

1 **Comparative genomic analysis revealed rapid differentiation in the**
2 **pathogenicity-related gene repertoires between *Pyricularia oryzae* and**
3 ***Pyricularia penniseti* isolated from a *Pennisetum* grass**

4

5 Huakun Zheng^{a,b#}, Zhenhui Zhong^{b,c#}, Mingyue Shi^{b,c}, Limei Zhang^{b,c}, Lianyu
6 Lin^{b,d}, Yonghe Hong^{b,d}, Tian Fang^{b,c}, Yangyan Zhu^{b,c}, Jiayuan Guo^{b,c}, Limin
7 Zhang^{b,c}, Jie Fang^{b,d}, Hui Lin^a, Justice Norvienyeku^{b,d}, Xiaofeng Chen^e,
8 Guodong Lu^{a,b*}, Hongli Hu^{b,c*}, Zonghua Wang^{b,c,e*}

9

10 ^aNational Engineering Research Center of JUNCAO Technology, College of Life Science,
11 Fujian Agriculture and Forestry University, Fuzhou 350002, China.

12 ^b State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of
13 Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

14 ^cCollege of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002,
15 China.

16 ^d College of life science, Fujian Agriculture and Forestry University, Fuzhou 350002,
17 China.

18 ^e Institute of Oceanography, Minjiang University, Fuzhou 350108, China.

19 [#] These authors contributed to this work equally.

20 *To whom correspondence should be addressed. Email: wangzh@fafu.edu.cn,

21 huhongli7905@gmail.com and gdlufafu@163.com.

22

23 Running title: Whole-genome sequencing of a *Pennisetum*-infecting blast
24 fungus

25

26 Key words: *Pennisetum*, *Pyricularia*, PacBio sequencing,
27 Pathogenesis-related genes, Comparative genomic analysis

28

29 **Corresponding author:**

30 **Zonghua Wang**

31 Mailing address: Institute of Oceanography, Minjiang University, Fuzhou 350108, China

32 Email: wangzh@fafu.edu.cn

33 Phone number: 86-13706948783

34 **Hongli Hu**

35 Email: uhongli7905@gmail.com

36 Phone number : 86-13599082338

37 **Guodong Lu**

38 National Engineering Research Center of JUNCAO Technology, College of Life Science,
39 Fujian Agriculture and Forestry University, Fuzhou 350002, China.

40 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of
41 Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

42 Email: gdlufafu@163.com

43 Phone number: 86-13950480067

44

45 **Abstract**

46 **Backgrounds:** *Pyricularia* is a multispecies complex that could infect and
47 cause severe blast disease on diverse hosts, including rice, wheat and many
48 other grasses. Although the genome size of this fungal complex is small [~40
49 Mbp for *Pyricularia oryzae* (syn. *Magnaporthe oryzae*), and ~45 Mbp for *P.*
50 *grisea*], the genome plasticity allows the fungus to jump and adapt to new
51 hosts. Therefore, deciphering the genome basis of individual species could
52 facilitate the evolutionary and genetic study of this fungus. However, except for
53 the *P. oryzae* subgroup, many other species isolated from diverse hosts, such
54 as the *Pennisetum* grasses, remain largely uncovered genetically.

55 **Results:** Here, we report the genome sequence of a pyriform-shaped fungal
56 strain *P. penniseti* P1609 isolated from a *Pennisetum* grass (JUJUNCAO)
57 using PacBio SMRT sequencing technology. We performed a phylogenomic
58 analysis of 28 Magnaportheales species and 5 non-Magnaportheales species
59 and addressed P1609 into a *Pyricularia* subclade that is distant from *P. oryzae*.
60 Comparative genomic analysis revealed that the pathogenicity-related gene
61 repertoires were fairly different between P1609 and the *P. oryzae* strain 70-15,
62 including the cloned avirulence genes, other putative secreted proteins, as well
63 as some other predicted *Pathogen-Host Interaction (PHI)* genes. Genomic
64 sequence comparison also identified many genomic rearrangements.
65 **Conclusion:** Taken together, our results suggested that the genomic
66 sequence of the *P. penniseti* P1609 could be a useful resource for the genetic

67 study of the *Pennisetum*-infecting *Pyricularia* species.

68

69

70 **Introduction**

71 *Pyricularia* was established by Saccardo to accommodate a type of fungal
72 species based on the pyriform conidia when the first species of this pathogen,
73 *Pyricularia grisea*, was isolated from crabgrass (*Digitaria sanguinalis* L.) [1].
74 What raised the concern of this *Pyricularia* fungus was the notorious blast
75 disease on rice and wheat caused by one of its species, *Pyricularia oryzae*
76 (syn. *Magnaporthe oryzae*) [2-4]. To date, 100 plant genera comprising of 256
77 species have been documented as the hosts of the *Pyricularia* species
78 (<https://nt.ars-grin.gov/fungaldatabases/fungushost/fungushost.cfm>), among
79 which 54 genera belong to the Poaceae family. Seven *Pyricularia* species
80 (including one unidentified species) have been isolated from *Pennisetum* spp.,
81 a widespread genus in the Poaceae family, and more than one *Pyricularia*
82 species can be found on the same *Pennisetum* species. For instance, 4
83 *Pyricularia* species, namely, *P. penniseti*, *P. penniseticola*, *P. setariae* and
84 *Pyricularia* sp. have been found on *P. typhoides* [5, 6].

85 The genome sequence of *P. oryzae* strain 70-15, a hybrid clone of
86 rice-infecting isolate 104-3 and the weeping love grass isolate AR4 [7] has
87 facilitated the revelation of developmental and pathogenic mechanisms of the
88 blast fungus and rendered it to become one of the most important model
89 fungus [8, 9]. Since the publication of the *P. oryzae* strain 70-15 genome, more
90 field blast isolates were sequenced and assembled, including the Ina168,
91 HN9311, FJ81278, Y34, P131, 98-06 and Guy11 [10-14]. Comparative

92 genomic analyses and functional studies of these strains revealed genome
93 plasticity and the involvement of the lineage specific genes in pathogenicity [12,
94 14]. More recently, facilitated by the fast developing of sequencing
95 technologies, a number of field isolates from rice, as well as isolates from
96 different grass and cereal hosts, were sequenced and subjected to
97 population-level analyses, revealing host immunity as the major force driving
98 specialization after host shift [2, 15-18]. However, genomes of most of the
99 species of the *Pyricularia* complex remain unexplored. For example, among
100 the 7 identified *Pyricularia* species isolated from *Pennisetum* grasses [5], only
101 *P. pennisetigena* was recently sequenced [2].

102 Here, we reported the whole-genome sequence of *P. penniseti* [19]
103 isolated from a *Pennisetum* grass JUJUNCAO (*Pennisetum giganteum* z. x.
104 Lin). JUJUNCAO was originally developed as culture matrix for the cultivation
105 of edible mushrooms by Lin *et al*, and later became a versatile grass that are
106 used as forage for cattle and sheep, material for the biofuel production, and
107 tool for the remedy of soil erosion [20-23]. We have recently isolated a
108 pyriform-shaped fungus, P1609, from leaf spots of JUJUNCAO. P1609 caused
109 a typical blast fungal disease symptom on JUJUNCAO, showing small, round
110 or elliptical lesions as an initial symptom and spindle shaped, grayish to tan
111 necrotic with yellow halos at a later disease stage. Since the morphologic and
112 phylogenetic analyses distinguished P1609 from other identified *Pyricularia*
113 species, but undistinguished from the *P. penniseti* reported in 1970 India [5, 24],

114 we therefore termed this fungus *P. penniseti* [19]. In this study, we performed
115 genome sequencing of this strain, aiming for a proper classification of this
116 fungus in the *Pyricularia* population and identification of genes that may be
117 involved in the adaptation of this fungus to JUJUNCAO.

118

119 **Results**

120 **Genome sequencing and assembly**

121 We sequenced the P1609 genome with the long-read PacBio technology. In
122 total, 312,061 reads with 8.6 Kb average lengths were obtained, representing
123 about 60-fold coverage of the genome (Fig. 1A). The genome sequence was
124 assembled with the HAGP pipeline, resulting in the total assembly space of
125 41.82 Mb (Table 1), similar to assemblies of isolates sequenced by PacBio [10].
126 The assembly contains 53 contigs, with the N50 of 3.4 Mb and the largest
127 contig of 7.56 Mb (Fig. 1B). Contigs > 1Mb cover 89.7% and contigs > 100 Kb
128 cover 98.5% of the genome (Fig. 1B; Table 1), indicating long-continuity of the
129 assembly. The GC content of the assembly is 50.3%, similar to genomes of
130 *Pyricularia* isolates from different host plants, which range from 48.6% to 51%
131 [18]. Genome annotation identified 13,102 genes with average gene size of
132 1,758 bp, fairly evenly dispersed on contigs (Table 2, Fig. 1C, track b).

133 *De novo* repeat sequence analysis identified 7.67% of repeat
134 sequences, among which 4.27% were Gypsy and Copia, the two long terminal
135 repeats (LTR)-type retrotransposons. This finding is consistent with former

136 studies, suggesting that LTR-type retrotransposons are the most expanded
137 transposable elements (TEs) in P1609 genome [25]. The TEs are not evenly
138 distributed along the contigs. While some contigs are enriched with TEs, other
139 contigs have less TE rich regions, suggesting that the P1609 genome also
140 underwent transposon expansion as observed in other plant pathogens [26].

141 **Comparative and phylogenetic analysis**

142 To understand the genetic relationship of P1609 with other fungal
143 phytopathogens, we generated a phylogenetic tree of P1609 with *Botrytis*
144 *cinerea* (Bc), *Colletotrichum gloeosporioides* (Cg), *Fusarium graminearum*
145 (Fg), *Neurospora crassa* (Nc), *Pyricularia oryzae* (Po), *Sclerotinia sclerotiorum*
146 (Ss), *Trichoderma reesei* (Tr) and *Ustilago maydis* (Um). Since P1609 showed
147 a close morphological relationship with *P. oryzae* isolates, we included
148 *Pyricularia* isolates collected from different host plants, including *Oryza sativa*
149 (PoOs), *Triticum aestivum* (PoTa), *Digitaria sanguinalis* (PoDs), *Setaria viridis*
150 (PoSv), and *Eleusine indica* (MoEi). In total, 2,051 single-copy genes shared
151 by all the examined genomes were selected to infer phylogeny [27]. The
152 resulting phylogenetic tree indicated that P1609 is more divergent with PoOs,
153 PoTa, PoSv, and PoEi (*P. oryzae*) in contrast to PoDs (*P. grisea*) (Fig. 2A). We
154 then estimated divergence time of P1609 and *Pyricularia* isolates by assuming
155 a constant molecular clock calibrated in a previous study, which estimated the
156 divergence of *Neurospora* and *Pyricularia* at about 200 million years ago
157 (MYA). The estimation indicated that P1609 and *Pyricularia* isolates diverged

158 at about 31 MYA, earlier than the divergent time of rice- and *S. viridis*-infecting
159 isolates (about 10,000 years ago) [28, 29]. The phylogenetic tree also
160 indicated that P1609 is a member of Magnaporthales, but is distantly related to
161 the *Pyriculaira* isolates collected from PoOs, PoTa, PoDs, PoSv, and PoEi. To
162 further determine exactly where P1609 localized in Magnaporthales, we also
163 generated a phylogenomic tree of P1609 with 28 Magnaporthales species and
164 5 non-Magnaporthales species using amino acid sequences of 226 conserved
165 orthologous genes as described [30]. The result showed that P1609 was
166 localized in the *Pyricularia* subclade, and was closer to *P. oryzae* than
167 *Xenopyricularia zizaniicola* (Fig. 2B), indicated that P1609 is a *Pyricularia*
168 species.

169 We next conducted a comparative genomic study of P1609 with 70-15
170 (the reference isolate of *P. oryzae*), *N. crassa*, *F. graminearum* and *C.*
171 *gloeosporioides*. Venn diagram showed that 5 organisms share 5,454 of gene
172 families with each other, which covers 50.2% of the gene set of P1609 (Fig.
173 2C). Notably, the number of unique genes (no homologs in the selected
174 organisms) in P1609 was 2,210, which is about twice more than the number of
175 unique genes recorded for 70-15. Although most of these unique genes had no
176 functional annotations, Pfam annotation indicated that some of the unique
177 genes encode carbohydrate-active enzymes involved in polysaccharides
178 metabolism pathways. The high representation of carbohydrate-active
179 enzymes may be related to the adaptation to the host *P. giganteum* (Fig. S1).

180 We therefore scanned natural selection of 5,991 pairs of orthologs of *P. oryzae*
181 and P1609, identifying 6 genes with Ka/Ks > 1 (Table 3). These genes are
182 involves in different secondary metabolic pathways.

183

184 **Gene Categories Involved in Pathogenicity**

185 Plant pathogenic fungi employed diverse gene repertoires to invade host
186 plants and subvert host immune systems, which include effectors,
187 carbohydrate-active enzymes (CAZymes), other secreted enzymes and fungal
188 secondary metabolisms [31, 32]. P1609 and *P. oryzae* isolates are divergent
189 and no cross-infectivity exists between them. To understand their secretomic
190 difference, we first compared predicted secretomes between P1609 and the *P.*
191 *oryzae* isolates. Among 1,409 putative secreted proteins of P1609, 236 were
192 unique in P1609 (Table S1). By contrast, 165 putative effectors in the 70-15
193 genome were absent in the P1609 genome (Table S2). Notably, all known
194 avirulence genes (AVRs) from the rice-infecting isolate genomes were absent
195 in P1609 genome.

196 We next compared CAZymes of P1609, groups of enzymes enable
197 plant pathogens to break down the plant cell wall [33]. Our BLASTp search
198 results showed that P1609 contains more predicted CAZyme-coding genes
199 than 70-15 (Fig. S2). Detailed analysis showed that the P1609 genome
200 encodes 5 unique CAZyme-coding genes, namely CBM61, GH117, GH35,
201 GH65 and PL24. While it has 6 copies of GH28 pectinases (3 copies in

202 *Pyricularia* species; Fig. S2). We then further analyzed the distribution of
203 annotated PHI genes in P1609. In total, we identified 1,692 potential PHI
204 genes belonging to 1,154 gene families (Table S3). Interestingly, we found that
205 several PHI genes exhibited great expansion in P1609 genome. For instance,
206 *MGG_12656*, a gene involved in virulence in *P. oryzae*, has 107 homologs in
207 P1609, and *ChLae1* contributing to toxin production and virulence in a maize
208 pathogen *Cochliobolus heterostrophus* has 17 homologs in P1609 [34, 35].
209 Compared with 70-15, 35 PHI genes were unique in P1609 (Table 4), most of
210 which had highly similar homologs in *Fusarium (Gibberella)*.

211 **Chromosome rearrangements**

212 To explore genome collinearity and rearrangement between P1609 and 70-15,
213 since 70-15 was assembled into chromosome level and showed a closer
214 phylogenetic relationship with the P1609. The identified collinear gene blocks
215 that linked with different chromosomes in 70-15 (Fig. 3A) were visualized in the
216 contigs (ctgs) of P1609 (Fig. 3B). Generally, P1609 and 70-15 displayed high
217 genome collinearity. Ctg2, ctg3, ctg5 and ctg7 in P1609 correspond to chr.2,
218 chr.6, chr.3 and chr.1 of 70-15, respectively. We found that the second largest
219 contig in the P1609, ctg2, is a recombinant of chr.4 and chr.7 of 70-15 (Fig. 3B).
220 The joining region was spanned by multiple single PacBio long reads (Fig. 4),
221 excluding the possibility that the rearrangement was an artifact due to
222 assembly errors. Meanwhile, notably, contig end region of P1609 showed a
223 higher level of chromosome deletion and rearrangement (Fig. 3c). For instance,

224 ctg4 and ctg8 were merged by blocks from chr.1 and chr.3 at the end of the
225 contig, while ctg9 was merged by blocks from chr.3 and chr.5 at the end of the
226 contig (Fig. 3B).

227

228 **Discussion**

229 Although the genome size of *Pyricularia* species is small, it is well-known for its
230 complicated genomic plasticity. Here we sequence the genome of *P. penniseti*
231 using the PacBio SMRT technology. Comparative genomic analysis revealed
232 several chromosome rearrangement events and difference in
233 pathogenicity-related gene repertoires between the *P. penniseti* strain P1609
234 and the *P. oryzae* strain 70-15.

235 **Chromosome fission and fusion**

236 Long-read sequencing greatly improved genome assembly and thus provided
237 more valuable details on genome structures at a chromosome level. By
238 comparing the chromosome structure between P1609 and 70-15, we found
239 several chromosome splitting and rearrangement events. Chromosomal
240 rearrangements have been reported to be associated with virulence evolution
241 in several pathogens by losing the AVR gene(s) [26, 36, 37]. Our results
242 indicated frequent chromosome rearrangement and splitting in the blast fungi,
243 and the telomere regions are very unstable in its haploid genome during the
244 adaptation to different host species. Further study is required to investigate the
245 role of the chromosome recombination during the adaptation to JUJUNCAO.

246 **Unique genes and positively selected genes**

247 In this study, we found 2,210 unique genes that were absent in the 70-15
248 genome. The P1609 genome encodes more CAZymes than 70-15 genome.
249 For example, P1609 contains twice the number of genes encoding glycosyl
250 hydrolase family 28 (GH28) pectinases in 70-15. Generally, necrotrophic plant
251 pathogens possess more GH28 enzymes than biotrophic and non-pathogens
252 fungi [38]. These results suggested that P1609 might heavily rely on CAZymes
253 in the interaction with JUJUNCAO.

254 To identify the positively selected genes, we detected with Ka>Ks from
255 5,991 orthologous pairs between *P. oryzae* and P1609 and identified 6 genes
256 with Ka>Ks in P1609. Functional annotation showed that most of these genes
257 involved in secondary metabolic pathways. For example, P1609_5032
258 encodes an isoamyl alcohol oxidase that turns isoamyl alcohol into
259 isovaleraldehyde [39]. In *Saccharomyces cerevisiae*, isoamyl alcohol could
260 induce filament formation [40]. P1609_5032 might play a role in fungal
261 development through controlling the level of isoamyl alcohol. P1609_791
262 encodes a folylpolyglutamate synthase involved in biosynthesis of folate,
263 required for protein synthesis of bacterial, mitochondrial, and chloroplast,
264 including purines, dTMP, methionine, and formyl-methionyl-tRNA [41].
265 P1609_3360 encodes a glycerol uptake protein, which is an important
266 intracellular osmolyte participating in osmotic stress response [42] and critical
267 for the function of appressorium in *P. oryzae* [43]. P1609_7869 encodes a

268 spore surface glycoprotein. Its homologs have been proved to be involved in
269 spore adhesion to hydrophobic surface in several *Colletotrichum* species
270 [44-46] rather than spore tip mucilage as in *P. oryzae* [47]. P1609_1006
271 encodes a BclB glycoprotein (collagen-like protein). Its homologs in *Bacillus*
272 *anthracis* were important components of the infection-associated structure
273 exosporium [48-50], although its role in filamentous pathogens remains
274 unknown. The positive selection on these genes suggested that they might
275 play roles in the interaction between P1609 and JUJUNCAO.

276 **Putative secreted proteins**

277 There are two layers of plant immunity: the pathogen-associated molecular
278 patterns (PAMPs)-triggered immunity (PTI), and the effector-triggered immunity
279 (ETI). It was previously proposed by Schulze-Lefert and Panstruga that ETI is
280 the major force driving the host specificity of pathogens [51]. Our previously
281 study focusing on *AVR* gene evolution of the *Pyricularia* species also revealed
282 that directional selection exerted by host plants is the direct force driving host
283 specificity in *Pyricularia* species [18]. Recent studies on the *P. oryzae*
284 populations revealed that divergent host immunity systems (both PTI and ETI)
285 in japonica (*Oryza sativa* subsp. xian) and indica (*Oryza sativa* subsp. geng),
286 determining the deposition of effector repertoires and specialization to the two
287 subspecies [15-17]. Our comparative genomic analysis showed that P1609
288 contains a large number of unique effector candidates by comparing with
289 70-15, but lost many putative effectors in the 70-15 genome, including all

290 known AVR effectors. One possible explanation is that the JUJUNCAO harbors
291 a high level of basal immunity, as well as an arsenal of resistance genes, which
292 driven P1609 to gain a lot of effectors to overcome the robust basal immunity
293 posed by JUJUNCAO, and at the meanwhile, abandoned the AVR genes that
294 could be recognized by the *R* genes from JUJUNCAO.

295 **Conclusion**

296 *Pyricularia* species are pathogens of either food- or forage grasses. The model
297 fungus *P. oryzae* had been well studied. However, there are only a few
298 whole-genome sequences available of other species, such as those from
299 *Pennisetum* grasses. Here, we generated long-read PacBio reads and
300 produced a assemblage with long-continuity contig sequences. Phylogenomic
301 and comparative genomic analysis showed that P1609 is a *Pyricularia* species
302 genetically distant with *P. oryzae*, and the two genomes vary substantially in
303 their pathogenicity-related gene repertoires. In summary, the P1609 assembly
304 and genome annotation represents the few available *Pyricularia* genome
305 resources for studying the pathogenic mechanism of this fungus towards
306 *Pennisetum* grasses.

307

308 **MATERIALS AND METHODS**

309 **Isolation of the fungal strain**

310 The *Pennisetum*-infecting strain P1609 was isolated from the leaf spot lesion
311 of JUJUNCAO (*Pennisetum giganteum* z. x. Lin), in the nursery of National

312 Engineering Research Center of JUNCAO Technology, Fujian Agriculture and
313 Forestry University located at No. 63 Xiyuangong Road, Minhou County,
314 Fuzhou, Fujian Province, China.

315 **DNA extraction, amplification and sequencing**

316 To prepare the genomic DNA for sequencing, the P1609 isolate was cultured in
317 the liquid complete medium (CM) in a 110-rpm shaker at 25 °C for 3 to 4 days.
318 The mycelia were then collected for the preparation of genomic DNA using a
319 CTAB method as previously described [18]. Sequencing libraries were
320 prepared using the SMRTbellTM Template Prep Kit 1.0 (PACBIO) and
321 sequenced using PacBio Sequel platform (NovoGene, China).

322 **Assembly and annotation**

323 *De novo* sequence assembly was conducted by SMRTLink v. 5.0.1.10424,
324 HGAP 4 pipeline provided by Pacific Bioscience Company. In HGAP 4 pipeline,
325 the expected genome size was set as 45 Mb based on the reported size of
326 *Pyricularia* genomes, and default settings were used for other parameters.
327 Gene prediction was conducted using Fgenesh from SoftBerry (MolQuest II
328 v2.4.5.1135, <http://linux1.softberry.com/berry.phtml>) with *Pyricularia* additional
329 variants as training organism. Gene functional domain annotation was
330 conducted by InterproScan (version 4.8, <http://www.ebi.ac.uk/interpro/>), and
331 PfamScan [52]. Pathogen-Host Interaction (PHI) genes were predicted by
332 performing a whole genome blastp analysis against the PHI database ($E < 10^{-10}$)
333 [53, 54]. Putative carbohydrate-active enzymes (CAZymes) were identified

334 using the HMMER 3.1b1 by searching annotated HMM profiles of CAZymes
335 downloaded from the dbCAN database in protein sequences of P1609 [55].

336 **Repeat analysis**

337 *De novo* repeat sequence identification was analyzed by using RepeatModeler
338 (version 1.0.8) with default settings. Repeat sequences obtained from
339 RepeatModeler have been used to search for repeat sequences in the P1609
340 genome by RepeatMasker (version 3.3.0) (<http://www.repeatmasker.org/>) [56].

341 **Phylogenetic analysis and comparative genomic analysis**

342 Phylogenomic tree of P1609 and *B. cinerea* [57], *C. gloeosporioides* [58], *F.*
343 *graminearum* [59], *N. crassa* [60], *P. oryzae* [8], *S. sclerotiorum* [57], *T. reesei*
344 [61] and *U. maydis* [62] was built based on single copy orthologs from
345 clustering result of OrthoFinder (v0.6.1) [27]. 2,051 single copy genes have
346 been selected out from 13 organisms in total (see Fig. 1A) and aligned with
347 MAFFT (mafft-linsi-anysymbol) [63]. The phylogenetic tree was constructed
348 using FastTree based on the alignments of single-copy orthologs with
349 approximately-maximum-likelihood model and bootstrap 100 [64]. For
350 divergence time estimation, the phylogenetic analysis was conducted using
351 r8s (version 1.81), and the divergence time of *Pyricularia* and *Neurospora* (200
352 MYA) was used as a reference [29, 65]. Clustering result of 13 genomes was
353 also used for unique gene identification and comparative genomic analysis.
354 We used MCScanX to identified syntenic blocks between P1609 and 70-15. To
355 detect the conserved synteny blocks, the reciprocal best-match paralogs of

356 P1609 and 70-15 were conducted by all-against-all BLASTP comparison, with
357 E-value $<10^{-10}$ [66].

358

359 **List of abbreviations**

360 **Bc:** *Botrytis cinerea* (*B. cinerea*); **Cg:** *Colletotrichum gloeosporioides* (*C. gloeosporioides*); **Fg:** *Fusarium graminearum* (*F. graminearum*); **Nc:**
361 *Neurospora crassa* (*N. crassa*); **P. grisea:** *Pyricularia grisea*; **Po:** *Pyricularia*
362 *oryzae* (*P. oryzae*); **Ss:** *Sclerotinia sclerotiorum* (*S. sclerotiorum*); **Tr:**
363 *Trichoderma reesei* (*T. reesei*); **Um:** *Ustilago maydis* (*U. maydis*); **PoDs:**
364 *Pyricularia* strain isolated from *Digitaria sanguinalis*; **PoSv:** *Pyricularia* strain
365 isolated from *Setaria viridis*; **MoEi:** *Pyricularia* strain isolated from *Eleusine*
366 *indica*; **PoOs:** *Pyricularia* strain isolated from *Oryza sativa*; **PoTa:** *Pyricularia*
367 strain isolated from *Triticum aestivum*; **P. penniseti:** *Pyrularia penniseti*; **P.**
368 **giganteum:** *Pennisetum giganteum*; **P. penniseticola:** *Pyricularia*
369 *penniseticola*; **P. setariae:** *Pyricularia setariae*; **P. typhoides:** *Pennisetum*
370 *typhoides*; **AVR gene:** avirulence gene; **CAZymes:** carbohydrate-active
371 enzymes; **CBM:** Carbohydrate-Binding Module Family; **chr:** chromosome; **CM:**
372 complete medium; **CTAB:** Cetyltrimethyl Ammonium Bromide; **ctg:** contig; **ETI:**
373 effector-triggered immunity; **GH:** glycosyl hydrolase family pectinases; **LTR:**
374 long terminal repeats; **MYA:** million years ago; **PHI:** Pathogen-Host Interaction;
375 **PL:** Polysaccharide Lyase Family; **PTI:** pathogen-associated molecular pattern
376 (**PAMPs**)-triggered immunity; **R genes:** resistance gene; **SMRT:**
377 (**PAMPs**)-triggered immunity;

378 Single-Molecule Real-Time; **TE**: transposable elements.

379

380 **Declarations**

381 **Ethics approval and consent to participate**

382 Not applicable.

383

384 **Consent for publication**

385 Not applicable.

386

387 **Availability of data and materials**

388 Genome assembly and PacBio reads are available in GenBank under
389 BioProject PRJNA416656. The Whole Genome sequence has been deposited
390 at GenBank under the accession PELF00000000.

391

392 **Competing interests**

393 The authors declare that they have no competing interests.

394

395 **Funding**

396 This work was supported by grants from the Natural Science Foundations of
397 China to Z.W (31770156), the Scientific Research Foundation of the Graduate
398 School of FAFU to Z.Z, and the State Key Laboratory of Ecological Pest
399 Control for Fujian and Taiwan Crops to H.Z (SKB2017002).

400 **Authors' contributions**

401 The study was conceived and designed by ZW and GL. The initial collection
402 and culturing of the strain was performed by HZ, XC, HH, MS, LZ, TF, YZ, JG,
403 LZ, JF and HL. Bioinformatics was performed by ZZ, and LL. ZZ, HZ, JN, GL
404 and ZW wrote, revised and approved the manuscript. All authors read and
405 approved the final manuscript.

406

407 **Acknowledgments**

408 We would like to thank Dr. Sanzhen Liu at Kansas State University for critically
409 reading the manuscript.

410

411 **Open Access**

412 This article is distributed under the terms of the Creative Commons Attribution
413 4.0 International License (<http://creativecommons.org/licenses/by/4.0/>), which
414 permits unrestricted use, distribution, and reproduction in any medium,
415 provided you give appropriate credit to the original author(s) and the source,
416 provide a link to the Creative Commons license, and indicate if changes were
417 made. The Creative Commons Public Domain Dedication waiver
418 (<http://creativecommons.org/publicdomain/zero/1.0/>) applies to the data made
419 available in this article, unless otherwise stated.

420

421 **Additional files**

422 **Additional files 1: Table S1.** P1609_vs_7015_unique_seceted

423 **Additional files 2: Table S2.** 70-15 VS P1609 unique secreted proteins

424 **Additional files 3: Table S3.** Predicted PHI in P1609

425 **Additional files 4: Figure S1.** Gene copy numbers of CAZymes in *Botrytis cinerea* (Bc),

426 *Colletotrichum gloeosporioides* (Cg), *Fusarium graminearum* (Fg), *Neurospora crassa*

427 (*Nc*), *Sclerotinia sclerotiorum* (Ss), *Trichoderma reesei* (Tr) and *Ustilago maydis* (Um) as

428 well as *Pyricularia* isolates collected from *O. sativa* (PoOs), *T. aestivum* (PoTa), *D.*

429 *sanguinalis* (PoDs), *S. viridis* (PoSv), and *E. indica* (PoEi). Log2 Copy Number presents

430 variation of copy number with increased red color means increased number of CAZymes.

431 **Additional files 5: Figure S2.** GH28 of P1609 (P1609_11576, P1609_5879, P1609_2497,

432 P1609_5781, P1609_680 and P1609_5514)) and PoOs (MGG_09608, MGG_08752 and

433 MGG_08938), PoDs (Ds0505_9820). Extra copies of GH28 in P1609 is marked by blue.

434

435 **References**

436 1. Saccardo P. *Fungorum Extra-Europaeorum pugillus*. *Michelia*. 1880;

437 2(6):136-149.

438 2. Gladieux P, Condon B, Ravel S, Soanes D, Leodato Nunes Maciel J,

439 Nhani J, Antonio. , Chen L, Terauchi R, Lebrun M-H, Tharreau D et al.

440 Gene flow between divergent cereal- and grass-specific lineages of the

441 rice blast fungus *Magnaporthe oryzae*. *mBio*. 2017:9:e01219-01217.

442 3. Igarashi S, Utiamada C, Igarashi L, Kazuma A, Lopes R. *Pyricularia* em

443 trigo. 1. Ocorrência de *Pyricularia* sp. no estado do Paraná. *Fitopatologia*

444 Brasileira. 1986; 11:351-352.

445 4. Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant
446 infection by *Magnaporthe oryzae*. *Nat Rev Microbiol*. 2009; 7(3):185-195.

447 5. Klaubauf S, Tharreau D, Fournier E, Groenewald JZ, Crous PW, de Vries
448 RP, Lebrun MH. Resolving the polyphyletic nature of *Pyricularia*
449 (Pyriculariaceae). *Stud Mycol*. 2014; 79:85-120.

450 6. Lenne JM. A world list of fungal diseases of tropical pasture species.
451 *Australasian Plant Pathology*. 1991; 20(3):122-124.

452 7. Chao CCT, Ellingboe AH. Selection for mating competence in
453 *Magnaporthe grisea* pathogenic to rice. *Canadian Journal of Botany*. 1991;
454 69(10):2130-2134.

455 8. Dean RA, Talbot NJ, Ebbbole DJ, Farman ML, Mitchell TK, Orbach MJ,
456 Thon M, Kulkarni R, Xu JR, Pan H et al. The genome sequence of the rice
457 blast fungus *Magnaporthe grisea*. *Nature*. 2005; 434(7036):980-986.

458 9. Yan X, Talbot NJ. Investigating the cell biology of plant infection by the rice
459 blast fungus *Magnaporthe oryzae*. *Curr Opin Microbiol*. 2016; 34:147-153.

460 10. Bao J, Chen M, Zhong Z, Tang W, Lin L, Zhang X, Jiang H, Zhang D, Miao
461 C, Tang H. PacBio Sequencing Reveals Transposable Element as a Key
462 Contributor to Genomic Plasticity and Virulence Variation in *Magnaporthe*
463 *oryzae*. *Mol Plant*. 2017; DOI: 10.1016/j.molp.2017.1008.1008.

464 11. Chen C, Lian B, Hu J, Zhai H, Wang X, Venu RC, Liu E, Wang Z, Chen M,
465 Wang B et al. Genome comparison of two *Magnaporthe oryzae* field

466 isolates reveals genome variations and potential virulence effectors. BMC
467 Genomics. 2013; 14:887.

468 12. Dong Y, Li Y, Zhao M, Jing M, Liu X, Liu M, Guo X, Zhang X, Chen Y, Liu Y
469 et al. Global genome and transcriptome analyses of *Magnaporthe oryzae*
470 epidemic isolate 98-06 uncover novel effectors and pathogenicity-related
471 genes, revealing gene gain and lose dynamics in genome evolution. PLoS
472 Pathog. 2015; 11(4):e1004801.

473 13. Xue M, Yang J, Li Z, Hu S, Yao N, Dean RA, Zhao W, Shen M, Zhang H, Li
474 C et al. Comparative analysis of the genomes of two field isolates of the
475 rice blast fungus *Magnaporthe oryzae*. PLoS Genet. 2012; 8(8):e1002869.

476 14. Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Tosa Y,
477 Chuma I, Takano Y, Win J, Kamoun S et al. Association genetics reveals
478 three novel avirulence genes from the rice blast fungal pathogen
479 *Magnaporthe oryzae*. Plant Cell. 2009; 21(5):1573-1591.

480 15. Gladieux P, Ravel S, Rieux A, Cros-Arteil S, Adreit H, Milazzo J, Thierry M,
481 Fournier E, Terauchi R, Tharreau D. Coexistence of Multiple Endemic and
482 Pandemic Lineages of the Rice Blast Pathogen. mBio. 2018; 9(2).

483 16. Liao J, Huang H, Meusnier I, Adreit H, Ducasse A, Bonnot F, Pan L, He X,
484 Kroj T, Fournier E et al. Pathogen effectors and plant immunity determine
485 specialization of the blast fungus to rice subspecies. eLife. 2016; 5:DOI:
486 10.7554/eLife.19377.

487 17. Zhong Z, Chen M, Lin L, Han Y, Bao J, Tang W, Lin Y, Somai R, Lu L,

488 Zhang W et al. Population genomic analysis of the rice blast fungus
489 reveals specific events associated with expansion of three main clades.
490 ISME J. 2018.

491 18. Zhong Z, Justice N, Chen M, Bao J, Lin L, Chen L, Lin Y, Wu X, Cai Z,
492 Zhang Q. Directional selection from host plants is a major force driving
493 host specificity in *Magnaporthe* species. Sc Rep. 2016; 6:25591. DOI:
494 25510.21038/srep25591.

495 19. Hu H, Zheng H, Yang T, Chen X, Ye W, Lu G, Lin Z, Wang Z. First report of
496 *Pyricularia* leaf spot on *Pennisetum giganteum* (JUJUNCAO) in China.
497 Plant disease. 2018:Submitted.

498 20. Lin X, Lin Z, Lin D, Lin H, Luo H, Hu Y, Lin C, Zhu C. Effects of Planting
499 *Pennisetum* sp. (Giant Juncao) on Soil Microbial Functional Diversity and
500 Fertility in the Barren Hillside. Acta Ecologica Sinica. 2014;
501 34(15):4304-4312.

502 21. Lin ZX, Lin DM, Su DW, Lin H, Jing L, Zheng D, Yu S-K. Effect of Different
503 Salt-affected Soils on Biological Characteristics of *Pennisetum* sp..
504 Southwest Chin J Agr Sci. 2015; 28(2):675-680.

505 22. Shi J, Lin ZX, Lin DM, De-Wei SU, Luo HL, Lin XS, Lin ZS, Zheng D, Chen
506 JH, Yao JX. Enzymolysis conditions of *Pennisetum* sp. cellulose.
507 Pratacultural Sci. 2014; 31(4):760-765.

508 23. Zhu D, Wang P, Lin X, Lin H, Dewei SU, Lin Z. Karyotype analysis of
509 *Pennisetum purpureum* and *Pennisetum giganteum*. Guizhou Agr Sci.

510 2015; 43(5):14-18.

511 24. Prasada R, Goyal JP. A new species of *Pyricularia* on Bajra. Cur Sci. 1970;

512 39(12).

513 25. Muszewska A, Hoffmansommer M, Grynberg M. LTR Retrotransposons in

514 Fungi. Plos One. 2011; 6(12):e29425. DOI: 29410.21371/journal.pone.

515 0029425.

516 26. Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens:

517 why bigger can be better. Nat Rev Microbiol. 2012; 10(6):417-430.

518 27. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole

519 genome comparisons dramatically improves orthogroup inference

520 accuracy. Genome Biol. 2015; 16:157. DOI:

521 110.1186/s13059-13015-10721-13052.

522 28. Couch BC, Fudal I, Lebrun MH, Tharreau D, Valent B, van Kim P,

523 Notteghem JL, Kohn LM. Origins of host-specific populations of the blast

524 pathogen *Magnaporthe oryzae* in crop domestication with subsequent

525 expansion of pandemic clones on rice and weeds of rice. Genetics. 2005;

526 170(2):613-630.

527 29. Hedges SB. The origin and evolution of model organisms. Nat Rev Genet.

528 2002; 3(11):838-849.

529 30. Luo J, Qiu H, Cai G, Wagner NE, Bhattacharya D, Zhang N. Phylogenomic

530 analysis uncovers the evolutionary history of nutrition and infection mode

531 in rice blast fungus and other Magnaporthales. Sci Rep. 2015; 5:9448.

532 31. Chiapello H, Mallet L, Guerin C, Aguileta G, Amselem J, Kroj T,
533 Ortega-Abboud E, Lebrun MH, Henrissat B, Gendrault A et al. Deciphering
534 genome content and evolutionary relationships of isolates from the fungus
535 *Magnaporthe oryzae* attacking different host plants. *Genome Biol Evol.*
536 2015; 7(10):2896-2912.

537 32. Kubicek CP, Starr TL, Glass NL. Plant cell wall-degrading enzymes and
538 their secretion in plant-pathogenic fungi. *Annu Rev Phytopathol.* 2014;
539 52(1):427.

540 33. Zhao Z, Liu H, Wang C, Xu JR. Comparative analysis of fungal genomes
541 reveals different plant cell wall degrading capacity in fungi. *BMC Genomics.*
542 2013; 14:274.

543 34. Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS, Kim S, Goh J, Yoo S,
544 Park JY et al. Genome-wide functional analysis of pathogenicity genes in
545 the rice blast fungus. *Nat Genet.* 2007; 39(4):561-565.

546 35. Wu D, Oide S, Zhang N, Choi MY, Turgeon BG. ChLae1 and ChVel1
547 regulate T-toxin production, virulence, oxidative stress response, and
548 development of the maize pathogen *Cochliobolus heterostrophus*. *PLoS*
549 *Pathog.* 2012; 8(2):e1002542.

550 36. de Jonge R, Bolton MD, Kombrink A, van den Berg GC, Yadeta KA,
551 Thomma BP. Extensive chromosomal reshuffling drives evolution of
552 virulence in an asexual pathogen. *Genome Res.* 2013; 23(8):1271-1282.

553 37. Hartmann FE, Sanchez-Vallet A, McDonald BA, Croll D. A fungal wheat

554 pathogen evolved host specialization by extensive chromosomal
555 rearrangements. ISME J. 2017; 11(5):1189-1204.

556 38. Sprockett DD, Piontkivska H, Blackwood CB. Evolutionary analysis of
557 glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions
558 in necrotrophic fungal pathogens. Gene. 2011; 479(1-2):29-36.

559 39. Yamashita N, Motoyoshi T, Nishimura A. Purification and Characterization
560 of Isoamyl Alcohol Oxidase ("Mureka"-Forming Enzyme). Biosci
561 Biotechnol Biochem. 1999; 63(7):1216-1222.

562 40. Kern K, Nunn CD, Pichova A, Dickinson JR. Isoamyl alcohol-induced
563 morphological change in *Saccharomyces cerevisiae* involves increases in
564 mitochondria and cell wall chitin content. FEMS Yeast Res. 2004;
565 5(1):43-49.

566 41. DeSouza L, Shen Y, Bognar AL. Disruption of cytoplasmic and
567 mitochondrial folylpolyglutamate synthetase activity in *Saccharomyces*
568 *cerevisiae*. Arch Biochem Biophys. 2000; 376(2):299-312.

569 42. Varela JC, Mager WH. Response of *Saccharomyces cerevisiae* to
570 changes in external osmolarity. Microbiology. 1996; 142 (Pt 4):721-731.

571 43. Foster AJ, Ryder LS, Kershaw MJ, Talbot NJ. The role of glycerol in the
572 pathogenic lifestyle of the rice blast fungus *Magnaporthe oryzae*. Environ
573 Microbiol. 2017; 19(3):1008-1016.

574 44. Mercure EW, Kunoh H, Nicholson RL. Adhesion of *Colletotrichum*
575 *graminicola* conidia to corn leaves, a requirement for disease development.

576 *Physiological & Molecular Plant Pathology*. 1995; 45(6):407-420.

577 45. Sela-Buurlage MB, Epstein L, Rodriguez RJ. Adhesion of ungerminated
578 *Colletotrichum musae* conidia. *Physiological & Molecular Plant Pathology*.
579 1991; 39(5):345-352.

580 46. Young DH, Kauss H. Adhesion of *Colletotrichum lindemuthianum* spores to
581 *Phaseolus vulgaris* hypocotyls and to polystyrene. *Applied &*
582 *Environmental Microbiology*. 1984; 47(4):616-619.

583 47. Hamer JE, Howard RJ, Chumley FG, Valent B. A mechanism for surface
584 attachment in spores of a plant pathogenic fungus. *Science*. 1988;
585 239(4837):288-290.

586 48. Thompson BM, Hoelscher BC, Driks A, Stewart GC. Assembly of the BclB
587 glycoprotein into the exosporium and evidence for its role in the formation
588 of the exosporium 'cap' structure in *Bacillus anthracis*. *Molecular*
589 *Microbiology*. 2012; 86(5):1073.

590 49. Thompson BMWLN, Fox KF. The BdB glycoprotein of *Bacillus anthracis* is
591 involved in exosporium integrity. *Journal of Bacteriology*. 2007;
592 189(18):6704.

593 50. Wang Y, Jenkins SA, Gu C, Shree A, Martinez-Moczygemba M, Herold J,
594 Botto M, Wetsel RA, Xu Y. *Bacillus anthracis* spore surface protein BclA
595 mediates complement factor H binding to spores and promotes spore
596 persistence. *PLoS Pathog*. 2016; 12(6):e1005678.

597 51. Schulze-Lefert P, Panstruga R. A molecular evolutionary concept

598 connecting nonhost resistance, pathogen host range, and pathogen
599 speciation. *Trends Plant Sci.* 2011; 16(3):117-125.

600 52. Mistry J, Bateman A, Finn RD. Predicting active site residue annotations in
601 the Pfam database. *BMC Bioinformatics.* 2007; 8:298. DOI:
602 210.1186/1471-2105-1188-1298.

603 53. Urban M, Cuzick A, Rutherford K, Irvine A, Pedro H, Pant R, Sadanandan V,
604 Khamari L, Billal S, Mohanty S et al. PHI-base: a new interface and further
605 additions for the multi-species pathogen-host interactions database.
606 *Nucleic Acids Res.* 2017; 45(D1):D604-D610.

607 54. Winnenburg R, Baldwin TK, Urban M, Rawlings C, Kohler J,
608 Hammond-Kosack KE. PHI-base: a new database for pathogen host
609 interactions. *Nucleic Acids Res.* 2006; 34:D459-D464.

610 55. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for
611 automated carbohydrate-active enzyme annotation. *Nucleic Acids Res.*
612 2012; 40(Web Server issue):W445-451.

613 56. Tarailo-Graovac M, Chen N. UNIT 4.10Using RepeatMasker to Identify
614 Repetitive Elements in Genomic Sequences. 2009; Chapter 4(Unit
615 4):4.10.11-14.10.14.

616 57. Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A,
617 Coutinho PM, de Vries RP, Dyer PS, Fillinger S et al. Genomic analysis of
618 the necrotrophic fungal pathogens *Sclerotinia sclerotiorum* and *Botrytis*
619 *cinerea*. *PLoS Genet.* 2011; 7(8):e1002230. DOI:

620 1002210.1001371/journal. pgen.1002230.

621 58. Gan P, Ikeda K, Irieda H, Narusaka M, O'Connell RJ, Narusaka Y, Takano
622 Y, Kubo Y, Shirasu K. Comparative genomic and transcriptomic analyses
623 reveal the hemibiotrophic stage shift of *Colletotrichum* fungi. *New Phytol.*
624 2013; 197(4):1236-1249.

625 59. Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Pietro AD, Walton JD,
626 Ma LJ, Baker SE, Rep M. The *Fusarium graminearum* genome reveals a
627 link between localized polymorphism and pathogen specialization. *Science.*
628 2007; 317(5843):1400-1402.

629 60. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D,
630 FitzHugh W, Ma LJ, Smirnov S, Purcell S et al. The genome sequence of
631 the filamentous fungus *Neurospora crassa*. *Nature.* 2003; 422(6934):859-
632 868.

633 61. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE,
634 Chapman J, Chertkov O, Coutinho PM, Cullen D et al. Genome
635 sequencing and analysis of the biomass-degrading fungus *Trichoderma*
636 *reesei* (syn. *Hypocrea jecorina*). *Nat Biotechnol.* 2008; 26(5):553-560.

637 62. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, Banuett F,
638 Kronstad JW, Gold SE, Muller O et al. Insights from the genome of the
639 biotrophic fungal plant pathogen *Ustilago maydis*. *Nature.* 2006;
640 444(7115):97-101.

641 63. Kato H, Yamamoto M, Yamaguchiozaki T, Kadouchi H, Iwamoto Y,

642 Nakayashiki H, Tosa Y, Mayama S, Mori N. Pathogenicity, mating ability
643 and DNA restriction fragment length polymorphisms of *Pyricularia*
644 populations isolated from Gramineae, Bambusideae and Zingiberaceae
645 plants. *J Gen Plant Pathol.* 2000; 66(1):30-47.

646 64. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular
647 evolutionary genetics analysis version 6.0. *Mol Biol Evol.* 2013;
648 30(12):2725-2729.

649 65. Sanderson MJ. r8s: inferring absolute rates of molecular evolution and
650 divergence times in the absence of a molecular clock. *Bioinformatics.* 2003;
651 19(2):301-302.

652 66. Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B,
653 Guo H et al. MCScanX: a toolkit for detection and evolutionary analysis of
654 gene synteny and collinearity. *Nucleic Acids Res.* 2012; 40(7):e49. DOI:
655 10.1093/nar/gkr1293.

656

657 **FIGURE LEGENDS**

658 Table 1 Details of sequencing reads and genome assembly of P1609

659

660 Table 2 Details of genome annotation of P1609

661

662 Table 3 Positively selected genes in P1609

663

664 Table 4 Unique Pathogen Host Interaction (PHI) genes in P1609.

665

666 Fig. 1 PacBio sequencing and genome assembly of P1609.

667 (A) Reads length distribution.

668 (B) Contig length of assembled contig > 100 Kb.

669 (C) Overview of P1609 genome. (Track a) Contig1 to contig16 of P1609, (track

670 b) gene density, (track c) Transposon elements density, (track d) secreted

671 proteins density, (track e) unique gene (compared with *P. oryzae*, *N. crassa*, *F.*

672 *graminearum* and *C. gloeosporioides*) density of P1609 per 50 Kb.

673

674 Fig. 2 Phylogenetic and comparative genomic study of P1609.

675 (A) Phylogenomic tree of P1609 with *Botrytis cinerea* (Bc), *Colletotrichum*

676 *gloeosporioides* (Cg), *Fusarium graminearum* (Fg), *Neurospora crassa* (Nc),

677 *Sclerotinia sclerotiorum* (Ss), *Trichoderma reesei* (Tr) and *Ustilago maydis*

678 (Um) as well as *Pyricularia* isolates collected from *O. sativa* (PoOs), *T.*

679 *aestivum* (PoTa), *D. sanguinalis* (PoDs), *S. viridis* (PoSv), and *E. indica* (PoEi)

680 based on 2,051 single copy genes. The values of all of the branches are 100.

681 (B) Maximum likelihood tree of P1609 and 28 Magnaportheales species, as well

682 as 5 Sordariomycetes used as outgroup species based on 82,715 amino acid

683 positions derived from 226 genes.

684 (C) Venn diagram showed an overlap of gene families among P1609,

685 *Pyricularia* rice isolates (PoOs), *C. gloeosporioides* (Cg), *F. graminearum* (Fg)

686 and *N. crassa* (Nc).

687

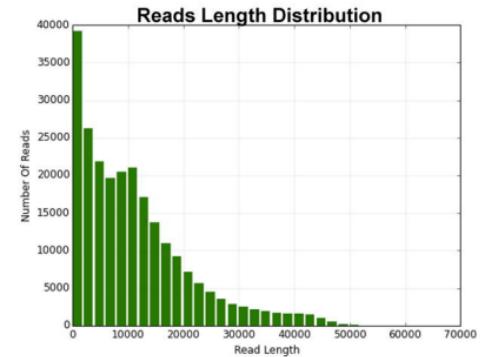
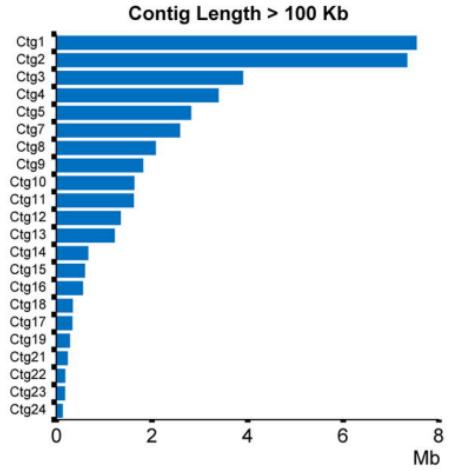
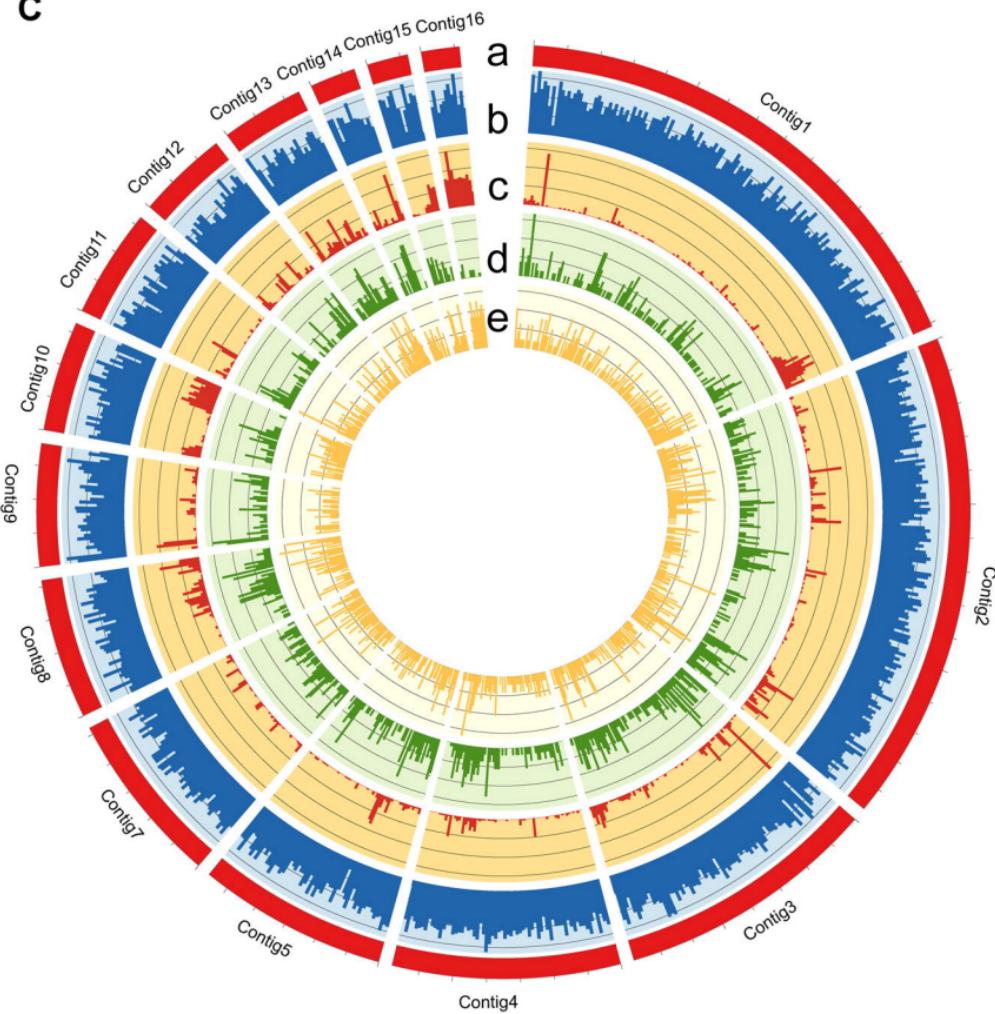
688 Fig. 3 Chromosome rearrangement and splitting between P1609 and 70-15.

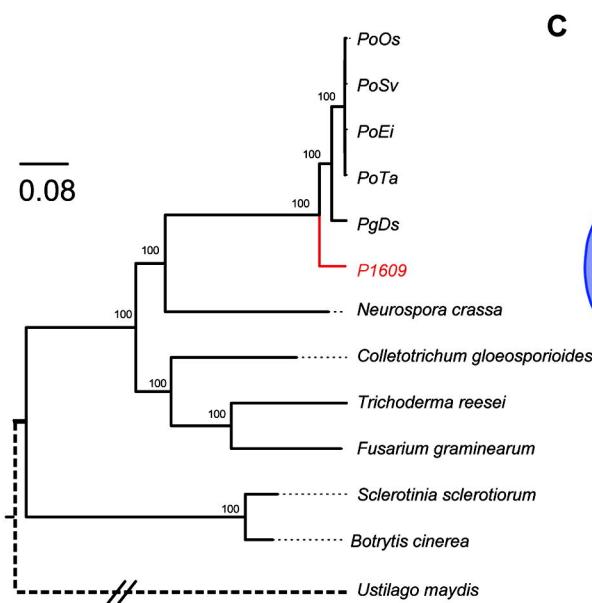
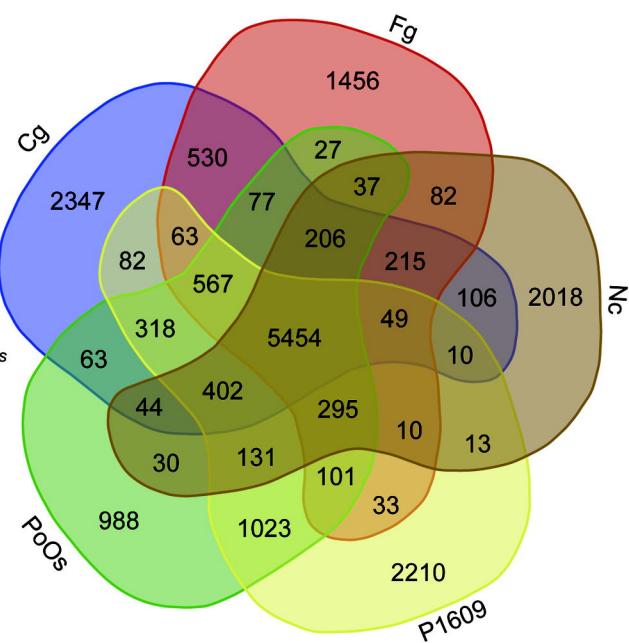
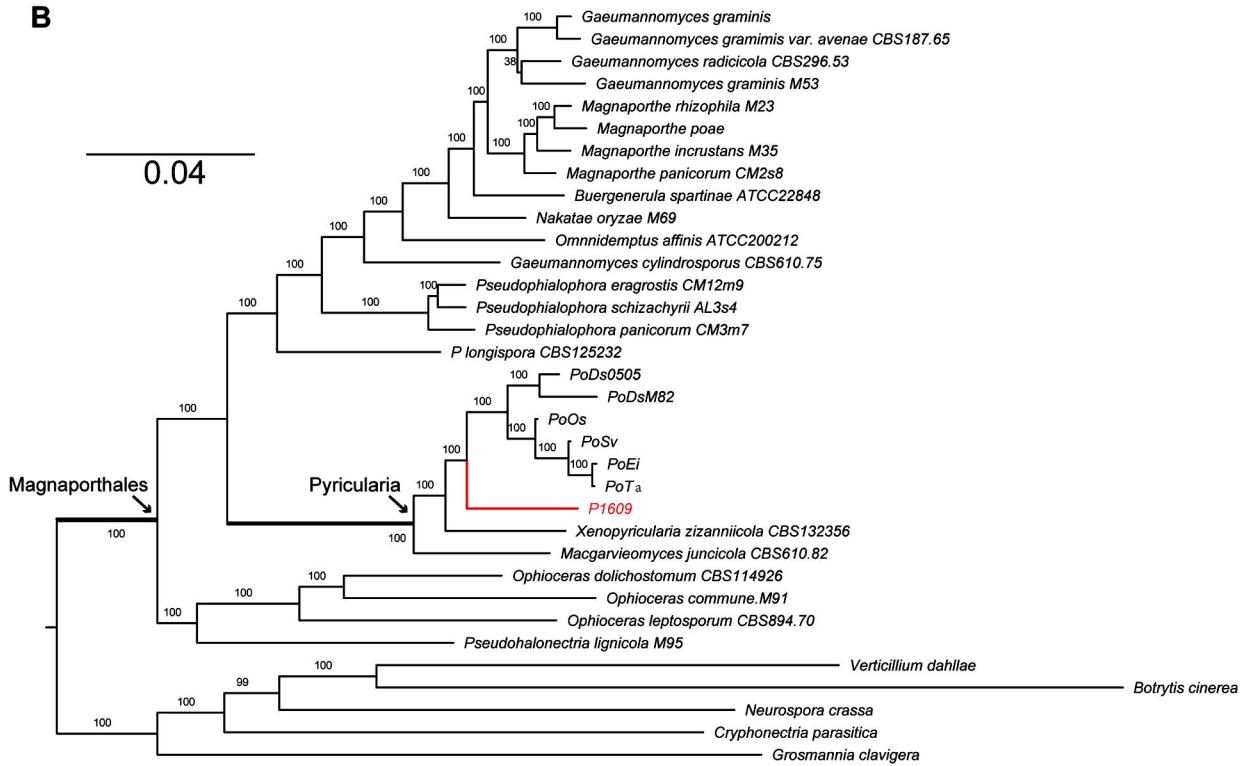
689 (A) Bar plot showing the chromosomes in 70-15.

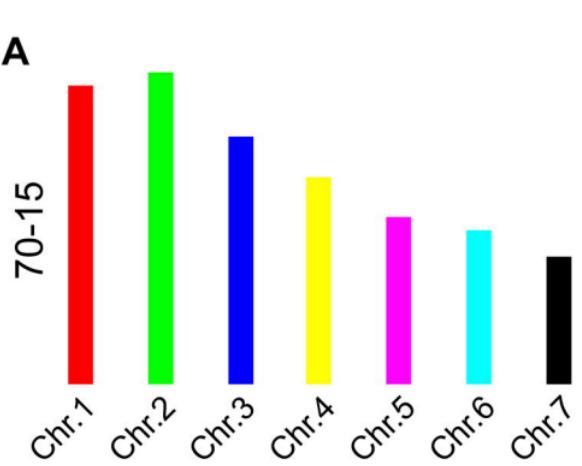
690 (B) Bar plot showing the assembled contigs of P1609. Colinear chromosomes

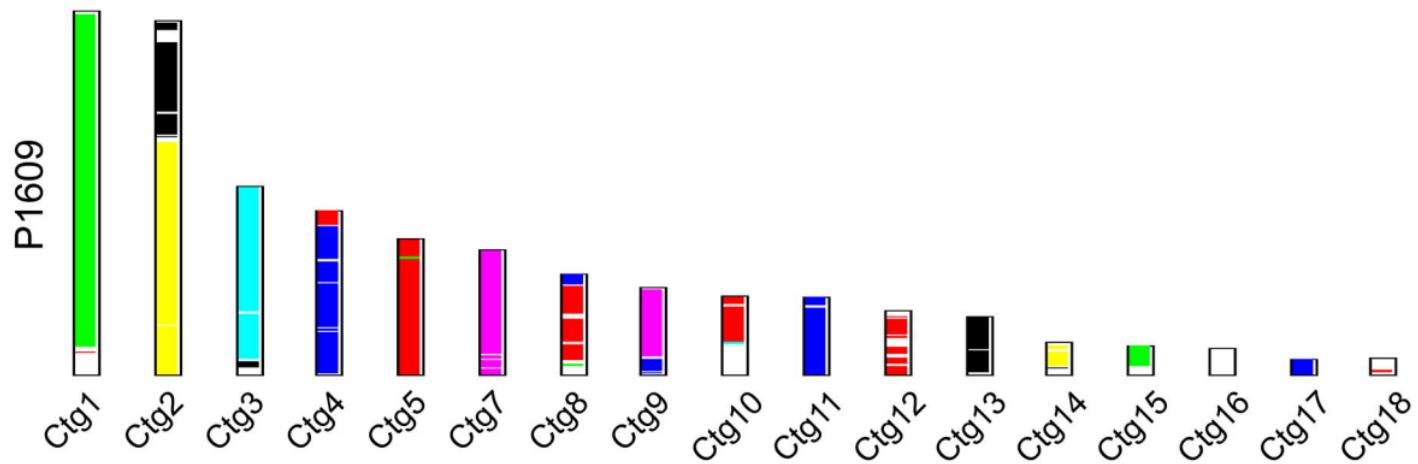
691 of 70-15 and contigs of P1609 are indicated by the same color.

692 (C) Dual synteny plot showing splitting of Ctg2 of P1609 into chr. 4 and chr. 7 in




693 70-15.




694




695 Fig. 4 PacBio long-read coverage from 2.02 to 2.94 Mb of Ctg 2. Color of reads

696 indicate different read lengths.

697

A**B****C**

A**C****B**

A**C****B**

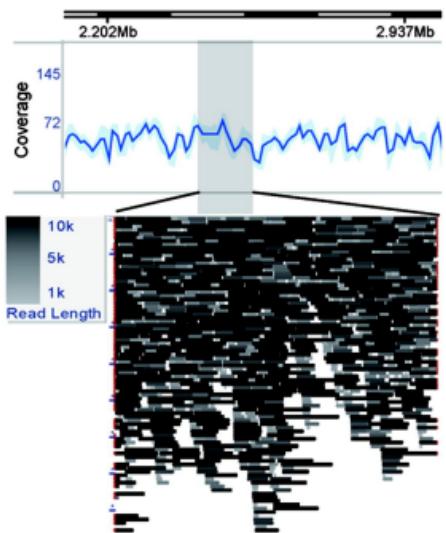


Table 1 Details of sequencing reads and genome assembly of P1609

Feature	Value
Number of Subreads	312,061
Total Length of Subreads (bp)	2,688,966,115
Mean Coverage	59
Polished Contigs	53
Maximum Contig Length (bp)	7,555,856
N50 Contig Length (bp)	3,411,241
Sum of Contig Lengths (Mb)	41.82
GC level	50.30%
length > 1 Mb	89.70%
length > 100 Kb	98.50%

Table 2 Details of genome annotation of P1609

Category	Value
Total TE	7.67%
LINEs	1.50%
LTR elements	4.27%
DNA elements	0.63%
Unclassified	1.27%
Gene Number	13102
Average Gene Length (bp)	1758
Secreted Protein Number	1409

Table 3 Positively selected genes in P1609

Protein ID	Ka	Ks	Ka/Ks	P-Value (Fisher)	Description
P1609_7184	0.707979	0.440748	1.60631	0.00697146	Unknown
P1609_5032	0.550905	0.343609	1.60329	1.98443E-06	Isoamyl alcohol oxidase
P1609_3360	0.183224	0.118517	1.54597	0.00293936	Glycerol uptake protein 1
P1609_791	0.302231	0.199786	1.51277	9.75093E-06	Folylpolyglutamate synthase
P1609_7869	0.491873	0.328109	1.49911	0.0296442	Thioredoxin reductase
P1609_1006	0.40206	0.275456	1.45962	0.0288585	Spore surface glycoprotein BclB

Table 4 Unique Pathogen Host Interaction (PHI) genes in P1609

Protein ID	PHI ID	Reference Organism	Phenotypes
P1609_2497_494aa	PHI:115	<i>Cochliobolus carbonum</i>	Unaffected pathogenicity
P1609_11506_262aa, P1609_12781_266aa, P1609_4501_233aa, P1609_683_218aa	PHI:698	<i>Vibrio cholerae</i>	Reduced virulence
P1609_11592_161aa, P1609_4614_892aa	PHI:1284	<i>Fusarium graminearum</i>	Unaffected pathogenicity
P1609_11335_610aa	PHI:1803	<i>Fusarium graminearum</i>	Unaffected pathogenicity
P1609_9374_326aa	PHI:2394	<i>Fusarium graminearum</i>	Increased virulence
P1609_1007_600aa	PHI:225	<i>Fusarium solani</i>	Reduced virulence
P1609_13007_833aa	PHI:1714	<i>Fusarium graminearum</i>	Lethal
P1609_3609_435aa, P1609_5044_426aa, P1609_8181_460aa, P1609_960_144aa	PHI:1455	<i>Fusarium graminearum</i>	Unaffected pathogenicity
P1609_11548_383aa, P1609_5843_397aa	PHI:1823	<i>Fusarium graminearum</i>	Unaffected pathogenicity
P1609_2665_64aa	PHI:1421	<i>Fusarium graminearum</i>	Lethal
P1609_2607_206aa, P1609_2608_820aa	PHI:3418	<i>Staphylococcus</i> <i>saprophyticus</i>	Mixed outcome
P1609_11380_688aa	PHI:1809	<i>Fusarium graminearum</i>	Lethal
P1609_7767_257aa	PHI:317	<i>Aspergillus fumigatus</i>	Reduced virulence
P1609_6736_447aa	PHI:323	<i>Verticillium fungicola</i>	Reduced virulence
P1609_13_169aa	PHI:1147	<i>Fusarium</i> <i>pseudograminearum</i>	Unaffected pathogenicity
P1609_2376_825aa	PHI:1871	<i>Fusarium graminearum</i>	Lethal
P1609_10320_326aa	PHI:1522	<i>Fusarium graminearum</i>	Lethal
P1609_11485_355aa, P1609_2130_433aa	PHI:3116	<i>Pseudomonas syringae</i>	Mixed outcome
P1609_10203_738aa	PHI:1815	<i>Fusarium graminearum</i>	Unaffected pathogenicity
P1609_11600_2486aa	PHI:2628	<i>Salmonella enterica</i>	Reduced virulence, 663
P1609_11388_1000aa	PHI:3076	<i>Candida parapsilosis</i>	Mixed outcome
P1609_11869_369aa	PHI:2375	<i>Alternaria brassicicola</i>	Mixed outcome
P1609_5035_383aa	PHI:233	<i>Cochliobolus carbonum</i>	Reduced virulence
P1609_5702_488aa	PHI:1271	<i>Fusarium graminearum</i>	Unaffected pathogenicity
P1609_11864_596aa	PHI:2380	<i>Alternaria brassicicola</i>	Mixed outcome