid permutation and automatically account for features such as

the size of a gene set and LD patterns between SNPs. Both tests have also been shown to

protect Type I error rates at very stringent levels34.

Secondly, we propose a step-down GSA inference procedure that can identify gene

sets driven to significance solely by a few genes, as opposed to gene sets containing signals

spread throughout the entire group. This procedure relies on the self-contained6, one-step

nature of GBJ, which allows for a unified approach to testing the association between single

genes and the outcome. Re-analyzing a set after removal of its most significant genes can

uncover the gene sets and themes which will still demonstrate replicable associations over

different pathway databases. Such sets are also arguably more important from a biological

standpoint.

Thirdly, we illustrate the utility of both GBJ and the step-down procedure through
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simulation and re-analysis of summary statistics from a large breast cancer GWAS dataset.

Simulation demonstrates the additional power of GBJ over alternatives including GHC,

the popular Gene Set Enrichment Analysis (GSEA)11, and MAGMA18. Simulations also

show that the step-down procedure is adept at distinguishing between pathways with single-

gene signals and those containing multi-gene signals. Review of the breast cancer step-

down results illustrates that many seemingly significant sets are completely dependent upon

FGFR2 and a few other genes for their strong association signals. These sets deserve further

screening before their significant association with breast cancer is reported.

Finally, we apply GBJ in a cross-phenotype analysis of breast cancer, height, and

schizophrenia to investigate certain gene set properties that have received less attention in

the literature. This work finds that the pathways significantly associated with human height

are much more likely to contain signals spread throughout an entire gene set, while pathways

associated with breast cancer are more likely to see their signals localized to a few genes. We

additionally observe that immune system pathways are highly associated with schizophrenia,

while growth pathways are often linked with height and breast cancer.

Materials and Methods

Overview of GBJ

The Generalized Berk-Jones statistic provides a powerful parametric approach for testing the

association between a set of SNPs and a phenotype using marginal SNP summary statistics.

Consider a gene set that contains d SNPs. The d summary statistics for these SNPs, Z =

(Z1, ..., Zd)
T , follow a joint multivariate normal distribution,

Z ∼ MVN(µZ,Σ),

where the diagonal elements of Σ are all 1. GBJ aims to robustly test H0 : µZ = 0d×1

against H1 : µZ 6= 0d×1 when µZ contains a subset of zeros and while accounting for the

correlation between test statistics. Thus common GSA features such as LD between SNPs

and multiple neutral variants are automatically incorporated into the statistical framework.

GHC and other tests in the goodness-of-fit class operate similarly, but for reasons of space,

we will limit comparisons to simulation results.

The null hypothesis corresponds to the situation where no SNPs in the entire set are

associated with the outcome, after correction for confounders. When performing GSA with

genotype-level data for each subject, it is necessary to both calculate Z and estimate Σ, and
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when summary statistics are available, it is only necessary to estimate Σ.

Calculation of Z and Σ with genotype-level data

Suppose we have genotype-level data for i = 1, 2, ..., n subjects at a set of j = 1, 2, ..., d SNPs,

so that the genotype vector for subject i is Gi = (Gi1, ..., Gid)
T . Let G = [G1, ...,Gn]T be the

n× d genotype matrix. Suppose also that we have a set of q additional covariates contained

in X = [X1, ...,Xn]T , which is an n × q matrix with Xi = (Xi1, ..., Xiq)
T for i = 1, ..., n.

Denote the outcome by Yi and let µi be the mean of Yi conditional on Gi and Xi. Consider

the generalized linear model35 (GLM) for µi given by

g(µi) = α0 + αTXi + βTGi,

where g(·) is a canonical link function, for instance, g(µi) = µi for normally distributed

phenotypes and g(µi) = logit(µi) for binary phenotypes. We are interested in testing the

null hypothesis of no gene set effect H0 : β = 0d×1 against the alternative H1 : β 6= 0d×1. As

some SNPs in a gene set are likely neutral variants, we allow elements of β to equal 0 under

H1. The marginal score test statistic under the null is

Zj =
GT

.j (Y − µ̂0)√
GT

.jPG.j

(1)

for any SNP j = 1, ..., d in the gene set. Note that H0 : β = 0d×1 in the regression model

corresponds to the null hypothesis H0 : µZ = 0d×1 from above. Here Y = (Y1, .., Yn)T , µ̂0 =

{µ̂01, ..., µ̂0n}T =
{
g(α̂T

0 X1), ..., g(α̂T
0 Xn)

}T

, and α̂0 is the MLE of α under H0 : β = 0d×1.

Also we define the single variant vector G.j = (G1j, ..., Gnj)
T , the projection matrix P = W−

WX(XTWX)−1XTW, and the GLM weight matrix W = diag
{
a1(φ̂)v(µ̂01), ..., an(φ̂)v(µ̂0n)

}
.

The standard GLM dispersion parameter is given by ai(φ̂), and the standard GLM variance

function is v(µ̂0i), where v(µ̂0i) = 1 for a normally distributed phenotype and v(µ̂0i) =

µ̂0i(1− µ̂0i) for a binary phenotype. The Zj are asymptotically equivalent to the individual

SNP test statistics calculated by many popular tools, such as the Wald statistics produced

by PLINK36. A consistent estimate of the correlation between Zj and Zk is then given by

Σ̂jk =
GT

.jPG.k√
GT

.jPG.j

√
GT

.kPG.k

. (2)
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Estimation of Σ with precalculated summary statistics

Precalculated marginal summary statistics are much more available than subject-level data.

When using these summary statistics, we need to estimate their correlation structure from

a reference LD panel containing individuals of a similar ethnicity, e.g. data from the 1000

Genomes Project37. Specifically, let G
(r)
.j and G

(r)
.k denote the genotype of each subject in

the reference panel at SNPs j and k. Also let X(r) = (1,PC1, ...,PCm) denote a modified

design matrix, where m is the same number of principal components used in the original

analysis, and PC1, ..,PCm are PCs calculated from the reference data. Using X(r) instead

of X, (G
(r)
.j ,G

(r)
.k ) instead of (G.j,G.k), and any constant in place of g(α̂T

0 Xi) in Equation 2

provides a good approximation to Σ̂jk.

The motivation for this approximation comes from the observation that the primary

confounders of the SNP-outcome relationship are the principal components. Thus a close

substitute for the original design matrix in Equation 2 can be constructed using only the

PCs. In practice we have found this substitution to be very reliable.

The Generalized Berk-Jones statistic

Next assume we have calculated or been supplied a vector of test statistics Z
H0∼ N(0d×1,Σ).

Denote by Φ̄(t) = 1−Φ(t) the survival function of a standard normal random variable, with

Φ−1(t) denoting its inverse. Further designate |Z|(j) as the order statistics of the vector that

arises from applying the absolute value operator to each element of Z, so that |Z|(1) is the

smallest element of Z in absolute value. Finally define the significance thresholding function

S(t) =
d∑

j=1

1 (|Zj| ≥ t) ,

where t > 0 is the threshold.

It is helpful to think of S(t) as the “number of significant SNPs at threshold t.” For

example, in GWAS, some researchers set t = 5.45131 so that S(t) counts the number of

SNPs with p-values less than 5× 10−8, the commonly-used cutoff for declaring genome-wide

significance38. Other set-based methods implicitly set t equal to |Z|(d) and carry forward

|Z|(d) as the representative test statistic for the entire set23. However in both of these

examples, the choice of t is rather arbitrary and relies on a one-size-fits-all-sets approach.

In particular, neither choice of t makes full use of the data, ignoring factors such as the

size of the set and the LD pattern among SNPs. More importantly, moderately significant

SNPs that do not reach a GWAS threshold or demonstrate the lowest p-value in a gene can
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cumulatively produce a major contribution to the phenotype. A key concept behind GBJ is

that it can adaptively find the threshold t that best maximizes power for any given set while

adjusting for the size of the set and the correlation structure of the SNPs.

Consider first the case of no LD, Σ = I, where I is the identity matrix. Then for a

fixed t under the null hypothesis, S(t) has the binomial distribution S(t) ∼ Bin(d, π) with

π = 2Φ̄(t). This observation motivates the Berk-Jones (BJ) statistic39, which can be written

as40,

BJd = max
1≤j≤d/2

log

Pr

{
S(|Z|(d−j+1)) = j

∣∣∣∣E(Z) = µ̂j,d · Jd

}
Pr

{
S(|Z|(d−j+1)) = j

∣∣∣∣E(Z) = 0 · Jd

}


×1

{
2Φ̄
(
|Z|(d−j+1)

)
<
j

d

}

where JT
d = (1, 1, ..., 1)1×d, and µ̂j,d > 0 solves the equation

j/d = 1−
{

Φ(|Z|(d−j+1) − µ̂j,d)− Φ(−|Z|(d−j+1) − µ̂j,d)
}
.

In other words, Berk-Jones is the maximum of a set of likelihood-ratio tests performed on

S(t) at all observed test statistic magnitudes greater than or equal to the median observed

magnitude. By taking the maximum over these different thresholds, Berk-Jones allows the

data to set the threshold which provides the most power in the presence of an appreciable

subset of neutral variants.

When SNPs in a gene set are in LD and Σ 6= I, then S(t) no longer has a binomial dis-

tribution, and the Berk-Jones statistic can lose much of its power in finite samples. However

the Generalized Berk-Jones incorporates the additional correlation information by explicitly

conditioning on Σ,

GBJd = max
1≤j≤d/2

log

Pr

{
S
(
|Z|(d−j+1)

)
= j

∣∣∣∣E(Z) = µ̂j,d · Jd, cov(Z) = Σ

}
Pr

{
S
(
|Z|(d−j+1)

)
= j

∣∣∣∣E(Z) = 0 · Jd, cov(Z) = Σ

}


×1

{
2Φ̄
(
|Z|(d−j+1)

)
<
j

d

}
.

GBJ is still the maximum of a set of likelihood ratio type tests, but it gains notable power

over BJ by accounting for the correlation between test statistics. When Σ = I, GBJ reduces

to the standard Berk-Jones. The p-value of the GBJ statistic can be calculated analytically.
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In integrating the test statistic for each SNP in the gene set, GBJ incorporates

much more information than methods which only keep the most significant p-value in each

gene11,14,16 and discard the rest in an ad-hoc fashion. Other tests may not discard individual

test statistics but instead summarize the values in mean12 or count-based procedures14,15

so that the individual magnitudes are lost. For example, test statistics of Z1 = −2.5 and

Z2 = 5 make equal contributions to a procedure that counts the number of p-values less than

0.05. However, the variant with test statistic Z2 = 5 clearly conveys more information about

genotype-phenotype association than the variant with Z1 = −2.5. In contrast, GBJ does

not discard or summarize information and utilizes each marginal test statistic, as well as the

joint correlation structure. When Σ = I, GBJ enjoys certain asymptotic power properties

that other tests may not demonstrate40.

GBJ step-down inference

As an extension of GBJ, we propose a step-down inference procedure to filter out gene sets

that are driven to significance based on the signal from only a very small proportion of genes,

such as the earlier example involving Ear Morphogenesis and FGFR2. The procedure begins

by performing gene-level association analysis. First, create a list of the unique genes over all

gene sets under consideration, then define each gene as its own set and apply GBJ over each

single gene to find single gene p-values. Sort the single genes in increasing order of p-value,

which can be interpreted as ranking the genes by their level of association with the outcome.

For any given gene set, obtain a measure of how much its association signal is depen-

dent on a few highly associated genes by applying GBJ to the set after removing all SNPs

that belong to the top k genes. Setting k = 1 will identify gene sets where the signal is

driven by a single gene. If a gene set remains significant even after removing k > 1 genes,

then the set possesses signals dispersed through many different genes. In this work we will

use k = 1 and k = 3. As we show below, FGFR2 drives the significance of many gene sets

in a breast cancer analysis, but the step-down procedure allows us to uncover pathways that

show no association outside of FGFR2 and may be less suitable for follow-up.

GWAS summary statistics datasets

Three large, publicly available summary statistic datasets are analyzed in this study. We first

obtained summary statistics from the largest breast cancer GWAS cohort to date30, with

122,977 cases and 105,974 controls of European ancestry. Most subjects were genotyped

on the OncoArray, a custom-designed array for cancer studies that also has genome-wide
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coverage of over 570,000 SNPs. Data for these subjects were imputed using the full 1000

Genomes Project Phase 3 reference panel, resulting in estimated genotypes for approximately

21 million variants. Other subjects were included from various smaller studies, including the

iCOGS project41 and 11 smaller GWAS. Results across studies were then meta-analyzed,

and after quality control, approximately 12 million SNPs produced a final test statistic for

association with breast cancer.

For height, we downloaded summary statistics from the Genetic Investigation of An-

thropometric Traits (GIANT) GWAS42. In this study, 253,288 individuals of European an-

cestry were genotyped on multiple Affymetrix, Illumina, and Perlegen arrays. All individuals

were then imputed to the Phase II CEU HapMap release. After meta-analysis and quality

control, there were over 2.5 million SNPs with a final summary statistic for association with

height.

The last dataset used was downloaded from the Psychiatric Genomics Consortium

schizophrenia mega-analysis43. In the primary GWAS of this study, 34,241 cases and 45,604

controls were genotyped across 49 cohorts. The vast majority of samples were obtained

from subjects of European descent, but three cohorts did contain individuals of East Asian

ancestry. All subjects were imputed using 1000 Genomes Project data as a reference panel,

and test statistics were meta-analyzed across cohorts. For this study, summary statistics

were made available for approximately 9.5 million variants.

Pathway definition database

To provide a fair comparison between GBJ and GSEA in re-analysis of the breast cancer

data, we conduct all pathway analysis using the same gene set database (Gary Bader Lab,

Human GOBP all pathways, no GO IEA; April 1, 2017) used in the original breast cancer

pathway analysis30. This file compiles gene sets from a number of databases including Gene

Ontology (GO) Biological Process31, Reactome44, Panther45, and others. In all, the file

contains 16,528 gene sets. While we are unaware of a comprehensive method to assess the

quality of gene set databases, advantages of this list include the incorporation of multiple

different sources, public availability, and monthly updates.

As the selected pathway database is a direct aggregation of multiple sources possess-

ing varying levels of curation, some preprocessing of the list is necessary before beginning

analysis. We first truncate the database to remove all pathways with more than 200 genes

or less than three genes. Removing pathways with a large number of genes is common prac-

tice46,47, as extremely large pathways are difficult to interpret, and this step was performed

in the original GSEA analysis as well. The original GSEA analysis further removed all
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pathways with fewer than ten genes, which is also a relatively common strategy to reduce

false positives and lower the multiple testing burden48, however it has been noted that this

threshold may exclude certain specific and informative functional sets such as protein com-

plexes26. We choose to set the lower limit for pathways at three genes because there may

be interesting insights to be gleaned from smaller gene sets and because we believe GBJ is

powerful enough to overcome the increased multiplicity burden. In total, there are 10,742

pathways with between three and 200 genes.

SNP-gene mapping

For each set of summary statistics, we map individual SNP test statistics to gene sets if

they lie within 5 kb of a gene in the set, with coordinates provided by Ensembl 90 gene

annotations49. Estimates of the correlation between summary statistics are calculated using

unrelated subjects from European cohorts (TSI, FIN, GBR, IBS, CEU) in the 1000 Genomes

Phase 3 data release. Summary statistics belonging to SNPs that have minor allele frequency

less than 3% in the reference panel are removed as their data would be unstable for estima-

tion. The original GSEA analysis maps SNPs to genes in a slightly different manner and

also performs some additional manual curation. These additional steps are unique to the

breast cancer dataset, so to preserve generality and facilitate comparison of results across

traits, we do not include them here.

To further reduce the computational burden of a GBJ analysis, we additionally trim

SNPs that are in the same gene and are correlated at r2 > 0.5. This pruning is performed

in PLINK and occurs at successive multiples of 0.5 for very large sets, so that all tested sets

are less than 1,500 SNPs in size. Even after the pruning procedure, GBJ still incorporates

a very large amount of information, as the median number of SNPs in our breast cancer

analysis is 470. In contrast, the median number of genes in the GSEA analysis is 26; a test

on 26 genes with GSEA incorporates only the 26 minimum p-values from those genes.

The data-intensive nature of GBJ does pose problems for a small number of extremely

large pathways. Some gene sets are larger than 1,500 SNPs even after pruning all pairs of

SNPs in the same gene with r2 > 0.0625. These sets are not tested to remain consistent in our

analysis protocol across all three phenotypes. However for typical GSA focusing on a single

outcome, it would be straightforward to perform additional pruning or manual curation to

accommodate testing the largest pathways.
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Simulation

We use simulation to compare the performance of GBJ against the self-contained version

of GSEA (as described by Wang et al.11), self-contained MAGMA, and GHC. GSEA and

MAGMA were two of the best-performing methods in the comprehensive simulation study of

a recent GSA review28. To match the settings of our real data analysis, we use real genotype

data from the reference panel of n = 350 unrelated Europeans in the 1000 Genomes Project.

These genotypes have been pruned as described above, and we use all SNPs located in 10,000

genes chosen at random. Each of the 10,000 genes contains between 7 and 25 SNPs, which

corresponds to the middle 50 percentile of pruned gene size over the entire gene database.

For each iteration of the power simulation, we choose 10 genes at random to be the

tested pathway, and a of the 10 genes are given b causal SNPs each. The true disease model

is then

Yi =
a∗b∑
j=1

βGij + εi, εi ∼ N(0, 1),

where Gij is the genotype of subject i at causal SNP j. Marginal summary statistics for each

SNP in the pathway are calculated according to Equation 1 and their covariance is estimated

according to Equation 2. We study the four conditions (a = 8, b = 1), (a = 4, b = 2),

(a = 2, b = 4), and (a = 1, b = 4), and we vary the causal SNP effect size β from 0 to 0.3.

When β = 0 we are estimating the Type I error rates of the tests, and when β > 0 we are

comparing their power. MAGMA is applied with default self-contained settings, and 1000

permutations are used for GSEA inference. We test at α = 0.05 with 100 runs performed at

each parameter setting.

We also perform a simulation to assess the validity of the step-down inference pro-

cedure. Data is generated as in the power simulation, but in each iteration we remove the

most significant gene - chosen separately for each test - from the pathway before generating

a pathway p-value. For GBJ, GHC, and MAGMA we use the default gene-level analysis to

determine the significance of each gene, and for GSEA we remove the gene with the most

significant SNP. In the simulation with (a = 1, b = 4) we are benchmarking the discrimi-

natory ability of this procedure, as the step-down procedure should remove the only causal

SNPs, resulting in power equal to the Type I error rate regardless of effect size. In settings

with a > 1, we can assess power to identify gene sets with dispersed signals.
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Classification of biologically important systems

To summarize our results from applying GBJ across multiple phenotypes, we search for the

biological systems that demonstrate the largest degrees of significance across each phenotype.

Pathways are categorized into different systems by exploiting the directed acyclic graph

structure of Gene Ontology (GO) Biological Process pathways. Starting with the top-level

Biological Process category, GO defines successively smaller groups of pathways so that each

child term is more specialized than its parent term. Using this natural structure, it is possible

to group categories of pathways at different levels of granularity.

We create categories from the first level immediately following the Biological Process

root. Specifically, we use the 11 top-level sets Biological Adhesion, Cellular Component Or-

ganization or Biogenesis, Developmental Process, Growth, Immune System Process, Local-

ization, Locomotion, Metabolic Process, Reproduction, Response to Stimulus, and Signaling.

For a given phenotype and category, we first calculate the expected number of significant

pathways in the category conditional on the total number of significant pathways for the

outcome. If pathways in each category truly have the same chance of reaching significance,

then the expectation is simply equivalent to the percentage of all tested pathways that be-

long to the category multiplied by the total number of pathways significantly associated with

the outcome. For each phenotype, we calculate the difference between the observed and ex-

pected number of significant pathways arising from each category, taken as a percentage of

the expected number, to determine which categories harbor more significant pathways than

expected. Pathways are deemed significant using the Bonferroni-corrected significance level

of α = 0.05/10, 742 = 4.65 · 10−6.

Results

Simulation

We first compared the power of GBJ to other gene set methods through simulations carried

out with genotypes from the 1000 Genomes Project. Because non-GSEA tests utilize data

from multiple SNPs in each gene, we expected such tests to perform better at detecting

pathways with many medium-sized signals that GSEA must discard. However, even when

each gene held only one signal, a situation that would appear very favorable for GSEA, we

found that the power of GBJ was either the largest or approximately the largest at each

effect size (Fig 1A). When signals were more densely packed into a smaller number of genes

(Fig 1B-D), GBJ and GHC increased their advantage over GSEA and MAGMA signifi-
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cantly, demonstrating the power of the goodness-of-fit approaches over a variety of sparsity

settings. Self-contained GSEA was the clear third-best performer, generally demonstrating

more power than self-contained MAGMA. We also observed in this simulation that power for

GBJ and GHC improved as more signals were placed in the same gene (as opposed to spread

throughout different genes), because increased correlation between signals can increase the

power of these tests34.

Additional simulations showed similar trends for a different number of background

genes (S1 Fig). Power for GHC and GBJ was often close, but in general, we would expect

GBJ to outperform GHC in GSA, as set sizes in GSA are relatively large and are likely

to contain a moderate number of signals. GHC would be a better choice under extreme

sparsity, as in only one or a few signals in the entire set.
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Figure 1: GSA power simulation over four different configurations of gene signal density.
Simulated power of MAGMA, GSEA, GHC, and GBJ (all self-contained versions) with random sets of ten
genes selected from 10,000 total genes. From the ten genes in the set, a genes are selected to hold b causal
SNPs each. The four subfigures correspond to (A) a = 8, b = 1, (B) a = 4, b = 2, (C) a = 1, b = 4, (D)
a = 2, b = 4. The effect size is given on the x-axis. We perform 100 simulations at each parameter setting
and test at α = 0.05. GBJ and GHC increase their power advantage over GSEA and MAGMA as the same
number of signals are located in fewer genes.
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Both GHC and GBJ appeared to control the Type I error rate fairly well at α = 0.05,

as their power remained approximately equal to the nominal size of the test when there was

no true effect. This observation suggested that our inference was valid for the situations

considered in simulation. Comparable results also held for a different number of background

genes (S3 Fig).

Simulations for the step-down procedure (Fig 2) showed that the proposed method

was indeed able to recognize pathways containing signal in only one gene, regardless of the

choice of GSA test statistic. When only one gene contained causal SNPs (Fig 2C), the power

for all tests remained around the Type I error rate regardless of effect size, as the causal SNPs

were removed before pathway-level inference. When multiple genes contained causal SNPs,

GBJ outperformed the other tests again in a majority of the situations, with GHC a close

second. While the step-down procedure showed slight power loss compared to the standard

analysis of Fig 1, the difference was not dramatic, and the segregation of single-gene effects

was very good. Thus we suggest the step-down procedure as an important complementary

tool in GSA.

Re-analysis of breast cancer GWAS

We next investigated whether the same trends seen in our simulation could be seen in re-

analysis of the breast cancer summary statistic dataset. Self-contained GSEA was originally

used to analyze a total of 4,507 pathways containing more than ten genes, finding 448 to be

significant when using permutation to control the false discovery rate (FDR) at q = 0.05.

GBJ was applied to 10,742 pathways (with more than three genes) from the same master

list and found 2,703 to be significant at the Bonferroni-corrected family wise error rate of

4.65·10−6. When we restricted comparisons to the 3,952 pathways tested by both approaches,

GSEA found 352 significant while GBJ found 2,095 significant at their respective error rates.

From the raw significance numbers alone, GBJ appeared to offer far more power in

a real GWAS summary statistic dataset. GBJ found more than twice as many significant

pathways as GSEA on a percentage basis, even when controlling a more stringent error rate

and using a conservative Bonferroni correction. The increased power could not be attributed

to smaller pathways alone, as GBJ declared a higher percentage of pathways significant across

various pathway sizes (S2 Fig). To further investigate, we compared the GSEA and GBJ

significance ranking (Fig 3) of the 3,952 pathways tested by both methods (p-value or q-value

rank out of 3,952, lower is more significant). To emphasize the role of moderately strong

associations, points were colored according to their density of suggestive signals, which we

defined as a pathway’s proportion of SNPs with p < 10−5. SNPs demonstrating such a level
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Figure 2: Step-down inference power simulation over four different configurations of gene
signal density. Simulated power using step-down inference procedure with MAGMA, GSEA, GHC, and
GBJ (all self-contained versions) with random sets of ten genes selected from 10,000 total genes. From the
ten genes in the set, a genes are selected to hold b causal SNPs each. The four subfigures correspond to (A)
a = 8, b = 1, (B) a = 4, b = 2, (C) a = 1, b = 4, (D) a = 2, b = 4. The effect size is given on the x-axis. For
each method and each iteration, we first determine a most significant gene. Then that gene is removed and
we perform inference on the remaining nine genes in the set. We perform 100 simulations at each parameter
setting and test at α = 0.05.

of association would generally not stand out as the strongest signal in their region, but a large

proportion of suggestive signals in any single gene or pathway could still indicate biologically

relevant gene sets. For the sake of presentation, we only plotted pathways ranked in the top

ten percentile by GSEA, in the top ten percentile by GBJ, in the 30th-40th percentile by

GBJ, and in the 60th-70th percentile by GBJ (see S3 Fig for full data).

The frequency of blue pathways - indicating higher density of suggestive signals -

clearly increased for pathways that were ranked as very significant according to GBJ. Such

a pattern was desirable, as pathways with a higher density of small p-values should be more

significant. However, scanning horizontally across the plot, there did not appear to be a

strong relationship between GSEA rank and frequency of blue pathways. Approximately

the same number of blue pathways could be found near the GSEA 25th, 50th, and 75th
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Figure 3: Significance rank of breast cancer pathways tested by both GBJ and GSEA The
significance ranking of pathways according to GBJ and GSEA, colored according to density of SNPs with
p < 10−5. Pathways are ordered according to p-value (GBJ) or q-value (GSEA), smaller rankings indicate
more significance. For the sake of presentation, we only show pathways in the top ten percentiles of either
GSEA or GBJ as well as pathways in the 30th-40th and 60th-70th percentiles of GBJ. Pathways ranked by
GBJ as more significant generally have a higher proportion of SNPs with p < 10−5. In contrast, there is no
discernible relationship between a pathway’s GSEA ranking and its density of suggestive signals.

percentiles. This pattern suggested that GSEA was not very sensitive to the density of

medium-strength signals.

The proportion of SNPs with p < 1 · 10−5 is not a perfect measure for evaluating the

significance of pathways, as other factors including linkage disequilibrium and strength of

the largest signal do also play an important role. However, while GBJ takes into account all

of the above factors, GSEA ignores signal density and disregards all p-values that are not

the smallest in a gene. This difference was likely a major contributing factor to the large

discrepancy between GSEA and GBJ rankings for points in the top left and bottom right

hand corners of Fig 3. Other methods employing the same strategy of choosing a minimum

p-value to represent each gene, for example, non-default versions of MAGMA, may possibly

experience similar drawbacks.
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Single gene vs. set-based effects

Application of Generalized Berk-Jones to height and schizophrenia resulted in even more

significant pathway findings than the breast cancer analysis (S1 Table). To uncover the

gene sets that were driven to significance by only one or a few genes, we applied the GBJ

step-down inference procedure (see Materials and Methods) for the top 500 pathways in each

phenotype, all of which possessed an initial p-value of p < 1 · 10−12 (Fig 4). In a typical

GSA, these pathways would likely receive the most attention for their extremely high levels

of association.
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Figure 4: P-values of initially top-ranked pathways after removal of significant genes. (A)
P-value after removal of most significant gene for top 500 pathways across each of three phenotypes. (B)
Percentage of pathways with original association p < 1 · 10−12 passing Bonferroni-corrected significance
threshold when top significant gene is removed, stratified by quantile of gene set size. (C) P-value after
removal of three most significant genes for top 500 pathways across each of three phenotypes. (D) P-value of
Gene Ontology Ear Morphogenesis and Nature Pathway Interaction Database TRAIL Signaling pathways as
most significant genes are removed one by one (for association with breast cancer only). P-values less than
10−12 are truncated at this value. It appears that many of the most significant height pathways are driven
to significance by multiple highly associated genes, while the opposite is true for breast cancer.
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A large cluster of pathways from both breast cancer and schizophrenia dropped below

the Bonferroni-corrected significance level after their most significant gene was removed,

but breast cancer pathways appeared more highly concentrated at the bottom of the y-axis

(Fig 4A), although some remained highly significant (S2 and S3 Tables and S4 Fig). Thus a

single gene boosted evidence of association by many orders of magnitude for a large number

of breast cancer pathways. In contrast, pathways associated with height generally remained

significant even after removal of their most highly associated gene (Fig 4B). This trend

persisted when removing the top three most highly associated genes from each pathway

(Fig 4C). Only about 12% of breast cancer pathways survived the Bonferroni-corrected

significance level after three genes were removed, while approximately 38% of schizophrenia

pathways and 69% of height pathways still passed this threshold. A possible interpretation

of these results could be that height was much more driven by pathway-level effects of many

genes working together, while breast cancer risk factors were more localized to a few key

genes. It is also possible that breast cancer signal was attenuated because the summary

statistics included patients with multiple different subtypes, so signal may have been diluted

compared to an ER-positive only or ER-negative only analysis.

Ear Morphogenesis was one example of a breast cancer pathway where the signal was

almost entirely confined to a single gene, with an initial GBJ ranking of 100th most significant

gene set (p < 1 · 10−12) before the step-down procedure. When FGFR2 was removed from

this pathway, the p-value of the modified gene set increased drastically to p = 0.041, far

from the corrected significance level. As expected, the other genes were not very relevant to

breast cancer; it is not recommended to further pursue replication of the set’s association,

despite initially promising results from GBJ and GSEA. On the other hand, a gene set such

as the Nature Pathway Interaction Database TRAIL Signaling pathway demonstrated more

robustness to removal of its top gene, MAP3K1. TRAIL Signaling retained some set-level

signal even as more and more top genes were removed from the gene set (Fig 4D). Along

with MAP3K1, the pathway contained the significant genes CASP8, CFLAR, DAP3, and

TNFSF10. All of these genes possessed single gene p-values less than 1 · 10−5 for association

with breast cancer, while Ear Morphogenesis contained no such genes other than FGFR2.

TRAIL Signaling as a mechanism has been studied extensively for its role in breast cancer50,

supporting our finding of a pathway-wide effect that extends past the most significant genes.

Over the entire pathway database, 172 pathways containing FGFR2 were tested for

association with breast cancer, and 172 were significant at the Bonferroni-corrected thresh-

old according to GBJ. Additionally, FGFR2 was the most significant gene in 169 of these

pathways. After removal of FGFR2 from the pathway, only 71 of the 169 were still signif-
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icant at the same threshold (S4 Table). Clearly, the composition of significant gene sets in

any breast cancer pathway analysis will depend on the number of times FGFR2 and select

other genes (S5 and S6 Tables) appear in the pathway definition database.

Significant biological systems

To summarize the results of our GBJ-based pathway analysis across three different phe-

notypes, we identified the biological processes where significant pathways in breast cancer,

schizophrenia, and height were most likely to congregate (see Materials and Methods). In two

reassuring results, we found that the percentages of significant pathways from the Growth

category were higher than expected in breast cancer and height (Fig 5). Growth mecha-

nisms have previously been found to play important roles in studies of breast cancer30 and

height3. Another theme that has often been corroborated in the literature is the importance

of the immune system in schizophrenia43. Immune-related pathways have been studied in

connection with many psychiatric diseases, and our analysis underscored the reasons for such

an approach, as we found a high density of significant schizophrenia gene sets arising from

immune processes. Seeing that GBJ could identify outcome-category pairs known to be as-

sociated with each other offered further validation that our approach was selecting relevant

pathways.

On the other hand, GBJ also illuminated some outcome-category relationships that

were not as widely familiar. For instance, we saw that there was a dearth of significant

pathways related to schizophrenia in the Reproduction category. Thus there may be less

benefit to searching for common drivers of risk between schizophrenia and breast cancer,

which showed many more significant Reproduction pathways than expected. Similarly, all

three phenotypes showed fewer than expected significant pathways in Locomotion, indicat-

ing that it may be more useful to prioritize other types of pathways when studying these

outcomes. While negative findings are reported less often than their positive counterparts,

these results still have the potential to inform researchers of the mechanisms that may not

generate as many fruitful results.

Discussion

Interest in GSA will likely continue to grow as more and more genotyping data is collected28,

especially since single SNPs are still unable to explain much of the heritability in various

phenotypes51. However, without appropriate statistical models to test for set-based effects,
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Figure 5: Difference between observed and expected number of significant pathways arising
from Gene Ontology Biological Process categories. For a given phenotype, expected number is equal
to the percentage of all tested pathways belonging to a category multiplied by the total number of significant
pathways. The difference between observed and expected counts is expressed as a percentage of the expected
number. A value greater than 0 indicates there are more significant pathways in a category than expected.
A value less than 0 indicates there are less significant pathways than expected. A number of familiar themes
are present, including the high number of significant height pathways related to growth and the high number
of significant schizophrenia pathways related to the immune system.

it will be difficult to correctly identify the gene sets that are truly associated with various

outcomes. Many current GSA methods possess unknown operating characteristics and are

difficult to interpret18,29. Our work demonstrates that GBJ can have significantly more power

than popular alternatives such as GSEA or MAGMA while still protecting Type I error rate

across various different pathway structures and also eliminating the need for computationally

intensive genome-wide resampling.

Intuitively, GBJ and the goodness-of-fit methods owe their high power to two major

factors. First, the structures of the test statistics allow for full incorporation of available

GSA data when performing inference, in particular using the magnitude of each marginal

summary statistic in the set as well as the joint SNP correlation structure. Secondly, these

statistics are backed by strong theoretical results in simplified set-based settings, where they

possesses asymptotic power guarantees. In finite samples, GBJ has been shown to provide
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better performance than GHC.

In addition, we have provided a step-down inference procedure to mitigate the bias

introduced through choice of a gene set definition file. Pathways that demonstrate strong

associations based on a single gene are regularly identified as a serious problem25,52,53 and

hinder important replication efforts. We show step-down inference can lessen these issues by

highlighting the pathways that demonstrate effects over many genes, as opposed to pathways

that rely on one or a few genes to drive their significance. Reporting only those findings

that are still significant after the step-down procedure may help ensure that associations are

replicable in studies with different pathway definitions.

One issue we have not discussed much is the philosophical difference between a self-

contained test, such as the tests we have considered in this report, and a competitive test,

such as certain variants of GSEA. In general, we recognize that both approaches possess

unique strengths and weaknesses, and we believe both have their uses in GSA. Previous lit-

erature6 and the preceding work have demonstrated many of the advantages of self-contained

tests, but there are certainly areas where a competitive analysis could provide additional ben-

efits. In particular, a competitive test may have been able to provide more succinct lists of

significant pathways by accounting for strong background signal present in the datasets we

studied. However, we note that most studies will contain far less background signal, as the

cohorts used in this paper are some of the largest ever assembled, and we have shown how

GBJ is still able to provide useful inference even in highly polygenic settings. GBJ could

also be recast as a competitive test using the gene permutation methods of other competitive

strategies.

Another limiting factor for GBJ arises as a consequence of the data-intensive approach

that affords it additional power. Very large gene sets containing over 1,500 SNPs can greatly

slow down calculation of the test statistic and p-value, which can create difficulties analyzing

the largest gene sets. While other tests may sacrifice large amounts of information by dis-

carding more of the data, they can also produce results much more quickly as a consequence

of utilizing fewer inputs. This issue can be alleviated by pruning or otherwise reducing the

number of SNPs in a gene set so that GBJ still uses a large amount of information while

running at an acceptable speed. Also, large amounts of data can cause issues with the default

level of numerical precision in R, so that the current implementation of our software may

not provide very precise p-values between 0 < p < 1 · 10−12. Still, 1 · 10−12 is generally a

low enough significance level to account for multiple testing adjustments in GSA. GSEA, for

example, can only provide a family-wise error rate as precise as 0.001 when testing a single

pathway with its default of 1,000 permutations.
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Generalized Berk-Jones represents a substantial departure from standard gene set

analysis methods and offers distinct advantages over competing ideas, but there is still much

room for future work. One possible extension would be a correction for background signal so

that GBJ could provide an analytic p-value for the competitive null hypothesis. Computa-

tionally, it would be useful to develop algorithms that can calculate the statistic faster and

with more precision so that larger gene sets can be tested quickly. Finally, it would be of

interest to see how other set-based tests with similar asymptotic guarantees to Berk-Jones

and Higher Criticism perform in the GSA paradigm. A number of such tests exist for inde-

pendent summary statistics32,54 and could be modified to consider correlated data. These

other methods may prove to provide even more finite sample power in the gene set analysis

setting.
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