
 

 

Unfold: An integrated toolbox for overlap correction, non-linear modeling,  

and regression-based EEG analysis 

 

Benedikt V. Ehinger 1* & Olaf Dimigen 2 

 

1 Institute of Cognitive Science, Universität Osnabrück 

2 Department of Psychology, Humboldt-Universität zu Berlin 

 

 

 

Benedikt Ehinger (behinger@uos.de)  

Wachsbleiche 27 

49089 Osnabrück  

Tel. +49 541 969-2245 

Fax +49 541 969-2596 

 

Olaf Dimigen (olaf.dimigen@hu-berlin.de) 

Unter den Linden 6 

10099 Berlin 

Tel. +49 30 2093-4849 

Fax +49 30 2093-4910 

 
Author note: The authors would like to thank Bernhard Spitzer for helpful discussions about 
deconvolution models, as well as Peter König, Guang Ouyang, Ashima Keshava, and Scott 
Makeig for comments on earlier versions of this paper. 
 
This article is a preprint that has not yet been peer-reviewed. It can be cited as: Ehinger, B.V. & 
Dimigen, O. (2018). Unfold: An integrated toolbox for overlap correction, non-linear modeling, and 
regression-based EEG analysis. bioRxiv. doi: https://doi.org/10.1101/360156. See also: 
https://www.biorxiv.org/content/early/2018/07/04/360156 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2018. ; https://doi.org/10.1101/360156doi: bioRxiv preprint 

https://doi.org/10.1101/360156
https://www.biorxiv.org/content/early/2018/07/04/360156
https://doi.org/10.1101/360156
http://creativecommons.org/licenses/by-nd/4.0/


 
 

Deconvolution modeling of EEG 

1 
 

ABSTRACT 

Electrophysiological research with event-related brain potentials (ERPs) is increasingly 

moving from simple, strictly orthogonal stimulation paradigms towards more complex, quasi-

experimental designs and naturalistic situations that involve fast, multisensory stimulation and 

complex motor behavior. As a result, electrophysiological responses from subsequent events 

often overlap with each other. In addition, the recorded neural activity is typically modulated 

by numerous covariates, which influence the measured responses in a linear or nonlinear 

fashion. Examples of paradigms where systematic temporal overlap variations and low-level 

confounds between conditions cannot be avoided include combined EEG/eye-tracking 

experiments during natural vision, fast multisensory stimulation experiments, and mobile 

brain/body imaging studies. However, even “traditional”, highly controlled ERP datasets often 

contain a hidden mix of overlapping activity (e.g. from stimulus onsets, involuntary 

microsaccades, or button presses) and it is helpful or even necessary to disentangle these 

components for a correct interpretation of the results. In this paper, we introduce unfold, a 

powerful, yet easy-to-use MATLAB toolbox for regression-based EEG analyses that combines 

existing concepts of massive univariate modeling (“regression ERPs”), linear deconvolution 

modeling, and non-linear modeling with the generalized additive model (GAM) into one 

coherent and flexible analysis framework. The toolbox is modular, compatible with EEGLAB 

and can handle even large datasets efficiently. It also includes advanced options for 

regularization and the use of temporal basis functions (e.g. Fourier sets). We illustrate the 

advantages of this approach for simulated data as well as data from a standard face recognition 

experiment. In addition to traditional and non-conventional EEG/ERP designs, unfold can also 

be applied to other overlapping physiological signals, such as pupillary or electrodermal 

responses. It is available as open-source software at http://www.unfoldtoolbox.org. 

 

Keywords: EEG, ERP, overlap correction, linear modeling of EEG, regression-ERP 

(rERP), generalized additive model (GAM), non-linear modeling, regression splines, 

regularization  
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INTRODUCTION 

Event-related brain responses in the EEG are traditionally studied in strongly simplified 

and strictly orthogonal stimulus-response paradigms. In many cases, each experimental trial 

involves only a single, tightly controlled stimulation and a single manual response. In recent 

years, however, there has been rising interest in recording brain-electric activity also in more 

complex paradigms and naturalistic situations. Examples include laboratory studies with fast 

and concurrent streams of visual, auditory, and tactile stimuli (e.g. Spitzer et al., 2016), 

experiments that combine EEG recordings with eye-tracking recordings during natural vision 

(e.g. Dimigen et al., 2011), EEG studies in virtual reality (e.g. Ehinger et al., 2014) or mobile 

brain/body imaging studies that investigate real-world interactions of freely moving 

participants (e.g. Gramann et al., 2014). There are two main problems in these types of 

situations: Overlapping neural responses from subsequent events and complex influences of 

nuisance variables that cannot be fully controlled. However, even traditional ERP experiments 

often contain a mixture of overlapping neural responses, for example from stimulus onsets, 

involuntary microsaccades, or manual button presses.  

Appropriate analysis of such datasets requires a paradigm shift away from simple 

averaging techniques towards more sophisticated, regression-based approaches (Amsel, 2011; 

Frömer, Maier, & Abdel Rahman, 2018; Hauk, Davis, Ford, Pulvermüller, & Marslen-Wilson, 

2006; Pernet, Chauveau, Gaspar, & Rousselet, 2011; N. J. Smith & Kutas, 2015b; Van 

Humbeeck, Meghanathan, Wagemans, van Leeuwen, & Nikolaev, 2018) that can deconvolve 

overlapping potentials and also control or model the effects of both linear and non-linear 

covariates on the neural response. Importantly, the basic algorithms to deconvolve overlapping 

signals and to model the influences of both linear and non-linear covariates already exist. 

However, there is not yet a toolbox that integrates all of the necessary methods in one coherent 

workflow.  

In the present paper we introduce unfold, an open source, easy-to-use, and flexible 

MATLAB toolbox written to facilitate the use of advanced deconvolution models and spline 

regression in ERP research. It performs these calculations efficiently even for large models and 

datasets and allows to run complex models with a few lines of codes. The toolbox is 

programmed in a modular fashion, meaning that intermediate analysis steps can be readily 

inspected and modified by the user if needed. It is also fully documented, can employ 

regularization, can model both linear and nonlinear effects using spline regression, and is 

compatible with EEGLAB (Delorme & Makeig, 2004) a widely used toolbox (Hanke & 
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Halchenko, 2011) to preprocess electrophysiological data that offers importers for many other 

biometric data formats, including eye-tracking and pupillometric data as well. unfold offers 

built-in functions to visualize the model coefficients (betas) of each predictor as waveforms or 

scalp topographies (i.e. “regression-ERPs”, rERPS, Burns, Bigdely-Shamlo, Smith, Kreutz-

Delgado, & Makeig, 2013; N. J. Smith & Kutas, 2015a). Alternatively, results can be easily 

exported as plain text or transferred to other toolboxes like EEGLAB or Fieldtrip (Oostenveld, 

Fries, Maris, & Schoffelen, 2011). For statistical analyses at the group level, that is second-

level statistics, the resulting rERPs can be treated just like any other subject-level ERPs. As 

one suggestion, unfold integrates threshold-free cluster-based permutation tests for this purpose 

(Mensen & Khatami, 2013; S. M. Smith & Nichols, 2009) 

In the following, we first briefly summarize some key concepts of regression-based EEG 

analysis, with an emphasis on linear deconvolution, spline regression, and temporal basis 

functions. We then describe the unfold toolbox that combines these concepts into one coherent 

framework. Finally, we illustrate its application to simulated data as well as real data from a 

standard ERP experiment. In particular, we will go through the typical steps to run and analyze 

a deconvolution model, using the data of a standard face recognition ERP experiment that 

contains overlapping potentials from three different sources: from stimulus onsets, from button 

presses, and from microsaccades that were involuntarily made by the participants during the 

task. We also give detailed descriptions of the features of the toolbox, including practical 

recommendations, simulation results, and advanced features such as regularization options or 

the use of temporal basis functions. We hope that our toolbox will both improve the 

understanding of traditional EEG datasets (e.g. by separating stimulus- and response-related 

components) as well as facilitate electrophysiological analyses in complex or (quasi-)natural 

situations, such as in combined eye-tracking/EEG and mobile brain/body imaging studies. 

A simple simulation example 

Before we introduce a real dataset, let us first consider a simulated simple EEG/ERP 

study to illustrate the possibilities of the deconvolution approach. For this, let’s imagine a 

typical stimulus-discrimination task with two conditions (Figure 1): Participants are shown 

pictures of faces or houses and asked to classify the type of stimulus with a button press. 

Because this response is speeded, motor activity related to the preparation and execution of the 

manual response will overlap with the activity elicited by stimulus onset. Furthermore, we also 

assume that the mean reaction time (RTs) differs between the conditions, as it is the case in 

most experiments. In our example, if face pictures are on average classified faster than houses 
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pictures (Figure 1C), then a different overlap between stimulus- and response-related potentials 

will be observed in the two conditions. Importantly, as Figure 1F shows, this will result in 

spurious conditions effects due to the varying temporal overlap alone, and can be further 

mistaken for genuine differences in the brain’s processing of houses and faces.  

Faces are also complex, high-dimensional stimuli with numerous properties that are 

difficult to perfectly control and orthogonalize in any given study. For simplicity, we assume 

that the average luminance of the stimuli was not perfectly matched between conditions and is 

slightly, but systematically, higher for faces than houses (Figure 1D). From previous studies, 

we know that the amplitude of the P1 visually-evoked potential increases as a non-linear (log) 

function of the luminance of the presented stimulus (Halliday, 1982), and thus we also 

simulated a logarithmic effect of luminance on the P1 of the stimulus-aligned ERP (Figure 1E), 

creating another spurious condition difference (Figure 1G) in addition to that of varying 

response times (Figure 1F).  

Panels G and H of Figure 1 show the same data modeled with unfold. Fortunately, with 

linear deconvolution modeling, we can not only remove the overlap effect (Figure 1G), but by 

including luminance as a non-linear predictor, we simultaneously also control the influence of 

this covariate (Figure 1H). How this is done is explained in more detail in the following. 
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Figure 1  

Figure 1. (A) A hypothetical simple ERP experiment with overlapping responses and a non-linear 
covariate. Data in this figure was simulated and then modeled with unfold. Participants saw pictures of 
faces or house and categorized them with a button press. (B) A short interval of the recorded EEG. Every 
stimulus onset and every button press elicits a brain response (lower row). However, because brain 
responses to the stimulus overlap with that to the response, we can only observe the sum of the overlapping 
responses in the EEG (upper row). (C) Because humans are experts for faces, we assume here that they 
reacted faster to faces than houses, meaning that the overlap with the preceding stimulus-onset ERP is 
larger in the face than house condition. (D) Furthermore, we assume that faces and house stimuli were not 
perfectly matched in terms of all other stimulus properties (e.g. spectrum, size, shape). For this example, 
let us simply assume that they differed in mean luminance. (E) The N170 component of the fERP is 
typically larger for faces than houses. In addition, however, the higher luminance alone increases the 
amplitude of the visual P1 component of the ERP. Because luminance is slightly higher for faces and 
houses, this will result in a spurious condition difference. (F) Average ERP for faces and houses, without 
deconvolution modeling. In addition to the genuine N170 effect (larger N170 for faces), we can see 
various spurious differences, caused by overlapping responses and the luminance difference. (G) Linear 
deconvolution corrects for the effects of overlapping potentials. (H) To also remove the confounding 
luminance effect, we need to also include this predictor in the model. Now we are able to only recover the 
true N170 effect without confounds (a similar figure was used in Dimigen & Ehinger, 2018). 

Existing deconvolution approaches 

Deconvolution methods for EEG have existing for some time (Hansen, 1983), but most 

older deconvolution approaches show severe limitations in their applicability. They are either 

restricted to just two different events (Hansen, 1983; Zhang, 1998), require special stimulus 

sequences (Delgado & Ozdamar, 2004; Eysholdt & Schreiner, 1982; Jewett et al., 2004; Marsh, 
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1992; Wang, Özdamar, Bohórquez, Shen, & Cheour, 2006), rely on semi-automatic, iterative 

methods like ADJAR (Woldorff, 1993) that can be slow or difficult to converge (Kristensen, 

Rivet, & Guérin-Dugué, 2017; Talsma & Woldorff, 2004), or were tailored for special 

applications. In particular, the specialized RIDE algorithm (Ouyang, Herzmann, Zhou, & 

Sommer, 2011; Ouyang, Sommer, & Zhou, 2015) offers a unique feature in that it able to 

deconvolve time-jittered ERP components even in the absence of a designated event marker. 

However, while RIDE has been successfully used to separate stimulus- and response-related 

ERP components (Ouyang et al., 2011, 2015); it does not support continuous predictors and is 

intended for a small number of overlapping events. 

In recent years, an alternative deconvolution method based on the linear model has been 

proposed and successfully applied to the overlap problem (Bardy, Van Dun, Dillon, & Cowan, 

2014; Dandekar, Privitera, Carney, & Klein, 2012; Kristensen, Guerin-Dugué, & Rivet, 2017; 

Kristensen, Rivet, et al., 2017; Litvak, Jha, Flandin, & Friston, 2013; Lütkenhöner, 2010; N. J. 

Smith & Kutas, 2015b; Spitzer, Blankenburg, & Summerfield, 2016). This deconvolution 

approach was first applied extensively to fMRI data (Dale & Buckner, 1997) where the slowly 

varying BOLD signal overlaps between subsequent events. However, in fMRI, the shape of the 

BOLD response is well-known and this prior knowledge allows the researcher to use model-

based deconvolution. If no assumptions about the response shape (i.e. the kernel) are made, the 

approach used in fMRI is closely related to the basic linear deconvolution approach discussed 

below. 

Deconvolution within the linear model 

With deconvolution techniques, overlapping EEG activity is understood as the linear 

convolution of experimental event latencies with isolated neural responses (Figure 1B). The 

inverse operation is deconvolution, which recovers the unknown isolated neural responses 

given only the measured (convolved) EEG and the latencies of the experimental events (Figure 

1H). Deconvolution is possible if the subsequent events in an experiment occur with varying 

temporal overlap, in a varying temporal sequence, or both. In classical experiments, stimulus-

onset asynchronies and stimulus sequences can be varied experimentally and the latencies of 

motor actions (such as saccades or button presses) also vary naturally. This varying overlap 

allows for modeling of the unknown isolated responses, assuming that the overlapping signals 

add up linearly. More specifically, we assume (1) that the electrical fields generated by the 

brain sum linearly (a justified assumption, see Nunez and Srinivasan, 2009) and (2) that the 
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overlap, or interval between events, does not influence the computations occurring in the brain 

– and therefore the underlying waveforms (see also Discussion). 

The benefits of this approach are numerous: The experimental design is not restricted to 

special stimulus sequences, multiple regression allows modeling of an arbitrary number of 

different events, and the mathematical properties of the linear model are well understood. 

Figure 2 

Figure 2. Linear deconvolution explains the continuous EEG signal within a single regression model. 
Specifically, we want to estimate the response (betas) evoked by each event so that together, they best 
explain the observed EEG. For this purpose, we create a time-expanded version of the design matrix (Xdc) 
in which a number of time points around each event (here: only 5 points) are added as predictors. We then 
solve the model for b, the betas. For instance, in the model above, sample number 25 of the continuous 
EEG recording can be explained by the sum of responses to three different experimental events: the 
response to a first event of type “A” (at time point 5 after that event), by the response to an event of type 
“B” (at time 4 after that event) and by a second occurrence of an event of type “A” (at time 1 after that 
event). Because the sequences of events and their temporal distances vary throughout the experiment, it 
is possible to find a unique solution for the betas that best explains the measured EEG signal. These betas, 
or “regression-ERPs” can then be plotted and analyzed like conventional ERP waveforms. Figure adapted 
from Dimigen & Ehinger, 2018 (with permission). 

Linear deconvolution 

The classic massive univariate linear model, without overlap correction, is applied to 

epoched EEG data and can be written as: 

𝜇𝜇𝑖𝑖,𝜏𝜏 = 𝑋𝑋𝑖𝑖𝛽𝛽𝜏𝜏 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑦𝑦𝑖𝑖,𝜏𝜏 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜇𝜇𝑖𝑖,𝜏𝜏,𝜎𝜎𝜏𝜏� 

Here, 𝑋𝑋 is the design matrix. It has i rows (each describing one instance of an event of type e) 

and c columns (each describing the status of one predictor).  
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Furthermore, let 𝜏𝜏 be the “local time” relative to onset of the event (e.g. -100 to +500 

sampling points). 𝜇𝜇𝑖𝑖,𝜏𝜏 is the EEG signal measured after event 𝑖𝑖 that we wish to predict at a 

given time point 𝜏𝜏 relative to the event onset. 𝛽𝛽 is a vector of unknown parameters that we wish 

to estimate for each time point in the epoched EEG data. Importantly, therefore, this approach 

fits a separate linear model at each time point 𝜏𝜏. 

A single entry will be referred by lowercase 𝑥𝑥𝑖𝑖,𝑐𝑐.  

In contrast, with linear deconvolution we enter the continuous EEG data into the model. 

We then make use of the knowledge that each observed sample of the continuous EEG can be 

described as the linear sum of (possibly) several overlapping event-related EEG responses. 

Depending on the latencies of the neighboring events, these overlapping responses occur at 

different times 𝜏𝜏 relative to the current event (see Figure 2). That is, in the example in Figure 

2, where the responses of two types of events, A and B overlap with each other, the observed 

continuous EEG at time point 𝑡𝑡 of the continuous EEG recording can be described as follows:  

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = 1𝛽𝛽𝐴𝐴,1 + 0𝛽𝛽𝐴𝐴,2 + 0𝛽𝛽𝐴𝐴,3 + 0𝛽𝛽𝐴𝐴,4 + 1𝛽𝛽𝐴𝐴,5 + 0𝛽𝛽𝐵𝐵,1 + 0𝛽𝛽𝐵𝐵,2 + 0𝛽𝛽𝐵𝐵,3 + 1𝛽𝛽𝐵𝐵,4 + 0𝛽𝛽𝐵𝐵,5 

In the example in Figure 2, the spontaneous EEG at time-point 𝑡𝑡 is modeled as the linear 

sum of a to-be-estimated response to the first instance of event type A at local time 𝜏𝜏 = 5 (i.e. 

from the point of view of 𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) this instance occurred 5 time samples before). Another 

response to the second instance of event type A at local time 𝜏𝜏 = 0 (i.e. this instance just 

occurred at 𝑡𝑡), and another response to the instance of event type B at local time 𝜏𝜏 = 4.  

The necessary design matrix to implement this model, 𝑋𝑋𝑑𝑑𝑑𝑑, will span the duration of the 

entire EEG recording. It can be generated from any design matrix 𝑋𝑋 by an algorithm we will 

call time expansion in the following. In this process, each predictor in the original design matrix 

will be expanded to several columns, which then code a number of “local” time points relative 

to the event onset. An example for a time-expanded design matrix is shown in Figure 2. 

Time expansion 

The process to create the time-expanded design matrix 𝑋𝑋𝑑𝑑𝑑𝑑 is illustrated in Figure 2. In 

the following sections, we will describe the construction of 𝑋𝑋𝑑𝑑𝑑𝑑 more formally. Readers not 

interested in these technicalities may skip to the following section on non-linear effects.  

Let 𝑡𝑡 be the time of the continuous EEG signal 𝑦𝑦, which keeps increasing throughout the 

experiment. 𝜏𝜏 is still the local time, that is the temporal distance of an EEG sample relative to 

an instance of event 𝑒𝑒. Let 𝑖𝑖 be the instance of one such event. 𝑋𝑋𝑖𝑖 is therefore the accompanying 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2018. ; https://doi.org/10.1101/360156doi: bioRxiv preprint 

https://doi.org/10.1101/360156
http://creativecommons.org/licenses/by-nd/4.0/


 
 

Deconvolution modeling of EEG 

9 
 

row of the design matrix 𝑋𝑋 which specifies the predictors for each event of type 𝑒𝑒. The design 

matrix X consists of multiple columns 𝑐𝑐, each representing one predictor (for which we want 

to estimate the accompanying 𝛽𝛽). 

𝑋𝑋𝑑𝑑𝑑𝑑 can be constructed from multiple concatenated, time-shifted square diagonal 

matrices 𝐺𝐺 with size 𝜏𝜏 one for each instance of the event 𝑒𝑒. For the purpose of illustration, it is 

helpful to construct the design matrix first for just a single predictor and a single instance of a 

single type of event (e.g. a manual response). Afterwards, we will add multiple predictors, then 

multiple instances of a single event type and finally multiple different event types (e.g. stimuli 

and responses). 

Single predictor, single instance, single event type 

The matrix 𝐺𝐺𝑐𝑐 for a single predictor, single type of event, and single instance of this event 

type is square diagonal where the size is specified by the number of samples around the event 

instance onsets to be taken into account: 

 𝐺𝐺𝑐𝑐 = 𝐼𝐼𝑥𝑥𝑖𝑖,𝑐𝑐 =

⎣
⎢
⎢
⎡
𝑥𝑥𝑖𝑖,𝑐𝑐  0 0 0

0 𝑥𝑥𝑖𝑖,𝑐𝑐 0 0
0 0 𝑥𝑥𝑖𝑖,𝑐𝑐 0
0 0 0 𝑥𝑥𝑖𝑖,𝑐𝑐⎦

⎥
⎥
⎤
 

 

It is a scaling of an identity matrix by the scalar 𝑥𝑥𝑖𝑖,𝑐𝑐 which is a single entry of the design 

matrix 𝑋𝑋 defining the predictor 𝑐𝑐 at the single instance 𝑖𝑖. In the case of a dummy-coded 

variable (0 or 1) we would get either a matrix full of zeros or the identity matrix; in case of a 

continuous predictor we get a scalar matrix where the diagonal of 𝐺𝐺𝑖𝑖,𝑐𝑐 contains the continuous 

predictor value. 

 

Multiple predictors, single instance, single event type 

In case of multiple predictors 𝑐𝑐, we generate multiple matrices 𝐺𝐺𝑖𝑖,𝑐𝑐 and concatenate them 

to 𝐺𝐺∗ = [𝐺𝐺1 …𝐺𝐺𝑐𝑐]. Therefore, a matrix with two predictors at the instance 𝑖𝑖 of an event 𝑒𝑒 could 

look like:  

𝐺𝐺∗ = [𝐺𝐺1𝐺𝐺2] = �

1 0 0 0 10 0 0 0
0 1 0 0 0 10 0 0
0 0 1 0 0 0 10 0
0 0 0 1 0 0 0 10

� 
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Multiple predictors, multiple instances, single events type 

In case of multiple instances of the same event, we have one 𝐺𝐺∗  matrix for every instance. 

We combine them into a large matrix 𝑋𝑋𝑑𝑑𝑑𝑑 by inserting the 𝐺𝐺∗  matrices into 𝑋𝑋𝑑𝑑𝑑𝑑 around the 

time points (in continuous EEG time 𝑡𝑡) where the instance of the event occurred. Because 𝜏𝜏 

(and therefore 𝐺𝐺∗) is usually larger than the time distance between two event instances, we 

insert rows of multiple 𝐺𝐺∗ matrices in an overlapping (summed) way. Consequently, we 

model the same time point of the EEG by the combined rows of multiple 𝐺𝐺∗  matrices (Figure 

2, Figure 3A). By solving the linear system with 𝑋𝑋𝑑𝑑𝑑𝑑𝛽𝛽 for 𝛽𝛽 we effectively deconvolve the 

original signal. 

Multiple predictors, multiple instances, multiple events types 

We usually have multiple different types of events 𝑒𝑒1, 𝑒𝑒2 … . For each of these event 

types, we create one 𝑋𝑋𝑑𝑑𝑑𝑑𝑒𝑒  matrix as described above. Each 𝑋𝑋𝑑𝑑𝑑𝑑𝑒𝑒  matrix spans 𝑡𝑡 rows and thus, 

the continuous EEG signal. To get the final matrix 𝑋𝑋𝑑𝑑𝑑𝑑 we simply concatenate them along the 

columns before the model inversion.  

𝑋𝑋𝑑𝑑𝑑𝑑 = [𝑋𝑋𝑑𝑑𝑑𝑑1 …𝑋𝑋𝑑𝑑𝑑𝑑𝑒𝑒 ] 

Similarly, if we wanted to include a continuous covariate spanning the whole duration of 

the continuous EEG signal (see Discussion), for example some feature of a continuous audio 

signal (e.g. Crosse, Di Liberto, Bednar, & Lalor, 2016) we could simply concatenate it as an 

additional column to the design matrix. 

The formula for the deconvolution model is then: 

𝜇𝜇𝑡𝑡 = 𝑋𝑋𝑑𝑑𝑑𝑑,𝑡𝑡 𝛽𝛽  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑦𝑦𝑡𝑡 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜇𝜇𝑡𝑡 ,𝜎𝜎) 

𝜇𝜇𝑡𝑡 is the expected value of the continuous EEG signal 𝑦𝑦𝑡𝑡. This time-expanded linear model 

simultaneously fits all the parameters 𝛽𝛽 describing the deconvolved rERPs of interest. This 

comes at the cost of a very large (size: number of samples × number of predictor columns). 

Fortunately, this matrix is also very sparse, containing mostly zeros, and can therefore be 

efficiently solved with modern sparse solvers. For further detail see the excellent tutorial 

reviews by Smith and Kutas (N. J. Smith & Kutas, 2015a, 2015b). 

Modeling non-linear effects with spline regression 

Now we will outline how we can use spline predictors to model nonlinear effects within 

the linear regression framework. We follow the definition of a Generalized Additive Model 

(GAM) by Wood, (2017, p. 249-250): 
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𝜇𝜇𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + �𝑧𝑧𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥𝑖𝑖)
𝑗𝑗

 

The sum ∑ 𝑧𝑧𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥𝑖𝑖)𝑗𝑗  represents a basis set with 𝑗𝑗 unknown parameters 𝑧𝑧 (analog to the 𝛽𝛽 

vector). The time-indices were omitted here. The most common example for such a basis set 

would be polynomial expansion. Using the polynomial basis set with order three would results 

in the following function: 

𝜇𝜇𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝑧𝑧1𝑥𝑥1 + 𝑧𝑧2𝑥𝑥2 + 𝑧𝑧3𝑥𝑥3 

However, due to several suboptimalities of the polynomial basis (e.g. Runge, 1901) we 

will make use of the cubic B-spline basis set instead. Spline regression is conceptually related 

to the better-known polynomial expansion, but instead of using polynomials, one uses locally 

bounded functions. In other words, whereas a polynomial ranges over the whole range of the 

continuous predictor, a B-spline is restricted to a local range.  

This basis set is constructed using the De-Casteljau algorithm (De Casteljau, 1959) 

implemented by Bruno Luong (Luong, 2016). It is a basis set that is strictly local: Each basis 

function is non-zero only over a maximum of 5 other basis functions (for cubic splines; see 

Woods 2017, p. 204). 

Multiple terms can be concatenated, resulting in a GAM: 

𝜇𝜇𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + �𝑧𝑧𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥1𝑖𝑖)
𝑗𝑗

+ �𝑧𝑧𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥2𝑖𝑖)
𝑗𝑗

 

If interactions between two non-linear spline predictors are expected, we can also make 

use of two-dimensional splines: 

𝜇𝜇𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + �𝑧𝑧𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖)
𝑗𝑗

 

In the unfold toolbox, 2D-splines are created based on the pairwise products between 

𝑧𝑧1,𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧2,𝑗𝑗. Thus, a 2D spline between two spline-predictors with 10 spline-functions each 

would result in 100 parameters to be estimated. 

The number of basis functions to use for each non-linear spline term are usually 

determined by either regularization or cross-validation. Cross-validation is difficult in the case 

of large EEG datasets (see also Discussion) and we therefore recommend to determine the 

number of splines (and thus the flexibility of the non-linear predictors) prior to the analysis to 

avoid overfitting. 
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Using temporal basis functions 

In the previous section, we made use of time-expansion to model the overlap. For this, 

we used the so-called stick function approach (also referred to as FIR or dummy-coding). That 

is, each time-point relative to an event (local time) was coded using a 1 or 0 (in case of dummy-

coded variables), resulting in a staircase patterns in the design matrix (cf. Figures 2 and 3A). 

However, this approach is computationally expensive. Due to the high sampling rate of EEG 

(typically 200-1000 Hz), already a single second of estimated ERP response requires us to 

estimate 200-1000 coefficients per predictor. Therefore, some groups started to use other time 

basis sets to effectively smooth the estimated regression-ERPs (e.g. Litvak et al., 2013; but see 

N. J. Smith & Kutas, 2015b).  

We will discuss two examples here: The time-Fourier set (Litvak et al., 2013; Spitzer et 

al., 2016) and – newly introduced in this paper – the time-spline set. In the time-spline set, 

adjacent local time coefficients are effectively combined according to a spline set (Figure 3B). 

Splines are a suitable basis function because EEG signals are smooth and values close in time 

have similar values. The number of splines chosen here defines the amount of smoothing of 

the resulting deconvolved ERP. The same principle holds for the time-Fourier set. Here we 

replace the stick-function set with a truncated Fourier set (Figure 3C). Truncating the Fourier 

set at high frequencies effectively removed high frequencies from the modeled ERP and can 

therefore be thought of as a low-pass filter (see also Figure 6). A benefit of using temporal 

basis functions rather than the simple stick functions is that less unknown parameters need to 

be estimated. It is therefore possible that this results in numerical more stable solutions to the 

linear problem; however, we are also constraining the solution space. 
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Figure 3 

 

 
Figure 3. Overview over different temporal basis functions. The expanded design matrix Xdc is plotted, 
the y-axis represents time and the x-axis shows all time-expanded predictors in the model. In unfold, three 
methods are available for time expansion: (A) Stick-functions. Here, each modeled time point relative to 
the event is represented by a unique predictor. (B) Time-splines allow neighboring time points to smooth 
themselves. This generally results in less predictors than the stick function set. (C) Time-Fourier set: It is 
also possible to use a Fourier basis. By omitting high frequencies from the Fourier-set, the data are 
effectively low-pass filtered during the deconvolution process (see also Figure 6). 

Existing toolboxes  

To our knowledge, no existing toolbox supports non-linear, spline-based general additive 

modeling of EEG activity. Also, we were missing a toolbox that solely focuses on 

deconvolving signals and allowed for a simple specification of the model to be fitted, for 

example using the commonly used Wilkinson notation (as also used for example in R). 

A few other existing EEG toolboxes allow for deconvolution analyses, but we found that 

each has their limitations. Plain linear modeling (including second-level analyses) can be 

performed using the LIMO toolbox (Pernet et al., 2011), but this toolbox does not support 

deconvolution analyses or spline regression. To our knowledge, four toolboxes support some 

form of deconvolution: SPM (Litvak et al., 2013; Penny, Friston, Ashburner, Kiebel, & 

Nichols, 2006), the rERP extension for EEGLAB (Burns et al., 2013), pyrERP (N. J. Smith, 

2013), mTRF (Crosse et al., 2016) and MNE (Gramfort et al., 2014) . SPM allows for 

deconvolution of linear responses using Fourier temporal basis sets. However, in order to make 

use of these deconvolution functions, quite a bit of manual coding is needed. The rERP 

extension for EEGLAB and the pyrERP toolbox for Python both allow for estimation of linear 

models and deconvolution; however, both toolboxes appear not to be maintained anymore; 

rERP is currently non-functional (for current MATLAB versions) and no documentation is 
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available for pyERP. The MNE toolbox is a general-purpose Python-based EEG processing 

toolbox that allows for both deconvolution and massive univariate modeling. It is actively 

maintained and some basic tutorials are available. The mTRF toolbox is a special type of 

deconvolution toolbox designed to be used with continuous predictors (e.g. auditory streams) 

that last over the whole continuous EEG recording (see Discussion). 

THE UNFOLD TOOLBOX  

In the following, we describe basic and advanced features available in the unfold toolbox 

and also give practical recommendations for problems that researchers might experience in the 

modeling process. Specifically, we describe how to (1) specify the model via Wilkinson 

formulas, (2) include nonlinear predictors via spline regression, (3) model the data with basis 

functions over time (e.g. a Fourier basis set), (4) impute missing data in the design matrix, (5) 

treat intervals of the continuous EEG containing EEG artifacts (e.g. from muscle activity or 

skin conductance changes), (5) specify alternative solvers (with regularization) that can solve 

even large models in a reasonable time and (6) run the same regression model both as a 

deconvolution model and also a mass multivariate model without deconvolution. Finally, we 

summarize options for (7) visualizing and (8) exporting the results. 

Data import 

As a start, we need a data structure in EEGLAB format (Delorme & Makeig, 2004) that 

contains the continuous EEG data and event codes. In traditional EEG experiments, events will 

typically be stimulus and response triggers, but many other types of events are also possible 

(e.g., voice onsets, the on- or offsets of eye or body movements etc.). In most cases, the EEG 

data entered into the model should have already been corrected for biological and technical 

artifacts (e.g. ocular artifacts, scalp muscle EMG, or power line noise), for example with 

independent component analysis (ICA). 
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Figure 4 
 

 
Figure 4. Overview over typical analysis steps with unfold. The first step is to load a continuous EEG 
dataset into EEGLAB. This dataset should already contain event markers (e.g. for stimulus onsets, button 
presses etc.). Afterwards there are four main analysis steps, that can be executed with a few lines of code 
(see also Box 1). These steps, highlighted in blue, are: (1) Define the model formula and let unfold generate 
the design matrix, (2) time-expand this design matrix, (3) solve the model to obtain the betas (i.e. rERPs), 
and (4) convert the betas into a convenient format for plotting and statistics. The right column lists several 
inbuild plotting functions to visualize intermediate analysis steps or to plot the results (see also Figure 8). 

Specifying models using Wilkinson notation 

We begin by the modeling process by specifying the model formula and by generating 

the corresponding design matrix X. In the unfold toolbox, models are specified using the 

intuitive Wilkinson notation (Wilkinson & Rogers, 1973) also commonly used in R, the Matlab 

statistics toolbox, and python StatsModels. For example, for the hypothetical face/house 

experiment depicted in Figure 1, we might define the following model: 

EEG ~ 1 + cat(is_face) + luminance 

More generally, we can also specify more complex formulas, such as: 
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EEG ~ 1 + cat(predictor1) + predictor2 + spl(predictor3) 

Here, cat() specifies that the predictor1 should be dummy encoded as a categorical 

variable or factor rather than treated as a continuous variable. If a variable is already dummy-

coded as 0/1 it is not strictly necessary to add the cat() command, but it is also possible to 

specify multi-level categorical variables. In contrast, predictor2 should be modeled as 

continuous linear covariate and predictor3 as a nonlinear spline predictor. In the formula, a 

+ sign means that only the main effects will be modeled. Interactions between predictors are 

added by replacing the + with a * or a :, depending on whether all main effects and interactions 

should be modeled (*), or only the interactions (:). In unfold, the type of coding 

(dummy/treatment/reference or effect/contrast/sum coding) can be selected. If the default 

treatment coding is used, the predictors will represent the difference to the intercept term 

(coded by the 1). The reference level of the categorical variable and the ordering of the levels 

is determined alphabetically or can be specified by the user manually. The toolbox also allows 

to specify different formulas for different events. For example, stimulus onset events can have 

a different (e.g. more complex) formula than manual response events. 

Once the formula is defined, the design matrix 𝑋𝑋 is time-expanded to X𝑑𝑑𝑑𝑑 and now spans 

the duration of the entire EEG recording. Subsequently, for each channel, the equation 

(EEG = Xdc * b + e) is solved for “b”, the betas, which correspond to subject-level rERP 

waveforms. For example, in the model above, for which we used treatment coding, the intercept 

term would correspond to the group-average ERP. The other betas, such as those for 

cat(is_face), will capture the partial effect of that particular predictor, corresponding to a 

difference wave in traditional ERPs (here: face-ERP minus house-ERP). 

In the same linear model, we can simultaneously model brain responses evoked by other 

experimental events, such as button presses. Each of these other event types can be modeled 

by its own formula. In our face/house example, we would want to model the response-related 

ERP that is elicited by the button press at the end of the trial, because this ERP will otherwise 

overlap to a varying degree with the stimulus-ERP. We do this by defining an additional simple 

intercept model for all button press events. In this way, the ERP evoked by button presses will 

be removed from the estimation of the stimulus ERPs. The complete model would then be: 

EEG ~ 1 + cat(is_face) + spl(luminance,10) {for stimulus onset events} 

EEG ~ 1 {for manual button press events} 
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Spline regression to model (nonlinear) predictors 

As explained earlier, many influences on the EEG are not strictly linear. In addition to 

linear terms, one can therefore use cubic B-splines to perform spline regression, an approach 

commonly summarized under the name GAM (generalized additive modeling). An illustration 

of this approach is provided in Figure 5. In the unfold toolbox, spline regression can be 

performed by adding spl() around the predictor name, as for predictor 3 in the formula 

above, which specifies a model using 10 B-splines instead of a continuous linear predictor. We 

can model covariates as non-linear predictors: 

EEG ~ 1 + spl(A,10) + 2dspl(B,C,10) + circspl(D,10,0,360) 

With this formula, the effect “A” would be modeled by a basis set consisting of ten 

splines. We would also fit a 2D spline between continuous variable B and C with ten splines 

each. In addition, we would fit a circular spline based on covariate D using ten splines with the 

limits 0° and 360° being the wrapping point of the circular spline. 

Figure 5 

 
Figure 5.  Modeling a nonlinear relationship with a set of spline functions. (A) Example of a non-linear 
relationship between a predictor (e.g. stimulus luminance) and a dependent variable (e.g. EEG amplitude). 
A linear function (black line) does not fit the data well.  We will follow one luminance value (dashed line) 
at which the linear function is evaluated (red dot). (B) Instead of a linear fit, we define a set of overlapping 
spline functions which are distributed across the range of the predictor. In this example, we are using a 
set of six b-splines. For our luminance value, we receive six new predictor values. Only three of them are 
non-zero. (C)  We weight each spline with its respective estimated beta value. To predict the dependent 
variable (EEG amplitude) at our luminance value (dashed line), we sum up the weighted spline functions 
(red dots). Because the splines are overlapping, this produces a smooth, non-linear fit to the observed data. 
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  In unfold, three spline functions are already implemented. For B-splines we use the 

de Casteljau algorithm implemented by Bruno Luong. For interactions between spline-

modeled covariates, first the default spline function is used on each predictor to generate 𝑛𝑛 

splines. Then the resulting vectors are elementwise multiplied with each other, generating 𝑛𝑛2 

final predictors. For cyclical predictors such as the angle of a saccadic eye movement (which 

ranges e.g. from 0 to 2𝜋𝜋), it is possibly to use cyclical B-splines, as explained above. These are 

implemented based on code from patsy, a python statistical package 

(https://patsy.readthedocs.io) which follows an algorithm described in Woods (Wood, 2017, 

pp. 201-205). For maximal flexibility, we also allow the user to define custom spline functions. 

This would also allow to implement other basis sets, for example polynomial expansion. 

The placement of knots and the number of splines used are critical parameters to 

appropriately model the predictor and to avoid over- or underfitting the data. The toolbox’s 

default knot placement is on the quantiles of the predictor. This can be changed by users who 

want to use a custom sequence of knots. Generalized cross validation could be used to narrow 

down the number of knots to be used. 

Figure 6  

 
Figure 6. Using temporal basis functions. Effect of using different time basis functions on the recovery 
of the original signal using deconvolution. Panels A, B, and C show three different example signals 
without deconvolution (in black) and with convolution using different methods for the time-expansion 
(stick, Fourier, spline). We zero-padded the original signal to be able to show boundary artefacts. For the 
analysis we used 45 time-splines and in order to keep the number of parameters equivalent, the first 22 
cosine and sine functions of the Fourier set. The smoothing effects of using a time-basis set can be best 
seen in the difference between the blue curve and the orange/red curves in panel D. Artefacts introduced 
due to the time-basis set are highlighted with arrows and can be seen best in panels E and F. Note that in 
the case of realistic EEG data, the signal is typically smooth, meaning that ripples like in panel E rarely 
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Using time basis functions 

Temporal basis functions were introduced earlier. The stick-function approach, as also 

illustrated in Figures 2 and 3A is the default option in unfold. As alternatives, it is also possible 

to employ either a Fourier basis set or a set of temporal spline function. For example, for the 

time-expansion step, Litvak and colleagues (Litvak et al., 2013; Spitzer et al., 2016) used a 

Fourier basis sets instead of stick-functions. Figure 6 compares simulation results for stick 

functions with those obtained with a Fourier basis set and a spline basis set in terms of the 

spectral components and the resulting filter artifacts. At this point, more simulation studies are 

needed to understand the effects of temporal basis sets on EEG data. We therefore follow the 

recommendation of Smith & Kutas (N. J. Smith & Kutas, 2015b) to use stick-functions for 

now. 

Imputation of missing values 

In multiple regression models it is typically necessary to remove the whole trial if one of 

the predictors has a missing value. One workaround for this practical problem is to impute (i.e. 

interpolate) the value of missing predictors. In the deconvolution case, imputation is even more 

important for a reliable model fit, because if a whole event is removed, then overlapping 

activity from this event with that of the neighboring events would not be accounted for. In 

unfold we therefore offer several algorithms to treat missing values: the dropping of events 

with missing information, or imputation by the marginal, mean, or median values of the other 

events. 

Dealing with EEG artifacts 

Linear deconvolution needs to be performed on continuous, rather than epoched data. 

This creates challenges with regard to the treatment of intervals that contain EEG artifacts. The 

way to handle artifacts in a linear deconvolution model is therefore to detect – but not to remove 

– the intervals containing artifacts in the continuous dataset. For these contaminated time 

windows, the time-expanded design matrix (Xdc) is then blanked out, that is, filled with zeros, 

so that the artifacts do not affect the model estimation (N. J. Smith & Kutas, 2015b).  

Of course, this requires the researcher to use methods for artifact correction that can be 

applied to continuous rather than segmented data (such as ICA). Similarly, we need methods 

occur. (G) The impulse response spectrum of the different smoothers. Clearly, the Fourier-set filters better 
than the splines, but splines allow for a sparser description of the data and could benefit in the fitting stage. 
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that can detect residual artifacts in the continuous rather than epoched EEG. One example 

would be a peak-to-peak voltage threshold that is applied within a moving time window that is 

shifted step-by-step across the entire recording. Whenever the peak-to-peak voltage within the 

window exceeds a given threshold, the corresponding interval would then be blanked out in 

the design matrix. Detecting artifacts in the continuous rather than segmented EEG also has 

some small additional benefit, because if the data of a trial is only partially contaminated, the 

clean parts can still enter the model estimation (N. J. Smith & Kutas, 2015b).  

The unfold toolbox includes a function to remove artefactual intervals from the design 

matrix before fitting the model. In addition, we offer basic functionality, adapted from 

ERPLAB (Lopez-Calderon & Luck, 2014), to detect artifacts in the continuous EEG. 

Multiple solvers: LSMR & glmnet 

Solving for the betas is not always easy in such a large model. We offer several 

algorithms to solve for the parameters. The currently recommended one is LSMR (Fong & 

Saunders, 2011), an iterative algorithm for sparse least-squares problems. This algorithm 

allows to use very large design matrices as long as they are sparse (i.e. contain mostly zeroes) 

which is usually the case if one uses time-expansion based on stick-functions (cf. Figures 2 and 

3A).  

However, especially with data containing a high level of noise, the tradeoff between bias 

and variance (i.e. between under- and overfitting) might be suboptimal, meaning that the 

parameters estimated from the data might be only weakly predictive for held-out data (i.e. they 

show a high variance and tend to overfit the data). The unfold toolbox therefore allows the user 

to specify alternative solvers that use regularization. In particular, we include the glmnet-solver 

(Qian, Hastie, Friedman, Tibshirani, & Simon, 2013), which allows for ridge (L2-norm), lasso 

(L1, leads to sparse solutions) and elastic net regularization. The regularization parameter is 

automatically estimated using cross-validation. Procedures to regularize with linear 

deconvolution have recently been examined and validated by Kristensen et al. (2017a). Effects 

of regularization on noisy data are also depicted in Figure 7, which compares deconvolution 

results for noisy simulated data with and without regularization. As can be seen in this figure, 

the non-regularized estimates show strong variance (panel B and C), whereas the regularized 

estimates show strong bias (panel D and E), that is, the estimated effects are shrunk towards 

zero but simultaneously, the variance of the estimate over time is greatly reduced. At this point, 

it is not yet clear whether and how much regularization should be used for the standard analysis 
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of EEG data, but we provide different solvers in unfold to facilitate future work on this topic. 

Please also see Kristensen et al. (2017a) for more simulation work. 

Figure 7  

Figure 7. Regularization options. Effects of regularization on deconvolving noisy data. Results of 
regularization are shown both for a model with stick-functions and for a model with a temporal spline 
basis set. (A) To create an overlapped EEG signal, we convolved 38 instances of the original signal 
depicted in panel A. The effect of a continuous covariate was randomly added to each event (see different 
colors in A). To make the data noisy, we added Gaussian white noise with a standard deviation of 1. 
Finally, to illustrate the power of regularization, we also added another random covariate to the model. 
This covariate had no relation to the EEG signal but was highly correlated (r = 0.85) to the first covariate. 
Thus, the model formula was: EEG ~ 1 + covariate + randomCovariate. (B) Parameters recovered 
based on ordinary least squares regression. Due to the low signal-to-noise ratio of the data, the estimates 
are extremely noisy. (C) Some smoothing effect can be achieved by using time-splines as a temporal basis 
set instead of stick functions. (D) The same data, but deconvolved using a L2-regularized estimate (ridge 
regression). It is obvious that the variance of the estimate is a lot smaller. However, compared to the 
original signal shown in panel A, the estimated signal is also much weaker, i.e. there is a strong bias. (E) 
L2-regularized estimates, computed with a time-spline basis set. This panel shows the usefulness of 
regularization: the effect structure can be recovered despite strong noise, although the recovered effect is 
again strongly biased (due to the variance/bias tradeoff). 
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Spatial vs. temporal deconvolution  

Many researchers use ICA to decompose the EEG signal into maximally independent 

source signals. Because ICA is believed to isolate the signal contributions of individual neural 

sources, it can be understood as performing a spatial deconvolution of the signal. Other source 

space estimations can also been seen as spatial deconvolutions. Nevertheless, the activity time 

courses of each independent source may still overlap in time, e.g. due to repeated stimulus 

presentations. In order to also allow for a temporal deconvolution of the signal, unfold allows 

to run the deconvolution not only on the raw EEG signal, but also on independent component 

activation. This is done by adding a flag (‘ica’, ‘true’) when fitting the model. Possibly, the 

prior spatial decomposition of the signal with ICA may improve the performance and 

interpretability of the final, temporally deconvolved signals. 

Comparison to a Mass Univariate model (without deconvolution) 

The unfold toolbox offers the option to compute a mass univariate regression model on 

the same data using the exact same model but without correction for overlap. In our experience, 

running this model in addition to the linear deconvolution model can be helpful to understand 

the impact of overlap on the results. However, with this function, unfold can also be used as a 

Figure 8  
 
 

Figure 8. Inbuild data visualization options. Shown are some of the figures currently produced by the 
unfold toolbox. While setting up the model, it is possible to visualize intermediate steps of the analysis, 
such as the design matrix (A) covariance matrix of the predictors (B) or the time-expanded design matrix 
(C). After the model is computed, the beta coefficients for one or more predictors can be plotted as ERP-
like waveforms with a comparison of with and without deconvolution (D), as erpimages with time against 
predictor value and color-coded amplitude (E), or as topographical time series (F). 
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standalone toolbox for Mass-Univariate modeling, for the (rare) cases in which an experiment 

does not involve any overlapping activity (e.g. from small saccades; Dimigen et al., 2009). 

Visualization of results 

unfold offers multiple inbuild functions to visualize rERP results. We provide functions 

for marginal plots over splines and continuous variables, and functions to evaluate 

splines/continuous covariates at specific values. For the topographical output we make use of 

functions from the EEGVIS toolbox (Ehinger, 2018). 

Exporting the results 

unfold focusses on two main things: linear deconvolution and (non)-linear modeling at 

the single-subject level. In contrast, the toolbox itself does not offer functions for group-level 

statistics. However, the betas for each participant can be easily exported as plain text (.csv) or 

as different MATLAB structures to perform statistics with other toolboxes. A tutorial to 

process unfold results using group-level cluster-based permutation tests with the TFCE-toolbox 

(Mensen & Khatami, 2013) is provided in the online documentation. 

A minimal but complete analysis script 

The following is a complete analysis script for the hypothetical face/house experiment 

introduced above (see Figure 1). As can be seen, it can be run with a few lines of code. 

  
Box 1. A complete analysis script with unfold 
 
EEG = pop_load('eeg_example.set') % load dataset into EEGLAB 
 
%% specify models for house/face events & button presses 
cfg = [] 
cfg.formula    = {'y ~ 1 + cat(stim_type) + spl(luminance,10)', 'y ~ 1'} 
cfg.eventtypes = {'stimulus_onset', 'button_onset'} 
 
cfg.timelimits = [-0.5, 1]            % time window for response estimation 
cfg.channel = 1:64                    % EEG channels to analyze 
 
%% run model & plot results 
run('init_unfold.m')                  % start toolbox 
EEG = uf_designmat(EEG,cfg)           % create design matrix    
EEG = uf_timeexpandDesignmat(EEG,cfg) % time-expand design matrix 
 
EEG = uf_glmfit(EEG,cfg)              % solve regression model 
 
ufresult = uf_condense(EEG)           % reformat results (e.g. for plotting) 
uf_plotParam(ufresult,'channel',1)    % visualize rERPs (waveforms/topographies) 
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RESULTS 

In this section we validate the unfold toolbox based on (1) simulated data and (2) a real 

dataset from a standard face recognition ERP experiment containing overlapping activities. 

Simulated data  

To create simulated data, we produced overlapped data using four different response 

shapes, shown in the first column of Figure 9: (1) a boxcar function, (2) a Dirac delta function, 

(3) a simulated auditory ERP (the same as used by Lütkenhöner, 2010), and (4) random pink 

noise. We then simulated 5 s of continuous data, during which 18 experimental events 

happened. Intervals between subsequent events were randomly drawn from a normal 

distribution (M = 0.25 s, SD = 0.05 s). Convolving the simulated responses with the randomly 

generated event latencies produced the continuous overlapped signal depicted in the third 

column of Figure 9. The last column of Figure 9 shows the non-overlapped responses recovered 

by unfold (orange lines). For comparison, overlapped responses without deconvolution are 

plotted in dark red. As can be seen, unfold recovered the original response in all cases. The data 

of Figure 1 were also simulated and then analyzed using toolbox. Together, these simulations 

show conclusively that unfold successfully deconvolves heavily overlapping simulated signals. 

 

Figure 9 

 
Figure 9. Deconvolution results for simulated signals. Four types of responses (first column: box car, 
Dirac function, auditory ERP, pink noise) were convolved with random event latencies (second column). 
A section of the resulting overlapped signal is shown in the third column. The fourth column shows the 
deconvolved response recovered by the unfold toolbox (orange lines). Overlapped responses (without 
deconvolution) are plotted as violet lines for comparison. 
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Real data example 

Finally, we will also analyze a real dataset from a single participant who performed a 

standard ERP face discrimination experiment1. In this experiment, previously described in the 

supplementary materials of Dimigen et al. (2009), participants were shown 120 different color 

images of human faces (7.5° × 8.5°) with a happy, angry, or neutral expression. Their task was 

to categorize the emotion of the presented face as quickly as possible using three response 

buttons, operated with the index, middle, and ring finger of the right hand. Each stimulus was 

presented for 1350 ms. The participant’s mean RT was 836 ms.  

Although a central fixation cross was presented prior to each trial and participants were 

instructed to avoid eye movements during the task, concurrent video-based eye-tracking 

revealed that participants executed at least one involuntary (micro)saccades during the vast 

majority of trials (see also Dimigen et al., 2009; Yuval-Greenberg et al., 2008). For the 

participant analyzed here, the median amplitude of these small saccades was 0.6° and most 

were aimed at the mouth region of the presented faces, which was most informative for the 

emotion discrimination task.  

This means that our stimulus-locked ERPs are contaminated with two other processes: 

visually-evoked potentials (lambda waves) generated by the retinal image motion produced by 

the (micro)saccades (Gaarder et al., 1964; Dimigen et al., 2009) and motor processes related to 

preparing and executing the finger movement. 

 

 

 

 

 

 

 

 

                                                 
1 The same example data was also analyzed in our accompanying paper (Dimigen & Ehinger, 2018), but 

with a different focus. Further details on this dataset are given in Dimigen (2009) or Dimigen & Ehinger (2018). 
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To disentangle these potentials with unfold, we specified three events: Stimulus onset, 

saccade onset, and button press. For this simple demonstration, we modeled both stimulus 

onsets and button press events using only an intercept term (y~1), that is regardless of emotion. 

For the saccade onsets, we included both an intercept as well as saccade amplitude as a 

continuous predictor, because larger saccades are followed by larger lambda waves (e.g. 

Gaarder et al., 1964; Dimigen et al., 2009). Because this relationship is non-linear (e.g. 

Dandekar et al., 2012) we used a set of 10 splines in the formula, 

y ~ 1 + spl(saccade_amplitude,10). Brain responses were modeled in the time window 

from -1.5 s to 1 s around each event. Before fitting the model, we removed all intervals from the 

design matrix in which the recorded activity at any channels differed by > 250 µV within a 2 s 

Figure 10 

 
Figure 10. (A) Panel adapted from Dimigen & Ehinger (2018). The participant was shown a stimulus for 
1350 ms. (B) The subject was instructed to keep fixation, but as the heatmap shown, made many small 
involuntary saccades towards the mouth region of the presented stimuli. Each saccade also elicits a 
visually-evoked response (lambda waves). (C to E) Latency-sorted and color-coded single-trial potentials 
at electrode Oz over visual cortex (second row) reveal that the vast majority of trials contain not only the 
neural response to the face (left column), but also hidden visual potentials evoked by involuntary 
microsaccades (middle column) as well as motor potentials from preparing the button press (right 
column). Deconvolution modeling with unfold allows us to isolate and remove these different signal 
contributions (third row), resulting in corrected ERP waveforms for each process (blue vs. red waveforms, 
top row). This reveals for example that a significant part of the P300 evoked by faces (arrow in top left 
panel) is really due to microsaccades and button presses and not the stimulus presentation. Data and code 
to reproduce the figure can be found under https://osf.io/wbz7x/. 
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Figure 10 presents the results for occipital electrode Oz and the signal both without (in 

red) and without (blue) the modeling and removal of overlapping activity. The large effect of 

overlapping activity can be clearly seen in the averaged ERP waveforms (top row in panels C, 

D, and E). In the corresponding panels below that, we see the color-coded single trial activity 

(erpimages), in which segments time-locked to one type of event (e.g. stimulus onset) were 

sorted by the latency of the temporally adjacent event (e.g. saccade onset). These panels clearly 

show the overlapping activity and how it was successfully removed by the deconvolution. In 

particular, we wish to highlight the substantial effect of overlap correction on the shape of both 

the stimulus-onset ERP (elicited by the faces) and the response-related ERP (elicited by the 

button press), despite the fact that average RT was relatively long (> 800 ms) in this task. 

Microsaccades have an additional distorting effect (Dimigen et al., 2009). We can therefore 

easily imagine how without any overlap correction, differences in mean RT and microsaccade 

occurrence between condition will create spurious condition effects in the stimulus-ERP. A 

more complex application where we correct for similar spurious effects in a natural reading 

EEG experiment with 48 participants is found in Dimigen & Ehinger (2018).  

DISCUSSION 

Human behavior in natural environments is characterized by complex motor actions and 

quasi-continuous, multisensory stimulation. Brain signals recorded under such conditions are 

characterized by overlapping activity evoked by different processes and typically also 

influenced by a host of confounding variables that are difficult or impossible to orthogonalize 

under quasi-experimental conditions. However, even in traditional, highly controlled 

laboratory experiments, it is often unrealistic to match all stimulus properties between 

conditions, in particular if the stimuli are high-dimensional, such as words (e.g. word length, 

lexical frequency, orthographic neighborhood size, semantic richness, number of meanings 

etc.) or faces (e.g., luminance, contrast, power spectrum, size, gender, age, facial expression, 

familiarity etc.). In addition, as we demonstrate here, even simple EEG experiments often 

contain overlapping neural responses from multiple different processes such as stimulus onsets, 

eye movements, or button presses. Deconvolution modeling allows us to disentangle and 

isolate these different influences to improve our understanding of the data. 

In this article, we presented unfold, which deconvolves overlapping potentials and 

controls for linear or non-linear influences of covariates on the EEG. In the following, we will 
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discuss in more detail the assumptions, possibilities, and existing limitations of this approach 

as well as current and future applications. 

Where can linear deconvolution be applied? 

Linear deconvolution can be applied to many types of paradigms and data. As shown 

above, one application is to separate stimulus- and response-related components in traditional 

ERP studies (see also Ouyang et al., 2011, 2015). Deconvolution is also particularly useful 

with complex ERP designs that involve, for example, multimodal streams of visual, tactile, and 

auditory stimuli (Spitzer et al., 2016). Deconvolution is also helpful in paradigms where it is 

problematic to find a neutral interval to place a baseline, for example in experiments with fast 

tone sequences (Lütkenhöner, 2010). In ERP research, the interval for baseline correction is 

usually placed immediately before stimulus onset, but activity in this interval can vary 

systematically between conditions due to overlapping activity, for example in self-paced 

paradigms (e.g. Ditman, Holcomb, & Kuperberg, 2007). This problem can be solved by 

deconvolving the signal first and applying the baseline subtraction to the resulting isolated 

responses. 

Time-continuous covariates 

It is also possible to add time-continuous signals as predictors to the design matrix 

(Crosse et al., 2016; Lalor, Pearlmutter, Reilly, McDarby, & Foxe, 2006). Examples for 

continuous signals that could be added as predictors include the luminance profile of a 

continuously flickering stimulus (Lalor et al., 2006; VanRullen & MacDonald, 2012), the 

sound envelope of an audio or speech signal (with temporal lags to model the auditory temporal 

response function, Crosse, et al., 2016), the participants gaze position or pupil size (from 

concurrent eye-tracking, see Dimigen & Ehinger, 2018), but also more abstract time series, 

such as predictions from a cognitive computational model. Including time-continuous 

covariates such as gait-signals, movement features, or environmental sounds could improve the 

model fit in mobile EEG situations (Ehinger et al., 2014; Gramann, Jung, Ferris, Lin, & 

Makeig, 2014). 

Underlying assumptions 

A fundamental assumption of traditional ERP averaging is that the shape of the 

underlying neural response is identical in all trials belonging to the same condition. Trials with 

short and long manual reaction times are therefore usually averaged together. Similarly, with 

linear deconvolution modeling, we assume that the brain response is the same for all events of 
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a given type. However, like in traditional ERP analyses, we also assume that the neural 

response is independent of the interval between two subsequent events (e.g. the interval 

between a stimulus and a manual response). This is likely a strong simplification, since neural 

activity will likely differ between trials with a slow or fast reaction.  

A related assumption concerns sequences of events: Processing one stimulus can change 

the processing of a following stimulus, for instance due to adaptation, priming, or other 

attentional effects. We want to note that if such sequential effects occur often enough in an 

experiment, they can be explicitly modeled; for example, on could add an additional predictors 

coding whether a stimulus is repeated or not or whether it occurred early or late in a sequence 

of stimuli. We hope that the unfold toolbox will facilitate the analysis of simulations on these 

issues and also propose to analyze experiments where temporal overlap is experimentally 

varied. 

Modeling nonlinear effects 

Nonlinear predictors can have considerable advantages over linear predictors. However, 

one issue that is currently unresolved is how to select an appropriate number of spline functions 

to model a nonlinear effect without under- or overfitting the data. While automatic selection 

methods exist (e.g. based on generalized cross-validation, Wood, 2017), their high 

computational cost precluded us from using these techniques. In the current implementation of 

unfold, we assume the same number of splines are needed for all parts of the response. But it 

is possible, for example, that with a constant number of splines the baseline interval is 

overfitted, whereas the true response is underfitted. Therefore, algorithms to find smoothing 

parameters need to take into account that the amount of smoothing changes throughout the 

response. Choosing the correct number of splines that neither overfit nor underfit the data is an 

important question to resolve, and again, we hope that the unfold toolbox will facilitate future 

simulation studies, new algorithms, and new experiments on this issue. 

Time-frequency analysis 

While all example analyses presented here were done in the time domain, it is also 

possible to model and deconvolve overlapping time-frequency representations with unfold. 

One simple option is to enter the band-bass filtered and rectified EEG signal into the model; 

an alternative is to use the full continuous time-frequency representation (Litvak et al., 2013).  
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Outlook: Integration with linear mixed models 

In recent years, linear mixed-effects models (LMM, e.g. Gelman & Hill, 2007) have been 

slowly superseding traditional models like repeated-measures ANOVA or the two-stage 

hierarchical approach used here. LMMs allow to model the hierarchical structure of single-

subject and group-level data directly and have several other advantages, for example when 

analyzing unbalanced designs (Baayen, Davidson, & Bates, 2007; Kliegl, 2010). Combining 

LMMs with linear deconvolution is theoretically possible. The main challenge is that one needs 

to fit all continuous EEG datasets of all participants at the same time. Thus, currently, the high 

computational cost of fitting such large models precludes us from taking advantage of mixed 

models. Nevertheless, recent progress with similarly large models (Wood, Li, Shaddick, & 

Augustin, 2017) shows that the combination of LMMs with deconvolution modeling might be 

computationally feasible in future implementations. 

Other physiological signals 

Finally, it is also possible to model other types of overlapping psychophysiological 

signals with unfold, such as overlapping magnetic fields (MEG, Litvak et al., 2013), pupil 

dilations (Gagl, Hawelka, & Hutzler, 2011; Wierda, van Rijn, Taatgen, & Martens, 2012) or 

skin conductance responses (Bach, Flandin, Friston, & Dolan, 2009). 

Conclusions 

In summary, unfold offers an integrated environment to analyze psychophysiological 

data influenced by overlapping responses, (non)linear covariates, or both. As we show above, 

this analysis strategy can be beneficial even in case of “traditional”, highly-controlled ERP 

experiments. It also allows us to record EEG data under more natural situations, for example 

those with unconstrained eye movement behavior, which is typical for the emerging fields of 

virtual reality and mobile brain/body imaging studies. Applications of unfold to free viewing 

studies can be found in an accompanying paper (Dimigen & Ehinger, 2018). The toolbox is 

freely available at http://www.unfoldtoolbox.org with tutorials and documentation. 
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