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Abstract

The spatial organization of chromatin in the nucleus has been implicated in many aspects of
regulated gene expression. Maps of high frequency interactions between different segments of
chromatin have revealed Topologically Associating Domains (TADs), within which most of the
regulatory interactions are thought to occur. Recent studies have shown that TADs are not
homogeneous structural units, but rather they appear to be organized into a hierarchy. However,
precise identification of hierarchical TAD structures remains a challenge. We present OnTAD,
an Optimized Nested TAD caller from Hi-C data, to identify hierarchical TADs. Compared to
existing methods, OnTAD has significantly improved accuracy and running speed. Results from
ONnTAD reveal new biological insights on the role of different TAD levels, boundary usage in
gene regulation, the loop extrusion model, and compartmental domains. The software and
documentation for OnTAD are available at: https://github.com/anlin00007/OnTAD

Background

Previous studies have shown that the human genome is spatially organized at different levels in
the nucleus, with each level of organization playing a role in gene regulation [1]. Starting with

the original Chromatin Conformation Capture (3C) assay [2] for measuring chromatin interaction
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frequencies, many higher throughput, sequencing-based methods such as 4C, 5C, ChlA-PET,
Hi-C, and Hi-ChIP have been developed to measure 3D interaction frequencies at different
resolutions [3—8]. These maps of interaction frequencies between segments of chromatin are
interpreted in terms of chromatin structures. Among the methods, Hi-C [9] obtains measurement
of chromatin interaction frequencies across the entire genome. Within some local regions in a
genome, interactions are significantly higher than they are to adjacent regions; these highly
interacting regions are termed ‘Topologically Associating Domains’ (TADs) [10,11]. The proteins
CTCF and cohesin are frequently enriched at TAD boundaries, and they have been implicated
in the formation of an isolated local environment [11]. Furthermore, the positions of many TADs
are similar across different cell-types and even conserved between species [11,12]. As a result,
TADs have been widely interpreted as a basic architectural unit within which many gene
regulatory interactions occur. To date, several computational methods have been developed to
locate TADs in the genome. For example, Dixon et al. [11] developed a ‘Directionality Index’
based on the shift of interaction direction from upstream to downstream to estimate boundaries
of TADs. Other methods, such as TOPDOM [13] and Insulation Score [14], convert the TAD
boundary finding problem to a local minimum identification problem by calculating average
interaction frequency of surrounding regions at each locus.

While many earlier TAD calling methods treat TADs as a single structure, recent high-
resolution studies have shown that TADs contains internal substructures, with sub-TADs nested
within larger TADs [15-19]. Several recently developed TAD calling methods aimed to identify
nested TAD structures. For example, TADtree [15] identifies TADs based on a relationship
between the enrichment of contact frequency and TAD size, and assembles TADs into a TAD
tree that best fit the contact matrix. rtGMAP [16] assumes that the interaction frequency in sub-
TADs is different from those in larger TADs, and applies a Gaussian Mixture model to identify
both types of TADs. Arrowhead [17] identifies corners of TADs at multiple sizes, allowing TADs
and subTADs to be detected simultaneously. 3D-Net [18] utilizes a maximization of network
modularity to identify TADs at different levels. And finally, IC-Finder [19] uses a hierarchical
clustering method to identify the TAD hierarchy.

Although the aforementioned methods provide useful tools for identifying TADs and their
internal substructure, we still lack comprehensive understanding of the functions of the
hierarchical structures within TADs. Recent work on low-resolution Hi-C data [20] has shown
that, at the large scale (> 1Mb), TADs can form a hierarchy of domains-within-domains
(“metaTAD”) through TAD-TAD interactions, and the successive levels of metaTAD organization

correlate with key epigenomic and expression features. This raises the natural question: do the
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hierarchical levels within TADs also correlate with distinctive functional roles in chromosome
organization and gene regulation? However, most existing TAD callers focus on identifying the
locations of TADs and subTADs, rather than the hierarchical organization within TADs, making
them less suitable for investigating the biological functions of TAD hierarchy. Furthermore, many
existing callers are computationally inefficient for high-resolution Hi-C data and often lack a
principled approach to choosing algorithmic parameters [16]. These issues limit the utility of
existing TAD callers for investigating finer TADs structures using high-resolution data.

We present OnTAD, an Optimized Nested TAD caller that efficiently and robustly
uncovers hierarchical TAD structures from Hi-C data. Our approach first identifies candidate
TAD boundaries by scanning through the genome with a sliding window at a series of different
window sizes, using an approach inspired by TOPDOM [13]. Then, the candidate boundaries
are assembled into the optimized hierarchical TADs structures using a recursive dynamic
programming algorithm based on a scoring function. Our systematic evaluation shows that
ONnTAD substantially outperforms existing TAD callers for both TAD boundary identification and
hierarchical TAD assembly. Using OnTAD, we uncovered novel insights on the potential
biological functions of TAD structures. In particular, we observed that active epigenetic states
are substantially more enriched in inner TADs than in outer TADs. OnTAD results revealed two
categories of TADs, those with or without hierarchical structures, that appear functionally distinct.
Compared to nonhierarchical TADs, the boundaries of TADs with hierarchical structures show a
higher CTCF enrichment, more active epigenetic states, and a higher level of gene expression.
In addition, we observed an apparent asymmetry in TAD boundary sharing, supporting the
asymmetric loop extrusion model for the formation of TADs [21]. Together, these results
demonstrate that OnTAD is a powerful tool for inferring different levels of chromatin organization
across a genome in high-resolution Hi-C data, which should facilitate improved investigations

into the roles of chromatin organization in gene regulation.

Results
The OnTAD algorithm

ONnTAD takes a Hi-C contact matrix as the input and calls TADs in two steps. In the first step,
the method finds candidate TAD boundaries using an adaptive local minimum search algorithm
inspired by TOPDOM [13]. Specifically, it scans along the diagonal of a Hi-C matrix using a W
by W diamond-shaped window (Figure 1a), calculating the average contact frequency within
each window. The locations at which the average contact frequency reaches a significant local

minimum (1.96 standard deviations less than local maximum) are identified as candidate TAD
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103  boundaries (see Methods). Because the sizes of TADs are unknown, OnTAD repeats the above
104  steps using a series of window-sizes, W= 1,2.,...,K, to uncover all possible boundaries for TADs
105 in different sizes. Here, K depends on the resolution of the Hi-C matrix and the maximum TAD
106 size that the user aims to call. For instance, for a 10kb resolution Hi-C matrix and a maximum
107 TAD size of 2Mb, K=2000/10=200. The union of the candidate boundaries of all window sizes is
108 used to assemble TADs in the next step (Figure 1b).

109

110 Inthe second step, ONTAD assembles TADs by selectively connecting pairs of candidate

111  boundaries using a dynamic programming algorithm (see Methods). To form a TAD between a
112 pair of boundaries, OnTAD requires the mean contact frequency within the potential TAD area
113  between the boundaries to exceed that of the surrounding area outside of the TAD by a user-
114  defined margin (1); otherwise, no TAD is formed between the boundaries. The dynamic

115  programming algorithm is formulated to recursively identify the optimal partition of the genome
116 for yielding the largest rightmost subTADs within each identified TAD according to a score

117  function (Supplementary Figure 1) that de-convolutes the contact frequency signals across the
118  TAD hierarchy (Supplementary Figure 2). At the end of the recursive procedure, the optimized
119  solution that maximizes the score function is obtained (defined in Methods), producing a

120 hierarchical TAD organization that best fits the observed Hi-C contact matrix. The locations of
121  the identified TADs are provided to the users as a plain text file and a bedgraph file ready for
122 visualization on genome browsers.

123

124  Comparison with existing TAD calling methods

125  We compared OnTAD with four representative TAD calling methods (DomainCaller, rtGMAP,
126  Arrowhead and TADtree) using the Hi-C data in GM12878 from Rao et al.[17]. Each method
127  was run using the settings recommended in its manual (see Supplementary file 1 for the version
128 and parameters for each method). All the evaluations were performed using 10kb resolution for
129  the normalized genome-wide Hi-C data, unless specified otherwise. We also tested OnTAD on
130 raw data, and the results obtained were similar to those observed for normalized data

131  (Supplementary Figure 9).

132

133 Accuracy of TAD boundary detection

134  We first evaluated the accuracy of TAD boundary detection using enrichment of architectural
135  proteins at boundaries as a reference for accuracy. CTCF is an architectural protein implicated

136  in formation of TAD structures [10]. Thus, we expect a high concentration of CTCF signal (from
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137  ChlIP-seq data) at accurately called TAD boundaries. We computed the average CTCF ChlP-
138 seq signal in the boundaries identified by each TAD calling method as well as their

139 neighborhood regions. As shown in Figure 2a (left panel), all methods showed enrichment of
140 CTCEF signal in the identified TAD boundaries over that in the surrounding regions (fold change >
141 1.63). Among them, OnTAD had the highest CTCF enrichment (mean signal 1.22X greater than
142  that of the second highest method, T-test p-value = 1.91e-28). A similar result was obtained for
143 the enrichment of the RAD21 and SMC3 subunits of the cohesin complex, which are also key
144  components in the formation of TADs [21]. The boundaries identified by OnTAD showed a

145  higher enrichment than those identified by other methods (mean signal 1.14X and 1.04X greater
146  than that of the second highest method, T-test p-value = 9.34e-16 and 1.91e-12, respectively)
147  (Figure 2a middle and right panel). The stronger enrichment of CTCF and cohesin signals

148  suggests that OnTAD produces more accurate calls of TAD boundaries than the other methods.
149

150  Accuracy of TAD assembly

151 We next evaluated the accuracy of TAD calling. If TADs are accurately called, one would expect
152  that a high proportion of the variation in the contact frequencies in the Hi-C matrix is explained
153 by TAD calls. We developed a metric called TAD-adjR?, which is a modified version of the

154  adjusted R? (see Methods), to measure the proportion of Hi-C signal variation explained by TAD
155 calls. Because contact frequencies decay over the genomic distance between a pair of

156 interacting loci, we stratified the contacts by their genomic distance and calculated TAD-adjR?
157  within each stratum. As shown in Figure 2b, OnTAD has a higher TAD-adjR? than that of the
158 other methods across almost the entire span of genomic distances examined (0-1.5Mb)

159 (Average TAD-adeZ: OnTAD: 0.33, Arrowhead: 0.26, DomainCaller: 0.26, —GMAP: 0.23 and
160 TADtree: 0.06). This high level of explained Hi-C variance indicates that OnTAD produces a
161  better classification between TADs and non-TAD regions compared to other methods.

162

163  Reproducibility of TAD calls and boundaries

164  Another important criterion for TAD calling is the reproducibility of the identified TADs and their
165 boundaries. To measure the reproducibility of TAD boundaries, we calculated the agreement of
166  boundaries (Figure 2c-e) between two TAD calling results using the Jaccard index. To measure
167 the reproducibility of TADs, we treated each region covered by a TAD as a cluster of bins in the
168 genome, and then measured the agreement of cluster assignments between two TAD calling
169 results using the adjusted rand index (Supplementary Figure 3a-c). We evaluated the

170  reproducibility in three scenarios: 1) between biological replicates (GM12878, 10Kb) (Figure 2c,
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171 Supplementary Figure 3a); 2) across different resolutions (5Kb, 10Kb, 25Kb) (Figure 2d,

172  Supplementary Figure 3b); and 3) at different sequencing depths (original sequencing depth
173  versus 1/4, 1/8, 1/16 and 1/32 of the total number of reads) (Figure 2e, Supplementary Figure
174  3c). As shown in Figure 2c-e and Supplementary Figure 3b, both the boundaries and the TADs
175 identified by OnTAD were fairly reproducible, consistently having either the highest or the

176  second highest Jaccard index or Adjusted Rand index in all scenarios.

177

178 Run time comparison

179  We recorded the run time of different methods on the same high-performance computing cluster
180 (Xeon E5-2680CPU and 72Gb RAM). OnTAD ran notably faster than all the other methods

181  (Supplementary Table 1). For example, it took OnTAD 655 seconds to analyze 10Kb resolution
182 data for the whole genome, which was 3X faster than Arrowhead, 24X faster than DomainCaller,
183 28X faster than rGMAP, and 263X faster than TADtree.

184

185 Level of TAD hierarchy is related to gene activity and epigenomic states

186  We systematically studied the biological features of the TAD hierarchy, again using the Hi-C
187  data in GM12878 from Rao et al.[17]. Overall, 75.7% of the genome was covered by the TADs
188 identified by OnTAD; the rest of the genome was not assigned to any TADs, and we refer to

189 these TAD-free regions as gaps. Among all TADs identified by OnTAD, the majority (92.2%)
190 contained or belonged to hierarchical structures, while a small fraction had no hierarchical

191  structure. We referred to the former as ‘hierarchical TADSs’ or ‘nested TADS’, and the latter as
192  ‘singletons’ (Figure 3a). We hypothesized that chromatin organized into these two types of

193  TADs may be playing distinctive roles in regulation, and thus we examined their association with
194  various epigenetic marks.

195

196  Boundaries of hierarchical TADs have a higher CTCF enrichment

197  We first compared the CTCF enrichment (see Methods) at the boundaries of the two types of
198 TADs. Indeed, the boundaries of hierarchical TADs were substantially more enriched with CTCF
199  signal than singleton boundaries (Figure 3b) (mean CTCF signals are 3.51 and 2.25,

200 respectively, T-test p-value = 1.52e-18). This enrichment of CTCF signal arose from a higher
201  average number of CTCF peaks at the boundaries of hierarchical TADs. The mean number of
202  CTCF peaks per boundary of a hierarchical TAD was 0.451, whereas it was only 0.181 for

203  boundaries of singleton TADs (T-test p-value = 4.52e-30).

204
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205  Hierarchical TADs have a stronger association with active epigenetic states

206  Chromatin interactions are strongly associated with local, active epigenetic profiles [12,17, 22].
207  We thus expected to observe a positive association between the enrichment of active epigenetic
208 states and the levels of TADs. Starting with the 36 epigenetic states defined by IDEAS

209 segmentation [23] on 6 ENCODE cell lines, we evaluated the association between active

210 epigenetic states and TAD hierarchies. We classified hierarchical TADs into five levels, with
211 level one being the outermost TADs, level two being the immediate subTADs nested under one
212  layer of level one TAD, and so forth until level five, which contains the subTADs nested under
213 four or more layers of TADs in the hierarchy. We observed that the proportion of active

214  epigenetic states increase along the levels of TADs (Figure 3c, d). In contrast, singletons are
215 notably less active compared with hierarchical TADs (especially when level >2). In fact,

216  singleton TADs showed enrichments similar to those for the gap regions. A similar pattern of
217  enrichment for active states in hierarchical TADs was also observed in other cell types (K562
218 and HUVEC) (Supplementary Figure 4). Taken together, our results showed that hierarchical
219 TADs are on average more active than singletons; and within hierarchical TADs, inner TADs
220 (e.g., subTADs) are more active than outer TADs.

221

222  Hierarchical TADs have more active gene expression

223  We further investigated how gene expression is associated with TAD hierarchies. Using the
224  RNA-seq data of GM12878 from the ENCODE consortium (www.encodeproject.org) [24], we

225 defined expressed genes as those with FPKM > 5. Then within TADs at each level, we

226  computed the density of expressed genes (the number of expressed genes per bin, i.e., 10Kb
227  region). If a gene was covered by more than one TAD, we associated it with the innermost
228 TADs. We found that, as the TAD level increases, the density of expressed genes also

229 increases, i.e., genes are more frequently activated within inner TADs than outer TADs (ANOVA
230 test p-value of < 2.2e-16) (Figure 3e). Similarly, we observed the same trend of positive

231  association between density of expressed genes and the TAD level (ANOVA test p-value <
232 2.2e-16) in the K562 cell line (Figure 3f).

233

234  Shared TAD boundaries are asymmetric and more active than other boundaries

235 It has been reported that TAD boundaries are interaction hotspots [25]. We also observed that,
236 for TADs at all levels, the number of expressed genes and the enrichment of active epigenetic

237  states are significantly higher at the TAD boundaries than at the internal regions of TADs (all T-
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238  test p-values < 0.001) (Supplementary Figure 5a&b). Thus we undertook an additional analysis
239  of TAD boundaries.

240 We observed that the boundaries of hierarchical TADs were frequently shared by

241  multiple TADs. We hypothesized that the boundary usage may play an important role in

242  maintaining hierarchical structures and regulating gene activities. To investigate this hypothesis,
243 we classified boundaries into five categories, according to the maximum number of TADs that
244  use a boundary on one of the two sides of the boundary (Figure 4a). A boundary is classified as
245 level one if it is used by no more than one TAD on either side, level two if it is used by exactly
246  two TADs on one side and less or equal to two TADs on the other side, and so forth to level five
247  ifitis used by five or more TADs on either side. For example, a boundary shared by two TADs
248  toits left and three TADs to its right was classified as level three. The number of boundaries
249  assigned to each category is shown in Supplementary Figure 7.

250

251  Epigenetic and genomic profiles

252  We examined the enrichment of active epigenetic states at different boundary levels. We

253  observed a significant positive correlation between the enrichment (fold change) of active

254  epigenetic states and the number of times each boundary is shared (e.g., Tss state: Pearson
255  coefficient = 0.89; TssCtcf state: Pearson coefficient = 0.92) (Figure 4b). We further studied the
256 relationship between gene expression level and boundary sharing. Again, we observed a

257  significant positive association between the number of times a boundary was shared and the
258 gene expression level (ANOVA test p-value = 1.97e-05). In particular, the gene expression level
259  atthe boundaries that were shared by 5 or more TADs was substantially higher than that at
260  boundaries that were shared by fewer TADs (Figure 4c). At a higher level boundary, multiple
261 genomic loci (the boundary plus the other ends of the TADs) must be in proximity in three-

262  dimensional space. This situation is reminiscent of chromatin hubs, and thus, we call the

263  boundaries shared by 5 or more TADs “hub-boundaries”. We posited that hub-boundaries are
264  more active in gene regulation than boundaries that are shared by fewer TADs.

265

266  The asymmetric loop extrusion model

267 Interestingly, we also observed some asymmetry in boundary usage and TAD formation in

268 hierarchical TADs. Specifically, we have observed (1) a significant difference in boundary usage
269  between the left and the right boundaries of the same outer TAD (Z-test p-value < 2.2e-16) and
270  (2) a significant difference in the numbers of TADs formed by a boundary on its left and right

271  sides (Z-test p-value < 2.2e-16) (Supplementary Table 2).
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We therefore asked if the observed asymmetry is related to the mechanism of loop formation. A
recent study in yeast suggested that loops are formed in an asymmetric process, where the loop
extrusion complex anchors on one side and DNA reels through from the other side [26]. We
here hypothesize that loop extruders are preferentially loaded at or near a specific TAD
boundary. Then the asymmetric loop extrusion would start from this site on one end, and it
could stop at different sites on the other end. Thus, the TADs formed by multiple stops of loop
extrusion in this process would all share the anchor site as the boundary on one side, but each
has a different boundary on the other side, leading to the observed asymmetric boundary usage
(Figure 4d). Another recent study in Drosophila Schneider 2 (S2) cells showed that promoters
prefer to interact with enhancers downstream of the transcriptional unit [27], leading to a
directional preference in TAD formation. Indeed, as shown in Figure 4b, the boundaries shared
by multiple TADs are highly enriched with promoters, thus the observed orientation asymmetry

in TAD formation around these boundaries could reflect this interaction preference in promoters.

While some proteins (e.g. Ycgl HEAT-repeat and Brnl kleisin subunits) have been found to be
related to the anchor sites in yeast [28], little is known about the proteins supporting the anchor
sites in human. We therefore performed a transcription factor (TF) enrichment analysis using
161 TF ChIP-seq data from the ENCODE consortium [29-31]. By comparing the fold
enrichment of each TF signal in hub-boundary (level 5) with the ones at low level (level 1), we
found a group of TFs that were highly enriched in hub-boundaries (Fold Change > 2 in either
GM12878 (n = 8) or K562 (n = 37)) (Figure 4e). These hub-boundary-enriched TFs were
strongly associated with chromosome organization function in Gene Ontology Analysis (FDR =
1.33e-06). They were also shown to be highly connected (p-value < 1.0e-16) in the protein-
protein interaction database, STRING (Supplementary Figure 7), suggesting that they may
potentially form a protein complex. Together, these results suggest that the enriched TFs may

play an important role in forming the anchor sites in the asymmetric extrusion process.

Hierarchical TAD calling unveils distinct epigenetic features of inner TADs

It has been reported that genomic loci within the same TADs tend to possess similar epigenetic
features [22], while loci in different adjacent TADs may show different epigenetic features [17].
However, it remains unclear if the divergence of epigenetic profiles also takes place at the
subTAD level. To explore the possible answer to this question, we performed OnTAD on Hi-C
data from the mouse G1E-ER4 cell [32]. We observed that the majority of TADs (87.1%) are in

active compartments. As shown in the OnTAD genome browser track in Figure 5, the region of
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306  (chr19:11.3Mb — 12.2Mb) contains multiple nested TADs. Among them, two adjacent subTADs
307 (11.8Mb —11.9Mb and 11.9Mb — 12.0Mb) that belong to the same outer TAD (chr19: 11.5Mb —
308 12.0Mb) exhibit distinct epigenetic features, with enriched repressive epigenetic signal

309 (H3K27me3) in the left subTAD and enriched active epigenetic signal (H3K27ac, H3K4me3 and
310 H3K36me3) in the right subTAD. This demonstrates that, although TADs were traditionally

311 considered to be a fundamental unit of chromatin organization, epigenetic features can be

312  distinctively different between subTADs. Our results show that the subTADs identified by

313  OnTAD better represent homogeneous units associated with epigenetic functions, capturing
314  distinct functional features within subTADs. By identifying these subTADs, OnTAD enables a
315 finer investigation of the hierarchy of chromatin organization and its functionally homogeneous
316  structures.

317

318 Interestingly, we observed that whereas the outer TAD (11.8Mb — 12.0Mb) had clear CTCF
319 signals at its boundaries, the shared boundary between the two subTADs (11.8Mb — 11.9Mb
320 and 11.9Mb - 12.0Mb) had no CTCF signals from the CTCF ChiIP-seq data. This indicates that
321  the formation of these two subTADs is probably independent of CTCF. Furthermore, we

322  performed a high-resolution compartment analysis (See Methods). It showed that the two

323  subTADs fall in different compartments. These results can be interpreted within the framework
324  of recently proposed ‘compartmental domains’ [33,34], which are hypothesized to be formed by
325  A/B compartment without the involvement of CTCF. We will discuss this mechanism further in
326  the discussion.

327

328 Discussion
329  While hierarchical structures in TAD formation have been reported [15,16,18,19], the

330 involvement of these hierarchies in gene regulation mechanisms remains poorly understood.
331  This is partly due to the lack of a method that systematically identifies TAD hierarchies from Hi-
332 C data and investigates the association of TAD hierarchies with epigenetic features. Here we
333  introduce OnTAD, a new method to uncover the hierarchical TAD structures from Hi-C data.
334  Based on a dynamic programming procedure that recursively finds the best domain partition of
335  Hi-C contact matrix in a hierarchical manner, OnTAD identifies the hierarchy of TADs and their
336 boundaries. It produces a convenient output for visualizing the hierarchy in a genome browser,
337  greatly facilitating the investigation of the interplay between hierarchical TADs and other

338 epigenetic features in gene regulation. Our comprehensive evaluation shows that OnTAD

339  substantially outperforms the existing TAD calling methods in both accuracy and computational
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340 efficiency. These results demonstrated the effectiveness of OnTAD for identifying TAD

341 hierarchies and investigating their biological functions.

342

343  Using the results from OnTAD, we investigated how hierarchies within TADs were associated
344  with features related to function. In particular, we observed that, on average, hierarchical TADs
345  were significantly more active than TADs without hierarchies (i.e. singletons). The active

346  epigenetic states and active genes were also significantly more enriched in the boundaries

347  shared by multiple TADs (e.g. hub-boundaries) than those used exclusively by a single TAD.
348 These observations echo those on the hierarchy of metaTADs, which also showed a positive
349  association between the enrichments in promotor activity and gene density and boundary usage
350 [20]. Interestingly, we also observed a significant asymmetry in boundary usage between the left
351 and right boundaries in the hierarchical TADs and an asymmetry in the orientation of TAD

352  formation around hub-boundaries, supporting the asymmetric loop extrusion model [26] and
353  preferential orientation of promoter interaction [27].

354

355  Our results pose several interesting questions about the mechanisms utilized to form these
356  structures. First, how are these hierarchical TADs structures formed? Are they produced by
357 hierarchical chromatin folding in single cells, or does the nesting reflect a collection of different
358 interaction patterns in individual cells that looks like a hierarchy when the data from a population
359  of cells is aggregated in bulk cell Hi-C data? Single-allele chromatin interactions do reveal

360 regulatory hubs [35], supporting the interpretation that these complex interactions occur in

361 individual cells. A recent single-cell analysis of high-throughput Oligopaint labeling and imaging
362 on Chr21 of A549 cell, showed that both TAD and sub-TAD structures exist in single cells [36].
363  Furthermore, nested TAD structures could be formed by multi-site interactions in a single cell
364 [36]. However, as acknowledged by the authors, it is still possible that some other domain

365  structures resulted from population averaging. In principle, OnTAD can also be applied to

366 single-cell Hi-C data to explore this question. However, the genome coverage in current single-
367 cell Hi-C data is still low and can only support the analysis at the resolution of ~100Kb, limiting
368 the detection of finer domain structures (typically ~50Kb for subTADs we identified). Future
369  studies with higher resolution single-cell Hi-C data will be valuable for addressing this question
370 at a genome-wide scale.

371

372  Second, what are the mechanisms to form the hierarchical structures? As observed in our

373  analyses (Figure 5), though the majority of the outer TAD boundaries were bound by CTCF,
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374  some subTADs appear to be formed without CTCF binding at their boundaries. The formation
375  of the latter can be explained by the recently proposed ‘compartmental domains’ mechanism
376  [34], which forms domains by establishing A/B compartments without the involvement of CTCF
377  orloop extrusion. Because OnTAD does not rely on CTCF information for TAD identification, it
378 can capture all domain structures, regardless the formation mechanisms. The example in Figure
379 5 could be explained by joint processes of loop extrusion (for the outer TAD) and establishment
380 of ‘compartmental domains’ [34] for the inner TADs.

381

382 In summary, we have demonstrated that the hierarchies of TAD structures are

383  associated with gene regulation and have provided a powerful tool for exploring this association.
384  Though previous results based on low-resolution data suggest that the majority of TAD

385  structures are conservative across cell lines [11], recent analyses found that certain locally

386 frequent interaction regions within TADs are cell type specific [25]. It will be particularly

387 interesting to use OnTAD to systematically investigate how the finer domain structures within
388  TADs differ across cell types, for example, how the levels of hierarchy differ across cell types,
389 and how the changes in hierarchy are associated with differential gene regulation. The

390 Dbiological insights generated by analyses of the finer domain structures should help improve our
391 understanding of the role of chromatin conformation in gene regulation.

392

393
394 Methods

395 Notations and data preprocessing

396 Let X denote a symmetric Hi-C matrix, where each entry (i,j) in the matrix is a value quantifying
397 the strength of the chromatin interaction of between bins i and j. The Hi-C matrix can be raw
398 contact matrix or the normalized matrix produced by the normalization procedures such as ICE
399 [37] and KR [17]. Let X[a:b, c:d] ={(i,)): a<i < b, c £ <d} denote a sub-matrix of X. A candidate
400 TAD between bins a and b corresponds to a diagonal block matrix X ;=X[a:b, a:b], where the
401 mean of the entries in X5y iS expected to be higher than that in its neighboring matrices.

402  Because of the distance dependency in Hi-C data, i.e., the dependence of contact frequency on
403 the proximity of the interaction loci, we normalize the Hi-C matrix before TAD calling by

404  subtracting the mean counts at each distance.

405

406 Identification of candidate TAD boundaries
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407  We identify candidate TAD boundaries using a procedure motivated from the TOPDOM method
408 [13]. This procedure scans the diagonal of the Hi-C matrix, using a sliding square submatrix
409  whose bottom corner locates on the diagonal (Figure 1a), and computes the mean Hi-C signals
410 covered by the submatrix at each location, which is the TOPDOM statistic in [13]. As shown in
411  [13], when the corner of the submatrix lands on a TAD boundary, the TOPDOM statistic reaches
412 a local minimum. Thus, the local minimums of the TOPDOM statistic can be used as candidate
413  boundaries. The original TOPDOM paper only computed the statistics at a fixed window size. To
414  identify all candidate TAD boundaries for TADs in different sizes, the TOPDOM statistics are
415 calculated at all window sizes (W), ranging from 1 to a maximum TAD size (d) specified by
416  users. Here, we set the minimum size =3 bins, because structures smaller than 3 bins are too
417  small to form a domain. We set the maximum size=200 for 10kb Hi-C data, because TADs are
418  known to be smaller than a few Mbs.

419  For each window size W, we first obtained a set of local minimums of the TOPDOM statistics,
420 which are defined as the smallest value in the neighborhood of [i-Lsize, i+Lsize]. To reduce
421 false positives due to noise, the local minimums that are not significantly smaller than the local
422  maximums in the same neighborhood are pruned. Here we required the local minimums to be at
423  least 1.96S smaller than the local maximums to be qualified as a candidate boundary, where S
424  is the standard deviation of the TOPDOM statistic in the entire matrix. The parameter 1.96 is
425 chosen based on the 95% confidence level of a normal distribution, which reasonably
426  approximates the distribution of TOPDOM scores.

427  Figure 1b shows examples of the local minimums on the genome at different window sizes.
428  Because different window sizes capture the information of TADs in different sizes, we took the
429  union of the pruned local minimums over all window sizes, and used the corresponding bins as
430 candidate TAD boundaries. We selected z according to the procedure described in the section
431  of Parameter Selection. For all the analyses in this work, we used Lsize = 5. It can be adjusted
432 Dby users.

433

434  Recursive TAD calling algorithm

435 We developed a TAD calling algorithm to assemble TADs from the candidate boundaries.
436  Several issues need to be considered in the design of the algorithm in order to produce
437  biologically meaningful TADs. First, because a region may be shared by multiple TADs, the
438 scores of these TADs can be strongly correlated. Second, in the TADs with nested structures,

439 the scores of the TADs and their nested sub-TADs are convoluted. Third, some boundaries may
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440  be shared between TADs. Last, the algorithm needs to be computationally efficient to call TADs
441  in the genome scale.

442  To address these issues, we developed a recursive algorithm to identify the TADs that give the
443  optimal partition of the genome according to a scoring function g(X) related to the strength of Hi-
444  C signals (see the next section). Our algorithm assumes that any given two TADs are either
445  disjoint (but can share one boundary) or nested (i.e. one TAD is completely within the other).
446  This assumption is required for the dynamic programming to find an optimal solution in
447  polynomial time. While this assumption sometimes may not be true, it greatly reduces the
448  complexity of the problem while still enabling us to 1) de-convolute nested TAD structures, 2)
449 impose shared boundaries, and 3) obtain an efficient algorithmic solution. Our evaluation
450 showed that the majority of the genome follows this assumption (see the subsection below).
451 Even when it is violated, i.e., the boundaries of the TADs cross each other, our method can still
452  produce a reasonable approximation (Supplementary Fig.1C).

453  Briefly, the algorithm works as follows. Given a matrix X, the algorithm starts at the root level
454  to first find the best bin i (a<i<b) to partition the matrix into two submatrices, X, ;;and X;p;, such
455 that X is the largest right-most TAD in Xpp. Since X and Xy are disjointed, the TADs
456  within each submatrix can be called separately in a recursive manner. At each recursive step,
457  the parent matrix is partitioned into two sub-matrices, and TADs are called within each sub-
458  matrix using the same recursive formula (Supplementary Fig.2A). The recursion stops when i=a,
459 i.e., the sub-matrix X, contains no TAD. After a recursive step is completed, it identifies the
460 Dbest TADs in the current branch according to the scoring function, de-convolutes the TAD
461 signals in the parent matrix by removing signals of inner TADs, and evaluates if the parent
462  matrix itself is a TAD. This process is repeated until the recursion returns to the root level
463  (Supplementary Fig.2B). Note that, because every TAD is the largest right-most TAD of a parent
464 matrix in a recursive branch, this recursive procedure guarantees to traverse all TADs, even
465  though only the largest right-most TAD is called at each step.

466

467  Evaluation of the violation of the hierarchical TAD assumption

468 To investigate the frequency of the violation of the hierarchical TAD assumption, we ran OnTAD
469  on high resolution (10Kb) in-situ Hi-C data in GM12878. We segregated regions around the

470 corner of each TAD into four 5*5 quadrants and calculated the average contact frequency of
471 each quadrant (Supplementary figure 8). If this assumption holds, the interaction frequency is
472  expected to be high in the quadrant within TAD (quadrant 1) and relatively low in at least one of

473  the two quadrants (2 & 3) on the two sides outside of TAD corner. As shown in the
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Supplementary figure 8, the mean frequency patterns of the four quadrants for most of the TAD
corners are consistent with our expectations. This suggests that this assumption holds for a
majority of the genome. The violation can be remedied by removing the signals from the called
TADs and then rerunning OnTADs on the de-clumped Hi-C data to identify additional TADs.

The scoring function
Our scoring function g( X, ;) for matrix X is defined as
0 i=a

9(Xjap)) = max; { max (0, 9(Xa) + h(x[i,b])) i=a+1,..,b-1 @
where h(Xp;5) = 9(X[i1) + A(X[;57/SUb TADs)
Here, g(X[a,b]) is the score of TADs within Xy, not including the score for Xy itself being a
TAD. It is calculated by finding the best left boundary of the largest right-most TAD in Xap;.
h(X[i,b]) is the score of the largest right-most TAD in Xpp;. It is the sum of the score of TADs
within Xp;,; and the score of Xy, itself being a TAD, namely A(X[;;|sub TADs). For any

diagonal block matrix to be called a TAD, its mean signal is required to be greater than the

means of its neighboring regions on both sides. We therefore define

A(X[i,b] |sub TADS)
= m(X|; pjlsub TADS)
— max(X[@-(b-i+1)): (-(b-i+1)),i:b], X[i:b, (i-+(b-i+1)): (b+(b-i+1))]) — 2

where m(X[ipj|sub TADs) denotes the mean of Xy, excluding the TADs within Xy, returned by
the recursion; A is a user-specified nonnegative penalty parameter
X[ d-(b-i+1)):(b-(b-i+1)),i:b] and X[i:b,(i+(b-i+1)):(b+(b-i+1))] are two (b-i+1)-by-(b-i+1) off-
diagonal matrices in the adjacent flanking regions of X;; and finally, and X denotes the mean
of X. We note that A(X[i,b]|sub TADs) is calculated based on the TADs returned from g(Xp; p1)-
That is, we do not directly optimize g(X|; ) + A(X[;pjlsub TADs). The parameter 1 serves as a
threshold for TAD calling. That is, a TAD will be called only when the mean contact frequency
within the potential TAD area between the boundaries exceeds that of the surrounding area
outside of the TAD by the margin of 2. The procedure for selecting A is described in Parameter

Selection.
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501 When the score of a candidate TAD is <0, it is likely not a real TAD. We therefore set a lower
502  bound on the score at 0 and do not output the “TAD” with a score 0.

503

504  Parameter Selection

505 We selected the value of A based on the False Discovery Rate (FDR) of TADs identification.
506 The FDR is calculated as follows. First, the entries in the real Hi-C matrix are permuted within
507 each genomic distance. This results in a null Hi-C matrix that has the same marginal signal
508 distribution as the original Hi-C matrix but without biologically meaningful TAD structures. Next,
509 OnNTAD is run on both the original and the permuted Hi-C matrix for a series of .. The TADs
510 identified from the original Hi-C matrix are treated as ‘discoveries’ (R), which is a mixture of
511 false and true discoveries, and those from the permuted Hi-C matrix are treated as ‘false
512  discoveries’ (V), which is used to approximate the proportion of false discoveries in R. Recall
513 that OnTAD assigns each TAD a score according to the scoring function (1). Given a TAD size,
514  the magnitude of the score reflects the strength of evidence to call TAD. Because larger TADs
515 tend to have a lower mean contact frequency after removing their inner TADs, the score is
516 usually smaller for larger TADs. Therefore, we computed the FDR accounting for TAD size.
517  Specifically, for a given value of 4, the identified TADs are first stratified by their sizes and
518 scores. Let n be the total number of TADs identified on the original matrices, and R; and V; be
519 the numbers of TADs in the ith stratum from the original and the permuted matrices,
520 respectively. Then if a TAD (j) is in the ith stratum, the probability for the TAD to be a false

521  discovery (a.k.a. local false discovery rate [38] is

522 p; = min (%,1)

523  The overall FDR for the TAD identification is computed as the average of the probability to be a
524  false discovery over all TADs identified on the original matrix, based on the relationship between
525 local fdr and FDR [38]:

¥ p;
FDR = 22121
n

526 The above FDR calculation is repeated for each value of 4, and the 4 corresponding to the FDR
527  cutoff of 0.05 is selected.

528 In our analysis, the stratum is formed by dividing the TAD calls into 25 equal shares according
529 to the ranking of TAD size (or TAD score, respectively) on the real matrix. This leads to
530 25*25=625 strata in total. As shown in Supplementary table 3, the FDR is close to 0.05 at A =
531 0.1 for GM12878 dataset (10kb). To test the robustness of the tuned parameter, we also
532  performed the same procedure on the mouse G1E-ER4 Hi-C data from Hsu et al. [32] at 10Kb
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533  resolution. The FDR was also controlled at the 0.05 level when A = 0.1 (Supplementary table 4).
534  Therefore, we used A = 0.1 as the default value in our analyses. In the OnTAD software, we
535 allow users to specify the value of A to offer more flexibility.

536  Another important tuning parameter is Lsize, which is the span of the interval (i.e. the interval
537 size = 2*Lsize +1) for searching local minimums of the TOPDOM statistics. This parameter
538 affects the selection of candidate boundaries. If Lsize is too large, some potential boundaries
539 will be missed. If Lsize is too small, the candidate boundary set may include many false
540 positives, increasing the computational burden for the assembly step and the quality of final
541 results. We chose Lsize in the similar way as for choosing 4 on GM12878 data (10kb).
542  Specifically, we ran OnTAD for different values of Lsize (range=3-10), corresponding to the
543 interval size of 7-21 bins. We chose this range because it is sufficient to cover various TAD
544  sizes. As shown in Supplementary table 5, Lsize=5 (i.e. interval size=11) renders an FDR close
545 to 0.05. Therefore, we chose Lsize=5 for all analyses. To evaluate the robustness of this choice,
546  we evaluate the similarity of the identified TAD structures between Lsize=5 and Lsize=6-10, and
547  found that they are similar, with the median of the adjusted rand indices >0.75 (Supplementary
548  figure 10). It indicates the result is relatively insensitive to the value of Lsize when Lsize=5~10.
549

550 Computation complexity of the TAD calling algorithm

551 We performed an analysis on the computational complexity for our recursive algorithm. For an
552 IxlI Hi-C matrix, if all bins are potential boundaries, then the recursion needs to visit I(I+1)/2
553 diagonal block sub-matrices. As there are | size 1 diagonal block matrices, the computation
554  complexity for computing the scores of all size 1 matrices is O(l). Given the scores of size 1
555 matrices, we can calculate the scores of size 2 matrices. There are (I-1) of them, each
556 enumerating through (2-1) partitions. Hence the time complexity is O((2-1)(I-1)). Following the
557  same calculation, the scores of one sub-matrix of size k will be computed by enumerating (k-1)
558  partitions. As there are (I-k+1) of them, the time complexity is O((k-1)(I-k+1)). Similar calculation
559 can be done for the mean of sub-matrices. As a result, the total complexity to obtain the scores
560 of all sub-matrices from size 1 to | is O(°).

561 Empirically, the computational complexity is much lower than the above due to some further
562 reductions. First, because potential TAD boundaries are limited to the TOPDOM local minimums,
563 this substantially reduces the number of partitions from O(I*) to O(m?), where m is the number of
564 candidate boundaries. Second, because TADs usually are smaller than 2Mb, the maximum TAD
565 size to be called (d) typically is much smaller than |. This constraint effectively reduces the time

566 complexity of our algorithm from O(m® to O(md?). Furthermore, because TADs usually are
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567 formed between neighboring boundaries, we set a constraint in the recursive procedure to limit
568 the TADs to be formed only between candidate boundaries that are no more than five neighbors
569 apart.

570

571 TAD-adjR?for assessing accuracy of TAD calling

572  Because TADs are regions with frequent local interactions, a reasonable TAD caller is expected
573  to classify the regions with high contact frequencies as TADs and the regions with low contact
574  frequencies as non-TADs, i.e. gaps between TADs. At any given genomic distance, the

575  variation between Hi-C signals should be largely explained by the classification of TADs. How
576  well the variation can be explained by the classification of TADs can reflect the accuracy of TAD
577 calling. Based on this intuition, we developed a metric similar to the R-square in regression

578 models to evaluate the accuracy of TAD calling. Let Y; denote the contact frequency of the ith
579  bin, n denote the number of bins at the same genomic distance as this bin, p denotes the

580 number of called TADs whose sizes are greater than or equal to the genomic distance. For bins
581  within TAD, ?; denotes the average contact frequency at given genomic distance within that
582  TAD, excluding regions covered by higher level TADs. For those bins not in any TADs, ?; is the
583  average of contact frequency in the gap region at that genomic distance. And Y denote the

584  overall mean contact frequency across all the bins at a given genomic distance. For each

585 genomic distance, the TAD-adjR?is defined as

1 n 2

g2 _q_ m&-:l(Yi -7)
tad — 1 n S
Zi=1(Yi - Y)

n—1
586  This quantity essentially measures the proportion of variance in Hi-C signal that is explained by

587 the classification of TADs, adjusting for the number of TADs and genomic distance.

588

589 Enrichment of expressed genes

590 To evaluate the activity of gene expression, we downloaded the RNA-seq data from ENCODE
591 (See Data), merged the biological replicates of RNA-seq data, and computed the average

592  FPKM for each gene. Genes with FPKM > 5 were deemed as expressed genes. For each TAD
593 level, we compute the density of expressed gene as the number of expressed genes per 10Kb.
594  For TADs with nested structures, genes covered by the inner level TADs are excluded in the
595 calculation of gene density for outer TADs.

596

597 Enrichment of CTCF or cohesin protein signals
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598 To compute the enrichment of CTCF (or cohesin protein) signals at the identified boundaries
599 and their surrounding regions, we computed the average CTCF (or cohesin proteins) signals
600 from ChIP-seq data at the identified boundaries and the bins within their 10bins flanking regions.
601 The processed signals in bigwig file was used in this process.

602

603 Epigenetic state enrichment

604 We downloaded the IDEAS segmentation (see Data), which segments the genome into 36

605 epigenetic states based on 10 epigenomic marks [23]. We used it to evaluate the enrichment of
606 epigenetic state in the identified (sub)TADs and boundaries. Let n; denote the total number of
607  200bp windows that have IDEAS-assigned epigenetic states at a TAD boundary i, and ng ;

608  denote the number of 200bp windows annotated as state s at a TAD boundary i. For a given
609 state s, its enrichment in a set of M boundaries is computed as

E(s) = Z{il ng; +1

BYM n+1

610 where B is the proportion of state s in the whole genome. The 1's in the formula of E(s) are
611 added to avoid dividing by O.

612

613 A/B compartments calling

614  We used CscoreTool [39] to infer A/B compartments from mouse G1E-ER4 Hi-C data (10Kb
615 resolution, default parameter). The A/B compartments is determined by correlation coefficient
616 between compartment score and ATAC-seq signal. If a positive correlation coefficient is

617 observed, then regions with score>0 are in compartment A. Otherwise, if the correlation

618 coefficient is below 0, the regions with score < 0 are in compartment A. We reversed the

619 compartment scores on the chromosomes that has correlation coefficient < 0. Thus,

620 compartment A is shown with positive score and compartment B is shown with negative score.
621

622 Data

623  Hi-C data: The human Hi-C data is obtained from Rao et al. 2014 (GEO accession number:
624  GSE63525). Among them, three cell types (B-lymphoblastoid cells (GM12878), umbilical vein
625 endothelial cells (HUVEC) and erythrocytic leukemia cells (K562)) were included in this study.
626  The normalized (by Knight-Ruiz balancing method) Hi-C matrices at 5Kb, 10Kb and 25Kb

627  resolutions were used in this study. The mouse Hi-C data is obtained from Hsu et al. 2017
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628 [32](GEO accession number: GSE95476). The 10Kb raw Hi-C matrices from G1E-ER4 and two
629  Brd2 knockouts were used in this study.

630

631 Transcriptomic data: The gene expression data were downloaded from the ENCODE project

632  (https://www.encodeproject.org/). The processed signal (FPKM) was used to measure the

633  expression activity.

634

635 Epigenomic data: The histone modification data were downloaded from the NIH Roadmap
636  Epigenomics project (http://www.roadmapepigenomics.org/), including H2A.Z, H3K27ac,

637 H3K27me3, H3K36me3, H3K4mel, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3 and
638 H4K20mel. The ChiP-seq data of CTCF and cohesin protein (Rad21 and Smc3) were

639 downloaded from ENCODE project (https://www.encodeproject.org/). The downloaded data

640 were in BigWig format. The ‘bigWigAverageOverBed’ was used to segment signal into windows
641 according to the resolution of Hi-C data. The mouse ChIP-seq data were downloaded from the
642  VISION project (http://www.bx.psu.edu/~giardine/vision/).

643

644  Epigenetic states: The IDEAS segmentation of the 6 ENCODE cell type/tissues (GM12878,
645 H1h-ESC, Hela-S3, HepG2, HUVEC, K562) was downloaded from (http://main.genome-

646  browser.bx.psu.edu/). The 36-state IDEAS model trained on 10 marks (H3K4mel, H3K4me2,
647 H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K36me3, H3K20me1, Polll and CTCF), as well
648 as DNase-seq and Faire-seq, was applied to this study.

649

650
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651 Figure Legends
652 Figure 1| Overview of the OnTAD pipeline. a, OnTAD uses a sliding diamond-shaped

653  window to calculate the average contact frequency within the window at each locus on the

654 genome. The five loci marked by letters ‘a’-'e’ are examples being evaluated as potential TAD
655 boundaries, with ‘d’ being a clear false positive. b, Identification of candidate TAD boundaries in
656 ONnTAD. Blue curve: the average contact frequency of the diamond-shaped windows, calculated
657 at different window sizes (W) and different loci. Red arrows: the location of significant local

658 minimums of the average contact frequency, i.e. candidate TAD boundaries. ¢, OnTAD

659 assembles candidate boundary pairs using a Dynamic Programming algorithm (see methods) d,
660 Visualization of the final output from OnTAD. In the genome browser, the identified hierarchical
661 TAD is displayed as a series of horizontal bars, where each (sub)TAD is represented as a

662  horizontal bar colored according to its TAD level.

663

664  Figure 2 | Evaluation of TAD calling methods. a, Average ChIP-Seq signal at TAD

665  boundaries and surrounding regions (+/- 10 bins) (from left to right, CTCF, SMC3 and RAD21).
666 b, Proportions of Hi-C signal variability explained by the called TADs (measured by TAD-adjR?)
667 at different genomic distance between two interacting loci. (Average TAD-adjR* OnTAD: 0.33,
668  Arrowhead: 0.26, DomainCaller: 0.26, rGMAP: 0.23 and TADtree: 0.06). c-e, Reproducibility of
669 TAD boundaries (Jaccard index): ¢, between two biological replicates (GM12878, 10Kb) d,
670 between resolutions (5Kb vs 10Kb) and (10Kb vs 25Kb). e, across different down sampled

671 sequencing depths (GM12878, original vs 1/4, 1/8, 1/16 and 1/32 of the original sequencing
672  depth, raw data was used). Note: TADtree was not included in d, because it has difficulty

673  handling data with 5Kb resolution due to its large memory consumption. It also has difficulty for
674  chrl-3 at 10Kb resolution either. Thus these three chromosomes were excluded for all TAD
675 callersin all comparisons.

676

677  Figure 3| Hierarchical TADs are more active than singletons. a, An illustration of

678 hierarchical levels of TADs. The levels are assigned from external to internal. The TADs

679  covered by cyan dash line are assigned to level 1, by blue dash line are assigned to level 2, by
680 orange dash line are assigned to level 3, and singletons are also assigned to level 1 (cyan). b,
681 mean CTCF signal at the boundaries specific to hierarchical TADs (light green), specific to

682  singletons (cyan), and shared between hierarchical TADs and singletons (orange). The

683  boundaries of hierarchical TADs have the highest enrichment of CTCF signal. ¢c-d, Enrichment

684  of epigenetic states at the regions covered by different levels of TADs. The enrichment (fold
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685  change) of active states (marked in orange in c) increases as the TAD level increases. The
686 trend is visualized for the states of Tss, Enh and PromCtcf in d. The whole-genome average is
687 used as the background for calculating enrichments. e-f, Density of expressed gene in different
688 levels of TADs in GM12878 (e) and K562 (f).

689

690 Figure 4 | Hub-boundaries are highly active in gene regulation. a, An illustration of the TAD
691 boundary levels. The boundary levels are defined as the maximum number of TADs that use a
692  boundary on either its left or right side. The yellow, purple and red dots refer to boundaries of
693 level 1, 2, and 3, respectively. b, Enrichment of epigenetic states at different levels of TAD

694  boundaries. Hub-boundaries (i.e. boundaries with level =5) are significantly enriched with Tss
695 related states than others. (Active epigenetic states are marked in orange) c, Distribution of
696  gene expression levels for genes whose transcription start sites overlap with TAD boundaries.
697 Genes are classified by the level of TAD boundaries. d, lllustration of hierarchical TAD and
698 asymmetric loop extrusion. The red boundary denotes the ‘anchor’ site that starts the loop

699  extrusion in asymmetric loop extrusion model. Boundaries in other colors are the stopping sites
700 of the loop extrusion. The hierarchical TADs are formed by multiple stops of the loop extrusion
701  that share the same start site. e, TFs enriched (Fold Change >2) at hub-boundaries in

702 GM12878 and K562 cell lines. The fold change of ChiP-seq TF peaks at hub-boundaries (level
703  =5) against level 1 boundaries is shown.

704

705  Figure 5| subTADs exhibit distinctive epigenetic profiles. The captured region is

706  chrl9:11.3Mb — 12.2Mb in mouse G1E-ER4. The Hi-C heatmap shows a nested TAD structure
707  in this region. OnTAD results are displayed in the genome browser track: blue line denotes level
708 1 TAD, green line denotes level 2 TAD, purple denotes level 3 TAD and orange denotes level 4
709 TAD. The two subTADs (orange lines) exhibit distinctive epigenetic features, with one enriched
710  with repressive signals (H3K27me3) and silenced expression (low RNA-Seq signal) and the
711  other enriched with active signals (H3K27ac, H3K4me3, and H3K36me3) and expression (high
712  RNA-Seq signal). The shared boundary (marked by dash box) between these two subTADs has
713  no CTCF peak, indicating the formation of these two subTADs may not involve loop extrusion.
714

715  Supplementary figure 1 | lllustration of convoluted TAD structures. a, Candidate TADs (a,c)
716  and (b,d) are both suboptimal, as their scores may be driven by a real TAD (b,c). b, Two real

717  TADs (a,c) and (b,c) are nested, which makes the score of (a,c) convoluted with the score of
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718 (b,c). c, Real TADs (a,c) and (b,d) are partially overlapping, which may be recaptured as nested
719  TADs (b,c), (a,c) and (a,d).

720

721  Supplementary figure 2 | lllustration of the recursive TAD calling algorithm. a, At the first
722  step of the algorithm, the entire Hi-C matrix is partitioned into two matrices, the one forming the
723 largest right-most TAD (i.e. triangles marked in black) and the remaining part, according to a
724  score function. Then the same function is called on each sub-matrix to recursively identify

725  nested TAD structures. b, Each recursion step identifies the best set of TADs in its matrix under
726  consideration according to the score function, and returns the TAD calls back to its parent until
727  the root.

728

729  Supplementary figure 3 | TAD reproducibility under different measurements. a, Adjusted
730 rand index between TADs from two biological replicates (GM12878, 10Kb). b, Adjusted rand
731  index across TADs from Hi-C data in multiple resolutions (GM12878, 5Kb, 10Kb and 25Kb).
732  TADtree is not included because it has difficulty finishing the computation on high resolution
733  data due to its high memory consumption. ¢, Adjusted rand index between TADs from Hi-C data
734 in original sequencing depth and in different down sampled sequencing depth (GM12878, 1/4,
735  1/8, 1/16 and 1/32 of original sequencing depth).

736

737  Supplementary figure 4 | Enrichment of epigenetic states at the boundaries of different
738 levels of TADs. Enrichment of epigenetic states at the regions covered by different levels of
739  TADs. The enrichment (fold change) of active states (orange states) increases as the TAD level
740  increases. a, K562 b, Huvec

741

742  Supplementary figure 5 | Comparison between boundaries and inside TADs a, Distribution
743  of RNA-seq signal (FPKM) at the boundaries (blue) and within TADs (red) b, Enrichment of
744  active epigenetic states at the TAD boundaries (solid line) versus inside TADs (dashed line). Y-
745  axis denotes fold enrichment of three active epigenetic states (Tss, Enh and PromCtcf). X-axis
746  denotes the boundaries and TADs at different levels.

747

748  Supplementary figure 6 | Distribution of the levels of TAD boundaries.

749

750  Supplementary figure 7 | Protein-protein interaction network of hub-boundary-enriched
751 TFs from STRING database. Each node denotes a TF that are at least 2-fold enriched at hub-
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752  boundary over levell boundary (n=37). Each edge denotes the interaction potential between
753  two TFs, with thicker edges corresponding to higher interaction confidence. Interaction data was
754  downloaded from STRING database (https://string-db.org/)

755

756  Supplementary figure 8 | Contact frequency is unbalanced between the two sides of

757  hierarchical TAD corners. The regions around TAD corners are segregated into four

758 quadrants (1-4 on the top right figure). We then averaged contact frequency of each TAD corner
759 by quadrants. As shown in the heatmap, the majority quadrant 2 and 3 shows unequal average
760  contact frequencies, suggesting that the inner TADs tend to be formed on one side of the outer
761  TADs, rather than on both sides. Quadrant 1 has the highest average contact frequency

762  because it is within TADs.

763

764  Supplementary Figure 9 | Comparison of OnTAD results between raw Hi-C and

765 normalized Hi-C in GM12878 (10kb). a, Enrichment of CTCF signal at identified TAD

766  boundaries and surrounding regions (+/- 10 bins) in raw Hi-C matrix and normalized Hi-C matrix.
767  Y-axis: The average ChIP-Seq signal. b, TAD-adjR? of OnTAD results at difference genomic
768  distance in raw Hi-C matrix and normalized Hi-C matrix. The results on normalized data show a
769  slightly higher enrichment of CTCF at boundary and a higher TAD-adjR?. The normalized Hi-C
770  matrices were generated by Knight-Ruiz balancing [40] method. ¢, The proportion of boundaries
771 identified in raw data that are recovered in normalized data. Grey: exact match; Green: one bin
772  offset allowed when matching the boundaries identified in raw and normalized data. Half of the
773  boundaries identified in the raw data precisely match with the boundaries identified in the

774 normalized data. If we allow one bin offset when matching the locations of the boundaries, over
775  71% of the high-level TAD boundaries (level 2+) are matched between the results from raw data
776  and normalized data.

777

778  Supplementary Figure 10| Similarity between the (sub)TADs identified at Lsize =5 and at
779  other Lsizes.

780

781  Supplementary Table 1 | Comparison of running time of different methods on high

782  resolution Hi-C data (GM12878 10Kb) (unit: seconds).

783

784  Supplementary Table 2 | Number of TADs on each side of a boundary that share this

785 boundary (GM12878 10Kb).
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786

787  Supplementary Table 3| The FDR and number of TADs under each penalty value.
788 (GM12878, average on 100 permutations)

789

790 Supplementary Table 4 | The FDR and number of TADs under each penalty value. (G1E-
791 ERA4, average on 100 permutations)

792

793  Supplementary Table 5| The FDR and number of TADs under each Lsize. (GM12878,
794 average on 100 permutations)

795

796  Supplementary Filel | Commands for operating other TAD calling methods.
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Figure 3
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Figure 4

Avg. RNA-seq signal (FPKM)

=
o
o

=

Y

o
T

=
N
o

=
o
o

o]
o
T

=
(=}
T

ey
o
T

N
o
T

SF_

Art2

=

Gen3

L NOONNTGONT L AN o= O NN — OO G=H=
po SEES T Ol c O3 6F ety ata i e e
OWS72=2<<0 =300 50N T 0= Lo 20 =05 &
» g=-E 9% Ly meor®o - cw -0
SR TR Wiy 2 55 - &t

[S)

-

levell level2 level3 level4d level5
/\
d SN e CTCF
/ \
/7 \
/ \
/ \
\
S N
’ \\ \
/ \
/N \\ A
—o---o--=-=----- S

level 1
® |evel 2

® |level 3

level1
level2 &
level3 =
level4 =0
level5

SIN3AK20
HDACH1
MYC
ATF3
YY1
RBBP5
JUN
IRF1
ELF1
POLR2A
TAF1
SAP30
HMGN3 !

0.0 oO.

BN K562
s Gm12878

| 1 1
10 15 20 25 30 35
Fold Change




Figure 5
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Supplementary figure 1
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Supplementary figure 2

(A) Explore all allowable partitions (B) Best sub partitions are recursively
via recursive partitioning identified and returned
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Supplementary figure 3
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Supplementary figure 4
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Supplementary figure 5
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Supplementary figure 8
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Supplementary figure 9
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Supplementary figure 10
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