

1 **Anti-CD137 monoclonal antibody enhances trastuzumab-induced, natural killer cell-
2 mediated cytotoxicity against pancreatic cancer cell lines with low human epidermal
3 growth factor-like receptor 2 expression**

4

5 Takushi Masu¹, Masanori Atsukawa¹, Katsuhisa Nakatsuka¹, Masumi Shimizu², Daishu
6 Miura³, Taeang Arai¹, Hirotomo Harimoto¹, Chisa Kondo¹, Keiko Kaneko¹, Seiji Futagami¹,
7 Chiaki Kawamoto¹, Hidemi Takahashi², Katsuhiko Iwakiri¹.

8

9 ¹Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon
10 Medical School, Tokyo, Japan

11 ²Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan

12 ³Division of Breast and Thyroid Surgery, Toranomon Hospital, Tokyo, Japan

13

14 Address correspondence to: Masanori Atsukawa, Division of Gastroenterology and
15 Hepatology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.

16 Phone: +81-3-3822-2131

17 E-mail: momogachi@yahoo.co.jp

18

19

20 **Abstract**

21 **Background**

22 Because human epidermal growth factor-like receptor (HER) 2 is expressed on the surface of
23 human pancreatic carcinoma cells to varying degrees, trastuzumab, an anti-HER2 monoclonal
24 antibody (mAb), is expected to exert antibody-dependent, natural killer (NK) cell-mediated
25 cytotoxicity (ADCC) against the cells. However, some reports found that the effect of
26 trastuzumab against human pancreatic carcinoma cells was limited because most express only
27 limited HER2.

28 **Methods**

29 We examined whether anti-CD137 stimulating mAb could enhance trastuzumab-mediated
30 ADCC against Panc-1, a human pancreatic cancer cell line with low HER2 expression, in vitro.

31 **Results**

32 Supplementation of anti-CD137 mAb could improve trastuzumab-mediated ADCC against
33 Panc-1 which was insufficient without this stimulating antibody. The ADCC differed in
34 individual cells, and this was related to the expression of CD137 on the surface of NK cells
35 after trastuzumab stimulation in association with the Fc γ -RIIIA polymorphism. NK cells with
36 Fc γ -RIIIA-VV/VF showed high levels of ADCC against Panc-1, but those with Fc γ -RIIIA-FF
37 did not show optimal ADCC. In addition, trastuzumab-mediated ADCC against the human
38 pancreatic cancer cell line Capan-1 with high HER2 expression was generally high and not

39 affected by the Fc γ -RIIIA polymorphism.

40 **Conclusions**

41 These results demonstrated that in Fc γ -RIIIA-VV/VF-carrying hosts, trastuzumab plus
42 α CD137 mAb could induce effective ADCC against HER2-low-expressing pancreatic cancer
43 cells. This also indicates the therapeutic potential for unresectable human pancreatic cancer, in
44 which HER-2 expression is generally low.

45

46 **Introduction**

47 Pancreatic carcinoma is difficult to cure [1], and the prognosis of unresectable pancreatic
48 cancer patients is very poor [2]. Although various attempts have been made to establish
49 innovative therapeutic regimens, the efficacy of current chemotherapy regimens remains
50 inadequate [3–8]. Among the chemotherapy regimens used to treat unresectable pancreatic
51 carcinoma, gemcitabine-based ones are common because they maintain the quality of the
52 remaining life of patients without serious complications. Among newly established regimens,
53 the combination of gemcitabine plus aluminum-bound (nab)-paclitaxel was reported to
54 increase the mean survival interval (MSI) from 6 to 10 months compared with gemcitabine
55 alone [7]. Furthermore, the FOLFILINOX regimen greatly improves the MSI of patients with
56 unresectable pancreatic carcinoma, although many patients fail to complete this regimen
57 because of its serious side effects [8]. Thus, the clinical efficacy of these regimens should be

58 improved and new strategies for the treatment of pancreatic carcinoma are needed.

59 Trastuzumab (Tmab) is a specific monoclonal antibody (mAb) against human epidermal
60 growth factor-like receptor (HER) 2 [9] expressed on various tumor cells [1–14], especially in
61 breast [10] and gastric carcinoma [11]. Antigen-dependent cell-mediated cytotoxicity (ADCC)
62 is the initial mechanism of action of Tmab [15, 16], and there are many reports on the clinical
63 efficacy of Tmab against HER2-expressing tumors, especially against breast carcinoma [17–
64 21]. HER2 is also expressed in varying levels on the surface of human pancreatic carcinoma
65 cells [22, 23], and some reports indicated that Tmab induces ADCC against human pancreatic
66 cancer in vitro and in vivo [24–28]. However, the clinical efficacy of Tmab against human
67 pancreatic carcinoma is inadequate [24] because it was usually investigated in HER2-high-
68 expressing cell lines [26–28], whereas most human pancreatic cancers express only low levels
69 of HER2 [22]. Hence, the clinical efficacy of Tmab against human pancreatic carcinoma
70 remains controversial.

71 Recently, some groups have tried to up-regulate Tmab-mediated ADCC with the addition
72 of various monoclonal antibodies [29–31]. Notably, Kohrt HE et al. [32] and Houot R et al.
73 [33] reported that anti-CD137 mAb (α CD137) could enhance the Tmab-mediated ADCC
74 against human breast cancer cells. CD137 (4-1BB) is known to act as a co-stimulatory molecule
75 in combination with Fc receptor-mediated stimulatory signaling [34] and is expressed on the
76 surface of natural killer (NK) cells after stimulation [35]. Thus, the hypothesis that the addition

77 of α CD137 to Tmab could up-regulate ADCC against HER2-low-expressing target cells was
78 put forward.

79 Based on that hypotheses and previous findings, we investigated the effects of α CD137 for
80 NK cell activation to up-regulate Tmab-mediated ADCC against HER2-low-expressing human
81 pancreatic carcinoma cell lines as part of efforts to establish a new regimen for unresectable
82 human pancreatic carcinoma.

83

84 **Materials and Methods**

85 **Cell lines and cultures**

86 Human pancreatic carcinoma cell lines Panc-1 (HER2-low-expressing cell line), Capan-1
87 (HER2-high-expressing cell line), and the NK cell-sensitive thymoma cell line K562 were
88 purchased from the American Type Culture Collection (Manassas, VA). HER-2 expression on
89 the surface of Panc-1 and Capan-1 was confirmed by flow cytometry (Figure 1-A). All these
90 cell lines were maintained according to the manufacturer's instructions. In brief, Panc-1 was
91 cultured with Dulbecco's modified Eagle's medium (DMEM, Gibco Life Technologies, Santa
92 Clara, CA) supplemented with 10% heat-inactivated fetal calf serum (FCS) and 10% penicillin
93 and streptomycin solutions (Gibco). Capan-1 was cultured with ISCOVE modified Eagle's
94 medium (Sigma Chemical Company, St. Louis, MO) supplemented with 10% FCS. Cells were
95 removed by short-term incubation with trypsin-EDTA (Gibco) and about one-third to one-

96 fourth of the viable cells were removed and resuspended in fresh culture medium twice weekly.
97 K562 was cultured in DMEM supplemented with 10% heat-inactivated FCS, HEPES-buffer
98 solution 5 mM, penicillin and streptomycin solutions 100 U/ml, L-glutamine 2 mM, sodium
99 pyruvate solution 2 mM, and nonessential amino acid solution 2 mM (all purchased from
100 Gibco-BRL), modified vitamins 2 mM (DS Pharma, Osaka, Japan), and 2-mercaptoethanol 2
101 mM (Sigma Chemical).

102

103 **Monoclonal antibodies**

104 Tmab was kindly provided by Roche-Chugai Japan Co. Ltd. (Tokyo, Japan). It was suspended
105 in phosphate-buffered saline (PBS) 100 µg/ml and stored at –80°C until use. Goat-poly anti-
106 human CD137 stimulation Ab (αCD137, R&D Systems, Minneapolis, MN) was also
107 suspended in PBS 10 µg/ml and stored at –80°C until use.

108

109 **Preparation of human NK cells**

110 Peripheral blood was obtained from 12 healthy individuals who were serologically confirmed
111 to be free from hepatitis B and C and human immunodeficiency virus infection. This study
112 protocol conformed to the ethical guidelines of the Declaration of Helsinki as reflected in a
113 priori approval by the Institutional Review Committee of Nippon Medical School. Human NK
114 cells were purified from peripheral blood mononuclear cells (PBMCs) isolated from

115 heparinized blood using the Ficoll Paque (Amersham, Buckinghamshire, UK) density-gradient
116 method. The EasySep human NK cell enrichment kit (Stemcell Technologies, Vancouver,
117 Canada) was used to separate human NK cells according to the manufacturer's instructions.
118 Briefly, PBMCs were suspended in the recommended buffer and incubated with tetrameric
119 antibody complexes recognizing CD3, CD4, CD14, CD19, CD20, CD36, CD66b, CD123,
120 HLA-DR, and glycophorin A for 10 min at 4°C. Dextran-coated magnetic particles were then
121 added, and the mixture was incubated for an additional 5 min at 4°C. All fractions including
122 the coated cells were placed into the EasySep magnetic chamber for 2.5 min, and those
123 unlabeled were collected as the NK cell-enriched fractions. Cells were washed with PBS and
124 resuspended in DMEM supplemented with 10% FCS and 10% penicillin and streptomycin
125 solutions (assay medium). The purity of NK cells collected in this process was greater than
126 90% as confirmed by the expression of CD3 and CD56 in flow cytometry (Figure 1-B). The
127 cytotoxic activity of each NK cell was titrated against that of K562 (Figure 1-C). NK cells were
128 resuspended in culture media and used for the following assays.

129

130 **Cell culture procedures**

131 1×10^6 /well of each target cell line was suspended in 1 ml of assay medium and sheeted in a
132 48-well flat-bottom culture plate. Tmab 0 to 10 μ g/ml was added to each well and incubated
133 for 0, 2, and 12 h at 37°C. Cells were harvested and resuspended in assay medium, and 5 \times

134 10³/well of each target cell line was sheeted in a 96-cell U-bottom plate and incubated with 10-
135 to 40-fold amounts of NK cells for 4 h at 37°C. Anti-CD137 mAb 10 µg/ml was added to some
136 wells to examine whether it could enhance Tmab-induced ADCC. After incubation, the plates
137 were centrifuged for 1 min at 1000 rpm, and culture supernatants were collected for
138 cytotoxicity assays and cytokine titration assays. The cells were harvested and used for
139 evaluation of the kinetics of cell surface molecules.

140

141 **Flow cytometry**

142 Flow cytometric analysis was performed using a FACSCant-II (BD-Bioscience, San Jose, CA).
143 For staining cell surface molecules, 500,000 cells were harvested, washed twice with PBS, and
144 pelleted. The following antibodies were used: fluorescein-isothiocyanate (FITC)-conjugated
145 anti-human CD3; phycoerythrin (PE)-conjugated anti-human CD56 (BD Bioscience); PE-
146 conjugated anti-human CD16 (clone 3G8), CD137, PD1, and NKG2D (Biolegend, San Diego,
147 CA); PE-conjugated anti-human CD16 (clone MEM154, Immunological Sciences, Rome); and
148 FITC or PE-conjugated mouse IgG1, Isotypecontrol (Biolegend). Propidium iodide was used
149 to confirm the percentage of dead cells. One hundred thousand events were acquired for each
150 sample and analyzed using FlowJo software (Tree Star Inc., Ashland, OR).

151

152 **Determination of FcRγIII polymorphism**

153 The FcR γ IIIA polymorphism of NK cells was evaluated according to the previous reports
154 [36, 37]. In brief, freshly isolated NK cells were harvested and stained separately with two anti-
155 FcR γ IIIA mAbs: clone 3G8 and clone MEM-154. The 3G8 mAb binds to a nonpolymorphic
156 epitope of FcR γ IIIA, whereas binding of MEM-154 mAb is dependent on the valine expression
157 of FcR γ IIIA. The percentage of cells stained positively for each Ab was counted, and the ratio
158 of MEM-154 positive cells/3G8 positive cells was calculated. The FcR γ IIIA polymorphism
159 was determined using the formula V/V: MEM154/3G8 >0.62, F/F: <0.04, and F/V: ratio
160 between 0.15 and 0.48.

161

162 **Cytotoxicity assay**

163 The CytoTox 96 nonradioactive cytotoxicity assay kit (Promega, Madison, WI) was used
164 for evaluating NK cell cytotoxicity according to the manufacturer's instructions. In brief, 5 ×
165 10³ treated target cells were resuspended in 50 μ l of assay medium and placed in a 96-well
166 round-bottom culture plate. Ten- to 40-fold amounts of NK cells suspended in 50 μ l of assay
167 medium were added to each well and also sheeted in empty wells to measure the spontaneous
168 lysis of effector cells. Lysis solution 50 μ l and assay medium 50 μ l were sheeted in another
169 well for measurement of maximal and minimal lysis. The plate was centrifuged at 250 g for 4
170 min and incubated for 4 h at 37°C. Lysis solution 10 μ l was added to each well 45 min before
171 the end of incubation. The plate was centrifuged again for 4 min at 250 g, and then culture

172 supernatants were collected and replaced in a 96-well flat-bottom assay plate. Substrate mixed
173 buffer 50 μ l was added to each well and incubated for 30 min at room temperature while shaded
174 from light. Stop solutions were added to each well at the end of incubation. The amount of
175 lactate dehydrogenase (LDH) released in the supernatant was measured as absorbance at 490
176 nm using an ELISA reader (Bio-Rad, Hercules, CA). The percentage of specific cytotoxicity
177 was calculated by the following formula: Percent cytotoxicity = (Sample-Effecto-
178 minimal)/(Maximal-minimal) \times 100.

179

180 **Measurement of cytokines**

181 NK cells were plated at 1×10^6 /ml in a 48-well plate and stimulated with and without Tmab 10
182 μ g/ml for 48 h at 37°C. Culture supernatants were collected and stored immediately at -80°C.
183 Enzyme-linked immunosorbent assays (ELISA) were performed to titrate interferon (IFN)- γ
184 and tumor-necrosis factor (TNF)- α in the culture supernatants using DUOSET anti-human
185 IFN- γ and TNF- α ELISA kits (R&D Systems).

186

187 **Statistics**

188 The paired t-test and Man-Whitney U-test were performed to determine the significance of
189 differences between groups in this study using GRAPHPAD PRISM (GraphPad Software, La
190 Jolla, CA). All experiments were repeated five times, and a p value of < 0.05 was considered

191 to represent a statistically significant difference.

192

193 **Results**

194 **Tmab-mediated ADCC against the HER2-high-expressing human pancreatic cancer cell**
195 **line**

196 First, the Tmab-mediated ADCC against Capan-1, the HER2-high-expressing human
197 pancreatic cancer cell line, was confirmed. As shown in Figure 2-A, while NK cells, isotype
198 IgG, and Tmab did not demonstrate cytotoxicity against Capan-1, 10 µg/ml of Tmab added to
199 NK cells lysed Capan-1. To determine the optimal conditions for inducing Tmab-mediated
200 ADCC, the indicated concentrations of Tmab were examined, and no difference was seen
201 between any of them (Figure 2-B). The necessity for Tmab pretreatment of Capan-1 was also
202 examined, and the results indicated that long-term pretreatment with Tmab decreased the
203 ADCC against Capan-1 (Figure 2-C). Based on those results, we performed the following
204 ADCC assay with 10 µg/ml of Tmab without pretreatment of target cells.

205

206 **Trastuzumab-mediated ADCC against the HER2-low-expressing human pancreatic**
207 **cancer cell line**

208 Next, Tmab-mediated ADCC against the HER2-low-expressing human pancreatic cancer cell
209 line was examined. As shown in Figure 3-A, although the Tmab-mediated ADCC against Panc-

210 1 was elevated, the level was significantly weaker compared with that against Capan-1. The
211 results in a representative individual cell are shown in Figure 3-B. In all investigated NK cells,
212 ADCC against both target cells increased with the increase in NK cell number.

213

214 **Anti-CD137 mAb enhanced Tmab-mediated ADCC against the HER2-low-expressing**
215 **human pancreatic cancer cell line**

216 According to the results above, Tmab-mediated ADCC against Panc-1 could be improved. We
217 therefore investigated the expression of various molecules, including CD137, associated with
218 the activation of NK cells following Tmab treatment to determine which showed greater
219 stimulation of NK cells. It was confirmed that only CD137 expression was up-regulated after
220 Tmab stimulation (Figure 4-A). Moreover, the combination of α CD137 with Tmab enhanced
221 Tmab-mediated ADCC against Panc-1 (Figure 4-B). However, the individual cell results
222 showed that ADCC against Panc-1 was up-regulated when the expression of CD137 was
223 increased following Tmab treatment (Figure 4-C), whereas it did not improve when CD137
224 remained unchanged (Figure 4-D).

225

226 **Effects of the Fc γ IIIa polymorphism on Tmab-induced ADCC against pancreatic**
227 **cancer cell lines**

228 It is known that the Fc γ IIIa polymorphism is closely associated with the affinity to IgG-Fc

229 [38], and the effects of the polymorphism against HER2-expressing breast cancer cells were
230 reported [39]. FcR γ III A 158V/V or V/F (VV/VF) conjugates easily with IgG-Fc to induce
231 ADCC efficiently, whereas FcR γ III A 158F/F (FF) conjugates weakly to IgG-Fc, resulting in
232 weak ADCC. Based on those findings, we determined the FcR γ III A polymorphism of each NK
233 cell taken from 12 healthy individuals participating in this study and examined the effects on
234 Tmab/ α CD137-mediated ADCC against human pancreatic cancer cell lines. CD137
235 expression was more significantly elevated after stimulation with Tmab in both FcR γ III A
236 VV/VF individuals (n=8) than in the FF group (n=4) against both Panc-1 (Figure 5-A, left
237 panel) and Capan-1 (Figure 5-A, right panel). Notably, the difference in CD137 up-regulation
238 between the VV/VF and FF groups was striking when Panc-1 was treated with Tmab (Figure
239 5-A left panel). We additionally examined changes in IFN- γ (Figure 5-B) and TNF- α (Figure
240 5-C) released from NK cells in both the VV/VF and FF groups before and after treatment with
241 Tmab in combination with α CD137 and found that the levels of these cytokines increased in
242 the VV/VF group in the presence of Tmab. However, the addition of α CD137 did not affect
243 the levels of these cytokines. The addition of α CD137 mAb significantly improved Tmab-
244 mediated ADCC against Panc-1 (Figure 6-A, left panel) and improved more in VV/VF than in
245 FF individuals, although the difference was not statistically significant (Figure 6-B, left panel).
246 In contrast, although Tmab greatly enhanced ADCC against Capan-1 in both VV/VF and FF
247 groups (Figure 6-A, right panel), the contribution of α CD137 was nonsignificant. Furthermore,

248 the percentage of increase in ADCC did not differ between VV/VF and FF individuals (Figure
249 6-B, right panel).

250

251 **Discussion**

252 Our results indicated that Tmab can improve ADCC against a HER2-high-expressing human
253 pancreatic cancer cell line. While Tmab-mediated ADCC against HER2-low-expressing
254 human pancreatic cancer cell line was weak, it could be improved in the presence of α CD137
255 stimulating mAb to some degree. The Fc γ RIIIA polymorphism affected the activity of NK cells
256 and was also associated with the level of Tmab-mediated ADCC against the HER2-low-
257 expressing pancreatic cancer cell line. However, it did not exhibit optimal Tmab-mediated
258 ADCC against the HER2-high-expressing pancreatic cancer cell line.

259 Tmab-mediated ADCC against the HER2-high-expressing cell line Capan-1 was potent
260 without the addition of α CD137 mAb and independent of the Fc γ RIIIA polymorphism,
261 indicating the clinical potential of Tmab for treating this type of pancreatic cancer. However,
262 because HER2 expression on human pancreatic cancer cells is generally low, few patients are
263 expected to benefit from a single administration of Tmab. Thus, additional techniques are
264 needed to establish Tmab-related therapy for HER2-low-expressing cancer cells, the majority
265 of human pancreatic cancer.

266 Our results indicated that the addition of α CD137 mAb enhanced Tmab-mediated ADCC

267 against the HER2-low-expressing pancreatic cancer cell line. A previous report showed that
268 Tmab-mediated ADCC against HER2-expressing human breast cancer cell lines was about
269 30% when they were exposed to a 20-fold amount of allogeneic NK cells [40]. Compared with
270 that report, the cytotoxicity of Tmab plus α CD137 mAb-mediated ADCC against the HER2-
271 low-expressing human pancreatic cancer cell line was slightly inferior to that against HER2-
272 high-expressing human breast cancer cell lines because more NK cells were required to achieve
273 the same level of ADCC in the former. Therefore increasing the number of NK cells in vivo
274 will be crucial to establish combined therapy using Tmab and α CD137 mAb for the treatment
275 of HER2-low-expressing human pancreatic cancer.

276 It was shown that intravenous administration of paclitaxel in breast cancer patients could
277 recruit NK cells in the periphery [41]. The mechanism by which paclitaxel increases the
278 number of peripheral NK cells is not known, although prior administration of paclitaxel is
279 thought to up-regulate Tmab-mediated ADCC in the presence of α CD137 mAb against HER2-
280 low-expressing human pancreatic cancer.

281 We also found that the binding affinity of FcR γ IIIA to IgG-Fc is strongly associated with
282 the expression of CD137 on the surface of NK cells along with its activation after stimulation
283 with Tmab. Previous reports showed that the FcR γ IIIA polymorphism is closely associated
284 with the level of Tmab-mediated ADCC against human HER2-expressing breast cancer cell
285 lines [38, 39]. Our results indicated that the FcR γ IIIA polymorphism could also affect Tmab-

286 mediated ADCC against the HER2-low-expressing human pancreatic cancer cell line, which
287 seemed to be one of the reasons for the individual difference of ADCC levels against them.
288 CD137 expression on the surface of NK cells with FcR-VV or -VF, which conjugates readily
289 with IgG-Fc, was increased to enhance NK cell cytotoxicity in association with Tmab
290 administration, resulting in improved ADCC against the HER2-low-expressing pancreatic
291 cancer cell line. However, the prevalence of FcR γ IIIA-VV was reported to be 7–10%, that of -
292 VF 34–51 %, and that of -FF 42–56% in Japan [42, 43]. The prevalence of FcR γ IIIA-
293 VV/VF/FF in this study was 50.0/16.7/33.3%, however. Only a small cohort was analyzed in
294 this study, which could explain the discrepancy, and more NK cells must be analyzed to clarify
295 the relationship between FcR γ IIIA polymorphisms and the ADCC against human HER2-low-
296 expressing pancreatic cancer cells.

297 Based on our present and previous results, approximately 40–60% of pancreatic cancer
298 patients can be expected to benefit from Tmab plus α CD137 mAb combined therapy. It remains
299 unclear how the efficacy of the combination therapy could be improved in FcR γ IIIA-FF
300 individuals, who comprise the major population in Japan. Further investigations will be needed
301 to resolve this. In addition, levels of IFN- γ and TNF- α released from NK cells after stimulation
302 with Tmab increased more in VV/VF than in FF individuals, and there was no significant
303 increase in the production of these cytokines after the addition of α CD137 mAb. The reason
304 why activated, CD137-expressing NK cells did not secrete higher levels of cytokines after

305 stimulation with α CD137 mAb was not determined in this study. More NK cells will be
306 examined to resolve this.

307 For induction of effective ADCC by Tmab plus α CD137 mAb, a sufficient number of
308 activated NK cells are necessary in patients with high-affinity polymorphisms against IgG-Fc.
309 It will therefore be important to determine how to achieve this *in vivo*. The activity of NK cells
310 is controlled by T-regulatory as well as T-helper lymphocytes [44], and gemcitabine, a standard
311 reagent for treating unresectable pancreatic cancer, exhibits inhibitory activity against T-
312 regulatory cells by down-regulating myeloid-derived suppressor cells that have a role in
313 augmenting T-regulatory lymphocytes [45]. As described above, paclitaxel increases NK cells
314 in the periphery immediately after administration, and they would be activated with the
315 addition of gemcitabine. Thus, the newly established nab-paclitaxel regimen plus gemcitabine
316 combination therapy appears to have the potential to increase activated NK cells *in vivo*, and
317 the addition of Tmab and α CD137 is expected to improve the efficacy of that regimen against
318 pancreatic cancer. Further investigations will be needed to confirm this hypothesis.

319

320 **Acknowledgment**

321 We are grateful to Eiji Shinya, M.D., Ph.D. for his helpful suggestions on statistical analysis in
322 this study.

323

324 **References**

325 1. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet.
326 2011;13;378(9791):607-20. doi: 10.1016/S0140-6736(10)62307-0. PMID: 21620466

327 2. Wilkowski R, Wolf M, Heinemann V. Primary advanced unresectable pancreatic cancer.
328 Recent Results Cancer Res. 2008;177:79-93. PMID:18084950

329 3. Heinemann V, Boeck S, Hinke A, Labianca R, Louvet C. Meta-analysis of randomized
330 trials: evaluation of benefit from gemcitabine-based combination chemotherapy applied
331 in advanced pancreatic cancer. BMC Cancer. 2008; 28;8:82. doi: 10.1186/1471-2407-8-
332 82. PMID:18373843

333 4. Ueno H, Ioka T, Ikeda M, Ohkawa S, Yanagimoto H, Boku N, et al. Randomized phase
334 III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally
335 advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. J Clin
336 Oncol. 2013;31(13):1640-8. doi: 10.1200/JCO.2012.43.3680. PMID:23547081

337 5. Ouyang G, Liu Z, Huang S, Li Q, Xiong L, Miao X, et al. Gemcitabine plus cisplatin
338 versus gemcitabine alone in the treatment of pancreatic cancer: a meta-analysis. World J
339 Surg Oncol. 2016;14:59. doi: 10.1186/s12957-016-0813-9. PMID:26927942

340 6. Chow E, Hoskin PJ, Wu J, Roos D, van der Linden Y, Hartsell W, Vieth R, et al. A phase
341 III international randomised trial comparing single with multiple fractions for re-
342 irradiation of painful bone metastases: National Cancer Institute of Canada Clinical Trials

343 Group (NCIC CTG) SC 20. Clin Oncol (R Coll Radiol). 2006;18(2):125-8. Review.

344 PMID:16523812

345 7. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased
346 survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;
347 31;369(18):1691-703. doi: 10.1056/NEJMoa1304369. PMID:24131140

348 8. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. ;
349 PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic
350 cancer. N Engl J Med. 2011;12;364(19):1817-25. doi: 10.1056/NEJMoa1011923.
351 PMID:21561347

352 9. Hudis CA. Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med.
353 2007; 5;357(1):39-51. PMID:17611206

354 10. Burstein HJ. The distinctive nature of HER2-positive breast cancers. N Engl J Med. 2005;
355 20;353(16):1652-4. PMID:16236735

356 11. Gunturu KS, Woo Y, Beaubier N, Remotti HE, Saif MW. Gastric cancer and
357 trastuzumab: first biologic therapy in gastric cancer. Ther Adv Med Oncol.
358 2013 ;5(2):143-51. doi: 10.1177/1758834012469429. PMID:23450234

359 12. Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R, et al. Overexpression of
360 HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer
361 Res. 1990 Jul 1;50(13):4087-91. PMID:1972347

362 13. Rolitsky CD, Theil KS, McGaughy VR, Copeland LJ, Niemann TH. HER-2/neu
363 amplification and overexpression in endometrial carcinoma. *Int J Gynecol Pathol.*
364 1999;18(2):138-43. PMID:10202671

365 14. Iqbal N, Iqbal N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers:
366 Overexpression and Therapeutic Implications. *Mol Biol Int.* 2014;2014:852748. doi:
367 10.1155/2014/852748. PMID:25276427

368 15. Petricevic B, Laengle J, Singer J, Sachet M, Fazekas J, Steger G, et al. Trastuzumab
369 mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same
370 extent in both adjuvant and metastatic HER2/neu breast cancer patients. *J Transl Med.*
371 2013; 12;11:307. doi: 10.1186/1479-5876-11-307. PMID:24330813

372 16. Baselga J, Albanell J. Mechanism of action of anti-HER2 monoclonal antibodies. *Ann*
373 *Oncol.* 2001;12 Suppl 1:S35-41. PMID:11521720

374 17. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al.
375 Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. *N*
376 *Engl J Med.* 2005; 20;353(16):1673-84. PMID:16236738

377 18. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of
378 chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that
379 overexpresses HER2. *N Engl J Med.* 2001; 15;344(11):783-92. PMID:11248153

380 19. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. ; ToGA
381 Trial Investigators. Trastuzumab in combination with chemotherapy versus chemotherapy
382 alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction
383 cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;
384 28;376(9742):687-97. doi: 10.1016/S0140-6736(10)61121-X. PMID:20728210

385 20. Wilken JA, Webster KT, Maihle NJ. Trastuzumab Sensitizes Ovarian Cancer Cells to
386 EGFR-targeted Therapeutics. J Ovarian Res. 2010; 27;3:7. doi: 10.1186/1757-2215-3-7.
387 PMID:20346177

388 21. Hussain MH, MacVicar GR, Petrylak DP, Dunn RL, Vaishampayan U, Lara PN Jr, et al. ;
389 National Cancer Institute. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in
390 advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma:
391 results of a multicenter phase II National Cancer Institute trial. J Clin Oncol. 2007;
392 1;25(16):2218-24. PMID:17538166

393 22. Chou A, Waddell N, Cowley MJ, Gill AJ, Chang DK, Patch AM, et al. Clinical and
394 molecular characterization of HER2 amplified-pancreatic cancer. Genome Med. 2013;
395 31;5(8):78. doi: 10.1186/gm482. eCollection 2013. PMID:24004612

396 23. Komoto M, Nakata B, Amano R, Yamada N, Yashiro M, Ohira M, et al. HER2
397 overexpression correlates with survival after curative resection of pancreatic cancer.

398 Cancer Sci. 2009;100(7):1243-7. doi: 10.1111/j.1349-7006.2009.01176.x.

399 PMID:19432892

400 24. Harder J, Ihorst G, Heinemann V, Hofheinz R, Moehler M, Buechler P, et al. Multicentre
401 phase II trial of trastuzumab and capecitabine in patients with HER2 overexpressing
402 metastatic pancreatic cancer. Br J Cancer. 2012; 13;106(6):1033-8. doi:
403 10.1038/bjc.2012.18. PMID:22374460

404 25. Büchler P, Reber HA, Büchler MC, Roth MA, Büchler MW, Friess H, et al. Therapy for
405 pancreatic cancer with a recombinant humanized anti-HER2 antibody (herceptin). J
406 Gastrointest Surg. 2001;5(2):139-46. PMID:11331475

407 26. Kimura K, Sawada T, Komatsu M, Inoue M, Muguruma K, Nishihara T, et al. Antitumor
408 effect of trastuzumab for pancreatic cancer with high HER-2 expression and enhancement
409 of effect by combined therapy with gemcitabine. Clin Cancer Res. 2006; 15;12(16):4925-
410 32. PMID:16914581

411 27. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasemann M. Strongly
412 enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on
413 HER2-positive human xenograft tumor models. Cancer Res. 2009; 15;69(24):9330-6. doi:
414 10.1158/0008-5472.CAN-08-4597. PMID:19934333

415 28. Assenat E, Azria D, Mollevi C, Guimbaud R, Tubiana-Mathieu N, Smith D, et al. Dual
416 targeting of HER1/EGFR and HER2 with cetuximab and trastuzumab in patients with

417 metastatic pancreatic cancer after gemcitabine failure: results of the "THERAPY" phase 1-

418 2 trial. *Oncotarget*. 2015; 20;6(14):12796-808. PMID:25918250

419 29. Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for cancer

420 immunotherapy. *Lancet*. 2009; 21;373(9668):1033-40. doi: 10.1016/S0140-

421 6736(09)60251-8. PMID:19304016

422 30. Strome SE, Sausville EA, Mann D. A mechanistic perspective of monoclonal antibodies

423 in cancer therapy beyond target-related effects. *Oncologist*. 2007;12(9):1084-95.

424 doi:10.1634/theoncologist.12-9-1084 PMID:17914078

425 31. Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, et al. Anti-ErbB-2 mAb

426 therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137

427 mAb therapy. *Proc Natl Acad Sci U S A*. 2011; 26;108(17):7142-7. doi:

428 10.1073/pnas.1016569108. PMID:21482773

429 32. Kohrt HE, Houot R, Weiskopf K, Goldstein MJ, Scheeren F, Czerwinski D, et al.

430 Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab

431 efficacy in xenotransplant models of breast cancer. *J Clin Invest*. 2012;122(3):1066-75.

432 doi: 10.1172/JCI61226. PMID:22326955

433 33. Houot R, Kohrt H, Levy R. Boosting antibody-dependant cellular cytotoxicity against

434 tumor cells with a CD137 stimulatory antibody. *Oncoimmunology*. 2012; 1;1(6):957-958.

435 PMID:23162770

436 34. Taraban VY, Rowley TF, O'Brien L, Chan HT, Haswell LE, Green MH, et al. Expression
437 and costimulatory effects of the TNF receptor superfamily members CD134 (OX40) and
438 CD137 (4-1BB), and their role in the generation of anti-tumor immune responses. Eur J
439 Immunol. 2002;32(12):3617-27. PMID:12516549

440 35. Lin W, Voskens CJ, Zhang X, Schindler DG, Wood A, Burch E, et al. Fc-dependent
441 expression of CD137 on human NK cells: insights into "agonistic" effects of anti-CD137
442 monoclonal antibodies. Blood. 2008; 112(3):699-707. doi: 10.1182/blood-2007-11-
443 122465. PMID:18519814

444 36. Varchetta S, Gibelli N, Oliviero B, Nardini E, Gennari R, Gatti G, et al. Elements related
445 to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab
446 therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 2007;
447 15;67(24):11991-9. doi:10.1158/0008-5472.CAN-07-2068 PMID:18089830

448 37. Böttcher S, Ritgen M, Brüggemann M, Raff T, Lüschen S, Humpe A, et al. Flow
449 cytometric assay for determination of FcgammaRIIA-158 V/F polymorphism. J Immunol
450 Methods. 2005; 30(1-2):128-36. doi:10.1016/j.jim.2005.08.004 PMID:16181633

451 38. Bowles JA, Weiner GJ. CD16 polymorphisms and NK activation induced by monoclonal
452 antibody-coated target cells. J Immunol Methods. 2005;304(1-2):88-99.
453 DOI:10.1016/j.jim.2005.06.018 PMID:16109421

454 39. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, et al.

455 Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of

456 trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer.

457 J Clin Oncol. 2008; 10;26(11):1789-96. doi: 10.1200/JCO.2007.14.8957.

458 PMID:18347005

459 40. Boero S, Morabito A, Banelli B, Cardinali B, Dozin B, Lunardi G, et al. Analysis of in

460 vitro ADCC and clinical response to trastuzumab: possible relevance of

461 Fc γ RIIA/Fc γ RIIA gene polymorphisms and HER-2 expression levels on breast cancer

462 cell lines. J Transl Med. 2015; 8;13:324. doi: 10.1186/s12967-015-0680-0.

463 PMID:26450443

464 41. Miura D, Yoneyama K, Furuhata Y, Shimizu K. Paclitaxel enhances antibody-dependent

465 cell-mediated cytotoxicity of trastuzumab by rapid recruitment of natural killer cells in

466 HER2-positive breast cancer. J Nippon Med Sch. 2014;81(4):211-20. PMID:25186575

467 42. Sugita N, Yamamoto K, Kobayashi T, Van Der Pol W, Horigome T, Yoshie H, et al.

468 Relevance of Fc gamma RIIa-158V-F polymorphism to recurrence of adult periodontitis

469 in Japanese patients. Clin Exp Immunol. 1999; 117(2):350-4. PMID:10444269

470 43. Fujimoto TT, Inoue M, Shimomura T, Fujimura K. Involvement of Fc gamma receptor

471 polymorphism in the therapeutic response of idiopathic thrombocytopenic purpura. Br J

472 Haematol. 2001;115(1):125-30. PMID:11722422

473 44. Ghiringhelli F, Ménard C, Terme M, Flament C, Taieb J, Chaput N, et al. CD4+CD25+
474 regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-
475 dependent manner. *J Exp Med.* 2005;202(8):1075-85. DOI:10.1084/jem.20051511
476 PMID:16230475

477 45. Ghansah T, Vohra N, Kinney K, Weber A, Kodumudi K, Springett G, et al. Dendritic cell
478 immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine
479 model of pancreatic carcinoma. *Cancer Immunol Immunother.* 2013;62(6):1083-91. doi:
480 10.1007/s00262-013-1407-9. PMID:23604104
481

482

483

484 **Figure legends**

485 Figure 1. A: Flow cytometric analysis was performed to confirm HER2 expression on Panc-1
486 (upper panel) and Capan-1 (lower panel). B: The isolated NKs cell were confirmed to be CD3
487 negative and CD56 positive by flow cytometry. C: The fundamental viability of the isolated
488 NK cells was evaluated as cytotoxicity against the NK-sensitive thymoma cell line K562.

489

490 Figure 2. LDH-releasing assays were performed to confirm the appropriate conditions for
491 Tmab-mediated ADCC against Capan-1, a HER2-high-expressing human pancreatic cancer
492 cell line. A: The contribution of Tmab to ADCC against Capan-1 was confirmed. The
493 effector/target (E/T) ratio was set at 10:1, and 10 μ g/ml of Tmab and isotype IgG were used.
494 B: To confirm the appropriate concentration of Tmab, ADCC with the indicated dose of Tmab
495 was measured. The E/T ratio was set at 40:1. C: To determine the necessity for the
496 preadministration of Tmab to target cells, Capan-1 was incubated with 10 μ g/ml of Tmab for
497 the indicated times. Cells were harvested and ADCC was evaluated. The E/T ratio was set at
498 40:1.

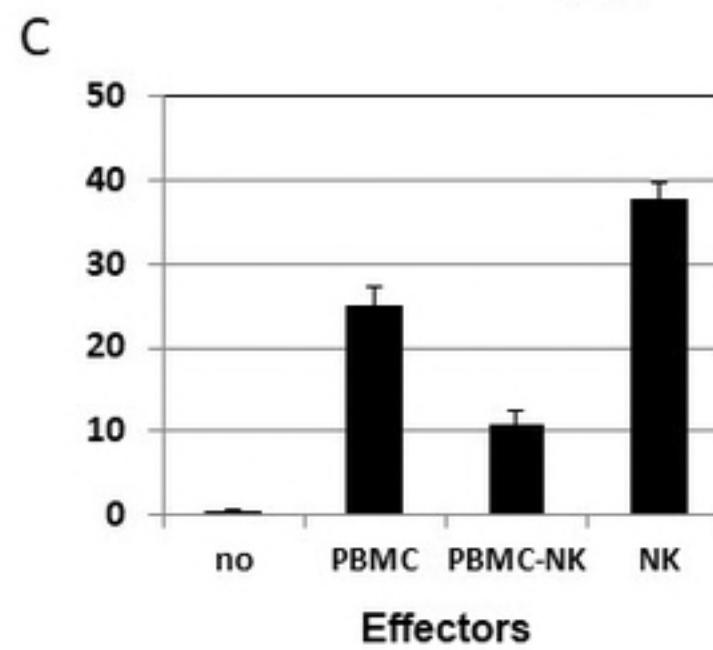
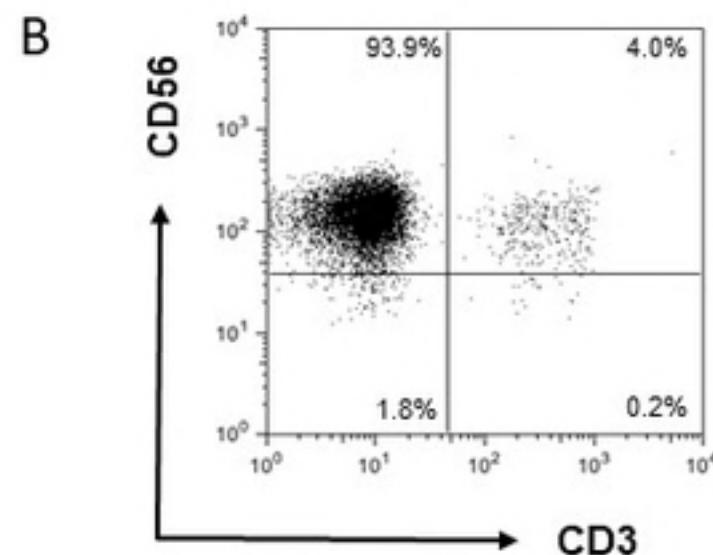
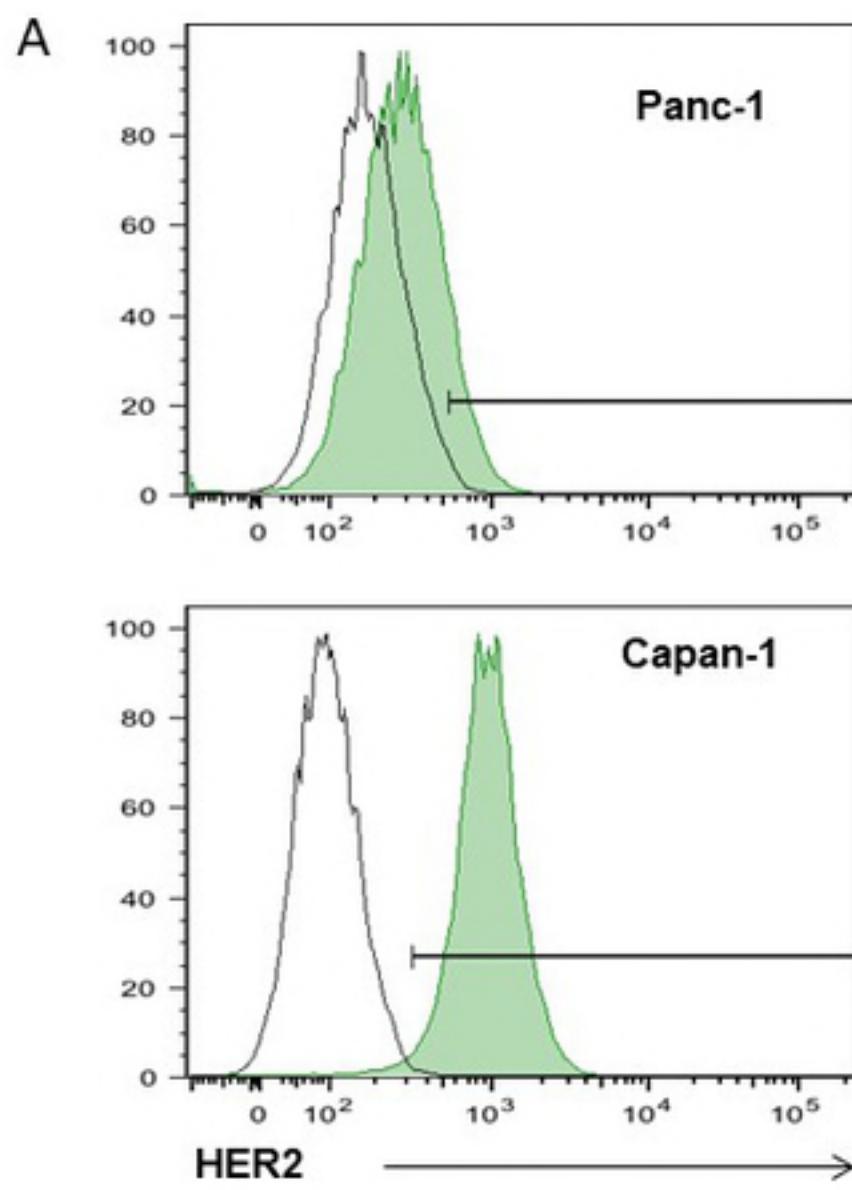
499

500 Figure 3. Tmab-mediated ADCC against Panc-1, a HER2-low-expressing human pancreatic

501 cancer cell line, was investigated. A: Mean ADCC against Panc-1 was compared with that
502 against Capan-1. B: ADCC against Panc-1 and Capan-1 in a representative individual was
503 shown.

504 Figure 4. To establish how to increase ADCC against a HER2-low-expressing pancreatic
505 cancer cell line, the addition of mAbs with Tmab was investigated. A: To select the optimal
506 antibody, flow cytometric analysis was performed to evaluate changes in the various molecules
507 on the surface of NK cells after Tmab administration. Based on the results, α CD137 was used
508 in the following examinations. B: The effect of α CD137 combined with Tmab on ADCC
509 against Panc-1 was evaluated. Mean ADCC in the indicated E/T ratios is shown. C: Results in
510 a representative individual cell when ADCC increased with the addition of α CD137. Left two
511 histograms: Changes in the expression of CD137 on the surface of NK cells. Right panel:
512 Increase in Tmab-mediated ADCC with the addition of α CD137. D: Results in an unresponsive
513 individual cell.

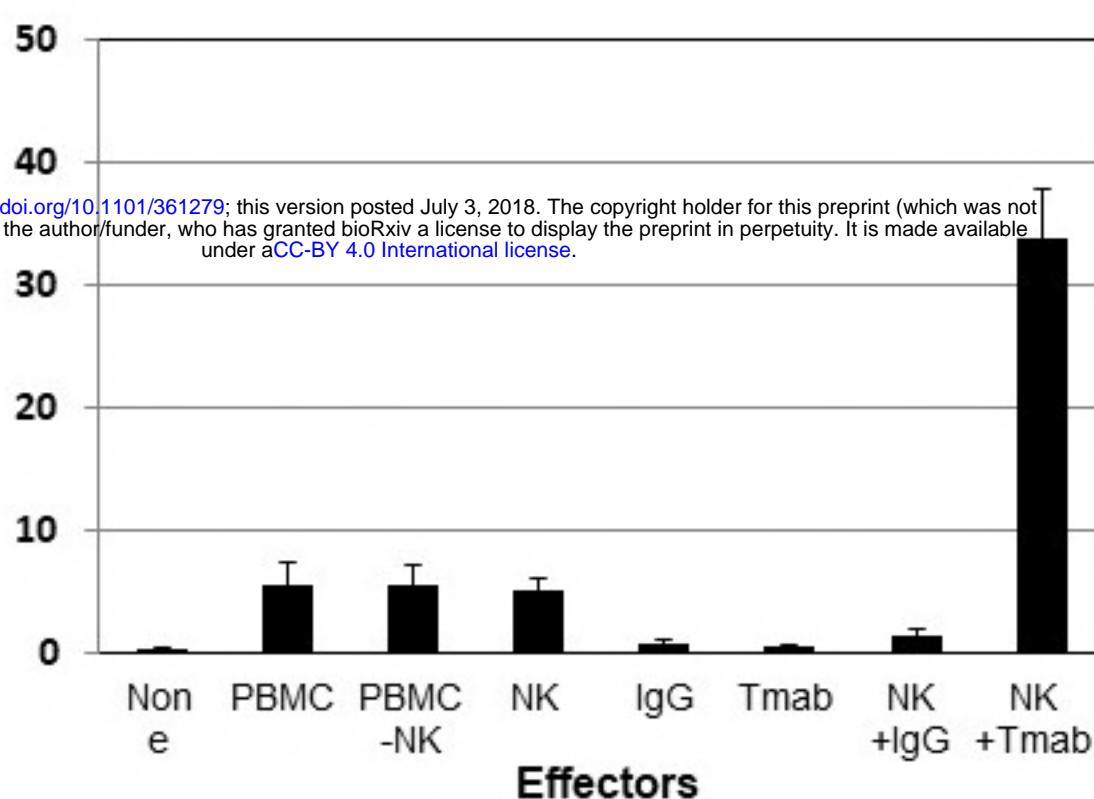
514

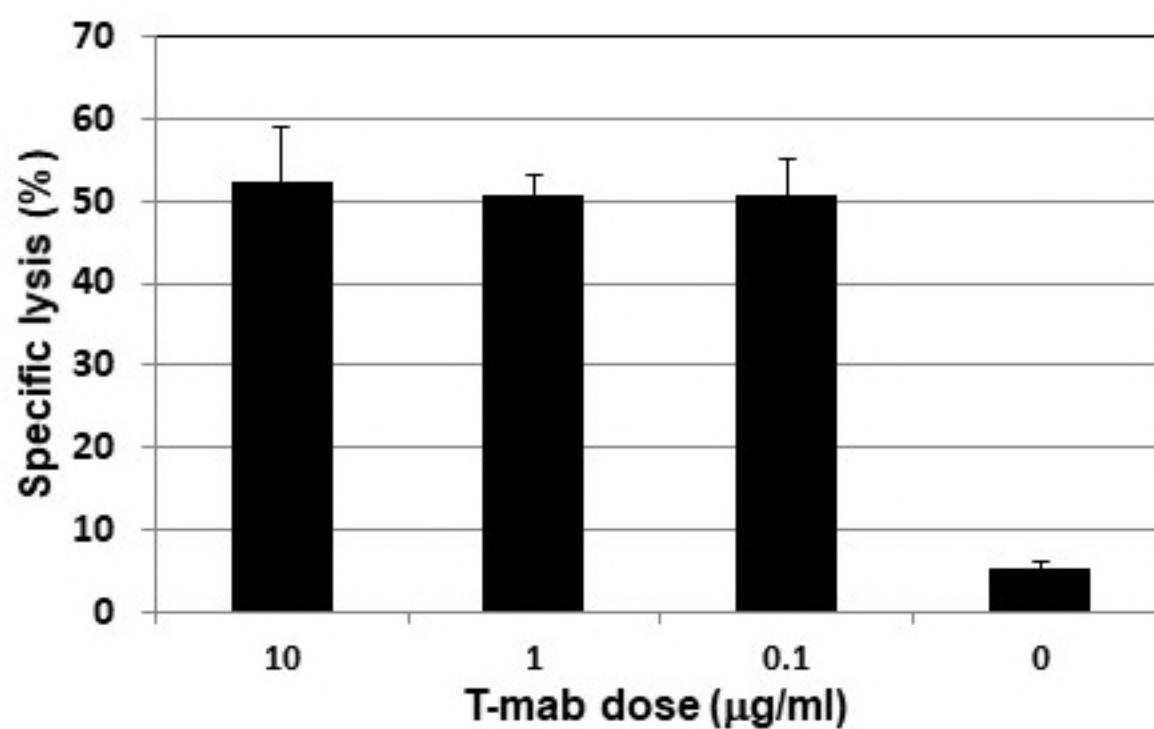



515 Figure 5. Effects of Fc γ RIIIA polymorphisms on the activity of NK cells. Fc γ RIIIA
516 polymorphisms were determined by flow cytometric analysis and divided into the VV/VF
517 (n=8) and FF groups (n=4). Differences in CD137 expression on the surface of NK cells in
518 both groups were measured with flow cytometry at the end of Tmab-induced ADCC against
519 Panc-1 (5A, left panel) and Capan-1 (5A, right panel). Levels of IFN- γ (5B, upper panels) and

520 TNF- α (5B, lower panels) released from NK cells at the end of the ADCC assay were measured
521 using ELISA.

522

523 Figure 6. Effects of α CD137 addition to Tmab on the ADCC against Panc-1 (6A, left panel)
524 and Capan-1 (6A, right panel) were compared between VV/VF and FF individuals. The
525 percentage of increase in ADCC against Panc-1 (6B, left panel) and Capan-1 (6B, right panel)
526 in each individual were calculated as indicated.


Figure1


Figure2

A

bioRxiv preprint doi: <https://doi.org/10.1101/361279>; this version posted July 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B

C

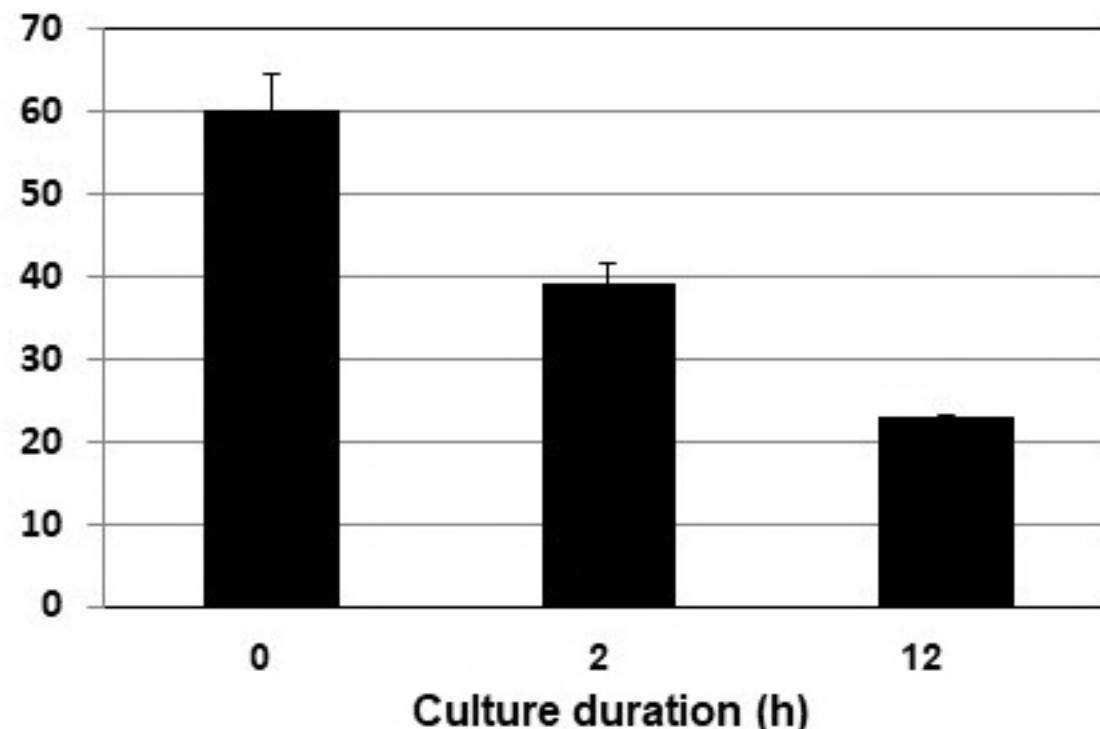
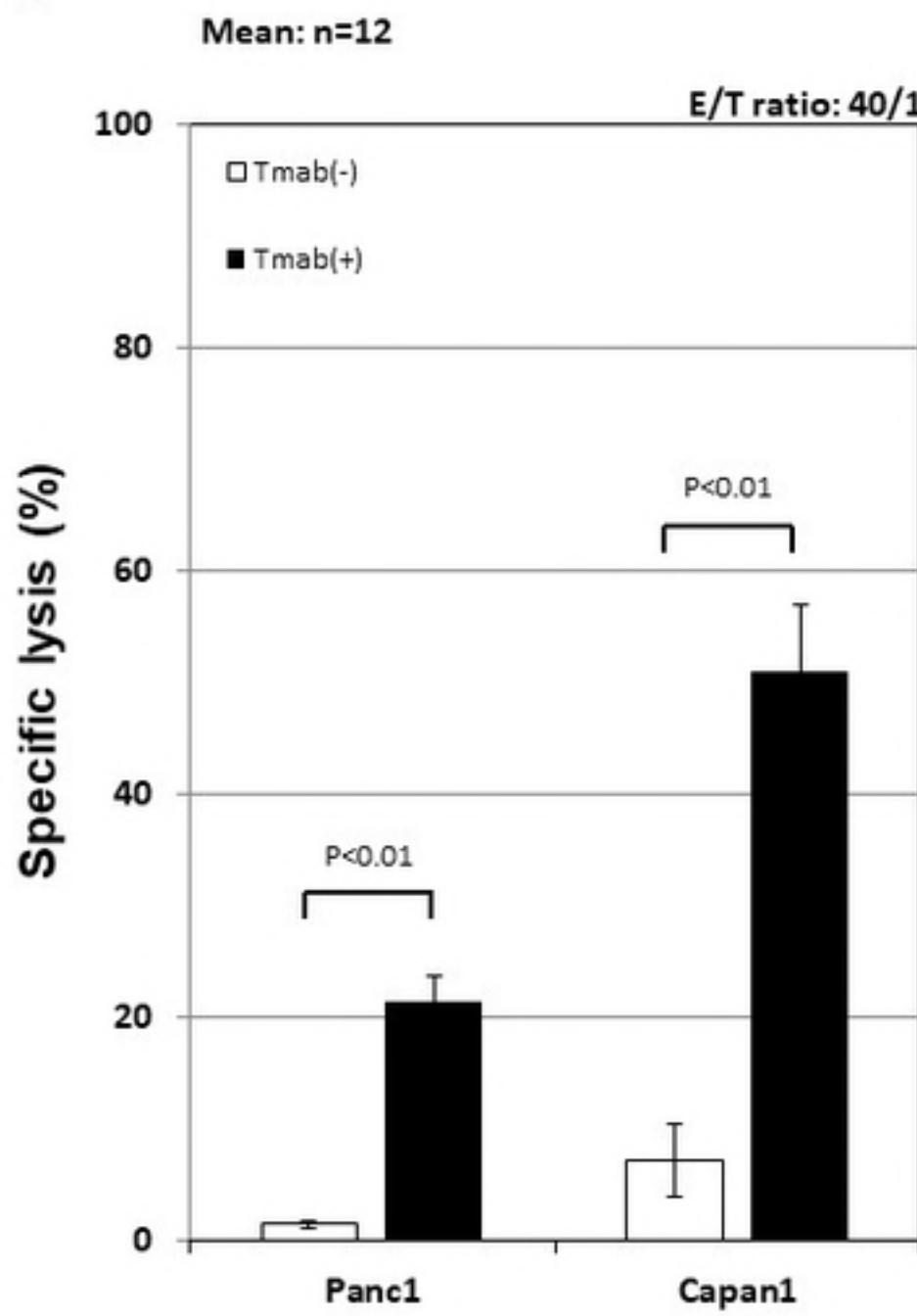
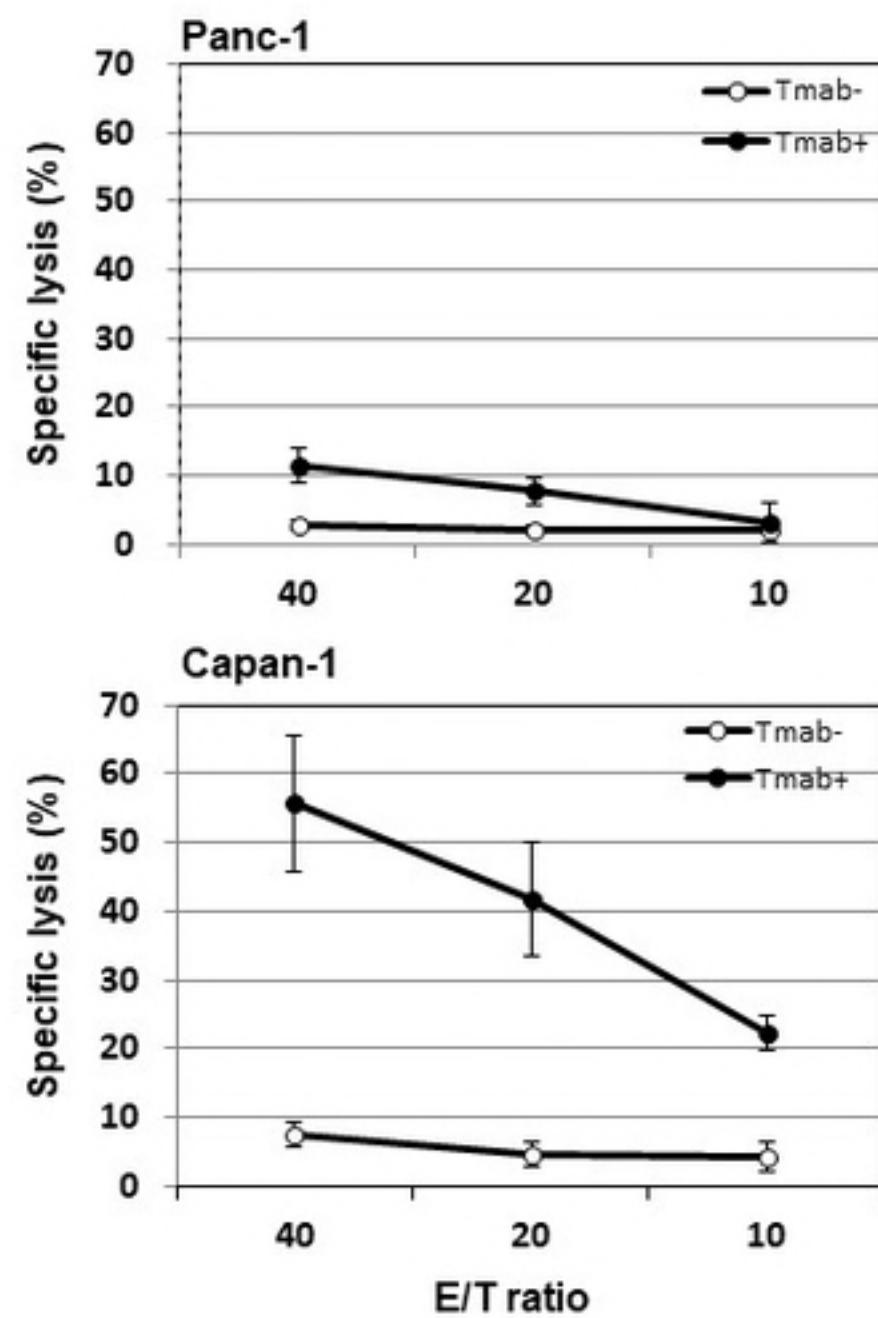
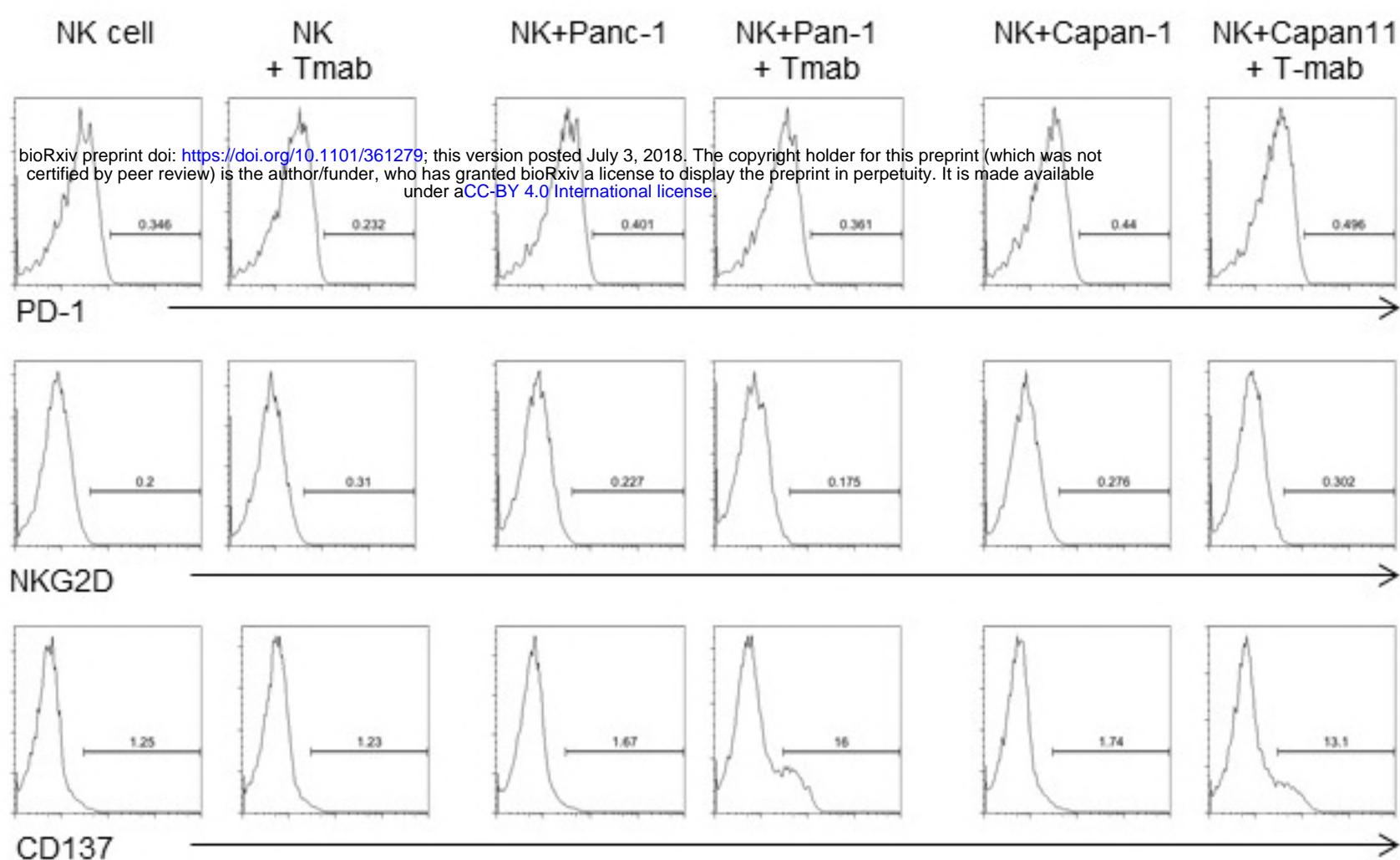




Figure 3

A



B

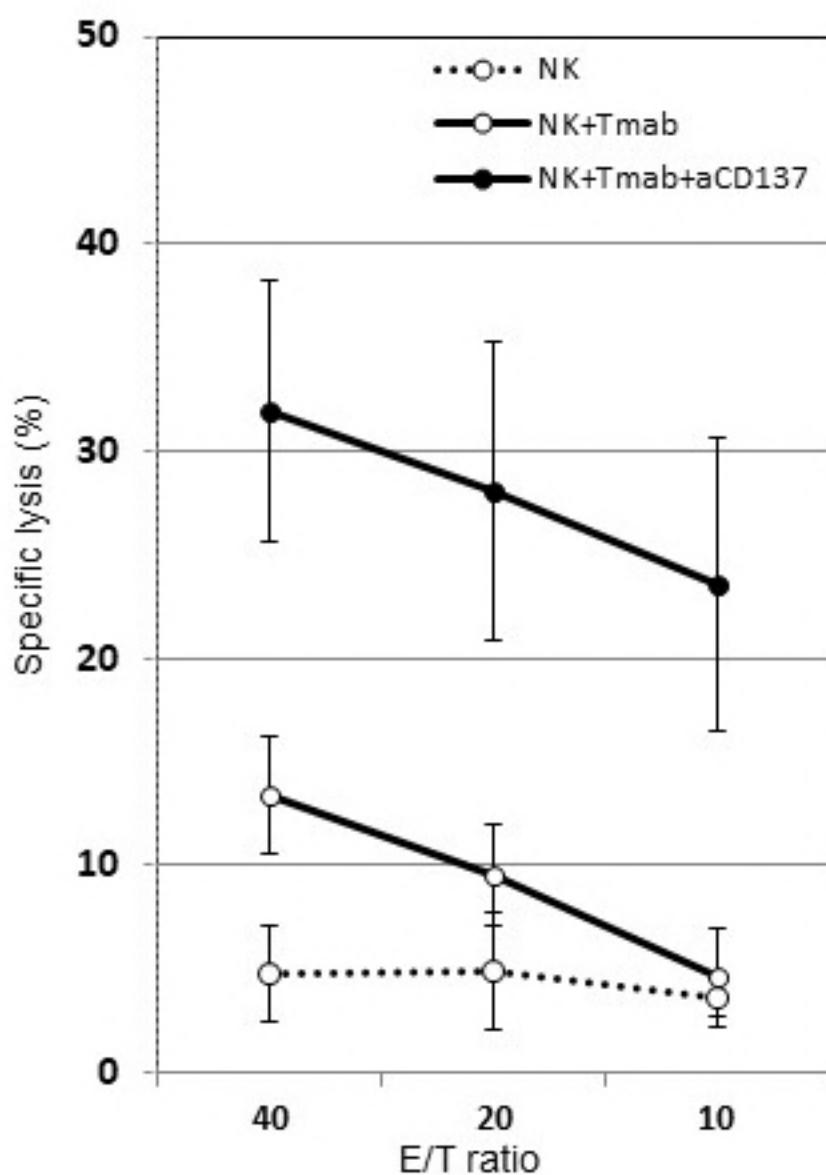
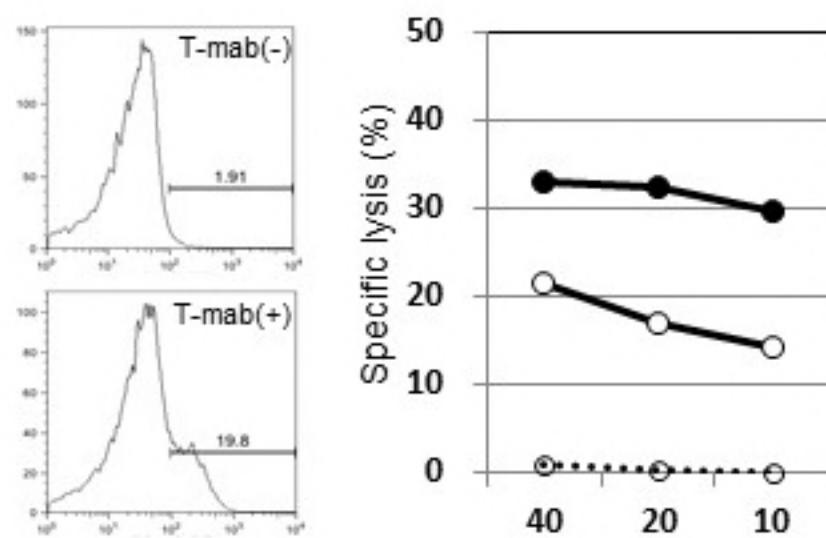
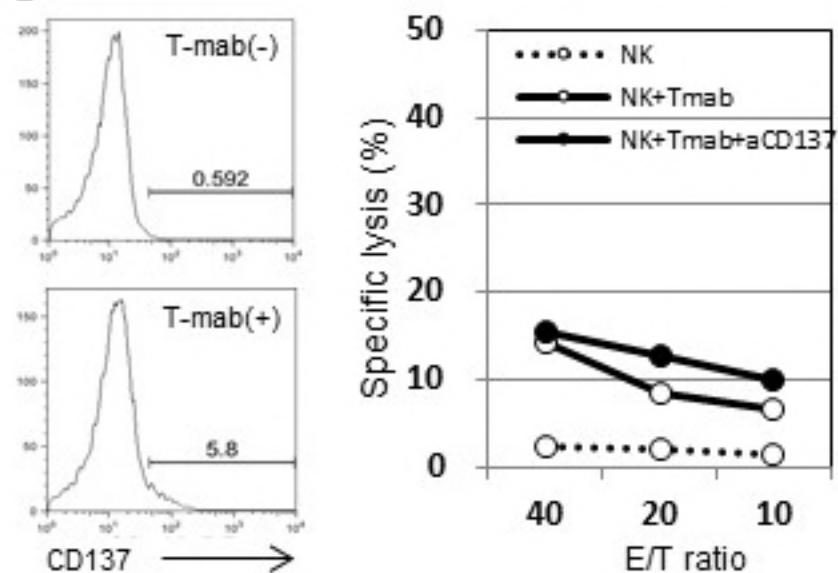
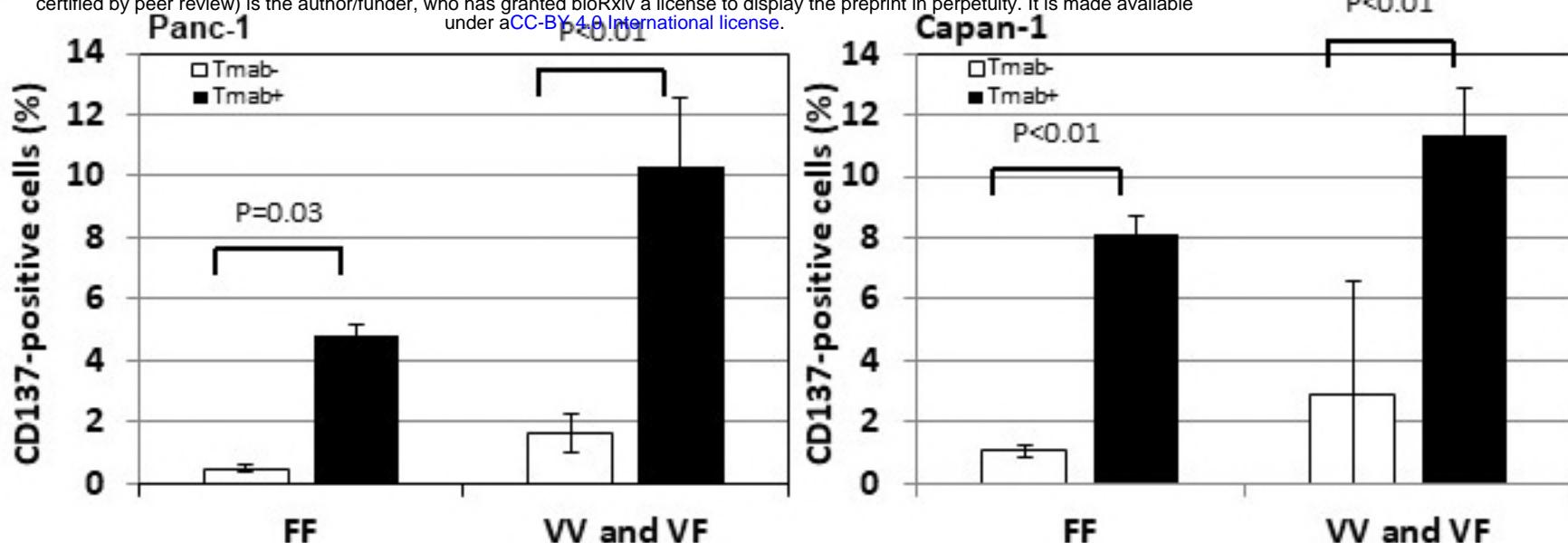


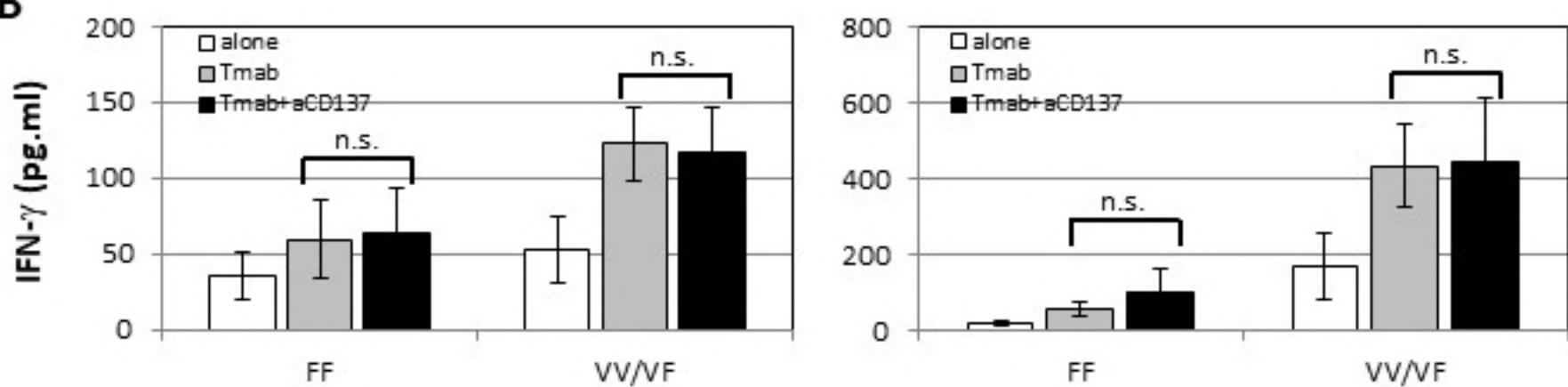
Figure 4: Effects of anti-CD137 Ab against HER2-low-expressing pancreas cancer cell line


A

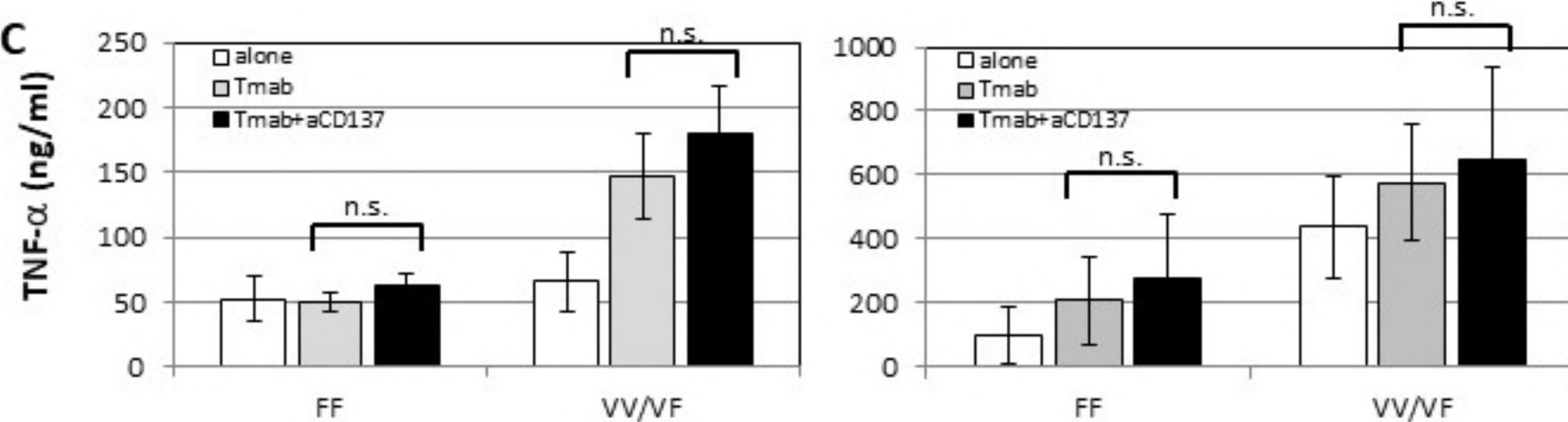

B

C


D


Figure 5

A


bioRxiv preprint doi: <https://doi.org/10.1101/361279>; this version posted July 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B

C

Figure 6

