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Abstract 28 

Emergence of Plasmodium falciparum resistance to antimalarial drugs is currently the primary rationale 29 

supporting the development of new and well-tolerated drugs. In 2014-2015, a phase 2b clinical study 30 

was conducted to evaluate the efficacy of a single oral dose of Artefenomel (OZ439)-piperaquine (PPQ) 31 

in Asian and African patients presenting with uncomplicated falciparum malaria. Blood samples 32 

collected before treatment offered the opportunity to investigate the proportion of multidrug resistant 33 

parasite genotypes including P. falciparum Kelch13 mutations and copy number variation of both P. 34 

falciparum plasmepsin2 (Pfpm2) and P. falciparum multidrug resistance 1 (Pfmdr1) genes. 35 

Validated Kelch13 resistance mutations including C580Y, I543T, P553L and V568G were only 36 

detected in parasites from Vietnamese patients. In Africa, isolates with multiple copies of the Pfmdr1 37 

gene were shown to be more frequent than previously reported (21.1%, range from 12.4% in Burkina 38 

Faso to 27.4% in Uganda). More strikingly, high proportions of isolates with multiple copies of the 39 

Pfpm2 gene, associated to PPQ resistance, were frequently observed in the African sites, especially in 40 

Burkina Faso and Uganda (>30%).  41 

Our findings sharply contrast with the recent description of increased sensitivity to PPQ of Ugandan 42 

parasite isolates. This emphasizes the necessity to decipher the genetic background associated with PPQ 43 

resistance in Africa by investigating in vitro susceptibilities to PPQ of isolates with multiple copies of 44 

the Pfpm2 gene and the urgent need to assess the risk of development of PPQ resistance, along with the 45 

efficacy of both current frontline therapies and new antimalarial combinations.  46 

 47 

 48 

 49 

 50 

 51 
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Introduction 53 

Emergence of Plasmodium falciparum resistance to antimalarial drugs is currently the primary rationale 54 

supporting the development of new and well-tolerated drugs. While the estimated number of malaria cases 55 

in the world decreased from 237 million  (218–278 million) in 2010 to 211 million (192–257 million) in 56 

2015, the morbidity and the mortality have stabilized in 2016 with estimates of 216 million cases (196–263 57 

million) and 445,000 deaths (compared to 446,000 in 2015) as reported by the WHO (1-3). Globally, the 58 

vast majority of deaths (>90%) caused by malaria is due to P. falciparum infections occurring in Africa, 59 

children under five years of age. Artemisinin Combination Therapies (ACTs) which are currently 60 

recommended as first-line treatment of uncomplicated falciparum malaria, are less effective in Southeast 61 

Asia, particularly in Cambodia, where high rates of treatment failure associated with artemisinin and 62 

piperaquine resistance are currently reported (4-16). The containment and the elimination of these 63 

multidrug resistant parasites in Southeast Asia are a priority for the WHO to avoid their spread to Africa as 64 

was the case with previous generations of antimalarial drugs (e.g. chloroquine, sulfadoxine-pyrimethamine) 65 

(17). Fortunately, molecular markers associated with such resistance are available (10). In particular, 66 

mutations in the propeller domain of a Kelch gene located on the chromosome 13 (Kelch13), and 67 

amplification of a cluster of genes encoding both Plasmepsin 2 (Pfpm2) and Plasmepsin 3 proteins, have 68 

been recently shown to be associated with artemisinin and PPQ resistance, respectively (18-20).  69 

According to the latest WHO update on artemisinin resistance (21), to be validated a Kelch13 resistance 70 

mutant has to be correlated with delayed parasite clearance in clinical studies and reduced drug in vitro 71 

susceptibility (survival rate ≥ 1% expressed by the Ring-stage Survival Assay, RSA0-3h) in fresh isolates 72 

(ex vivo assays), or culture-adapted field parasites or Kelch13 genome-edited parasites (in vitro assays) (22-73 

25). To date, only five Kelch13 mutations are validated (C580Y, Y493H, R539T, I543T, N458Y). The 74 

F446I mutant, which is highly prevalent in Myanmar, is strongly suspected of being associated to 75 

artemisinin resistance. In Africa, a broad array of rare non-synonymous mutations in the Kelch13 gene have 76 

been described in P. falciparum isolates, but any of these mutants have not been associated with artemisinin 77 

resistance (26), attesting that not all non-synonymous Kelch13 mutations confer resistance to artemisinin. 78 
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More recently, resistance to PPQ has been associated with an increase of survival rates of parasite exposed 79 

to 200 nM PPQ for 48 hours (piperaquine survival assay, PSA) and with the amplification of plasmepsin 80 

2-3 genes (Pfpm2-3) (6, 20). In Cambodia, where high rates of treatment failure to dihydroartemisinin-81 

piperaquine (DHA-PPQ) are observed (i.e. >60% in some provinces), it has been demonstrated that 82 

amplification of Pfpm2 gene and presence of validated Kelch13 mutations were highly predictive of DHA-83 

PPQ treatment failure (20). Most of these parasites harbor a single copy of Pfmdr1 gene leading to the 84 

recovery of mefloquine sensitivity (4, 6) and suggesting a natural antagonism between PPQ resistance and 85 

mefloquine resistance. However, we still do not understand whether Pfmdr1 de-amplification (from 86 

multiple copies to single copy Pfmdr1) is due to the implementation of DHA-PPQ as first-line treatment or 87 

due to the release of mefloquine pressure and an increase in parasite fitness accompanying Pfmdr1 gene 88 

de-amplification. To date, DHA-PPQ resistance is confined to Southeast Asia. Only a recent study 89 

conducted in Mozambique has provided evidence of the presence (at a very low frequency, 1.1%) of 90 

parasites carrying multiple copies of Pfpm2 (27). 91 

 92 

Facing the threat of losing all current ACTs front-line therapies due to resistance, new generation of 93 

endoperoxides with more favorable pharmacokinetic profiles like the ozonide Artefenomel (OZ439) have 94 

been developed (28). The efficacy of this new chemical entity was recently evaluated in combination with 95 

PPQ in African and Southeast Asian (Vietnam) patients with uncomplicated falciparum malaria infection 96 

(29). The primary objective of this phase 2b clinical study was to determine whether a single oral dose 97 

combination of artefenomel/PPQ was an efficacious and safe treatment (e.g., ≥ 95% of patients cured on 98 

the basis of polymerase chain reaction (PCR)-adjusted Adequate Clinical Parasitological Response at Day 99 

28 (ACPR28)) for adults and children infected by P. falciparum. Blood samples collected in 2014-2015 100 

from this clinical trial offered the opportunity to investigate the proportion of multidrug resistant parasites 101 

(i.e. P.  falciparum Kelch13 mutants and gene copy number of both Pfpm2 and Pfmdr1). Here, we report 102 

the occurrence of such genotypes from these samples and provide a map of potential risk of emergence of 103 

resistance to the main front-line therapies currently used to treat malaria-infected patients and to the next 104 
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generation of antimalarial combinations.  105 

 106 

Results 107 

The P. falciparum samples collected from patients before treatment and yielding a successful result, by 108 

country and molecular assay, are presented in Table 1.  109 

 110 

Global genotypes overview 111 

Among the 68 Southeast Asian clinical isolates collected in Vietnam with available data, 67.6% (46/68) 112 

were found to harbor parasite with validated or candidate Kelch13 resistance mutations (Table 2). Details 113 

regarding Kelch13 mutants according to the collection sites are presented in Table 3. In contrast, none of 114 

the 332 isolates collected from African patients and successfully tested were found to carry validated or 115 

candidate Kelch13 resistance mutations.  116 

Significant difference in proportion of isolates with multiple copies Pfmdr1 were found between Africa 117 

(21.1%, 64/304, 95%CI:16.2-26.9%) and Asia (6.3%, 5/79, 95%CI:2.0-14.8%, p=0.002, Table 2). Parasites 118 

with multiple copies of Pfpm2 were observed in 11 Asian samples (13.9%, 11/79, 95%CI:6.9-24.9%) and 119 

unexpectedly at higher proportion in African isolates (26.8%, 80/298, 95%CI:21.3-33.4%, p=0.02, Table 120 

2). However, multiple copies of Pfpm2/single copy Pfmdr1, hypothesized to favour resistance to PPQ, were 121 

found at similar proportion in 10 Asian isolates (12.7%, 10/79, 95%CI:6.1-23.3%) and 47 African samples 122 

(15.8%, 47/298, 95%CI:11.6-21.0%, p=0.72, Table 2 and Figure 1).  123 

In Asia, seven isolates (10.6%, 7/65, 95%CI:4.3-22.2%) had genotypes associated with both artemisinin 124 

and PPQ resistance (i.e. with Kelch13 validated and candidate resistance mutations, and multiple copy 125 

Pfpm2/single copy Pfmdr1) (Figure 2, panel A). In Africa, no clinical isolates had mutations conferring 126 

both artemisinin and PPQ resistance due to the absence of Kelch13 mutant-type parasites (Figure 2, panel 127 

B). 128 

 129 
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Southeast Asian (Vietnamese) genotypes (Table 3) 130 

Kelch13 validated and candidate mutations were detected in >60% of the isolates in all sites (from 61.1% 131 

in Gai Lai to 73.0% in Binh Phuoc) except Quang Tri (where only one sample was collected). C580Y was 132 

the most predominant Kelch13 validated and candidate mutation (54.3%, 25/46, 95%CI:25.2-80.2%) 133 

followed by P553L (37.0%, 17/46, 95%CI:21.5-59.2%), I543T (2.2%, 1/46, 95%CI:0.5-12.1%) and G568G 134 

(2.2%, 1/46, 95%CI:0.5-12.1%). In Khanh Hao, two isolates were found to have both C580Y and P553L 135 

single mutant parasites (likely from polyclonal infections).  136 

Isolates with multiple copies of Pfpm2 were detected only in two sites located along the Cambodian border: 137 

in Gai Lai (16.7%, 3/18, 95%CI:3.4-48.7%) and in Binh Phuoc (28.6%, 8/28, 95%CI:12.3-56.3%). No 138 

parasites with multiple copies were detected out of 32 isolates in Khanh Hao. Parasites with a single copy 139 

of Pfmdr1 were frequent (>88%) in samples collected from all four study sites (from 88.9% in Gai Lai to 140 

100% in Quang Tri). 141 

Parasites with multiple copies Pfpm2/single copy Pfmdr1 were observed in 10/79 (12.6%, 95%CI:6.1-142 

23.3%) of the isolates collected from Vietnamese patients, representing in Gai Lai (11.1%, 2/18, 143 

95%CI:1.4-40.1%) and in Binh Phuoc (28.6%, 8/28, 95%CI:12.3-56.3%). 144 

Isolates with genotype conferring both artemisinin and PPQ resistance (i.e. with Kelch13 validated and 145 

candidate mutations, and multiple copy Pfpm2/single copy Pfmdr1) were only observed in patients enrolled 146 

in Binh Phuoc (29.2%, 7/24, 95%CI:11.7-60.0%).  147 

 148 

African genotypes (Table 4) 149 

No Kelch13 validated and candidate mutations were detected at any site. Other non-synonymous mutations 150 

were observed: A578S was the most predominant Kelch13 mutation (7/10; 3 in Uganda, 2 in Gabon, 1 in 151 

Mozambique and 1 in Burkina Faso) followed by Y541F, M562T and A626V (only detected once in isolates 152 

from Burkina Faso). 153 

Isolates from Uganda and Burkina Faso showed an unexpected high frequency of parasites with multiple 154 

copies of Pfpm2 (34.0%, 38/112, 95%CI:24.0-46.6% and 30.5%, 32/105, 95%CI:20.9-43.0%, 155 
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respectively). Samples from Gabon and Mozambique had a lower frequency of multiple copies of Pfpm2 156 

estimated at 11.3% (8/71, 95%CI:4.9-22.2%) and 12.5% (1/8, 95%CI:0.3-69.6%) respectively. Of note, in 157 

the Democratic Republic of Congo, results from two isolates were available and one isolate was found to 158 

carrying parasites with multiple copies of Pfpm2.   159 

Parasites with single copy Pfmdr1 were detected in almost all isolates in patients enrolled across the six 160 

African sites, therefore only 13/105 (12.4%, 95%CI:6.6-21.2%) isolates from Burkina Faso, 2/12 (16.7%, 161 

95%CI:2.0-60.2%) from Mozambique, 17/72 (23.6%, 95%CI:13.8-37.8%) from Gabon and 31/113 (27.4%, 162 

95%CI:18.6-38.9%) from Uganda had multiple copies of Pfmdr1. One out of two patients harbored 163 

parasites with multiple copies of Pfmdr1 in DRC.  164 

Parasites with multiple copies Pfpm2/single copy Pfmdr1 were observed at a frequency of 21.0% (22/105, 165 

95%CI:13.1-31.7%) in Burkina Faso, 18.8% (21/112, 95%CI:11.6-28.7%) in Uganda, 12.5% (1/8, 166 

95%CI:0.3-69.7%) in Mozambique and 4.3% (3/71, 95%CI:0.9-12.5%) in Gabon. However, isolates with 167 

genotype conferring both artemisinin and PPQ resistance (i.e. with Kelch13 validated and candidate 168 

mutations, and multiple copy Pfpm2/single copy Pfmdr1) were not observed in patients enrolled in Africa 169 

since there were no Kelch13 validated and candidate mutations.  170 

 171 

Discussion 172 

The current phase 2b clinical study of Artefenomel, an ozonide showing improved pharmacokinetics 173 

properties compared to artemisinins, combined with PPQ was designed to assess the efficacy of single oral 174 

doses in patients with uncomplicated falciparum malaria in Southeast Asia (Vietnam) and Africa. In 175 

addition to the clinical outcome assessment, we investigated in isolates collected before treatment, three 176 

molecular markers associated with drug resistance for mapping the potential risks of future treatment 177 

failures. The frequency of Kelch13 mutations associated with artemisinin resistance, and Pfmdr1 and Pfpm2 178 

genes copy number were measured in available isolates collected from all clinical sites. Our investigations 179 

confirmed that artemisinin resistance is still confined in Southeast Asia. We observed a high proportion of 180 

Kelch13 validated and candidate resistance mutations as well as a new unreported one (C469P) in 181 
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Vietnamese parasites and the complete absence of these mutants in African isolates. As previously reported 182 

(26, 30, 31), we detected in our African samples a low proportion of Kelch13 mutations and all these 183 

mutations have not been shown to be associated to artemisinin resistance (26). 184 

 185 

However, we observed a higher proportion (3-fold) of parasites with multiple copies of Pfmdr1, a gene 186 

encoding a drug efflux pump, in African samples compared to Southeast Asian isolates. This observation 187 

contrasts with previous reports showing high frequency of parasites with multiple copies of Pfmdr1 in Asia 188 

(32-34) compared to Africa (35-37). These finding likely reflect the profiles of evolution of P. falciparum 189 

populations linked to antimalarial drug pressure in both continents. Especially, the prevalence of high 190 

Pfmdr1 amplification observed in Africa might be linked with the routine use of artemether-lumefantrine 191 

as first line treatment for more than a decade. Indeed, increased pfmdr1 copy number is known to modulate 192 

parasite responses to a wide range of drugs including lumefantrine (35, 38, 39). Supporting this expectation, 193 

it seems feasible that such parasites exposed to lumefantrine as monotherapy for several days following 194 

clearance of artemether have been selected, while parasites with a single copy have been eliminated. In 195 

contrast, the low prevalence of Pfmdr1 multiple copies observed in Southeast Asia could be due to the 196 

recent implementation of DHA-PPQ, the removal of the mefloquine drug pressure or both, as the case in 197 

Cambodia (18, 20, 40). 198 

High frequency of isolates with multiple copies of the Pfpm2 has already been reported in recent studies 199 

conducted in Cambodia (18, 20, 40). As the Vietnamese clinical sites (Gai Lai and Binh Phuoc) are located 200 

alongside the Cambodian border (Figure 2), we can suspect that data from our study might reflected an 201 

evolving situation where the amplification of Pfpm2 is spreading beyond Cambodia, as  described recently 202 

(5, 7). To date, frequencies observed in Vietnamese isolates are not yet as high as the ones observed in 203 

Cambodia but might continue to increase in the future.  204 

Unexpectedly, in African isolates, amplification of Pfpm2 gene was shown to occur at a much higher 205 

frequency (~27% on average across clinical sites in Africa, reaching 30.5% in Burkina Faso and 33.9% in 206 

Uganda) than was recently described (from 11.1% to 13.8% in Uganda and 1.1% in Mozambique) (27, 41). 207 
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Considering the geographical extent and the diversity of the clinical sites in Africa, the high frequency 208 

reported at sites distant to each other suggests that amplification of Pfpm2 gene occurred independently in 209 

each site. More importantly, since in Southeast Asia most parasites with multiple copies of Pfpm2 also 210 

display Kelch13 resistance mutations, which is not the case in African samples, it is likely that Pfpm2 211 

amplification originated in Africa, independently of Southeast Asia. 212 

 213 

Unfortunately, we were not be able to perform in vitro or ex-vivo drug susceptibility assays and test 214 

association between Pfpm2 amplification and clinical resistance to PPQ in the current study. An evaluation 215 

is currently ongoing to see whether, and if so to what extent, these markers of artemisinin and PPQ 216 

resistance affected the parasite clearance half-life (PCT1/2) and PCR-adjusted 28 days follow up in patients 217 

treated with artefenomel/PPQ (study MMV OZ439 13 003). However, it was recently reported that 218 

compared to drug sensitivities measured on Ugandan isolates from 2010 to 2013 (from the same site, 219 

namely Tororo), those measured in 2016 to chloroquine, amodiaquine, and PPQ were increased by 7.4, 5.2 220 

and 2.5-fold respectively (41). This longitudinal study showed that rather than drug resistance developing 221 

to these three antimalarial drugs, an increase in sensitivity was observed that was correlated with low 222 

prevalence of the polymorphisms recently associated with resistance to artemisinins or PPQ. Indeed, 223 

clinical resistance to DHA-PPQ has not yet been reported in Africa (42). Although, we cannot exclude the 224 

possibility that parasites showing amplification of Pfpm2 observed in the current study are resistant to PPQ 225 

without confirmation of in vitro or ex vivo phenotypes, data reported by Rasmussen et al. (41) suggest that 226 

significant occurrence of clinical resistance to PPQ is unlikely. In other words, in Africa it is unclear 227 

whether the amplification of Pfpm2 is necessary and/or sufficient for the development of resistance to PPQ. 228 

The ongoing analysis relating the markers of resistance to clinical outcome may provide some insights 229 

regarding this question.  It is still debated whether additional genetic modifications in the P. falciparum 230 

chloroquine resistance transporter gene are required to confer such resistance (43, 44). Indeed, recent 231 

genomic and biological investigations have revealed a rapid increase in the prevalence of novel Pfcrt 232 

mutations in Cambodia (H97Y, F145I, M343L, and G353V). These mutants (from culture-adapted 233 
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Cambodian field isolates or Dd2 gene-edited clones) were confirmed to confer PPQ resistance as 234 

determined using the PSA0-3h (6, Ross et al. in revision).  235 

At present, several ACTs are used in Africa and Asia to treat patients with uncomplicated malaria. 236 

artemether-lumefantrine (AL), artesunate-amodiaquine (AS-AQ), artesunate-mefloquine (AS-MQ), 237 

artesunate-sulfadoxine-pyrimethamine (AS-SP), dihydroartemisinin-piperaquine (DHA-PPQ) and 238 

pyronardidine-artesunate (PA). All achieve more than 95% efficacy in clinical trials based on PCR-adjusted 239 

Day28 ACPR. Due to the long post treatment prophylaxis of the well-tolerated PPQ, DHA-PPQ is currently 240 

under evaluation in a number of interventions such as Intermittent Preventive Treatment in pregnant women 241 

or in infants (IPTp, IPTi) and Mass Drug Administration campaigns (MDA) in Africa. As a key surveillance 242 

goal, it is therefore of particular importance to continue following the evolution of Pfpm2 amplification 243 

along with mutations in the Pfcrt gene and to investigate whether these genetic signatures are associated 244 

with PPQ resistance in Africa. 245 

 246 

Material & Methods 247 

Study Design, study sites and population 248 

Study MMV OZ439 13 003 was a randomized, double-blind, single-dose study to investigate the efficacy, 249 

safety, tolerability and pharmacokinetics of Artefenomel (OZ439) 800 mg in loose combination with three 250 

doses of PPQ phosphate (640, 960, 1440 mg) in male and female patients aged ≥ 6 months to < 70 years, 251 

with uncomplicated falciparum malaria in Africa and Southeast Asia (Vietnam), as previously described 252 

(29). This study was conducted in 13 sites, including Burkina Faso (3 sites, N=127), Uganda (1 site, 253 

N=124), Benin (1 site, N=1), the Democratic Republic of Congo (1 site, N=5), Gabon (2 sites, N=94), 254 

Mozambique (1 site, N=14), and Vietnam (4 sites, N=83). A total of 448 patients were randomized into 255 

each of three treatment arms: OZ439 800 mg/PPQ 640 mg (N=148), OZ439 800 mg/PPQ 960 mg (N=151) 256 

and OZ439 800 mg/PPQ 1440 mg (N=149). 257 

 258 
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DNA extraction 259 

P. falciparum DNA was extracted from dried blood spots using the QIAamp DNA Mini kit (Qiagen, 260 

Germany), according to the manufacturer's instructions. Samples were screened to confirm the presence of 261 

P. falciparum DNA using first a qualitative real-time PCR assay targeting the Plasmodium cytochrome b 262 

gene and secondly on positive samples, four real-time PCR assays specifically amplifying P. falciparum, 263 

P. vivax, P. ovale and P. malariae (45). 264 

 265 

Detection of Kelch13 mutations 266 

P. falciparum positive samples were tested for the presence of mutations in the propeller domain of the 267 

Kelch13 gene (PF3D7_1343700) that have recently been associated with artemisinin resistance (19). 268 

Amplification of the Kelch-propeller domain (codons 440-680, 720 bp) was performed as previously 269 

described (26). Cross-contamination was evaluated by adding no template samples (dried blood spots 270 

negative for P. falciparum) in each PCR run.  PCR products were sequenced by Macrogen (Seoul, Korea). 271 

Electropherograms were analysed on both strands, using PF3D7_1343700 as the reference sequence. The 272 

quality of the procedure was assessed by including dried blood spots with known Kelch13 mutations (wild-273 

type, C580Y, R539T, I543T, Y493H) which were tested blindly in the same batches (each 96-well) with 274 

the test samples. Isolates with mixed alleles were considered as mutant. Following the WHO 275 

recommendations, Kelch13 mutants were classified in our study in three groups: wild-type group (parasites 276 

with no synonymous or non-synonymous mutations compared to 3D7 sequence), Kelch13 validated 277 

(N458Y, Y493H, R539T, I543T, C580Y) and candidate mutation (P441L, F446I, G339A, P553L, V568G, 278 

P574L, A675V) group, and other Kelch13 mutants group (parasites with synonymous or non-synonymous 279 

mutations not present in the Kelch13 validated and candidate resistance mutation group). 280 

 281 

Pfpm2 and Pfmdr1 genes copy number variation assessment 282 

Pfpm2 (PF3D7_1408000) and Pfmdr1 (PF3D7_0523000) genes copy number were measured by qPCR 283 

using a CFX96 real-time PCR machine (Bio-Rad, France), relative to the single copy of the β-tubulin gene 284 
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(used as reference gene), as previously described (20). Amplification was carried out in triplicate. In each 285 

amplification run, six replicates using DNA from 3D7 parasite reference clone and three replicates without 286 

template (water) used as negative controls were included. Copy numbers were calculated using the formula: 287 

copy number= 2−ΔΔCt; with ΔΔCt denoting the difference between ΔCt of the unknown sample and ΔCt of 288 

the reference sample (3D7). Specificities of Pfpm2 and Pfmdr1 amplification curves were evaluated by 289 

visualizing the melt curves. Multiple copies vs single copy, of both Pfmdr1 and PfPm2, were defined as 290 

copy numbers <1.5 and ≥1.5 respectively. 291 

 292 

Statistical analysis 293 

Data were recorded and analyzed using Excel software and MedCalc (MedCalc Software, Belgium). 294 

Groups were compared using the Chi squared test or the Fisher’s exact test. All reported P-values are two-295 

sided and were considered statistically significant if <0.05. 296 

 297 

Ethical statement 298 

The study (MMV OZ439 13 003) conformed to the Declaration of Helsinki and Standard Operating 299 

Procedures that meet current regulatory requirements and guidelines laid down by the International 300 

Conference on Harmonization for Good Clinical Practice in Clinical Studies, and approved by the relevant 301 

Independent Ethics Committees (IEC), national Institutional Review Boards and where relevant, local 302 

regulatory authorities at each of the participating sites. The study protocol was registered and the study 303 

results are reported on clinicaltrials.gov (NCT02083380). 304 
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Figure legends 495 

Figure 1. Pfmdr1 and Pfpm2 gene copy numbers of Plasmodium falciparum isolates collected from 496 

Southeast Asia (in red) and from Africa (in black). Proportion of the isolates from Southeast Asia and 497 

African are given for each group: Pfpm2 single copy/ Pfmdr1 single copy (lower-left quandrant), Pfpm2 498 

single copy/ Pfmdr1 multiple copies (upper-left), Pfpm2 multiple copies/ Pfmdr1 single copy (lower-right) 499 

and Pfpm2 multiple copies/Pfmdr1 multiple copies (upper-right). 500 

 501 

Figure 2. Kelch13 mutations, Pfmdr1 and Pfpm2 gene copy numbers of Plasmodium falciparum isolates 502 

collected from 4 sites in Southeast Asia (Panel A) and from 9 sites in Africa (Panel B). Each Kelch13 503 

mutations are presented with different symbols and colours. Open triangle represents isolates with 504 

unavailable Kelch13 data. The four quadrants in both panel presents isolates with Pfpm2 single copy/ 505 

Pfmdr1 single copy (lower-left quandrant), Pfpm2 single copy/ Pfmdr1 multiple copies (upper-left), Pfpm2 506 

multiple copies/ Pfmdr1 single copy (lower-right) and Pfpm2 multiple copies/Pfmdr1 multiple copies 507 

(upper-right). 508 
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Table 1. Number of isolates collected from each sites in Southeast Asia (Vietnam) and Africa and number 521 

and proportion of successful molecular tests.  522 

Sites 
No.  

isolates 

No. of successful tests (%) 

Kelch 13 Pfpm2 Pfmdr1 

Southeast 

Asia 

Gai  Lai 18 13 (72) 18 (100) 18 (100) 

Binh  Phuoc 30 26 (87) 28 (93) 28 (93) 

Quang Tri 1 1 (100) 1 (100) 1 (100) 

Khanh  Hao 34 28 (82) 32 (94) 32 (94) 

Africa 

Benin 1 1 (100) 0 (0) 0 (0) 

Burkina Faso  127 114 (90) 105 (83) 105 (83) 

DR Congo 5 4 (80) 2 (40) 2 (40) 

Gabon 94 83 (88) 71 (76) 72 (77) 

Mozambique 14 14 (100) 8 (57) 12 (86) 

Uganda 124 116 (94) 112 (90) 113 (91) 

Total 448 400 (89) 377 (84) 383 (85) 
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Table 2. Distribution (number and proportion) of genotypes (Kelch13 mutations, Pfmdr1 and Pfpm2 gene copy numbers) detected in Plasmodium 539 

falciparum isolates collected from Southeast Asia and Africa in 2014-2015.  540 

Locus Allele/Haplotype 
Number of isolates (%) detected in 

P-value 
Asia (N=82) Africa (N=355) 

Kelch 13 

ART 46 (67.6) 0 (0.0) 

< 10-4 OTH 1 (1.5) 10 (3.0) 

WT 21 (30.9) 322 (97.0) 

Pfpm2 
Single copy 68 (86.1) 218 (73.2) 

0.02 
Multiple copies 11 (13.9) 80 (26.8) 

Pfmdr1 
Single copy 74 (93.7) 240 (78.9) 

0.002 
Multiple copies  5 (6.3) 64 (21.1) 

Pfpm2/Pfmdr1 

Single copy/Single copy 64 (81.0) 189 (63.4) 

0.009 
Single copy/Multiple copies 4 (5.1) 29 (9.7) 

Multiple copies/Single copy 10 (12.7) 47 (15.8) 

Multiple copies/Multiple copies 1 (1.3) 33 (11.1) 

Kelch 13/Pfpm2/Pfmdr1 

ART/Multiple copies/Single copy 7 (10.6) 0 (0.0) 

< 10-4 
WT/Multiple copies/Single copy 2 (3.0) 43 (14.7) 

ART/others 38 (57.5) 0 (0.0) 

WT/others 18 (27.3) 241 (82.5) 
ART: validated or candidate Kelch 13 mutations; WT: Kelch 13 Wild type, OTH: Kelch 13 mutations with unknown association with artemisinin resistance (detailed 541 

in Tables 3 and 4). Bold font denotes the allele or haplotype associate with drug resistance. P-value (Chi-squared test± or Fischer exact test¥) 542 
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Table 3. Distribution (number and proportion) of genotypes (Kelch13 mutations, Pfmdr1 and Pfpm2 gene copy numbers) detected in Plasmodium 547 

falciparum isolates collected in four sites located in Southeast Asia in 2014-2015.  548 

Locus Allele/Haplotype 
Site 

Gai Lai Binh Phuoc Quang Tri Khanh Hao 
   N  % N  % N  % N  % 

Kelch 13 

ART 

C580Y 3 23.1 16 61.5 0   6 21.4 

C580Y+P553L 0   0   0   2 7.1 

I543T 0   1 3.8 0   0   

P553L 4 30.8 2 7.7 0   11 39.3 

V568G 1 7.7 0   0   0   

OTH C469P 1 7.7 0   0   0   

WT   4 30.8 7 26.9 1 100 9 32.1 

Pfpm2 
Single copy 15 83.3 20 71.4 1 100 32 100 

Multiple copies  3 16.7 8 28.6 0  0  

Pfmdr1 
Single copy 16 88.9 27 96.4 1 100 30 93.8 

Multiple copies  2 11.1 1 3.6 0   2 6.3 

Pfpm2/Pfmdr1 

Single copy/Single copy 14 77.8 19 67.9 1 100 30 93.8 

Single copy/Multiple copies 1 5.6 1 3.6 0  2 6.3 

Multiple copies/Single copy 2 11.1 8 28.6 0  0  

Multiple copies/Multiple copies 1 5.6 0   0   0   

Kelch 13/Pfpm2/Pfmdr1 

ART 

Single copy/Single copy 7 53.8 10 41.7 0   18 64.3 

Single copy/Multiple copies 0   1 4.2 0   1 3.6 

Multiple copies/Single copy 0   7 29.2 0   0   

Multiple copies/Multiple copies 1 7.7 0 - 0   0   

OTH 

Single copy/Single copy -   0   0   0   

Single copy/Multiple copies 1 7.7 0   0   0   

Multiple copies/Single copy -   0   0   0   

Multiple copies/Multiple copies -   0   0   0   
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WT 

Single copy/Single copy 2 15.4 6 25 1 100 8 28.6 

Single copy/Multiple copies -   0   0   1 3.6 

Multiple copies/Single copy 2 15.4 0   0   0   

Multiple copies/Multiple copies -   0   0   0   

ART: validated or candidate Kelch 13 mutations; WT: Kelch 13 Wild type, OTH: Kelch 13 mutations with unknown association with artemisinin resistance. Bold 549 

font denotes the allele or haplotype associate with drug resistance. 550 

 551 

 552 

 553 
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Table 4. Distribution (number and proportion) of genotypes (Kelch13 mutations, Pfmdr1 and Pfpm2 gene copy numbers) detected in Plasmodium 565 

falciparum isolates collected in nine sites located in Africa in 2014-2015.  566 

Locus Allele/Haplotype 
Site 

BEN BF DRC GAB MOZ UGA 
   N  % N  % N  % N  % N  % N  % 

Kelch 13 

ART 0   0   0   0   0   0   

OTH 

A578S 0  1 0.875 0  2 2.4 1 7.1 3 2.6 

Y541F 0  1 0.875 0  0  0  0  

M562T 0  1 0.875 0  0  0  0  

A626V 0  1 0.875 0  0  0  0  

WT   1 100 110 96.5 4 100 81 97.6 13 92.9 113 97.4 

Pfpm2 
Single copy 0   73 69.5 1 50 63 88.7 7 87.5 74 66.1 

Multiple copies  0  32 30.5 1 50 8 11.3 1 12.5 38 33.9 

Pfmdr1 Single copy 0   92 87.6 1 50 55 76.4 10 83.3 82 72.6 

  Multiple copies  0   13 12.4 1 50 17 23.6 2 16.7 31 27.4 

Pfpm2/Pfmdr1 

Single copy/Single copy 0  70 66.7 1 50 51 71.8 7 87.5 60 53.6 

Single copy/Multiple copies 0  3 2.9 0  12 16.9 0  14 12.5 

Multiple copies/Single copy 0  22 21 0  3 4.3 1 12.5 21 18.8 

Multiple copies/Multiple copies 

  
0   10 9.4 1 50 5 7 0   17 15.1 

Kelch 

13/Pfpm2/Pfmdr

1 

ART Single copy/Single copy 0  0  0  0  0    

  
Single copy/Multiple 

copies 
0  0  0  0  0    

  
Multiple copies/Single 

copy 
0  0  0  0  0    

  
Multiple copies/Multiple 

copies 
0  0  0  0  0    

OTH Single copy/Single copy 0  0  0  0  1 12.5 2 1.9 

  
Single copy/Multiple 

copies 
0  1 1 0  1 1.5 0  1 0.9 
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Multiple copies/Single 

copy 
0  2 1.9 0  0  0    

  
Multiple copies/Multiple 

copies 
0  0  0  0  0    

WT Single copy/Single copy 0  69 66.3 1 50 51 71.8 6 75 56 52.3 

  
Single copy/Multiple 

copies 
0  3 2.9 0  11 15.5 0  13 12.1 

  
Multiple copies/Single 

copy 
0  20 19.2 0  3 4.2 1 12.5 19 17.8 

  
Multiple copies/Multiple 

copies 
0   9 8.7 1 50 5 7 0   16 15 

Countries:   BEN -  Benin; BF -  Burkina Faso; DRC -  Democratic Republic of Congo; GAB -Gabon; MOZ - Mozambique; UG - Uganda. ART: validated or 567 

candidate Kelch 13 mutations; WT: Kelch 13 Wild type, OTH: Kelch 13 mutations with unknown association with artemisinin resistance. Bold font denotes the 568 

allele or haplotype associate with drug resistance 569 
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