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Deconvolution modeling of EEG

ABSTRACT

Electrophysiological research with event-related brain potentials (ERPs) is increasingly
moving from simple, strictly orthogonal stimulation paradigms towards more complex, quasi-
experimental designs and naturalistic situations that involve fast, multisensory stimulation and
complex motor behavior. As a result, electrophysiological responses from subsequent events
often overlap with each other. In addition, the recorded neural activity is typically modulated
by numerous covariates, which influence the measured responses in a linear or nonlinear
fashion. Examples of paradigms where systematic temporal overlap variations and low-level
confounds between conditions cannot be avoided include combined EEG/eye-tracking
experiments during natural vision, fast multisensory stimulation experiments, and mobile
brain/body imaging studies. However, even “traditional”, highly controlled ERP datasets often
contain a hidden mix of overlapping activity (e.g. from stimulus onsets, involuntary
microsaccades, or button presses) and it is helpful or even necessary to disentangle these
components for a correct interpretation of the results. In this paper, we introduce unfold, a
powerful, yet easy-to-use MATLAB toolbox for regression-based EEG analyses that combines
existing concepts of massive univariate modeling (“regression ERPs”), linear deconvolution
modeling, and non-linear modeling with the generalized additive model (GAM) into one
coherent and flexible analysis framework. The toolbox is modular, compatible with EEGLAB
and can handle even large datasets efficiently. It also includes advanced options for
regularization and the use of temporal basis functions (e.g. Fourier sets). We illustrate the
advantages of this approach for simulated data as well as data from a standard face recognition
experiment. In addition to traditional and non-conventional EEG/ERP designs, unfold can also
be applied to other overlapping physiological signals, such as pupillary or electrodermal

responses. It is available as open-source software at http://www.unfoldtoolbox.org.

Keywords: EEG, ERP, overlap correction, linear modeling of EEG, regression-ERP
(rERP), generalized additive model (GAM), non-linear modeling, regression splines,
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INTRODUCTION

Event-related brain responses in the EEG are traditionally studied in strongly simplified
and strictly orthogonal stimulus-response paradigms. In many cases, each experimental trial
involves only a single, tightly controlled stimulation and a single manual response. In recent
years, however, there has been rising interest in recording brain-electric activity also in more
complex paradigms and naturalistic situations. Examples include laboratory studies with fast
and concurrent streams of visual, auditory, and tactile stimuli (e.g. Spitzer et al., 2016),
experiments that combine EEG recordings with eye-tracking recordings during natural vision
(e.g. Dimigen et al., 2011), EEG studies in virtual reality (e.g. Ehinger et al., 2014) or mobile
brain/body imaging studies that investigate real-world interactions of freely moving
participants (e.g. Gramann et al., 2014). There are two main problems in these types of
situations: Overlapping neural responses from subsequent events and complex influences of
nuisance variables that cannot be fully controlled. However, even traditional ERP experiments
often contain a mixture of overlapping neural responses, for example from stimulus onsets,

involuntary microsaccades, or manual button presses.

Appropriate analysis of such datasets requires a paradigm shift away from simple
averaging techniques towards more sophisticated, regression-based approaches (Amsel, 2011;
Fromer, Maier, & Abdel Rahman, 2018; Hauk, Davis, Ford, Pulvermiiller, & Marslen-Wilson,
2006; Pernet, Chauveau, Gaspar, & Rousselet, 2011; N. J. Smith & Kutas, 2015b; Van
Humbeeck, Meghanathan, Wagemans, van Leeuwen, & Nikolaev, 2018) that can deconvolve
overlapping potentials and also control or model the effects of both linear and non-linear
covariates on the neural response. Importantly, the basic algorithms to deconvolve overlapping
signals and to model the influences of both linear and non-linear covariates already exist.
However, there is not yet a toolbox that integrates all of the necessary methods in one coherent

workflow.

In the present paper we introduce unfold, an open source, easy-to-use, and flexible
MATLAB toolbox written to facilitate the use of advanced deconvolution models and spline
regression in ERP research. It performs these calculations efficiently even for large models and
datasets and allows to run complex models with a few lines of codes. The toolbox is
programmed in a modular fashion, meaning that intermediate analysis steps can be readily
inspected and modified by the user if needed. It is also fully documented, can employ
regularization, can model both linear and nonlinear effects using spline regression, and is

compatible with EEGLAB (Delorme & Makeig, 2004) a widely used toolbox (Hanke &
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Halchenko, 2011) to preprocess electrophysiological data that offers importers for many other
biometric data formats, including eye-tracking and pupillometric data as well. unfold offers
built-in functions to visualize the model coefficients (betas) of each predictor as waveforms or
scalp topographies (i.e. “regression-ERPs”, rERPS, Burns, Bigdely-Shamlo, Smith, Kreutz-
Delgado, & Makeig, 2013; N. J. Smith & Kutas, 2015a). Alternatively, results can be easily
exported as plain text or transferred to other toolboxes like EEGLAB or Fieldtrip (Oostenveld,
Fries, Maris, & Schoffelen, 2011). For statistical analyses at the group level, that is second-
level statistics, the resulting rERPs can be treated just like any other subject-level ERPs. As
one suggestion, unfold integrates threshold-free cluster-based permutation tests for this purpose

(Mensen & Khatami, 2013; S. M. Smith & Nichols, 2009)

In the following, we first briefly summarize some key concepts of regression-based EEG
analysis, with an emphasis on linear deconvolution, spline regression, and temporal basis
functions. We then describe the unfold toolbox that combines these concepts into one coherent
framework. Finally, we illustrate its application to simulated data as well as real data from a
standard ERP experiment. In particular, we will go through the typical steps to run and analyze
a deconvolution model, using the data of a standard face recognition ERP experiment that
contains overlapping potentials from three different sources: from stimulus onsets, from button
presses, and from microsaccades that were involuntarily made by the participants during the
task. We also give detailed descriptions of the features of the toolbox, including practical
recommendations, simulation results, and advanced features such as regularization options or
the use of temporal basis functions. We hope that our toolbox will both improve the
understanding of traditional EEG datasets (e.g. by separating stimulus- and response-related
components) as well as facilitate electrophysiological analyses in complex or (quasi-)natural

situations, such as in combined eye-tracking/EEG and mobile brain/body imaging studies.

A simple simulation example

Before we introduce a real dataset, let us first consider a simulated simple EEG/ERP
study to illustrate the possibilities of the deconvolution approach. For this, let’s imagine a
typical stimulus-discrimination task with two conditions (Figure 1): Participants are shown
pictures of faces or houses and asked to classify the type of stimulus with a button press.
Because this response is speeded, motor activity related to the preparation and execution of the
manual response will overlap with the activity elicited by stimulus onset. Furthermore, we also
assume that the mean reaction time (RTs) differs between the conditions, as it is the case in

most experiments. In our example, if face pictures are on average classified faster than houses
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pictures (Figure 1C), then a different overlap between stimulus- and response-related potentials
will be observed in the two conditions. Importantly, as Figure 1F shows, this will result in
spurious conditions effects due to the varying temporal overlap alone, and can be further

mistaken for genuine differences in the brain’s processing of houses and faces.

Faces are also complex, high-dimensional stimuli with numerous properties that are
difficult to perfectly control and orthogonalize in any given study. For simplicity, we assume
that the average luminance of the stimuli was not perfectly matched between conditions and is
slightly, but systematically, higher for faces than houses (Figure 1D). From previous studies,
we know that the amplitude of the P1 visually-evoked potential increases as a non-linear (log)
function of the luminance of the presented stimulus (Halliday, 1982), and thus we also
simulated a logarithmic effect of luminance on the P1 of the stimulus-aligned ERP (Figure 1E),
creating another spurious condition difference (Figure 1G) in addition to that of varying

response times (Figure 1F).

Panels G and H of Figure 1 show the same data modeled with unfold. Fortunately, with
linear deconvolution modeling, we can not only remove the overlap effect (Figure 1G), but by
including luminance as a non-linear predictor, we simultaneously also control the influence of

this covariate (Figure 1H). How this is done is explained in more detail in the following.
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Figure 1. (A) A hypothetical simple ERP experiment with overlapping responses and a non-linear
covariate. Data in this figure was simulated and then modeled with unfold. Participants saw pictures of
faces or house and categorized them with a button press. (B) A short interval of the recorded EEG. Every
stimulus onset and every button press elicits a brain response (lower row). However, because brain
responses to the stimulus overlap with that to the response, we can only observe the sum of the overlapping
responses in the EEG (upper row). (C) Because humans are experts for faces, we assume here that they
reacted faster to faces than houses, meaning that the overlap with the preceding stimulus-onset ERP is
larger in the face than house condition. (D) Furthermore, we assume that faces and house stimuli were not
perfectly matched in terms of all other stimulus properties (e.g. spectrum, size, shape). For this example,
let us simply assume that they differed in mean luminance. (E) The N170 component of the fERP is
typically larger for faces than houses. In addition, however, the higher luminance alone increases the
amplitude of the visual P1 component of the ERP. Because luminance is slightly higher for faces and
houses, this will result in a spurious condition difference. (F) Average ERP for faces and houses, without
deconvolution modeling. In addition to the genuine N170 effect (larger N170 for faces), we can see
various spurious differences, caused by overlapping responses and the luminance difference. (G) Linear
deconvolution corrects for the effects of overlapping potentials. (H) To also remove the confounding
luminance effect, we need to also include this predictor in the model. Now we are able to only recover the
true N170 effect without confounds (a similar figure was used in Dimigen & Ehinger, 2018).

Existing deconvolution approaches

Deconvolution methods for EEG have existing for some time (Hansen, 1983), but most
older deconvolution approaches show severe limitations in their applicability. They are either
restricted to just two different events (Hansen, 1983; Zhang, 1998), require special stimulus

sequences (Delgado & Ozdamar, 2004; Eysholdt & Schreiner, 1982; Jewett et al., 2004; Marsh,
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1992; Wang, Ozdamar, Bohorquez, Shen, & Cheour, 2006), rely on semi-automatic, iterative
methods like ADJAR (Woldorff, 1993) that can be slow or difficult to converge (Kristensen,
Rivet, & Guérin-Dugué, 2017; Talsma & Woldorff, 2004), or were tailored for special
applications. In particular, the specialized RIDE algorithm (Ouyang, Herzmann, Zhou, &
Sommer, 2011; Ouyang, Sommer, & Zhou, 2015) offers a unique feature in that it able to
deconvolve time-jittered ERP components even in the absence of a designated event marker.
However, while RIDE has been successfully used to separate stimulus- and response-related
ERP components (Ouyang et al., 2011, 2015); it does not support continuous predictors and is

intended for a small number of overlapping events.

In recent years, an alternative deconvolution method based on the linear model has been
proposed and successfully applied to the overlap problem (Bardy, Van Dun, Dillon, & Cowan,
2014; Dandekar, Privitera, Carney, & Klein, 2012; Kristensen, Guerin-Dugué, & Rivet, 2017,
Kristensen, Rivet, et al., 2017; Litvak, Jha, Flandin, & Friston, 2013; Liitkenhoner, 2010; N. J.
Smith & Kutas, 2015b; Spitzer, Blankenburg, & Summerfield, 2016). This deconvolution
approach was first applied extensively to fMRI data (Dale & Buckner, 1997) where the slowly
varying BOLD signal overlaps between subsequent events. However, in fMRI, the shape of the
BOLD response is well-known and this prior knowledge allows the researcher to use model-
based deconvolution. If no assumptions about the response shape (i.e. the kernel) are made, the
approach used in fMRI is closely related to the basic linear deconvolution approach discussed

below.

Deconvolution within the linear model

With deconvolution techniques, overlapping EEG activity is understood as the linear
convolution of experimental event latencies with isolated neural responses (Figure 1B). The
inverse operation is deconvolution, which recovers the unknown isolated neural responses
given only the measured (convolved) EEG and the latencies of the experimental events (Figure
1H). Deconvolution is possible if the subsequent events in an experiment occur with varying
temporal overlap, in a varying temporal sequence, or both. In classical experiments, stimulus-
onset asynchronies and stimulus sequences can be varied experimentally and the latencies of
motor actions (such as saccades or button presses) also vary naturally. This varying overlap
allows for modeling of the unknown isolated responses, assuming that the overlapping signals
add up linearly. More specifically, we assume (1) that the electrical fields generated by the

brain sum linearly (a justified assumption, see Nunez and Srinivasan, 2009) and (2) that the
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overlap, or interval between events, does not influence the computations occurring in the brain

— and therefore the underlying waveforms (see also Discussion).

The benefits of this approach are numerous: The experimental design is not restricted to
special stimulus sequences, multiple regression allows modeling of an arbitrary number of

different events, and the mathematical properties of the linear model are well understood.

Figure 2

continuous EEG condition A condition B

- —— —
recording ) . i T 3 2.4 5 1 2 2 4 &§ 4 time after event -

|
events EAG, L €
(e.g. stimulus EEG,, 1 1 €
onsets) EEG,, i il e.,
EEG,, i 1 _o_o_/‘{o\“’\ ex
EEG,, 1 i 1 Cas
T

EEG,| - |0 1 V-1 b b b b b bbb b+ es
FEG,, i €37
EEG,, i [
- EEG, S
y = X, - b + @

EEG =1.b+0.b+0-b+0-b+1.540.5+0.5+0-b+1-5+0.b + €

sample 25 sample 25
response to response to response to
Aatt=1 Aatt=5 Batt=4

Figure 2. Linear deconvolution explains the continuous EEG signal within a single regression model.
Specifically, we want to estimate the response (betas) evoked by each event so that together, they best
explain the observed EEG. For this purpose, we create a time-expanded version of the design matrix (Xqc)
in which a number of time points around each event (here: only 5 points) are added as predictors. We then
solve the model for b, the betas. For instance, in the model above, sample number 25 of the continuous
EEG recording can be explained by the sum of responses to three different experimental events: the
response to a first event of type “A” (at time point 5 after that event), by the response to an event of type
“B” (at time 4 after that event) and by a second occurrence of an event of type “A” (at time 1 after that
event). Because the sequences of events and their temporal distances vary throughout the experiment, it
is possible to find a unique solution for the betas that best explains the measured EEG signal. These betas,
or “regression-ERPs” can then be plotted and analyzed like conventional ERP waveforms. Figure adapted
from Dimigen & Ehinger, 2018 (with permission).

Linear deconvolution
The classic massive univariate linear model, without overlap correction, is applied to
epoched EEG data and can be written as:
Uiz = XiBr with y; . ~ normal (.ui,‘l:' U‘r)

Here, X is the design matrix. It has i rows (each describing one instance of an event of type e)

and ¢ columns (each describing the status of one predictor).
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Furthermore, let T be the “local time” relative to onset of the event (e.g. -100 to +500
sampling points). y; ; is the EEG signal measured after event i that we wish to predict at a
given time point 7 relative to the event onset. [ is a vector of unknown parameters that we wish
to estimate for each time point in the epoched EEG data. Importantly, therefore, this approach

fits a separate linear model at each time point 7.
A single entry will be referred by lowercase x; ...

In contrast, with linear deconvolution we enter the continuous EEG data into the model.
We then make use of the knowledge that each observed sample of the continuous EEG can be
described as the linear sum of (possibly) several overlapping event-related EEG responses.
Depending on the latencies of the neighboring events, these overlapping responses occur at
different times 7 relative to the current event (see Figure 2). That is, in the example in Figure
2, where the responses of two types of events, A and B overlap with each other, the observed

continuous EEG at time point t of the continuous EEG recording can be described as follows:

EEG, =1P41+ 0842+ 0843+ 0844+ 1845+ 0B8p1+0Bg,+0Bp3+ 1854+ 0Bps
In the example in Figure 2, the spontaneous EEG at time-point t is modeled as the linear
sum of a to-be-estimated response to the first instance of event type A at local time 7 = 5 (i.e.
from the point of view of EEG(t) this instance occurred 5 time samples before). Another
response to the second instance of event type A at local time 7 = 0 (i.e. this instance just

occurred at t), and another response to the instance of event type B at local time t = 4.

The necessary design matrix to implement this model, X, will span the duration of the
entire EEG recording. It can be generated from any design matrix X by an algorithm we will
call time expansion in the following. In this process, each predictor in the original design matrix
will be expanded to several columns, which then code a number of “local” time points relative

to the event onset. An example for a time-expanded design matrix is shown in Figure 2.

Time expansion

The process to create the time-expanded design matrix X, is illustrated in Figure 2. In
the following sections, we will describe the construction of X;. more formally. Readers not

interested in these technicalities may skip to the following section on non-linear effects.

Let t be the time of the continuous EEG signal y, which keeps increasing throughout the
experiment. 7 is still the local time, that is the temporal distance of an EEG sample relative to

an instance of event e. Let i be the instance of one such event. X; is therefore the accompanying
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row of the design matrix X which specifies the predictors for each event of type e. The design
matrix X consists of multiple columns c, each representing one predictor (for which we want

to estimate the accompanying f3).

X4c can be constructed from multiple concatenated, time-shifted square diagonal
matrices G with size T one for each instance of the event e. For the purpose of illustration, it is
helpful to construct the design matrix first for just a single predictor and a single instance of a
single type of event (e.g. a manual response). Afterwards, we will add multiple predictors, then
multiple instances of a single event type and finally multiple different event types (e.g. stimuli

and responses).

Single predictor, single instance, single event type
The matrix G, for a single predictor, single type of event, and single instance of this event
type is square diagonal where the size is specified by the number of samples around the event

instance onsets to be taken into account:

GC = le"c =

0 0 0 xp

It is a scaling of an identity matrix by the scalar x; . which is a single entry of the design
matrix X defining the predictor c at the single instance i. In the case of a dummy-coded
variable (0 or 1) we would get either a matrix full of zeros or the identity matrix; in case of a
continuous predictor we get a scalar matrix where the diagonal of G; . contains the continuous

predictor value.

Multiple predictors, single instance, single event type
In case of multiple predictors ¢, we generate multiple matrices G; . and concatenate them
to G* =[G, ... G,.]. Therefore, a matrix with two predictors at the instance i of an event e could

look like:

10 0 010 0 0 0
. 1o 1.0 0 0 10 0 O
G_[GlGZ]_oo1o 0 0 10 0

0001 0 0 0 10
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Multiple predictors, multiple instances, single events type
In case of multiple instances of the same event, we have one G* matrix for every instance.
We combine them into a large matrix X, by inserting the G* matrices into X, around the
time points (in continuous EEG time t) where the instance of the event occurred. Because T
(and therefore G ™) is usually larger than the time distance between two event instances, we
insert rows of multiple G* matrices in an overlapping (summed) way. Consequently, we
model the same time point of the EEG by the combined rows of multiple G* matrices (Figure
2, Figure 3A). By solving the linear system with X;.f for § we effectively deconvolve the

original signal.

Multiple predictors, multiple instances, multiple events types
We usually have multiple different types of events ey, e, ... . For each of these event

types, we create one Xj. matrix as described above. Each X§. matrix spans t rows and thus,

the continuous EEG signal. To get the final matrix X,;. we simply concatenate them along the

columns before the model inversion.
Xdc = [Xolic "'ch]

Similarly, if we wanted to include a continuous covariate spanning the whole duration of
the continuous EEG signal (see Discussion), for example some feature of a continuous audio
signal (e.g. Crosse, Di Liberto, Bednar, & Lalor, 2016) we could simply concatenate it as an

additional column to the design matrix.
The formula for the deconvolution model is then:

te = Xacr B with y, ~ normal(ye, o)
U 1s the expected value of the continuous EEG signal y;. This time-expanded linear model
simultaneously fits all the parameters [ describing the deconvolved rERPs of interest. This
comes at the cost of a very large (size: number of samples x number of predictor columns).
Fortunately, this matrix is also very sparse, containing mostly zeros, and can therefore be
efficiently solved with modern sparse solvers. For further detail see the excellent tutorial

reviews by Smith and Kutas (N. J. Smith & Kutas, 2015a, 2015b).

Modeling non-linear effects with spline regression

Now we will outline how we can use spline predictors to model nonlinear effects within
the linear regression framework. We follow the definition of a Generalized Additive Model

(GAM) by Wood, (2017, p. 249-250):

10
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ui =X + Z zifj(x;)
Jj

The sum Y}; z;f;(x;) represents a basis set with j unknown parameters z (analog to the 8
vector). The time-indices were omitted here. The most common example for such a basis set
would be polynomial expansion. Using the polynomial basis set with order three would results

in the following function:
Ui = XiB + z;x* + z,x?% + z3x3

However, due to several suboptimalities of the polynomial basis (e.g. Runge, 1901) we
will make use of the cubic B-spline basis set instead. Spline regression is conceptually related
to the better-known polynomial expansion, but instead of using polynomials, one uses locally
bounded functions. In other words, whereas a polynomial ranges over the whole range of the

continuous predictor, a B-spline is restricted to a local range.

This basis set is constructed using the De-Casteljau algorithm (De Casteljau, 1959)
implemented by Bruno Luong (Luong, 2016). It is a basis set that is strictly local: Each basis
function is non-zero only over a maximum of 5 other basis functions (for cubic splines; see

Woods 2017, p. 204).

Multiple terms can be concatenated, resulting in a GAM:
ui = X;f + Z zifj(x1;) + Z Zifi (x1)
j j

If interactions between two non-linear spline predictors are expected, we can also make
use of two-dimensional splines:
wi =XB + Z zi f; (x11, X2;)

J

In the unfold toolbox, 2D-splines are created based on the pairwise products between

z1; and z, ;. Thus, a 2D spline between two spline-predictors with 10 spline-functions each

would result in 100 parameters to be estimated.

The number of basis functions to use for each non-linear spline term are usually
determined by either regularization or cross-validation. Cross-validation is difficult in the case
of large EEG datasets (see also Discussion) and we therefore recommend to determine the
number of splines (and thus the flexibility of the non-linear predictors) prior to the analysis to

avoid overfitting.
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Deconvolution modeling of EEG

Using temporal basis functions

In the previous section, we made use of time-expansion to model the overlap. For this,
we used the so-called stick function approach (also referred to as FIR or dummy-coding). That
is, each time-point relative to an event (local time) was coded using a 1 or 0 (in case of dummy-
coded variables), resulting in a staircase patterns in the design matrix (cf. Figures 2 and 3A).
However, this approach is computationally expensive. Due to the high sampling rate of EEG
(typically 200-1000 Hz), already a single second of estimated ERP response requires us to
estimate 200-1000 coefficients per predictor. Therefore, some groups started to use other time
basis sets to effectively smooth the estimated regression-ERPs (e.g. Litvak et al., 2013; but see

N. J. Smith & Kutas, 2015b).

We will discuss two examples here: The time-Fourier set (Litvak et al., 2013; Spitzer et
al., 2016) and — newly introduced in this paper — the time-spline set. In the time-spline set,
adjacent local time coefficients are effectively combined according to a spline set (Figure 3B).
Splines are a suitable basis function because EEG signals are smooth and values close in time
have similar values. The number of splines chosen here defines the amount of smoothing of
the resulting deconvolved ERP. The same principle holds for the time-Fourier set. Here we
replace the stick-function set with a truncated Fourier set (Figure 3C). Truncating the Fourier
set at high frequencies effectively removed high frequencies from the modeled ERP and can
therefore be thought of as a low-pass filter (see also Figure 6). A benefit of using temporal
basis functions rather than the simple stick functions is that less unknown parameters need to
be estimated. It is therefore possible that this results in numerical more stable solutions to the

linear problem; however, we are also constraining the solution space.
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Figure 3

A stick function set B time-spline set C  time-Fourier set

= intercept (house stimulus)
7- —— face stimulus
= button press

5 .8

! ! ' ' ! !
intercept  facestim button press intercept face stim button press intercept face stim button press

Figure 3. Overview over different temporal basis functions. The expanded design matrix Xqc is plotted,
the y-axis represents time and the x-axis shows all time-expanded predictors in the model. In unfold, three
methods are available for time expansion: (A) Stick-functions. Here, each modeled time point relative to
the event is represented by a unique predictor. (B) Time-splines allow neighboring time points to smooth
themselves. This generally results in less predictors than the stick function set. (C) Time-Fourier set: It is
also possible to use a Fourier basis. By omitting high frequencies from the Fourier-set, the data are
effectively low-pass filtered during the deconvolution process (see also Figure 6).

Existing toolboxes

To our knowledge, no existing toolbox supports non-linear, spline-based general additive
modeling of EEG activity. Also, we were missing a toolbox that solely focuses on
deconvolving signals and allowed for a simple specification of the model to be fitted, for

example using the commonly used Wilkinson notation (as also used for example in R).

A few other existing EEG toolboxes allow for deconvolution analyses, but we found that
each has their limitations. Plain linear modeling (including second-level analyses) can be
performed using the LIMO toolbox (Pernet et al., 2011), but this toolbox does not support
deconvolution analyses or spline regression. To our knowledge, four toolboxes support some
form of deconvolution: SPM (Litvak et al., 2013; Penny, Friston, Ashburner, Kiebel, &
Nichols, 2006), the rERP extension for EEGLAB (Burns et al., 2013), pyrERP (N. J. Smith,
2013), mTRF (Crosse et al., 2016) and MNE (Gramfort et al., 2014) . SPM allows for
deconvolution of linear responses using Fourier temporal basis sets. However, in order to make
use of these deconvolution functions, quite a bit of manual coding is needed. The rERP
extension for EEGLAB and the pyrERP toolbox for Python both allow for estimation of linear
models and deconvolution; however, both toolboxes appear not to be maintained anymore;

rERP is currently non-functional (for current MATLAB versions) and no documentation is
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available for pyERP. The MNE toolbox is a general-purpose Python-based EEG processing
toolbox that allows for both deconvolution and massive univariate modeling. It is actively
maintained and some basic tutorials are available. The mTRF toolbox is a special type of
deconvolution toolbox designed to be used with continuous predictors (e.g. auditory streams)

that last over the whole continuous EEG recording (see Discussion).

THE UNFOLD TOOLBOX

In the following, we describe basic and advanced features available in the unfold toolbox
and also give practical recommendations for problems that researchers might experience in the
modeling process. Specifically, we describe how to (1) specify the model via Wilkinson
formulas, (2) include nonlinear predictors via spline regression, (3) model the data with basis
functions over time (e.g. a Fourier basis set), (4) impute missing data in the design matrix, (5)
treat intervals of the continuous EEG containing EEG artifacts (e.g. from muscle activity or
skin conductance changes), (5) specify alternative solvers (with regularization) that can solve
even large models in a reasonable time and (6) run the same regression model both as a
deconvolution model and also a mass multivariate model without deconvolution. Finally, we

summarize options for (7) visualizing and (8) exporting the results.

Data import

As a start, we need a data structure in EEGLAB format (Delorme & Makeig, 2004) that
contains the continuous EEG data and event codes. In traditional EEG experiments, events will
typically be stimulus and response triggers, but many other types of events are also possible
(e.g., voice onsets, the on- or offsets of eye or body movements etc.). In most cases, the EEG
data entered into the model should have already been corrected for biological and technical
artifacts (e.g. ocular artifacts, scalp muscle EMG, or power line noise), for example with

independent component analysis (ICA).
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Figure 4
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Figure 4. Overview over typical analysis steps with unfold. The first step is to load a continuous EEG
dataset into EEGLAB. This dataset should already contain event markers (e.g. for stimulus onsets, button
presses etc.). Afterwards there are four main analysis steps, that can be executed with a few lines of code
(see also Box 1). These steps, highlighted in blue, are: (1) Define the model formula and let unfold generate
the design matrix, (2) time-expand this design matrix, (3) solve the model to obtain the betas (i.e. rERPs),
and (4) convert the betas into a convenient format for plotting and statistics. The right column lists several
inbuild plotting functions to visualize intermediate analysis steps or to plot the results (see also Figure 8).

Specifying models using Wilkinson notation

We begin by the modeling process by specifying the model formula and by generating
the corresponding design matrix X. In the unfold toolbox, models are specified using the
intuitive Wilkinson notation (Wilkinson & Rogers, 1973) also commonly used in R, the Matlab
statistics toolbox, and python StatsModels. For example, for the hypothetical face/house

experiment depicted in Figure 1, we might define the following model:

EEG ~ 1 + cat(is_face) + luminance

More generally, we can also specify more complex formulas, such as:
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Deconvolution modeling of EEG

EEG ~ 1 + cat(predictorl) + predictor2 + spl (predictor3)

Here, cat () specifies that the predictorl should be dummy encoded as a categorical
variable or factor rather than treated as a continuous variable. If a variable is already dummy-
coded as 0/1 it is not strictly necessary to add the cat () command, but it is also possible to
specify multi-level categorical variables. In contrast, predictor2 should be modeled as
continuous linear covariate and predictor3 as a nonlinear spline predictor. In the formula, a
+ sign means that only the main effects will be modeled. Interactions between predictors are
added by replacing the + with a * or a :, depending on whether all main effects and interactions
should be modeled (*), or only the interactions (:). In umfold, the type of coding
(dummy/treatment/reference or effect/contrast/sum coding) can be selected. If the default
treatment coding is used, the predictors will represent the difference to the intercept term
(coded by the 1). The reference level of the categorical variable and the ordering of the levels
is determined alphabetically or can be specified by the user manually. The toolbox also allows
to specify different formulas for different events. For example, stimulus onset events can have

a different (e.g. more complex) formula than manual response events.

Once the formula is defined, the design matrix X is time-expanded to X ;. and now spans
the duration of the entire EEG recording. Subsequently, for each channel, the equation
(EEG =Xdc * b+ e) is solved for “b”, the betas, which correspond to subject-level rERP
waveforms. For example, in the model above, for which we used treatment coding, the intercept
term would correspond to the group-average ERP. The other betas, such as those for
cat (is_ face), will capture the partial effect of that particular predictor, corresponding to a

difference wave in traditional ERPs (here: face-ERP minus house-ERP).

In the same linear model, we can simultaneously model brain responses evoked by other
experimental events, such as button presses. Each of these other event types can be modeled
by its own formula. In our face/house example, we would want to model the response-related
ERP that is elicited by the button press at the end of the trial, because this ERP will otherwise
overlap to a varying degree with the stimulus-ERP. We do this by defining an additional simple
intercept model for all button press events. In this way, the ERP evoked by button presses will

be removed from the estimation of the stimulus ERPs. The complete model would then be:
EEG ~ 1 + cat(is face) + spl(luminance,10) {for stimulus onsetevents}

EEG ~ 1 ({for manual button press events}
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Spline regression to model (nonlinear) predictors

As explained earlier, many influences on the EEG are not strictly linear. In addition to
linear terms, one can therefore use cubic B-splines to perform spline regression, an approach
commonly summarized under the name GAM (generalized additive modeling). An illustration
of this approach is provided in Figure 5. In the unfold toolbox, spline regression can be
performed by adding sp1l () around the predictor name, as for predictor 3 in the formula
above, which specifies a model using 10 B-splines instead of a continuous linear predictor. We

can model covariates as non-linear predictors:
EEG ~ 1 + spl(A,10) + 2dspl(B,C,10) + circspl(D,10,0,360)

With this formula, the effect “A” would be modeled by a basis set consisting of ten
splines. We would also fit a 2D spline between continuous variable B and C with ten splines
each. In addition, we would fit a circular spline based on covariate D using ten splines with the

limits 0° and 360° being the wrapping point of the circular spline.

Figure 5

O

A B

EEG amplitude (e.g. P1)
Arbitrary unit
(—.- - 7‘4‘ -
EEG amplitude (e.g. P1)

Predictor (e.g. luminance) Predictor (e.g. luminance) Predictor (e.g. luminance)

Figure 5. Modeling a nonlinear relationship with a set of spline functions. (A) Example of a non-linear
relationship between a predictor (e.g. stimulus luminance) and a dependent variable (e.g. EEG amplitude).
A linear function (black line) does not fit the data well. We will follow one luminance value (dashed line)
at which the linear function is evaluated (red dot). (B) Instead of a linear fit, we define a set of overlapping
spline functions which are distributed across the range of the predictor. In this example, we are using a
set of six b-splines. For our luminance value, we receive six new predictor values. Only three of them are
non-zero. (C) We weight each spline with its respective estimated beta value. To predict the dependent
variable (EEG amplitude) at our luminance value (dashed line), we sum up the weighted spline functions
(red dots). Because the splines are overlapping, this produces a smooth, non-linear fit to the observed data.
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Deconvolution modeling of EEG

In unfold, three spline functions are already implemented. For B-splines we use the
de Casteljau algorithm implemented by Bruno Luong. For interactions between spline-
modeled covariates, first the default spline function is used on each predictor to generate n
splines. Then the resulting vectors are elementwise multiplied with each other, generating n?
final predictors. For cyclical predictors such as the angle of a saccadic eye movement (which
ranges e.g. from 0 to 2m), it is possibly to use cyclical B-splines, as explained above. These are
implemented based on code from patsy, a python statistical package

(https://patsy.readthedocs.io) which follows an algorithm described in Woods (Wood, 2017,

pp. 201-205). For maximal flexibility, we also allow the user to define custom spline functions.

This would also allow to implement other basis sets, for example polynomial expansion.

The placement of knots and the number of splines used are critical parameters to
appropriately model the predictor and to avoid over- or underfitting the data. The toolbox’s
default knot placement is on the quantiles of the predictor. This can be changed by users who
want to use a custom sequence of knots. Generalized cross validation could be used to narrow

down the number of knots to be used.

Figure 6
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Figure 6. Using temporal basis functions. Effect of using different time basis functions on the recovery
of the original signal using deconvolution. Panels A, B, and C show three different example signals
without deconvolution (in black) and with convolution using different methods for the time-expansion
(stick, Fourier, spline). We zero-padded the original signal to be able to show boundary artefacts. For the
analysis we used 45 time-splines and in order to keep the number of parameters equivalent, the first 22
cosine and sine functions of the Fourier set. The smoothing effects of using a time-basis set can be best
seen in the difference between the blue curve and the orange/red curves in panel D. Artefacts introduced
due to the time-basis set are highlighted with arrows and can be seen best in panels E and F. Note that in
the case of realistic EEG data, the signal is typically smooth, meaning that ripples like in panel E rarely
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occur. (G) The impulse response spectrum of the different smoothers. Clearly, the Fourier-set filters better
than the splines, but splines allow for a sparser description of the data and could benefit in the fitting stage.

Using time basis functions

Temporal basis functions were introduced earlier. The stick-function approach, as also
illustrated in Figures 2 and 3A is the default option in unfold. As alternatives, it is also possible
to employ either a Fourier basis set or a set of temporal spline function. For example, for the
time-expansion step, Litvak and colleagues (Litvak et al., 2013; Spitzer et al., 2016) used a
Fourier basis sets instead of stick-functions. Figure 6 compares simulation results for stick
functions with those obtained with a Fourier basis set and a spline basis set in terms of the
spectral components and the resulting filter artifacts. At this point, more simulation studies are
needed to understand the effects of temporal basis sets on EEG data. We therefore follow the
recommendation of Smith & Kutas (N. J. Smith & Kutas, 2015b) to use stick-functions for

now.

Imputation of missing values

In multiple regression models it is typically necessary to remove the whole trial if one of
the predictors has a missing value. One workaround for this practical problem is to impute (i.e.
interpolate) the value of missing predictors. In the deconvolution case, imputation is even more
important for a reliable model fit, because if a whole event is removed, then overlapping
activity from this event with that of the neighboring events would not be accounted for. In
unfold we therefore offer several algorithms to treat missing values: the dropping of events
with missing information, or imputation by the marginal, mean, or median values of the other

events.

Dealing with EEG artifacts

Linear deconvolution needs to be performed on continuous, rather than epoched data.
This creates challenges with regard to the treatment of intervals that contain EEG artifacts. The
way to handle artifacts in a linear deconvolution model is therefore to detect — but not to remove
— the intervals containing artifacts in the continuous dataset. For these contaminated time
windows, the time-expanded design matrix (Xdc) is then blanked out, that is, filled with zeros,

so that the artifacts do not affect the model estimation (N. J. Smith & Kutas, 2015b).

Of course, this requires the researcher to use methods for artifact correction that can be

applied to continuous rather than segmented data (such as ICA). Similarly, we need methods
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that can detect residual artifacts in the continuous rather than epoched EEG. One example
would be a peak-to-peak voltage threshold that is applied within a moving time window that is
shifted step-by-step across the entire recording. Whenever the peak-to-peak voltage within the
window exceeds a given threshold, the corresponding interval would then be blanked out in
the design matrix. Detecting artifacts in the continuous rather than segmented EEG also has
some small additional benefit, because if the data of a trial is only partially contaminated, the

clean parts can still enter the model estimation (N. J. Smith & Kutas, 2015b).

The unfold toolbox includes a function to remove artefactual intervals from the design
matrix before fitting the model. In addition, we offer basic functionality, adapted from

ERPLAB (Lopez-Calderon & Luck, 2014), to detect artifacts in the continuous EEG.

Multiple solvers: LSMR & glmnet

Solving for the betas is not always easy in such a large model. We offer several
algorithms to solve for the parameters. The currently recommended one is LSMR (Fong &
Saunders, 2011), an iterative algorithm for sparse least-squares problems. This algorithm
allows to use very large design matrices as long as they are sparse (i.e. contain mostly zeroes)
which is usually the case if one uses time-expansion based on stick-functions (cf. Figures 2 and

3A).

However, especially with data containing a high level of noise, the tradeoff between bias
and variance (i.e. between under- and overfitting) might be suboptimal, meaning that the
parameters estimated from the data might be only weakly predictive for held-out data (i.e. they
show a high variance and tend to overfit the data). The unfold toolbox therefore allows the user
to specify alternative solvers that use regularization. In particular, we include the g/mnet-solver
(Qian, Hastie, Friedman, Tibshirani, & Simon, 2013), which allows for ridge (L2-norm), lasso
(L1, leads to sparse solutions) and elastic net regularization. The regularization parameter is
automatically estimated using cross-validation. Procedures to regularize with linear
deconvolution have recently been examined and validated by Kristensen et al. (2017a). Effects
of regularization on noisy data are also depicted in Figure 7, which compares deconvolution
results for noisy simulated data with and without regularization. As can be seen in this figure,
the non-regularized estimates show strong variance (panel B and C), whereas the regularized
estimates show strong bias (panel D and E), that is, the estimated effects are shrunk towards
zero but simultaneously, the variance of the estimate over time is greatly reduced. At this point,

it is not yet clear whether and how much regularization should be used for the standard analysis
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of EEG data, but we provide different solvers in unfold to facilitate future work on this topic.

Please also see Kristensen et al. (2017a) for more simulation work.

Figure 7

A original signal

ordinary least
squares

gimnet ridge
regression

Figure 7. Regularization options. Effects of regularization on deconvolving noisy data. Results of
regularization are shown both for a model with stick-functions and for a model with a temporal spline
basis set. (A) To create an overlapped EEG signal, we convolved 38 instances of the original signal
depicted in panel A. The effect of a continuous covariate was randomly added to each event (see different
colors in A). To make the data noisy, we added Gaussian white noise with a standard deviation of 1.
Finally, to illustrate the power of regularization, we also added another random covariate to the model.
This covariate had no relation to the EEG signal but was highly correlated (» = 0.85) to the first covariate.
Thus, the model formula was: EEG ~ 1 + covariate + randomCovariate. (B) Parameters recovered
based on ordinary least squares regression. Due to the low signal-to-noise ratio of the data, the estimates
are extremely noisy. (C) Some smoothing effect can be achieved by using time-splines as a temporal basis
set instead of stick functions. (D) The same data, but deconvolved using a L2-regularized estimate (ridge
regression). It is obvious that the variance of the estimate is a lot smaller. However, compared to the
original signal shown in panel A, the estimated signal is also much weaker, i.e. there is a strong bias. (E)
L2-regularized estimates, computed with a time-spline basis set. This panel shows the usefulness of
regularization: the effect structure can be recovered despite strong noise, although the recovered effect is
again strongly biased (due to the variance/bias tradeoff).
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Spatial vs. temporal deconvolution

Many researchers use ICA to decompose the EEG signal into maximally independent
source signals. Because ICA is believed to isolate the signal contributions of individual neural
sources, it can be understood as performing a spatial deconvolution of the signal. Other source
space estimations can also been seen as spatial deconvolutions. Nevertheless, the activity time
courses of each independent source may still overlap in time, e.g. due to repeated stimulus
presentations. In order to also allow for a temporal deconvolution of the signal, unfold allows
to run the deconvolution not only on the raw EEG signal, but also on independent component
activation. This is done by adding a flag (‘ica’, ‘true’) when fitting the model. Possibly, the
prior spatial decomposition of the signal with ICA may improve the performance and
interpretability of the final, temporally deconvolved signals.

Figure 8
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Figure 8. Inbuild data visualization options. Shown are some of the ﬁgures currently produced by the
unfold toolbox. While setting up the model, it is possible to visualize intermediate steps of the analysis,
such as the design matrix (A) covariance matrix of the predictors (B) or the time-expanded design matrix
(C). After the model is computed, the beta coefficients for one or more predictors can be plotted as ERP-
like waveforms with a comparison of with and without deconvolution (D), as erpimages with time against
predictor value and color-coded amplitude (E), or as topographical time series (F).

Comparison to a Mass Univariate model (without deconvolution)

The unfold toolbox offers the option to compute a mass univariate regression model on
the same data using the exact same model but without correction for overlap. In our experience,
running this model in addition to the linear deconvolution model can be helpful to understand

the impact of overlap on the results. However, with this function, unfold can also be used as a
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standalone toolbox for Mass-Univariate modeling, for the (rare) cases in which an experiment

does not involve any overlapping activity (e.g. from small saccades; Dimigen et al., 2009).

Visualization of results

unfold offers multiple inbuild functions to visualize rERP results. We provide functions
for marginal plots over splines and continuous variables, and functions to evaluate
splines/continuous covariates at specific values. For the topographical output we make use of

functions from the EEGVIS toolbox (Ehinger, 2018).

Exporting the results

unfold focusses on two main things: linear deconvolution and (non)-linear modeling at
the single-subject level. In contrast, the toolbox itself does not offer functions for group-level
statistics. However, the betas for each participant can be easily exported as plain text (.csv) or
as different MATLAB structures to perform statistics with other toolboxes. A tutorial to
process unfold results using group-level cluster-based permutation tests with the TFCE-toolbox

(Mensen & Khatami, 2013) is provided in the online documentation.

A minimal but complete analysis script

The following is a complete analysis script for the hypothetical face/house experiment

introduced above (see Figure I). As can be seen, it can be run with a few lines of code.

Box 1. A complete analysis script with unfold

[

EEG = pop_load('eeg example.set') $ load dataset into EEGLAB

%% specify models for house/face events & button presses
cfg = [1]
cfg.formula

{'y ~ 1 + cat(stim type) + spl(luminance,10)', 'y ~ 1"}
{'stimulus onset', 'button onset'}

cfg.eventtypes

cfg.timelimits = [-0.5, 1]
cfg.channel = 1:64

time window for response estimation
EEG channels to analyze

o° o

%% run model & plot results
run('init unfold.m')

EEG = uf designmat (EEG, cfq)

EEG = uf timeexpandDesignmat (EEG,cfqg)

start toolbox
create design matrix

o oo o°

time-expand design matrix

EEG solve regression model

o

uf glmfit (EEG,cfqg)

o\

ufresult = uf condense (EEG)
uf plotParam(ufresult, 'channel', 1)

reformat results (e.g. for plotting)
visualize rERPs (waveforms/topographies)

oe
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RESULTS

In this section we validate the unfold toolbox based on (1) simulated data and (2) a real

dataset from a standard face recognition ERP experiment containing overlapping activities.

Simulated data

To create simulated data, we produced overlapped data using four different response
shapes, shown in the first column of Figure 9: (1) a boxcar function, (2) a Dirac delta function,
(3) a simulated auditory ERP (the same as used by Liitkenhoner, 2010), and (4) random pink
noise. We then simulated 5 s of continuous data, during which 18 experimental events
happened. Intervals between subsequent events were randomly drawn from a normal
distribution (M = 0.25 s, SD = 0.05 s). Convolving the simulated responses with the randomly
generated event latencies produced the continuous overlapped signal depicted in the third
column of Figure 9. The last column of Figure 9 shows the non-overlapped responses recovered
by unfold (orange lines). For comparison, overlapped responses without deconvolution are
plotted in dark red. As can be seen, unfold recovered the original response in all cases. The data
of Figure 1 were also simulated and then analyzed using toolbox. Together, these simulations

show conclusively that unfold successfully deconvolves heavily overlapping simulated signals.

Figure 9

Overlapped and
response
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Figure 9. Deconvolution results for simulated signals. Four types of responses (first column: box car,
Dirac function, auditory ERP, pink noise) were convolved with random event latencies (second column).
A section of the resulting overlapped signal is shown in the third column. The fourth column shows the
deconvolved response recovered by the unfold toolbox (orange lines). Overlapped responses (without
deconvolution) are plotted as violet lines for comparison.
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Real data example

Finally, we will also analyze a real dataset from a single participant who performed a
standard ERP face discrimination experiment'. In this experiment, previously described in the
supplementary materials of Dimigen et al. (2009), participants were shown 120 different color
images of human faces (7.5° x 8.5°) with a happy, angry, or neutral expression. Their task was
to categorize the emotion of the presented face as quickly as possible using three response
buttons, operated with the index, middle, and ring finger of the right hand. Each stimulus was

presented for 1350 ms. The participant’s mean RT was 836 ms.

Although a central fixation cross was presented prior to each trial and participants were
instructed to avoid eye movements during the task, concurrent video-based eye-tracking
revealed that participants executed at least one involuntary (micro)saccades during the vast
majority of trials (see also Dimigen et al., 2009; Yuval-Greenberg et al., 2008). For the
participant analyzed here, the median amplitude of these small saccades was 0.6° and most
were aimed at the mouth region of the presented faces, which was most informative for the

emotion discrimination task.

This means that our stimulus-locked ERPs are contaminated with two other processes:
visually-evoked potentials (lambda waves) generated by the retinal image motion produced by
the (micro)saccades (Gaarder et al., 1964; Dimigen et al., 2009) and motor processes related to

preparing and executing the finger movement.

! The same example data was also analyzed in our accompanying paper (Dimigen & Ehinger, 2018), but

with a different focus. Further details on this dataset are given in Dimigen (2009) or Dimigen & Ehinger (2018).
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Figure 10
A

1000 ms B Saccade amplitude

I
0% E median = 0.6°
‘©
a
o
c
5]
T
1 9]
768
0 0° 19 20 3° 4
Z i %
5 no-decorvolution %ﬂ
® 10
0 0
-
with decorwolution
0 ey 10 % 10
-200 0 200 600 1000 -600 -200 0 200 600 1000 -1000 -600 -200 200
—— — 400 — s
< 400 . ——r . -~
O @ Pt IS =@ g"‘"
= 1000 o I “ T
= e 2 Py s P g
03 f : 7 I o P
= F 3 4 F)
22 g .= T g =
SR = s - e »
e <] v - = ’
fo Bt £ S Ee—— % a3
i il 7 - —_— ] -
et 400 .
[e] - ® ;
= 1000 - g s
= o ’ E
£0 E B ne: @ ‘,'
L= Q . [+] v
2 g = h
=C 5 8 ’ 5 . 25
B = — K 8 ,l .
8 g B = € = r0
- % H i 4 ! |
8 8 . s 25
-200 0 -500 Q 500 1000 -1000 -500 0 50

Time (ms) Time (ms) Time (ms)

Figure 10. (A) Panel adapted from Dimigen & Ehinger (2018). The participant was shown a stimulus for
1350 ms. (B) The subject was instructed to keep fixation, but as the heatmap shown, made many small
involuntary saccades towards the mouth region of the presented stimuli. Each saccade also elicits a
visually-evoked response (lambda waves). (C to E) Latency-sorted and color-coded single-trial potentials
at electrode Oz over visual cortex (second row) reveal that the vast majority of trials contain not only the
neural response to the face (left column), but also hidden visual potentials evoked by involuntary
microsaccades (middle column) as well as motor potentials from preparing the button press (right
column). Deconvolution modeling with unfold allows us to isolate and remove these different signal
contributions (third row), resulting in corrected ERP waveforms for each process (blue vs. red waveforms,
top row). This reveals for example that a significant part of the P300 evoked by faces (arrow in top left
panel) is really due to microsaccades and button presses and not the stimulus presentation. Data and code
to reproduce the figure can be found under https://osf.io/wbz7x/.

To disentangle these potentials with unfold, we specified three events: Stimulus onset,
saccade onset, and button press. For this simple demonstration, we modeled both stimulus
onsets and button press events using only an intercept term (y~1), that is regardless of emotion.
For the saccade onsets, we included both an intercept as well as saccade amplitude as a
continuous predictor, because larger saccades are followed by larger lambda waves (e.g.
Gaarder et al., 1964; Dimigen et al., 2009). Because this relationship is non-linear (e.g.
Dandekar et al., 2012) we wused a set of 10 splines in the formula,
y ~ 1 + spl(saccade amplitude, 10). Brain responses were modeled in the time window
from -1.5 s to 1 s around each event. Before fitting the model, we removed all intervals from the

design matrix in which the recorded activity at any channels differed by > 250 uV withina 2 s
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Figure 10 presents the results for occipital electrode Oz and the signal both without (in
red) and without (blue) the modeling and removal of overlapping activity. The large effect of
overlapping activity can be clearly seen in the averaged ERP waveforms (top row in panels C,
D, and E). In the corresponding panels below that, we see the color-coded single trial activity
(erpimages), in which segments time-locked to one type of event (e.g. stimulus onset) were
sorted by the latency of the temporally adjacent event (e.g. saccade onset). These panels clearly
show the overlapping activity and how it was successfully removed by the deconvolution. In
particular, we wish to highlight the substantial effect of overlap correction on the shape of both
the stimulus-onset ERP (elicited by the faces) and the response-related ERP (elicited by the
button press), despite the fact that average RT was relatively long (> 800 ms) in this task.
Microsaccades have an additional distorting effect (Dimigen et al., 2009). We can therefore
easily imagine how without any overlap correction, differences in mean RT and microsaccade
occurrence between condition will create spurious condition effects in the stimulus-ERP. A
more complex application where we correct for similar spurious effects in a natural reading

EEG experiment with 48 participants is found in Dimigen & Ehinger (2018).

DISCUSSION

Human behavior in natural environments is characterized by complex motor actions and
quasi-continuous, multisensory stimulation. Brain signals recorded under such conditions are
characterized by overlapping activity evoked by different processes and typically also
influenced by a host of confounding variables that are difficult or impossible to orthogonalize
under quasi-experimental conditions. However, even in traditional, highly controlled
laboratory experiments, it is often unrealistic to match all stimulus properties between
conditions, in particular if the stimuli are high-dimensional, such as words (e.g. word length,
lexical frequency, orthographic neighborhood size, semantic richness, number of meanings
etc.) or faces (e.g., luminance, contrast, power spectrum, size, gender, age, facial expression,
familiarity etc.). In addition, as we demonstrate here, even simple EEG experiments often
contain overlapping neural responses from multiple different processes such as stimulus onsets,
eye movements, or button presses. Deconvolution modeling allows us to disentangle and

isolate these different influences to improve our understanding of the data.

In this article, we presented unfold, which deconvolves overlapping potentials and

controls for linear or non-linear influences of covariates on the EEG. In the following, we will
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discuss in more detail the assumptions, possibilities, and existing limitations of this approach

as well as current and future applications.

Where can linear deconvolution be applied?

Linear deconvolution can be applied to many types of paradigms and data. As shown
above, one application is to separate stimulus- and response-related components in traditional
ERP studies (see also Ouyang et al., 2011, 2015). Deconvolution is also particularly useful
with complex ERP designs that involve, for example, multimodal streams of visual, tactile, and
auditory stimuli (Spitzer et al., 2016). Deconvolution is also helpful in paradigms where it is
problematic to find a neutral interval to place a baseline, for example in experiments with fast
tone sequences (Liitkenhoner, 2010). In ERP research, the interval for baseline correction is
usually placed immediately before stimulus onset, but activity in this interval can vary
systematically between conditions due to overlapping activity, for example in self-paced
paradigms (e.g. Ditman, Holcomb, & Kuperberg, 2007). This problem can be solved by
deconvolving the signal first and applying the baseline subtraction to the resulting isolated

responses.

Time-continuous covariates

It is also possible to add time-continuous signals as predictors to the design matrix
(Crosse et al., 2016; Lalor, Pearlmutter, Reilly, McDarby, & Foxe, 2006). Examples for
continuous signals that could be added as predictors include the luminance profile of a
continuously flickering stimulus (Lalor et al., 2006; VanRullen & MacDonald, 2012), the
sound envelope of an audio or speech signal (with temporal lags to model the auditory temporal
response function, Crosse, et al., 2016), the participants gaze position or pupil size (from
concurrent eye-tracking, see Dimigen & Ehinger, 2018), but also more abstract time series,
such as predictions from a cognitive computational model. Including time-continuous
covariates such as gait-signals, movement features, or environmental sounds could improve the
model fit in mobile EEG situations (Ehinger et al., 2014; Gramann, Jung, Ferris, Lin, &
Makeig, 2014).

Underlying assumptions

A fundamental assumption of traditional ERP averaging is that the shape of the
underlying neural response is identical in all trials belonging to the same condition. Trials with
short and long manual reaction times are therefore usually averaged together. Similarly, with

linear deconvolution modeling, we assume that the brain response is the same for all events of
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a given type. However, like in traditional ERP analyses, we also assume that the neural
response is independent of the interval between two subsequent events (e.g. the interval
between a stimulus and a manual response). This is likely a strong simplification, since neural

activity will likely differ between trials with a slow or fast reaction.

A related assumption concerns sequences of events: Processing one stimulus can change
the processing of a following stimulus, for instance due to adaptation, priming, or other
attentional effects. We want to note that if such sequential effects occur often enough in an
experiment, they can be explicitly modeled; for example, on could add an additional predictors
coding whether a stimulus is repeated or not or whether it occurred early or late in a sequence
of stimuli. We hope that the unfold toolbox will facilitate the analysis of simulations on these
issues and also propose to analyze experiments where temporal overlap is experimentally

varied.

Modeling nonlinear effects

Nonlinear predictors can have considerable advantages over linear predictors. However,
one issue that is currently unresolved is how to select an appropriate number of spline functions
to model a nonlinear effect without under- or overfitting the data. While automatic selection
methods exist (e.g. based on generalized cross-validation, Wood, 2017), their high
computational cost precluded us from using these techniques. In the current implementation of
unfold, we assume the same number of splines are needed for all parts of the response. But it
is possible, for example, that with a constant number of splines the baseline interval is
overfitted, whereas the true response is underfitted. Therefore, algorithms to find smoothing
parameters need to take into account that the amount of smoothing changes throughout the
response. Choosing the correct number of splines that neither overfit nor underfit the data is an
important question to resolve, and again, we hope that the unfold toolbox will facilitate future

simulation studies, new algorithms, and new experiments on this issue.

Time-frequency analysis

While all example analyses presented here were done in the time domain, it is also
possible to model and deconvolve overlapping time-frequency representations with unfold.
One simple option is to enter the band-bass filtered and rectified EEG signal into the model,

an alternative is to use the full continuous time-frequency representation (Litvak et al., 2013).
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Outlook: Integration with linear mixed models

In recent years, linear mixed-effects models (LMM, e.g. Gelman & Hill, 2007) have been
slowly superseding traditional models like repeated-measures ANOVA or the two-stage
hierarchical approach used here. LMMs allow to model the hierarchical structure of single-
subject and group-level data directly and have several other advantages, for example when
analyzing unbalanced designs (Baayen, Davidson, & Bates, 2007; Kliegl, 2010). Combining
LMMs with linear deconvolution is theoretically possible. The main challenge is that one needs
to fit all continuous EEG datasets of all participants at the same time. Thus, currently, the high
computational cost of fitting such large models precludes us from taking advantage of mixed
models. Nevertheless, recent progress with similarly large models (Wood, Li, Shaddick, &
Augustin, 2017) shows that the combination of LMMs with deconvolution modeling might be

computationally feasible in future implementations.

Other physiological signals

Finally, it is also possible to model other types of overlapping psychophysiological
signals with unfold, such as overlapping magnetic fields (MEG, Litvak et al., 2013), pupil
dilations (Gagl, Hawelka, & Hutzler, 2011; Wierda, van Rijn, Taatgen, & Martens, 2012) or

skin conductance responses (Bach, Flandin, Friston, & Dolan, 2009).

Conclusions

In summary, unfold offers an integrated environment to analyze psychophysiological
data influenced by overlapping responses, (non)linear covariates, or both. As we show above,
this analysis strategy can be beneficial even in case of “traditional”, highly-controlled ERP
experiments. It also allows us to record EEG data under more natural situations, for example
those with unconstrained eye movement behavior, which is typical for the emerging fields of
virtual reality and mobile brain/body imaging studies. Applications of unfold to free viewing
studies can be found in an accompanying paper (Dimigen & Ehinger, 2018). The toolbox is

freely available at http://www.unfoldtoolbox.org with tutorials and documentation.
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