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Abstract 18 

The spatial organization of chromatin in the nucleus has been implicated in many aspects of 19 

regulated gene expression. Maps of high frequency interactions between different segments of 20 

chromatin have revealed Topologically Associating Domains (TADs), within which most of the 21 

regulatory interactions are thought to occur. Recent studies have shown that TADs are not 22 

homogeneous structural units, but rather they appear to be organized into a hierarchy. However, 23 

precise identification of hierarchical TAD structures remains a challenge. We present OnTAD, 24 

an Optimized Nested TAD caller from Hi-C data, to identify hierarchical TADs. Compared to 25 

existing methods, OnTAD has significantly improved accuracy and running speed. Results from 26 

OnTAD reveal new biological insights on the role of different TAD levels, boundary usage in 27 

gene regulation, the loop extrusion model, and compartmental domains. The software and 28 

documentation for OnTAD are available at: https://github.com/anlin00007/OnTAD 29 

 30 

Background 31 

Previous studies have shown that the human genome is spatially organized at different levels in 32 

the nucleus, with each level of organization playing a role in gene regulation [1]. Starting with 33 

the original Chromatin Conformation Capture (3C) assay [2] for measuring chromatin interaction 34 
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frequencies, many higher throughput, sequencing-based methods such as 4C, 5C, ChIA-PET, 35 

Hi-C, and Hi-ChIP have been developed to measure 3D interaction frequencies at different 36 

resolutions [3–8]. These maps of interaction frequencies between segments of chromatin are 37 

interpreted in terms of chromatin structures. Among the methods, Hi-C [9] obtains measurement 38 

of chromatin interaction frequencies across the entire genome. Within some local regions in a 39 

genome, interactions are significantly higher than they are to adjacent regions; these highly 40 

interacting regions are termed ‘Topologically Associating Domains’ (TADs) [10,11]. The proteins 41 

CTCF and cohesin are frequently enriched at TAD boundaries, and they have been implicated 42 

in the formation of an isolated local environment [11]. Furthermore, the positions of many TADs 43 

are similar across different cell-types and even conserved between species [11,12]. As a result, 44 

TADs have been widely interpreted as a basic architectural unit within which many gene 45 

regulatory interactions occur. To date, several computational methods have been developed to 46 

locate TADs in the genome. For example, Dixon et al. [11] developed a ‘Directionality Index’ 47 

based on the shift of interaction direction from upstream to downstream to estimate boundaries 48 

of TADs. Other methods, such as TOPDOM [13] and Insulation Score [14], convert the TAD 49 

boundary finding problem to a local minimum identification problem by calculating average 50 

interaction frequency of surrounding regions at each locus.  51 

While many earlier TAD calling methods treat TADs as a single structure, recent high-52 

resolution studies have shown that TADs contains internal substructures, with sub-TADs nested 53 

within larger TADs [15–19].  Several recently developed TAD calling methods aimed to identify 54 

nested TAD structures. For example, TADtree [15] identifies TADs based on a relationship 55 

between the enrichment of contact frequency and TAD size, and assembles TADs into a TAD 56 

tree that best fit the contact matrix. rGMAP [16] assumes that the interaction frequency in sub-57 

TADs is different from those in larger TADs, and applies a Gaussian Mixture model to identify 58 

both types of TADs. Arrowhead [17]  identifies corners of TADs at multiple sizes, allowing TADs 59 

and subTADs to be detected simultaneously. 3D-Net [18] utilizes a maximization of network 60 

modularity to identify TADs at different levels. And finally, IC-Finder [19] uses a hierarchical 61 

clustering method to identify the TAD hierarchy. 62 

Although the aforementioned methods provide useful tools for identifying TADs and their 63 

internal substructure, we still lack comprehensive understanding of the functions of the 64 

hierarchical structures within TADs. Recent work on low-resolution Hi-C data [20] has shown 65 

that, at the large scale (> 1Mb), TADs can form a hierarchy of domains-within-domains 66 

(“metaTAD”) through TAD-TAD interactions, and the successive levels of metaTAD organization 67 

correlate with key epigenomic and expression features. This raises the natural question: do the 68 
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hierarchical levels within TADs also correlate with distinctive functional roles in chromosome 69 

organization and gene regulation? However, most existing TAD callers focus on identifying the 70 

locations of TADs and subTADs, rather than the hierarchical organization within TADs, making 71 

them less suitable for investigating the biological functions of TAD hierarchy. Furthermore, many 72 

existing callers are computationally inefficient for high-resolution Hi-C data and often lack a 73 

principled approach to choosing algorithmic parameters [16]. These issues limit the utility of 74 

existing TAD callers for investigating finer TADs structures using high-resolution data.  75 

We present OnTAD, an Optimized Nested TAD caller that efficiently and robustly 76 

uncovers hierarchical TAD structures from Hi-C data. Our approach first identifies candidate 77 

TAD boundaries by scanning through the genome with a sliding window at a series of different 78 

window sizes, using an approach inspired by TOPDOM [13]. Then, the candidate boundaries 79 

are assembled into the optimized hierarchical TADs structures using a recursive dynamic 80 

programming algorithm based on a scoring function. Our systematic evaluation shows that 81 

OnTAD substantially outperforms existing TAD callers for both TAD boundary identification and 82 

hierarchical TAD assembly. Using OnTAD, we uncovered novel insights on the potential 83 

biological functions of TAD structures. In particular, we observed that active epigenetic states 84 

are substantially more enriched in inner TADs than in outer TADs. OnTAD results revealed two 85 

categories of TADs, those with or without hierarchical structures, that appear functionally distinct. 86 

Compared to nonhierarchical TADs, the boundaries of TADs with hierarchical structures show a 87 

higher CTCF enrichment, more active epigenetic states, and a higher level of gene expression. 88 

In addition, we observed an apparent asymmetry in TAD boundary sharing, supporting the 89 

asymmetric loop extrusion model for the formation of TADs [21]. Together, these results 90 

demonstrate that OnTAD is a powerful tool for inferring different levels of chromatin organization 91 

across a genome in high-resolution Hi-C data, which should facilitate improved investigations 92 

into the roles of chromatin organization in gene regulation. 93 

 94 

Results 95 

The OnTAD algorithm 96 

OnTAD takes a Hi-C contact matrix as the input and calls TADs in two steps. In the first step, 97 

the method finds candidate TAD boundaries using an adaptive local minimum search algorithm 98 

inspired by TOPDOM [13]. Specifically, it scans along the diagonal of a Hi-C matrix using a W 99 

by W diamond-shaped window (Figure 1a), calculating the average contact frequency within 100 

each window. The locations at which the average contact frequency reaches a significant local 101 

minimum (1.96 standard deviations less than local maximum) are identified as candidate TAD 102 
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boundaries (see Methods). Because the sizes of TADs are unknown, OnTAD repeats the above 103 

steps using a series of window-sizes, W= 1,2.,…,K, to uncover all possible boundaries for TADs 104 

in different sizes. Here, K depends on the resolution of the Hi-C matrix and the maximum TAD 105 

size that the user aims to call. For instance, for a 10kb resolution Hi-C matrix and a maximum 106 

TAD size of 2Mb, K=2000/10=200. The union of the candidate boundaries of all window sizes is 107 

used to assemble TADs in the next step (Figure 1b). 108 

 109 

In the second step, OnTAD assembles TADs by selectively connecting pairs of candidate 110 

boundaries using a dynamic programming algorithm (see Methods). To form a TAD between a 111 

pair of boundaries, OnTAD requires the mean contact frequency within the potential TAD area 112 

between the boundaries to exceed that of the surrounding area outside of the TAD by a user-113 

defined margin (�); otherwise, no TAD is formed between the boundaries. The dynamic 114 

programming algorithm is formulated to recursively identify the optimal partition of the genome 115 

for yielding the largest rightmost subTADs within each identified TAD according to a score 116 

function (Supplementary Figure 1) that de-convolutes the contact frequency signals across the 117 

TAD hierarchy (Supplementary Figure 2). At the end of the recursive procedure, the optimized 118 

solution that maximizes the score function is obtained (defined in Methods), producing a 119 

hierarchical TAD organization that best fits the observed Hi-C contact matrix. The locations of 120 

the identified TADs are provided to the users as a plain text file and a bedgraph file ready for 121 

visualization on genome browsers. 122 

 123 

Comparison with existing TAD calling methods 124 

We compared OnTAD with four representative TAD calling methods (DomainCaller, rGMAP, 125 

Arrowhead and TADtree) using the Hi-C data in GM12878 from Rao et al.[17]. Each method 126 

was run using the settings recommended in its manual (see Supplementary file 1 for the version 127 

and parameters for each method). All the evaluations were performed using 10kb resolution for 128 

the normalized genome-wide Hi-C data, unless specified otherwise. We also tested OnTAD on 129 

raw data, and the results obtained were similar to those observed for normalized data 130 

(Supplementary Figure 9). 131 

 132 

Accuracy of TAD boundary detection 133 

We first evaluated the accuracy of TAD boundary detection using enrichment of architectural 134 

proteins at boundaries as a reference for accuracy. CTCF is an architectural protein implicated 135 

in formation of TAD structures [10]. Thus, we expect a high concentration of CTCF signal (from 136 
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ChIP-seq data) at accurately called TAD boundaries. We computed the average CTCF ChIP-137 

seq signal in the boundaries identified by each TAD calling method as well as their 138 

neighborhood regions. As shown in Figure 2a (left panel), all methods showed enrichment of 139 

CTCF signal in the identified TAD boundaries over that in the surrounding regions (fold change > 140 

1.63). Among them, OnTAD had the highest CTCF enrichment (mean signal 1.22X greater than 141 

that of the second highest method, T-test p-value = 1.91e-28). A similar result was obtained for 142 

the enrichment of the RAD21 and SMC3 subunits of the cohesin complex, which are also key 143 

components in the formation of TADs [21]. The boundaries identified by OnTAD showed a 144 

higher enrichment than those identified by other methods (mean signal 1.14X and 1.04X greater 145 

than that of the second highest method, T-test p-value = 9.34e-16 and 1.91e-12, respectively) 146 

(Figure 2a middle and right panel). The stronger enrichment of CTCF and cohesin signals 147 

suggests that OnTAD produces more accurate calls of TAD boundaries than the other methods. 148 

 149 

Accuracy of TAD assembly 150 

We next evaluated the accuracy of TAD calling. If TADs are accurately called, one would expect 151 

that a high proportion of the variation in the contact frequencies in the Hi-C matrix is explained 152 

by TAD calls. We developed a metric called TAD-adjR2, which is a modified version of the 153 

adjusted R2 (see Methods), to measure the proportion of Hi-C signal variation explained by TAD 154 

calls. Because contact frequencies decay over the genomic distance between a pair of 155 

interacting loci, we stratified the contacts by their genomic distance and calculated TAD-adjR2 156 

within each stratum. As shown in Figure 2b, OnTAD has a higher TAD-adjR2 than that of the 157 

other methods across almost the entire span of genomic distances examined (0-1.5Mb) 158 

(Average TAD-adjR2: OnTAD: 0.33, Arrowhead: 0.26, DomainCaller: 0.26, rGMAP: 0.23 and 159 

TADtree: 0.06). This high level of explained Hi-C variance indicates that OnTAD produces a 160 

better classification between TADs and non-TAD regions compared to other methods.  161 

 162 

Reproducibility of TAD calls and boundaries 163 

Another important criterion for TAD calling is the reproducibility of the identified TADs and their 164 

boundaries. To measure the reproducibility of TAD boundaries, we calculated the agreement of 165 

boundaries (Figure 2c-e) between two TAD calling results using the Jaccard index. To measure 166 

the reproducibility of TADs, we treated each region covered by a TAD as a cluster of bins in the 167 

genome, and then measured the agreement of cluster assignments between two TAD calling 168 

results using the adjusted rand index (Supplementary Figure 3a-c). We evaluated the 169 

reproducibility in three scenarios: 1) between biological replicates (GM12878, 10Kb) (Figure 2c, 170 
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Supplementary Figure 3a); 2) across different resolutions (5Kb, 10Kb, 25Kb) (Figure 2d, 171 

Supplementary Figure 3b); and 3) at different sequencing depths (original sequencing depth 172 

versus 1/4, 1/8, 1/16 and 1/32 of the total number of reads) (Figure 2e, Supplementary Figure 173 

3c). As shown in Figure 2c-e and Supplementary Figure 3b, both the boundaries and the TADs 174 

identified by OnTAD were fairly reproducible, consistently having either the highest or the 175 

second highest Jaccard index or Adjusted Rand index in all scenarios. 176 

 177 

Run time comparison  178 

We recorded the run time of different methods on the same high-performance computing cluster 179 

(Xeon E5-2680CPU and 72Gb RAM). OnTAD ran notably faster than all the other methods 180 

(Supplementary Table 1). For example, it took OnTAD 655 seconds to analyze 10Kb resolution 181 

data for the whole genome, which was 3X faster than Arrowhead, 24X faster than DomainCaller, 182 

28X faster than rGMAP, and 263X faster than TADtree. 183 

 184 

Level of TAD hierarchy is related to gene activity and epigenomic states  185 

We systematically studied the biological features of the TAD hierarchy, again using the Hi-C 186 

data in GM12878 from Rao et al.[17]. Overall, 75.7% of the genome was covered by the TADs 187 

identified by OnTAD; the rest of the genome was not assigned to any TADs, and we refer to 188 

these TAD-free regions as gaps. Among all TADs identified by OnTAD, the majority (92.2%) 189 

contained or belonged to hierarchical structures, while a small fraction had no hierarchical 190 

structure. We referred to the former as ‘hierarchical TADs’ or ‘nested TADs’, and the latter as 191 

‘singletons’ (Figure 3a). We hypothesized that chromatin organized into these two types of 192 

TADs may be playing distinctive roles in regulation, and thus we examined their association with 193 

various epigenetic marks. 194 

 195 

Boundaries of hierarchical TADs have a higher CTCF enrichment 196 

We first compared the CTCF enrichment (see Methods) at the boundaries of the two types of 197 

TADs. Indeed, the boundaries of hierarchical TADs were substantially more enriched with CTCF 198 

signal than singleton boundaries (Figure 3b) (mean CTCF signals are 3.51 and 2.25, 199 

respectively, T-test p-value = 1.52e-18). This enrichment of CTCF signal arose from a higher 200 

average number of CTCF peaks at the boundaries of hierarchical TADs. The mean number of 201 

CTCF peaks per boundary of a hierarchical TAD was 0.451, whereas it was only 0.181 for 202 

boundaries of singleton TADs (T-test p-value = 4.52e-30).  203 

 204 
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Hierarchical TADs have a stronger association with active epigenetic states 205 

Chromatin interactions are strongly associated with local, active epigenetic profiles [12,17, 22]. 206 

We thus expected to observe a positive association between the enrichment of active epigenetic 207 

states  and the levels of TADs. Starting with the 36 epigenetic states defined by IDEAS 208 

segmentation [23] on 6 ENCODE cell lines, we evaluated the association between active 209 

epigenetic states and TAD hierarchies. We classified hierarchical TADs into five levels, with 210 

level one being the outermost TADs, level two being the immediate subTADs nested under one 211 

layer of level one TAD, and so forth until level five, which contains the subTADs nested under 212 

four or more layers of TADs in the hierarchy.  We observed that the proportion of active 213 

epigenetic states increase along the levels of TADs (Figure 3c, d). In contrast, singletons are 214 

notably less active compared with hierarchical TADs (especially when level >2). In fact, 215 

singleton TADs showed enrichments similar to those for the gap regions. A similar pattern of 216 

enrichment for active states in hierarchical TADs was also observed in other cell types (K562 217 

and HUVEC) (Supplementary Figure 4). Taken together, our results showed that hierarchical 218 

TADs are on average more active than singletons; and within hierarchical TADs, inner TADs 219 

(e.g., subTADs) are more active than outer TADs. 220 

 221 

Hierarchical TADs have more active gene expression 222 

We further investigated how gene expression is associated with TAD hierarchies. Using the 223 

RNA-seq data of GM12878 from the ENCODE consortium (www.encodeproject.org) [24], we 224 

defined expressed genes as those with FPKM > 5. Then within TADs at each level, we 225 

computed the density of expressed genes (the number of expressed genes per bin, i.e., 10Kb 226 

region). If a gene was covered by more than one TAD, we associated it with the innermost 227 

TADs. We found that, as the TAD level increases, the density of expressed genes also 228 

increases, i.e., genes are more frequently activated within inner TADs than outer TADs (ANOVA 229 

test p-value of < 2.2e-16) (Figure 3e). Similarly, we observed the same trend of positive 230 

association between density of expressed genes and the TAD level (ANOVA test p-value < 231 

2.2e-16) in the K562 cell line (Figure 3f). 232 

 233 

Shared TAD boundaries are asymmetric and more active than other boundaries 234 

It has been reported that TAD boundaries are interaction hotspots [25]. We also observed that, 235 

for TADs at all levels, the number of expressed genes and the enrichment of active epigenetic 236 

states are significantly higher at the TAD boundaries than at the internal regions of TADs (all T-237 
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test p-values < 0.001) (Supplementary Figure 5a&b). Thus we undertook an additional analysis 238 

of TAD boundaries.  239 

We observed that the boundaries of hierarchical TADs were frequently shared by 240 

multiple TADs. We hypothesized that the boundary usage may play an important role in 241 

maintaining hierarchical structures and regulating gene activities. To investigate this hypothesis, 242 

we classified boundaries into five categories, according to the maximum number of TADs that 243 

use a boundary on one of the two sides of the boundary (Figure 4a). A boundary is classified as 244 

level one if it is used by no more than one TAD on either side, level two if it is used by exactly 245 

two TADs on one side and less or equal to two TADs on the other side, and so forth to level five 246 

if it is used by five or more TADs on either side. For example, a boundary shared by two TADs 247 

to its left and three TADs to its right was classified as level three. The number of boundaries 248 

assigned to each category is shown in Supplementary Figure 7.  249 

 250 

Epigenetic and genomic profiles  251 

We examined the enrichment of active epigenetic states at different boundary levels. We 252 

observed a significant positive correlation between the enrichment (fold change) of active 253 

epigenetic states and the number of times each boundary is shared (e.g., Tss state: Pearson 254 

coefficient = 0.89; TssCtcf state: Pearson coefficient = 0.92) (Figure 4b). We further studied the 255 

relationship between gene expression level and boundary sharing. Again, we observed a 256 

significant positive association between the number of times a boundary was shared and the 257 

gene expression level (ANOVA test p-value = 1.97e-05). In particular, the gene expression level 258 

at the boundaries that were shared by 5 or more TADs was substantially higher than that at 259 

boundaries that were shared by fewer TADs (Figure 4c). At a higher level boundary, multiple 260 

genomic loci (the boundary plus the other ends of the TADs) must be in proximity in three-261 

dimensional space. This situation is reminiscent of chromatin hubs, and thus, we call the 262 

boundaries shared by 5 or more TADs “hub-boundaries”. We posited that hub-boundaries are 263 

more active in gene regulation than boundaries that are shared by fewer TADs. 264 

 265 

The asymmetric loop extrusion model 266 

Interestingly, we also observed some asymmetry in boundary usage and TAD formation in 267 

hierarchical TADs. Specifically, we have observed (1) a significant difference in boundary usage 268 

between the left and the right boundaries of the same outer TAD (Z-test p-value < 2.2e-16) and 269 

(2) a significant difference in the numbers of TADs formed by a boundary on its left and right 270 

sides (Z-test p-value < 2.2e-16) (Supplementary Table 2).  271 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/361147doi: bioRxiv preprint 

https://doi.org/10.1101/361147
http://creativecommons.org/licenses/by-nc-nd/4.0/


We therefore asked if the observed asymmetry is related to the mechanism of loop formation. A 272 

recent study in yeast suggested that loops are formed in an asymmetric process, where the loop 273 

extrusion complex anchors on one side and  DNA reels through from the other side [26]. We 274 

here hypothesize that loop extruders are preferentially loaded at or near a specific TAD 275 

boundary. Then the asymmetric loop extrusion would start from this site on one end, and it 276 

could stop at different sites on the other end. Thus, the TADs formed by multiple stops of loop 277 

extrusion in this process would all share the anchor site as the boundary on one side, but each 278 

has a different boundary on the other side, leading to the observed asymmetric boundary usage 279 

(Figure 4d). Another recent study in Drosophila Schneider 2 (S2) cells showed that promoters 280 

prefer to interact with enhancers downstream of the transcriptional unit [27], leading to a 281 

directional preference in TAD formation. Indeed, as shown in Figure 4b, the boundaries shared 282 

by multiple TADs are highly enriched with promoters, thus the observed orientation asymmetry 283 

in TAD formation around these boundaries could reflect this interaction preference in promoters.  284 

 285 

While some proteins (e.g. Ycg1 HEAT-repeat and Brn1 kleisin subunits) have been found to be 286 

related to the anchor sites in yeast [28],  little is known about the proteins supporting the anchor 287 

sites in human. We therefore performed a transcription factor (TF) enrichment analysis using 288 

161 TF ChIP-seq data from the ENCODE consortium [29–31]. By comparing the fold 289 

enrichment of each TF signal in hub-boundary (level 5) with the ones at low level (level 1), we 290 

found a group of TFs that were highly enriched in hub-boundaries (Fold Change > 2 in either 291 

GM12878 (n = 8) or K562 (n = 37)) (Figure 4e). These hub-boundary-enriched TFs were 292 

strongly associated with chromosome organization function in Gene Ontology Analysis (FDR = 293 

1.33e-06). They were also shown to be highly connected (p-value < 1.0e-16) in the protein-294 

protein interaction database, STRING (Supplementary Figure 7), suggesting that they may 295 

potentially form a protein complex. Together, these results suggest that the enriched TFs may 296 

play an important role in forming the anchor sites in the asymmetric extrusion process. 297 

 298 

Hierarchical TAD calling unveils distinct epigenetic features of inner TADs 299 

It has been reported that genomic loci within the same TADs tend to possess similar epigenetic 300 

features [22], while loci in different adjacent TADs may show different epigenetic features [17]. 301 

However, it remains unclear if the divergence of epigenetic profiles also takes place at the 302 

subTAD level. To explore the possible answer to this question, we performed OnTAD on Hi-C 303 

data from the mouse G1E-ER4 cell [32]. We observed that the majority of TADs (87.1%) are in 304 

active compartments. As shown in the OnTAD genome browser track in Figure 5, the region of 305 
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(chr19:11.3Mb – 12.2Mb) contains multiple nested TADs. Among them, two adjacent subTADs 306 

(11.8Mb – 11.9Mb and 11.9Mb – 12.0Mb) that belong to the same outer TAD (chr19: 11.5Mb – 307 

12.0Mb) exhibit distinct epigenetic features, with enriched repressive epigenetic signal 308 

(H3K27me3) in the left subTAD and enriched active epigenetic signal (H3K27ac, H3K4me3 and 309 

H3K36me3) in the right subTAD. This demonstrates that, although TADs were traditionally 310 

considered to be a fundamental unit of chromatin organization, epigenetic features can be 311 

distinctively different between subTADs. Our results show that the subTADs identified by 312 

OnTAD better represent homogeneous units associated with epigenetic functions, capturing 313 

distinct functional features within subTADs. By identifying these subTADs, OnTAD enables a 314 

finer investigation of the hierarchy of chromatin organization and its functionally homogeneous 315 

structures.  316 

 317 

Interestingly, we observed that whereas the outer TAD (11.8Mb – 12.0Mb) had clear CTCF 318 

signals at its boundaries, the shared boundary between the two subTADs (11.8Mb – 11.9Mb 319 

and 11.9Mb – 12.0Mb) had no CTCF signals from the CTCF ChIP-seq data. This indicates that 320 

the formation of these two subTADs is probably independent of CTCF. Furthermore, we 321 

performed a high-resolution compartment analysis (See Methods). It showed that the two 322 

subTADs fall in different compartments. These results can be interpreted within the framework 323 

of recently proposed ‘compartmental domains’ [33,34], which are hypothesized to be formed by 324 

A/B compartment without the involvement of CTCF. We will discuss this mechanism further in 325 

the discussion.  326 

 327 

Discussion 328 

While hierarchical structures in TAD formation have been reported [15,16,18,19], the 329 

involvement of these hierarchies in gene regulation mechanisms remains poorly understood. 330 

This is partly due to the lack of a method that systematically identifies TAD hierarchies from Hi-331 

C data and investigates the association of TAD hierarchies with epigenetic features. Here we 332 

introduce OnTAD, a new method to uncover the hierarchical TAD structures from Hi-C data. 333 

Based on a dynamic programming procedure that recursively finds the best domain partition of 334 

Hi-C contact matrix in a hierarchical manner, OnTAD identifies the hierarchy of TADs and their 335 

boundaries. It produces a convenient output for visualizing the hierarchy in a genome browser, 336 

greatly facilitating the investigation of the interplay between hierarchical TADs and other 337 

epigenetic features in gene regulation. Our comprehensive evaluation shows that OnTAD 338 

substantially outperforms the existing TAD calling methods in both accuracy and computational 339 
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efficiency. These results demonstrated the effectiveness of OnTAD for identifying TAD 340 

hierarchies and investigating their biological functions.  341 

 342 

Using the results from OnTAD, we investigated how hierarchies within TADs were associated 343 

with features related to function. In particular, we observed that, on average, hierarchical TADs 344 

were significantly more active than TADs without hierarchies (i.e. singletons). The active 345 

epigenetic states and active genes were also significantly more enriched in the boundaries 346 

shared by multiple TADs (e.g. hub-boundaries) than those used exclusively by a single TAD. 347 

These observations echo those on the hierarchy of metaTADs, which also showed a positive 348 

association between the enrichments in promotor activity and gene density and boundary usage 349 

[20]. Interestingly, we also observed a significant asymmetry in boundary usage between the left 350 

and right boundaries in the hierarchical TADs and an asymmetry in the orientation of TAD 351 

formation around hub-boundaries, supporting the asymmetric loop extrusion model [26] and 352 

preferential orientation of promoter interaction [27]. 353 

 354 

Our results pose several interesting questions about the mechanisms utilized to form these 355 

structures. First, how are these hierarchical TADs structures formed? Are they produced by 356 

hierarchical chromatin folding in single cells, or does the nesting reflect a collection of different 357 

interaction patterns in individual cells that looks like a hierarchy when the data from a population 358 

of cells is aggregated in bulk cell Hi-C data? Single-allele chromatin interactions do reveal 359 

regulatory hubs [35], supporting the interpretation that these complex interactions occur in 360 

individual cells. A recent single-cell analysis of high-throughput Oligopaint labeling and imaging 361 

on Chr21 of A549 cell, showed that both TAD and sub-TAD structures exist in single cells [36]. 362 

Furthermore, nested TAD structures could be formed by multi-site interactions in a single cell 363 

[36]. However, as acknowledged by the authors, it is still possible that some other domain 364 

structures resulted from population averaging. In principle, OnTAD can also be applied to 365 

single-cell Hi-C data to explore this question. However, the genome coverage in current single-366 

cell Hi-C data is still low and can only support the analysis at the resolution of ~100Kb, limiting 367 

the detection of finer domain structures (typically ~50Kb for subTADs we identified). Future 368 

studies with higher resolution single-cell Hi-C data will be valuable for addressing this question 369 

at a genome-wide scale. 370 

 371 

Second, what are the mechanisms to form the hierarchical structures? As observed in our 372 

analyses (Figure 5), though the majority of the outer TAD boundaries were bound by CTCF, 373 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/361147doi: bioRxiv preprint 

https://doi.org/10.1101/361147
http://creativecommons.org/licenses/by-nc-nd/4.0/


some subTADs appear to be formed without CTCF binding at their boundaries.  The formation 374 

of the latter can be explained by the recently proposed ‘compartmental domains’ mechanism 375 

[34], which forms domains by establishing A/B compartments without the involvement of CTCF 376 

or loop extrusion.  Because OnTAD does not rely on CTCF information for TAD identification, it 377 

can capture all domain structures, regardless the formation mechanisms. The example in Figure 378 

5 could be explained by joint processes of loop extrusion (for the outer TAD) and establishment 379 

of ‘compartmental domains’ [34] for the inner TADs.  380 

 381 

In summary, we have demonstrated that the hierarchies of TAD structures are 382 

associated with gene regulation and have provided a powerful tool for exploring this association. 383 

Though previous results based on low-resolution data suggest that the majority of TAD 384 

structures are conservative across cell lines [11], recent analyses found that certain locally 385 

frequent interaction regions within TADs are cell type specific [25]. It will be particularly 386 

interesting to use OnTAD to systematically investigate how the finer domain structures within 387 

TADs differ across cell types, for example, how the levels of hierarchy differ across cell types, 388 

and how the changes in hierarchy are associated with differential gene regulation. The 389 

biological insights generated by analyses of the finer domain structures should help improve our 390 

understanding of the role of chromatin conformation in gene regulation. 391 

 392 

 393 

Methods 394 

Notations and data preprocessing 395 

Let X denote a symmetric Hi-C matrix, where each entry (i,j) in the matrix is a value quantifying 396 

the strength of the chromatin interaction of between bins i and j. The Hi-C matrix can be raw 397 

contact matrix or the normalized matrix produced by the normalization procedures such as ICE 398 

[37] and KR [17]. Let X[a:b, c:d] = {(i,j): a ≤ i ≤ b, c ≤ j ≤ d} denote a sub-matrix of X. A candidate 399 

TAD between bins a and b corresponds to a diagonal block matrix X[a,b]=X[a:b, a:b], where the 400 

mean of the entries in X[a,b] is expected to be higher than that in its neighboring matrices. 401 

Because of the distance dependency in Hi-C data, i.e., the dependence of contact frequency on 402 

the proximity of the interaction loci, we normalize the Hi-C matrix before TAD calling by 403 

subtracting the mean counts at each distance.  404 

 405 

Identification of candidate TAD boundaries 406 
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We identify candidate TAD boundaries using a procedure motivated from the TOPDOM method 407 

[13]. This procedure scans the diagonal of the Hi-C matrix, using a sliding square submatrix 408 

whose bottom corner locates on the diagonal (Figure 1a), and computes the mean Hi-C signals 409 

covered by the submatrix at each location, which is the TOPDOM statistic in [13]. As shown in 410 

[13], when the corner of the submatrix lands on a TAD boundary, the TOPDOM statistic reaches 411 

a local minimum. Thus, the local minimums of the TOPDOM statistic can be used as candidate 412 

boundaries. The original TOPDOM paper only computed the statistics at a fixed window size. To 413 

identify all candidate TAD boundaries for TADs in different sizes, the TOPDOM statistics are 414 

calculated at all window sizes (W), ranging from 1 to a maximum TAD size (d) specified by 415 

users. Here, we set the minimum size =3 bins, because structures smaller than 3 bins are too 416 

small to form a domain. We set the maximum size=200 for 10kb Hi-C data, because TADs are 417 

known to be smaller than a few Mbs. 418 

For each window size W, we first obtained a set of local minimums of the TOPDOM statistics, 419 

which are defined as the smallest value in the neighborhood of [i-Lsize, i+Lsize]. To reduce 420 

false positives due to noise, the local minimums that are not significantly smaller than the local 421 

maximums in the same neighborhood are pruned. Here we required the local minimums to be at 422 

least 1.96S smaller than the local maximums to be qualified as a candidate boundary, where S 423 

is the standard deviation of the TOPDOM statistic in the entire matrix. The parameter 1.96 is 424 

chosen based on the 95% confidence level of a normal distribution, which reasonably 425 

approximates the distribution of TOPDOM scores. 426 

Figure 1b shows examples of the local minimums on the genome at different window sizes. 427 

Because different window sizes capture the information of TADs in different sizes, we took the 428 

union of the pruned local minimums over all window sizes, and used the corresponding bins as 429 

candidate TAD boundaries. We selected z according to the procedure described in the section 430 

of Parameter Selection. For all the analyses in this work, we used Lsize = 5. It can be adjusted 431 

by users. 432 

 433 

Recursive TAD calling algorithm 434 

We developed a TAD calling algorithm to assemble TADs from the candidate boundaries. 435 

Several issues need to be considered in the design of the algorithm in order to produce 436 

biologically meaningful TADs. First, because a region may be shared by multiple TADs, the 437 

scores of these TADs can be strongly correlated. Second, in the TADs with nested structures, 438 

the scores of the TADs and their nested sub-TADs are convoluted. Third, some boundaries may 439 
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be shared between TADs. Last, the algorithm needs to be computationally efficient to call TADs 440 

in the genome scale. 441 

To address these issues, we developed a recursive algorithm to identify the TADs that give the 442 

optimal partition of the genome according to a scoring function g(X) related to the strength of Hi-443 

C signals (see the next section). Our algorithm assumes that any given two TADs are either 444 

disjoint (but can share one boundary) or nested (i.e. one TAD is completely within the other). 445 

This assumption is required for the dynamic programming to find an optimal solution in 446 

polynomial time. While this assumption sometimes may not be true, it greatly reduces the 447 

complexity of the problem while still enabling us to 1) de-convolute nested TAD structures, 2) 448 

impose shared boundaries, and 3) obtain an efficient algorithmic solution. Our evaluation 449 

showed that the majority of the genome follows this assumption (see the subsection below). 450 

Even when it is violated, i.e., the boundaries of the TADs cross each other, our method can still 451 

produce a reasonable approximation (Supplementary Fig.1C).  452 

Briefly, the algorithm works as follows. Given a matrix X[a,b], the algorithm starts at the root level 453 

to first find the best bin i (a≤i<b) to partition the matrix into two submatrices, X[a,i] and X[i,b], such 454 

that X[i,b] is the largest right-most TAD in X[a,b]. Since X[a,i] and X[i,b] are disjointed, the TADs 455 

within each submatrix can be called separately in a recursive manner. At each recursive step, 456 

the parent matrix is partitioned into two sub-matrices, and TADs are called within each sub-457 

matrix using the same recursive formula (Supplementary Fig.2A). The recursion stops when i=a, 458 

i.e., the sub-matrix X[a,i] contains no TAD. After a recursive step is completed, it identifies the 459 

best TADs in the current branch according to the scoring function, de-convolutes the TAD 460 

signals in the parent matrix by removing signals of inner TADs, and evaluates if the parent 461 

matrix itself is a TAD. This process is repeated until the recursion returns to the root level 462 

(Supplementary Fig.2B). Note that, because every TAD is the largest right-most TAD of a parent 463 

matrix in a recursive branch, this recursive procedure guarantees to traverse all TADs, even 464 

though only the largest right-most TAD is called at each step.  465 

 466 

Evaluation of the violation of the hierarchical TAD assumption 467 

To investigate the frequency of the violation of the hierarchical TAD assumption, we ran OnTAD 468 

on high resolution (10Kb) in-situ Hi-C data in GM12878. We segregated regions around the 469 

corner of each TAD into four 5*5 quadrants and calculated the average contact frequency of 470 

each quadrant (Supplementary figure 8). If this assumption holds, the interaction frequency is 471 

expected to be high in the quadrant within TAD (quadrant 1) and relatively low in at least one of 472 

the two quadrants (2 & 3) on the two sides outside of TAD corner. As shown in the 473 
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Supplementary figure 8, the mean frequency patterns of the four quadrants for most of the TAD 474 

corners are consistent with our expectations. This suggests that this assumption holds for a 475 

majority of the genome. The violation can be remedied by removing the signals from the called 476 

TADs and then rerunning OnTADs on the de-clumped Hi-C data to identify additional TADs. 477 

 478 

The scoring function 479 

Our scoring function �����,��� for matrix X[a,b] is defined as 480 

�����,��� � ��	� 
 0 � � �
 max �0, �����,��� � �����,���� � � � � 1, … , � � 1�  (1) 481 

where �����,��� � �����,��� � Δ����,��|sub TADs� 482 

Here, �����,��� is the score of TADs within X[a,b], not including the score for X[a,b] itself being a 483 

TAD. It is calculated by finding the best left boundary of the largest right-most TAD in X[a,b]. 484 

�����,��� is the score of the largest right-most TAD in X[a,b]. It is the sum of the score of TADs 485 

within ���,��  and the score of ���,��  itself being a TAD, namely Δ����,���sub TADs� . For any 486 

diagonal block matrix to be called a TAD, its mean signal is required to be greater than the 487 

means of its neighboring regions on both sides. We therefore define 488 

 489 

Δ����,��|!"� TADs�
� �#���,��|sub TADS$
� max��%�i‐-#b-i+1$�:�b-#b-i+1$$,i:b&'''''''''''''''''''''''''''''''''''''', �%i:b,�i�#b-i+1$�:�b�#b-i+1$$&'''''''''''''''''''''''''''''''''''''''� � � 

 490 

where m(X[i,b]|sub TADs) denotes the mean of X[i,b], excluding the TADs within X[i,b], returned by 491 

the recursion; �  is a user-specified nonnegative penalty parameter ; 492 

�(�i--�b-i+1��:�b-�b-i+1�$,i:b)  and �(i:b,�i��b-i+1��:�b��b-i+1�$)  are two (b-i+1)-by-(b-i+1) off-493 

diagonal matrices in the adjacent flanking regions of X[i,b]; and finally, and �' denotes the mean 494 

of X. We note that Δ����,��|!"� TADs� is calculated based on the TADs returned from �#���,��$. 495 

That is, we do not directly optimize  �����,��� � Δ����,��|!"� TADs�. The parameter � serves as a 496 

threshold for TAD calling. That is, a TAD will be called only when the mean contact frequency 497 

within the potential TAD area between the boundaries exceeds that of the surrounding area 498 

outside of the TAD by the margin of �. The procedure for selecting � is described in Parameter 499 

Selection. 500 
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When the score of a candidate TAD is <0, it is likely not a real TAD. We therefore set a lower 501 

bound on the score at 0 and do not output the “TAD” with a score 0. 502 

 503 

Parameter Selection 504 

We selected the value of � based on the False Discovery Rate (FDR) of TADs identification. 505 

The FDR is calculated as follows. First, the entries in the real Hi-C matrix are permuted within 506 

each genomic distance. This results in a null Hi-C matrix that has the same marginal signal 507 

distribution as the original Hi-C matrix but without biologically meaningful TAD structures. Next, 508 

OnTAD is run on both the original and the permuted Hi-C matrix for a series of �. The TADs 509 

identified from the original Hi-C matrix are treated as ‘discoveries’ (R), which is a mixture of 510 

false and true discoveries, and those from the permuted Hi-C matrix are treated as ‘false 511 

discoveries’ (V), which is used to approximate the proportion of false discoveries in R. Recall 512 

that OnTAD assigns each TAD a score according to the scoring function (1). Given a TAD size, 513 

the magnitude of the score reflects the strength of evidence to call TAD. Because larger TADs 514 

tend to have a lower mean contact frequency after removing their inner TADs, the score is 515 

usually smaller for larger TADs. Therefore, we computed the FDR accounting for TAD size. 516 

Specifically, for a given value of �, the identified TADs are first stratified by their sizes and 517 

scores. Let n be the total number of TADs identified on the original matrices, and *�  and +� be 518 

the numbers of TADs in the � th stratum from the original and the permuted matrices, 519 

respectively. Then if a TAD (j) is in the �th stratum, the probability for the TAD to be a false 520 

discovery (a.k.a. local false discovery rate [38] is  521 

,� � min #��

	�

, 1) 522 

The overall FDR for the TAD identification is computed as the average of the probability to be a 523 

false discovery over all TADs identified on the original matrix, based on the relationship between 524 

local fdr and FDR [38]: 525 

/0* �  ∑ ,�


���

2  

The above FDR calculation is repeated for each value of �, and the � corresponding to the FDR 526 

cutoff of 0.05 is selected.  527 

In our analysis, the stratum is formed by dividing the TAD calls into 25 equal shares according 528 

to the ranking of TAD size (or TAD score, respectively) on the real matrix. This leads to 529 

25*25=625 strata in total. As shown in Supplementary table 3, the FDR is close to 0.05 at λ = 530 

0.1 for GM12878 dataset (10kb). To test the robustness of the tuned parameter, we also 531 

performed the same procedure on the mouse G1E-ER4 Hi-C data from Hsu et al. [32] at 10Kb 532 
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resolution.  The FDR was also controlled at the 0.05 level when λ = 0.1 (Supplementary table 4). 533 

Therefore, we used λ = 0.1 as the default value in our analyses. In the OnTAD software, we 534 

allow users to specify the value of λ to offer more flexibility. 535 

Another important tuning parameter is Lsize, which is the span of the interval (i.e. the interval 536 

size = 2*Lsize +1) for searching local minimums of the TOPDOM statistics. This parameter 537 

affects the selection of candidate boundaries. If Lsize is too large, some potential boundaries 538 

will be missed. If Lsize is too small, the candidate boundary set may include many false 539 

positives, increasing the computational burden for the assembly step and the quality of final 540 

results. We chose Lsize in the similar way as for choosing �  on GM12878 data (10kb). 541 

Specifically, we ran OnTAD for different values of Lsize (range=3-10), corresponding to the 542 

interval size of 7-21 bins. We chose this range because it is sufficient to cover various TAD 543 

sizes.  As shown in Supplementary table 5, Lsize=5 (i.e. interval size=11) renders an FDR close 544 

to 0.05. Therefore, we chose Lsize=5 for all analyses. To evaluate the robustness of this choice, 545 

we evaluate the similarity of the identified TAD structures between Lsize=5 and Lsize=6-10, and 546 

found that they are similar, with the median of the adjusted rand indices >0.75 (Supplementary 547 

figure 10). It indicates the result is relatively insensitive to the value of Lsize when Lsize=5~10. 548 

 549 

Computation complexity of the TAD calling algorithm 550 

We performed an analysis on the computational complexity for our recursive algorithm. For an 551 

lxl Hi-C matrix, if all bins are potential boundaries, then the recursion needs to visit l(l+1)/2 552 

diagonal block sub-matrices. As there are l size 1 diagonal block matrices, the computation 553 

complexity for computing the scores of all size 1 matrices is O(l). Given the scores of size 1 554 

matrices, we can calculate the scores of size 2 matrices. There are (l-1) of them, each 555 

enumerating through (2-1) partitions. Hence the time complexity is O((2-1)(l-1)). Following the 556 

same calculation, the scores of one sub-matrix of size k will be computed by enumerating (k-1) 557 

partitions. As there are (l-k+1) of them, the time complexity is O((k-1)(l-k+1)). Similar calculation 558 

can be done for the mean of sub-matrices. As a result, the total complexity to obtain the scores 559 

of all sub-matrices from size 1 to l is O(l3).  560 

Empirically, the computational complexity is much lower than the above due to some further 561 

reductions. First, because potential TAD boundaries are limited to the TOPDOM local minimums, 562 

this substantially reduces the number of partitions from O(l3) to O(m3), where m is the number of 563 

candidate boundaries. Second, because TADs usually are smaller than 2Mb, the maximum TAD 564 

size to be called (d) typically is much smaller than l. This constraint effectively reduces the time 565 

complexity of our algorithm from O(m3) to O(md2). Furthermore, because TADs usually are 566 
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formed between neighboring boundaries, we set a constraint in the recursive procedure to limit 567 

the TADs to be formed only between candidate boundaries that are no more than five neighbors 568 

apart.  569 

 570 

TAD-adjR2 for assessing accuracy of TAD calling 571 

Because TADs are regions with frequent local interactions, a reasonable TAD caller is expected 572 

to classify the regions with high contact frequencies as TADs and the regions with low contact 573 

frequencies as non-TADs, i.e. gaps between TADs. At any given genomic distance, the 574 

variation between Hi-C signals should be largely explained by the classification of TADs. How 575 

well the variation can be explained by the classification of TADs can reflect the accuracy of TAD 576 

calling. Based on this intuition, we developed a metric similar to the R-square in regression 577 

models to evaluate the accuracy of TAD calling. Let 3� denote the contact frequency of the �th 578 

bin, n denote the number of bins at the same genomic distance as this bin, p denotes the 579 

number of called TADs whose sizes are greater than or equal to the genomic distance. For bins 580 

within TAD, ��̂ denotes the average contact frequency at given genomic distance within that 581 

TAD, excluding regions covered by higher level TADs. For those bins not in any TADs, ��̂ is the 582 

average of contact frequency in the gap region at that genomic distance. And  �� denote the 583 

overall mean contact frequency across all the bins at a given genomic distance. For each 584 

genomic distance, the TAD-adjR2 is defined as 585 

�̂���
� � 1�

1
� � 	 � 1∑ ��� � �̂��

��
��	

1
� � 1∑ 
�� � �����

��	

 

This quantity essentially measures the proportion of variance in Hi-C signal that is explained by 586 

the classification of TADs, adjusting for the number of TADs and genomic distance. 587 

 588 

Enrichment of expressed genes 589 

To evaluate the activity of gene expression, we downloaded the RNA-seq data from ENCODE 590 

(See Data), merged the biological replicates of RNA-seq data, and computed the average 591 

FPKM for each gene. Genes with FPKM > 5 were deemed as expressed genes. For each TAD 592 

level, we compute the density of expressed gene as the number of expressed genes per 10Kb. 593 

For TADs with nested structures, genes covered by the inner level TADs are excluded in the 594 

calculation of gene density for outer TADs. 595 

 596 

Enrichment of CTCF or cohesin protein signals 597 
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To compute the enrichment of CTCF (or cohesin protein) signals at the identified boundaries 598 

and their surrounding regions, we computed the average CTCF (or cohesin proteins) signals 599 

from ChIP-seq data at the identified boundaries and the bins within their 10bins flanking regions. 600 

The processed signals in bigwig file was used in this process.  601 

 602 

Epigenetic state enrichment  603 

We downloaded the IDEAS segmentation (see Data), which segments the genome into 36 604 

epigenetic states based on 10 epigenomic marks [23]. We used it to evaluate the enrichment of 605 

epigenetic state in the identified (sub)TADs and boundaries. Let ni denote the total number of 606 

200bp windows that have IDEAS-assigned epigenetic states at a TAD boundary i, and �
,� 607 

denote the number of 200bp windows annotated as state s at a TAD boundary i. For a given 608 

state s, its enrichment in a set of M boundaries is computed as 609 

�
�� �
∑ �
,�
�
��	 � 1

�
∑ ���
��	 � 1

 

where �
 is the proportion of state s in the whole genome. The 1’s in the formula of E(s) are 610 

added to avoid dividing by 0. 611 

 612 

A/B compartments calling 613 

We used CscoreTool [39] to infer A/B compartments from mouse G1E-ER4 Hi-C data (10Kb 614 

resolution, default parameter). The A/B compartments is determined by correlation coefficient 615 

between compartment score and ATAC-seq signal. If a positive correlation coefficient is 616 

observed, then regions with score>0 are in compartment A. Otherwise, if the correlation 617 

coefficient is below 0, the regions with score < 0 are in compartment A. We reversed the 618 

compartment scores on the chromosomes that has correlation coefficient < 0. Thus, 619 

compartment A is shown with positive score and compartment B is shown with negative score. 620 

 621 

Data 622 

Hi-C data: The human Hi-C data is obtained from Rao et al. 2014 (GEO accession number: 623 

GSE63525). Among them, three cell types (B-lymphoblastoid cells (GM12878), umbilical vein 624 

endothelial cells (HUVEC) and erythrocytic leukemia cells (K562)) were included in this study. 625 

The normalized (by Knight-Ruiz balancing method) Hi-C matrices at 5Kb, 10Kb and 25Kb 626 

resolutions were used in this study. The mouse Hi-C data is obtained from Hsu et al. 2017 627 
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[32](GEO accession number: GSE95476). The 10Kb raw Hi-C matrices from G1E-ER4 and two 628 

Brd2 knockouts were used in this study. 629 

 630 

Transcriptomic data: The gene expression data were downloaded from the ENCODE project 631 

(https://www.encodeproject.org/). The processed signal (FPKM) was used to measure the 632 

expression activity. 633 

 634 

Epigenomic data: The histone modification data were downloaded from the NIH Roadmap 635 

Epigenomics project (http://www.roadmapepigenomics.org/), including H2A.Z, H3K27ac, 636 

H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3 and 637 

H4K20me1. The ChIP-seq data of CTCF and cohesin protein (Rad21 and Smc3) were 638 

downloaded from ENCODE project (https://www.encodeproject.org/). The downloaded data 639 

were in BigWig format. The ‘bigWigAverageOverBed’ was used to segment signal into windows 640 

according to the resolution of Hi-C data. The mouse ChIP-seq data were downloaded from the 641 

VISION project (http://www.bx.psu.edu/~giardine/vision/).  642 

 643 

Epigenetic states: The IDEAS segmentation of the 6 ENCODE cell type/tissues (GM12878, 644 

H1h-ESC, Hela-S3, HepG2, HUVEC, K562) was downloaded from (http://main.genome-645 

browser.bx.psu.edu/). The 36-state IDEAS model trained on 10 marks (H3K4me1, H3K4me2, 646 

H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K36me3, H3K20me1, PolII and CTCF), as well 647 

as DNase-seq and Faire-seq, was applied to this study. 648 

 649 

  650 
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Figure Legends 651 

Figure 1 | Overview of the OnTAD pipeline. a, OnTAD uses a sliding diamond-shaped 652 

window to calculate the average contact frequency within the window at each locus on the 653 

genome. The five loci marked by letters ‘a’-’e’ are examples being evaluated as potential TAD 654 

boundaries, with ‘d’ being a clear false positive. b, Identification of candidate TAD boundaries in 655 

OnTAD. Blue curve: the average contact frequency of the diamond-shaped windows, calculated 656 

at different window sizes (W) and different loci. Red arrows: the location of significant local 657 

minimums of the average contact frequency, i.e. candidate TAD boundaries. c, OnTAD 658 

assembles candidate boundary pairs using a Dynamic Programming algorithm (see methods) d, 659 

Visualization of the final output from OnTAD. In the genome browser, the identified hierarchical 660 

TAD is displayed as a series of horizontal bars, where each (sub)TAD is represented as a 661 

horizontal bar colored according to its TAD level. 662 

 663 

Figure 2 | Evaluation of TAD calling methods. a, Average ChIP-Seq signal at TAD 664 

boundaries and surrounding regions (+/- 10 bins) (from left to right, CTCF, SMC3 and RAD21). 665 

b, Proportions of Hi-C signal variability explained by the called TADs (measured by TAD-adjR2) 666 

at different genomic distance between two interacting loci. (Average TAD-adjR2: OnTAD: 0.33, 667 

Arrowhead: 0.26, DomainCaller: 0.26, rGMAP: 0.23 and TADtree: 0.06). c-e, Reproducibility of 668 

TAD boundaries (Jaccard index): c, between two biological replicates (GM12878, 10Kb) d, 669 

between resolutions (5Kb vs 10Kb) and (10Kb vs 25Kb). e, across different down sampled 670 

sequencing depths (GM12878, original vs 1/4, 1/8, 1/16 and 1/32 of the original sequencing 671 

depth, raw data was used). Note: TADtree was not included in d, because it has difficulty 672 

handling data with 5Kb resolution due to its large memory consumption. It also has difficulty for 673 

chr1-3 at 10Kb resolution either. Thus these three chromosomes were excluded for all TAD 674 

callers in all comparisons. 675 

 676 

Figure 3 | Hierarchical TADs are more active than singletons. a, An illustration of 677 

hierarchical levels of TADs. The levels are assigned from external to internal. The TADs 678 

covered by cyan dash line are assigned to level 1, by blue dash line are assigned to level 2, by 679 

orange dash line are assigned to level 3, and singletons are also assigned to level 1 (cyan). b, 680 

mean CTCF signal at the boundaries specific to hierarchical TADs (light green), specific to 681 

singletons (cyan), and shared between hierarchical TADs and singletons (orange). The 682 

boundaries of hierarchical TADs have the highest enrichment of CTCF signal. c-d, Enrichment 683 

of epigenetic states at the regions covered by different levels of TADs. The enrichment (fold 684 
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change) of active states (marked in orange in c) increases as the TAD level increases. The 685 

trend is visualized for the states of Tss, Enh and PromCtcf in d. The whole-genome average is 686 

used as the background for calculating enrichments. e-f, Density of expressed gene in different 687 

levels of TADs in GM12878 (e) and K562 (f). 688 

 689 

Figure 4 | Hub-boundaries are highly active in gene regulation. a, An illustration of the TAD 690 

boundary levels. The boundary levels are defined as the maximum number of TADs that use a 691 

boundary on either its left or right side. The yellow, purple and red dots refer to boundaries of 692 

level 1, 2, and 3, respectively. b, Enrichment of epigenetic states at different levels of TAD 693 

boundaries. Hub-boundaries (i.e. boundaries with level =5) are significantly enriched with Tss 694 

related states than others. (Active epigenetic states are marked in orange) c, Distribution of 695 

gene expression levels for genes whose transcription start sites overlap with TAD boundaries. 696 

Genes are classified by the level of TAD boundaries.  d, Illustration of hierarchical TAD and 697 

asymmetric loop extrusion. The red boundary denotes the ‘anchor’ site that starts the loop 698 

extrusion in asymmetric loop extrusion model. Boundaries in other colors are the stopping sites 699 

of the loop extrusion. The hierarchical TADs are formed by multiple stops of the loop extrusion 700 

that share the same start site. e, TFs enriched (Fold Change >2) at hub-boundaries in 701 

GM12878 and K562 cell lines. The fold change of ChIP-seq TF peaks at hub-boundaries (level 702 

=5) against level 1 boundaries is shown.  703 

 704 

Figure 5 | subTADs exhibit distinctive epigenetic profiles. The captured region is 705 

chr19:11.3Mb – 12.2Mb in mouse G1E-ER4. The Hi-C heatmap shows a nested TAD structure 706 

in this region. OnTAD results are displayed in the genome browser track: blue line denotes level 707 

1 TAD, green line denotes level 2 TAD, purple denotes level 3 TAD and orange denotes level 4 708 

TAD. The two subTADs (orange lines) exhibit distinctive epigenetic features, with one enriched 709 

with repressive signals (H3K27me3) and silenced expression (low RNA-Seq signal) and the 710 

other enriched with active signals (H3K27ac, H3K4me3, and H3K36me3) and expression (high 711 

RNA-Seq signal). The shared boundary (marked by dash box) between these two subTADs has 712 

no CTCF peak, indicating the formation of these two subTADs may not involve loop extrusion. 713 

 714 

Supplementary figure 1 | Illustration of convoluted TAD structures. a, Candidate TADs (a,c) 715 

and (b,d) are both suboptimal, as their scores may be driven by a real TAD (b,c). b, Two real 716 

TADs (a,c) and (b,c) are nested, which makes the score of (a,c) convoluted with the score of 717 
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(b,c). c, Real TADs (a,c) and (b,d) are partially overlapping, which may be recaptured as nested 718 

TADs (b,c), (a,c) and (a,d). 719 

 720 

Supplementary figure 2 | Illustration of the recursive TAD calling algorithm. a, At the first 721 

step of the algorithm, the entire Hi-C matrix is partitioned into two matrices, the one forming the 722 

largest right-most TAD (i.e. triangles marked in black) and the remaining part, according to a 723 

score function. Then the same function is called on each sub-matrix to recursively identify 724 

nested TAD structures. b, Each recursion step identifies the best set of TADs in its matrix under 725 

consideration according to the score function, and returns the TAD calls back to its parent until 726 

the root.  727 

 728 

Supplementary figure 3 | TAD reproducibility under different measurements. a, Adjusted 729 

rand index between TADs from two biological replicates (GM12878, 10Kb). b, Adjusted rand 730 

index across TADs from Hi-C data in multiple resolutions (GM12878, 5Kb, 10Kb and 25Kb). 731 

TADtree is not included because it has difficulty finishing the computation on high resolution 732 

data due to its high memory consumption. c, Adjusted rand index between TADs from Hi-C data 733 

in original sequencing depth and in different down sampled sequencing depth (GM12878, 1/4, 734 

1/8, 1/16 and 1/32 of original sequencing depth). 735 

 736 

Supplementary figure 4 | Enrichment of epigenetic states at the boundaries of different 737 

levels of TADs. Enrichment of epigenetic states at the regions covered by different levels of 738 

TADs. The enrichment (fold change) of active states (orange states) increases as the TAD level 739 

increases. a, K562 b, Huvec 740 

 741 

Supplementary figure 5 | Comparison between boundaries and inside TADs a, Distribution 742 

of RNA-seq signal (FPKM) at the boundaries (blue) and within TADs (red) b, Enrichment of 743 

active epigenetic states at the TAD boundaries (solid line) versus inside TADs (dashed line). Y-744 

axis denotes fold enrichment of three active epigenetic states (Tss, Enh and PromCtcf). X-axis 745 

denotes the boundaries and TADs at different levels.  746 

 747 

Supplementary figure 6 | Distribution of the levels of TAD boundaries.  748 

 749 

Supplementary figure 7 | Protein-protein interaction network of hub-boundary-enriched 750 

TFs from STRING database. Each node denotes a TF that are at least 2-fold enriched at hub-751 
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boundary over level1 boundary (n=37). Each edge denotes the interaction potential between 752 

two TFs, with thicker edges corresponding to higher interaction confidence. Interaction data was 753 

downloaded from STRING database (https://string-db.org/) 754 

 755 

Supplementary figure 8 | Contact frequency is unbalanced between the two sides of 756 

hierarchical TAD corners. The regions around TAD corners are segregated into four 757 

quadrants (1-4 on the top right figure). We then averaged contact frequency of each TAD corner 758 

by quadrants. As shown in the heatmap, the majority quadrant 2 and 3 shows unequal average 759 

contact frequencies, suggesting that the inner TADs tend to be formed on one side of the outer 760 

TADs, rather than on both sides. Quadrant 1 has the highest average contact frequency 761 

because it is within TADs. 762 

 763 

Supplementary Figure 9 | Comparison of OnTAD results between raw Hi-C and 764 

normalized Hi-C in GM12878 (10kb). a, Enrichment of CTCF signal at identified TAD 765 

boundaries and surrounding regions (+/- 10 bins) in raw Hi-C matrix and normalized Hi-C matrix. 766 

Y-axis: The average ChIP-Seq signal. b, TAD-adjR2 of OnTAD results at difference genomic 767 

distance in raw Hi-C matrix and normalized Hi-C matrix. The results on normalized data show a 768 

slightly higher enrichment of CTCF at boundary and a higher TAD-adjR2. The normalized Hi-C 769 

matrices were generated by Knight-Ruiz balancing [40] method. c, The proportion of boundaries 770 

identified in raw data that are recovered in normalized data. Grey: exact match; Green: one bin 771 

offset allowed when matching the boundaries identified in raw and normalized data. Half of the 772 

boundaries identified in the raw data precisely match with the boundaries identified in the 773 

normalized data.  If we allow one bin offset when matching the locations of the boundaries, over 774 

71% of the high-level TAD boundaries (level 2+) are matched between the results from raw data 775 

and normalized data.  776 

 777 

Supplementary Figure 10| Similarity between the (sub)TADs identified at Lsize = 5 and at 778 

other Lsizes. 779 

 780 

Supplementary Table 1 | Comparison of running time of different methods on high 781 

resolution Hi-C data (GM12878 10Kb) (unit: seconds). 782 

 783 

Supplementary Table 2 | Number of TADs on each side of a boundary that share this 784 

boundary (GM12878 10Kb). 785 
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 786 

Supplementary Table 3 | The FDR and number of TADs under each penalty value. 787 

(GM12878, average on 100 permutations) 788 

 789 

Supplementary Table 4 | The FDR and number of TADs under each penalty value. (G1E-790 

ER4, average on 100 permutations) 791 

 792 

Supplementary Table 5 | The FDR and number of TADs under each Lsize. (GM12878, 793 

average on 100 permutations) 794 

 795 

Supplementary File1 | Commands for operating other TAD calling methods. 796 
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