bioRxiv preprint doi: https://doi.org/10.1101/360016; this version posted July 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1 Comparative genomic analysis revealed rapid differentiation in the
2 pathogenicity-related gene repertoires between Pyricularia oryzae and

3 Pyricularia penniseti isolated from a Pennisetum grass

5 Huakun Zheng*", Zhenhui Zhong®®*, Mingyue Shi®®, Limei Zhang®®, Lianyu
6 Lin"Y% Yonghe Hong”?, Tian Fang"®, Yangyan Zhu"®, Jiayuan Guo®®, Limin
7 Zhang®, Jie Fang™® Hui Lin® Justice Norvienyeku®?, Xiaofeng Chen®,

8  Guodong Lu*”, Hongli HU*®, Zonghua Wang®®*’

10  #National Engineering Research Center of JUNCAO Technology, College of Life Science,
11 Fujian Agriculture and Forestry University, Fuzhou 350002, China.

12 PState Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of
13  Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

14 “College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002,
15  China.

16 ¢ College of life science, Fujian Agriculture and Forestry University, Fuzhou 350002,
17 China.

18  °Institute of Oceanography, Minjiang University, Fuzhou 350108, China.

19  * These authors contributed to this work equally.

20  *To whom correspondence should be addressed. Email: wangzh@fafu.edu.cn,

21 huhongli7905@gmail.com and gdlufafu@163.com.

22


https://doi.org/10.1101/360016
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/360016; this version posted July 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

23 Running title: Whole-genome sequencing of a Pennisetum-infecting blast

24  fungus

25

26  Key words: Pennisetum, Pyricularia, PacBio sequencing,

27  Pathogenesis-related genes, Comparative genomic analysis

28

29 Corresponding author:

30 Zonghua Wang

31 Mailing address: Institute of Oceanography, Minjiang University, Fuzhou 350108, China

32 Email: wangzh@fafu.edu.cn

33 Phone number: 86-13706948783

34  Hongli Hu

35 Email: huhongli7z905@gmail.com

36 Phone number : 86-13599082338

37 Guodong Lu

38 National Engineering Research Center of JUNCAO Technology, College of Life Science,

39  Fujian Agriculture and Forestry University, Fuzhou 350002, China.

40  State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of

41 Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

42 Email: gdlufafu@163.com

43 Phone number: 86-13950480067

44


https://doi.org/10.1101/360016
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/360016; this version posted July 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

45  Abstract

46  Backgrounds: Pyricularia is a multispecies complex that could infect and
47  cause severe blast disease on diverse hosts, including rice, wheat and many
48  other grasses. Although the genome size of this fungal complex is small [~40
49  Mbp for Pyricularia oryzae (syn. Magnaporthe oryzae), and ~45 Mbp for P.
50 grisea], the genome plasticity allows the fungus to jump and adapt to new
51 hosts. Therefore, deciphering the genome basis of individual species could
52 facilitate the evolutionary and genetic study of this fungus. However, except for
53 the P. oryzae subgroup, many other species isolated from diverse hosts, such
54  as the Pennisetum grasses, remain largely uncovered genetically.

55 Results: Here, we report the genome sequence of a pyriform-shaped fungal
56 strain P. penniseti P1609 isolated from a Pennisetum grass (JUJUNCAO)
57 using PacBio SMRT sequencing technology. We performed a phylogenomic
58 analysis of 28 Magnaporthales species and 5 non-Magnaporthales species
59 and addressed P1609 into a Pyricularia subclade that is distant from P. oryzae.
60 Comparative genomic analysis revealed that the pathogenicity-related gene
61 repertoires were fairly different between P1609 and the P. oryzae strain 70-15,
62 including the cloned avirulence genes, other putative secreted proteins, as well
63 as some other predicted Pathogen-Host Interaction (PHI) genes. Genomic
64 sequence comparison also identified many genomic rearrangements.

65 Conclusion: Taken together, our results suggested that the genomic

66 sequence of the P. penniseti P1609 could be a useful resource for the genetic
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67  study of the Pennisetum-infecting Pyricularia species.
68
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70 Introduction

71 Pyricularia was established by Saccardo to accommodate a type of fungal
72  species based on the pyriform conidia when the first species of this pathogen,
73 Pyricularia grisea, was isolated from crabgrass (Digitaria sanguinalis L.) [1].
74  What raised the concern of this Pyricularia fungus was the notorious blast
75 disease on rice and wheat caused by one of its species, Pyricularia oryzae
76  (syn. Magnaporthe oryzae) [2-4]. To date, 100 plant genera comprising of 256

77 species have been documented as the hosts of the Pyricularia species

78  (https://nt.ars-grin.gov/fungaldatabases/fungushost/fungushost.cfm), among
79 which 54 genera belong to the Poaceae family. Seven Pyricularia species
80 (including one unidentified species) have been isolated from Pennisetum spp.,
81 a widespread genus in the Poaceae family, and more than one Pyricularia
82 species can be found on the same Pennisetum species. For instance, 4
83 Pyricularia species, namely, P. penniseti, P. penniseticola, P. setariae and
84  Pyricularia sp. have been found on P. typhoides [5, 6].

85 The genome sequence of P. oryzae strain 70-15, a hybrid clone of
86 rice-infecting isolate 104-3 and the weeping love grass isolate AR4 [7] has
87 facilitated the revelation of developmental and pathogenic mechanisms of the
88 Dblast fungus and rendered it to become one of the most important model
89 fungus [8, 9]. Since the publication of the P. oryzae strain 70-15 genome, more
90 field blast isolates were sequenced and assembled, including the Inal68,

91 HNO9311, FJ81278, Y34, P131, 98-06 and Guyll [10-14]. Comparative
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92 genomic analyses and functional studies of these strains revealed genome
93 plasticity and the involvement of the lineage specific genes in pathogenicity [12,
94 14]. More recently, facilitated by the fast developing of sequencing
95 technologies, a number of field isolates from rice, as well as isolates from
96 different grass and cereal hosts, were sequenced and subjected to
97  population-level analyses, revealing host immunity as the major force driving
98 specialization after host shift [2, 15-18]. However, genomes of most of the
99 species of the Pyricularia complex remain unexplored. For example, among
100 the 7 identified Pyricularia species isolated from Pennisetum grasses [5], only
101  P. pennisetigena was recently sequenced [2].

102 Here, we reported the whole-genome sequence of P. penniseti [19]
103  isolated from a Pennisetum grass JUJUNCAO (Pennisetum giganteum z. X.
104  Lin). JUJUNCAO was originally developed as culture matrix for the cultivation
105  of edible mushrooms by Lin et al, and later became a versatile grass that are
106  used as forage for cattle and sheep, material for the biofuel production, and
107  tool for the remedy of soil erosion [20-23]. We have recently isolated a
108  pyriform-shaped fungus, P1609, from leaf spots of JUJUNCAO. P1609 caused
109  a typical blast fungal disease symptom on JUJUNCAO, showing small, round
110  or elliptical lesions as an initial symptom and spindle shaped, grayish to tan
111 necrotic with yellow halos at a later disease stage. Since the morphologic and
112 phylogenetic analyses distinguished P1609 from other identified Pyricularia

113 species, but undistinguished from the P. penniseti reported in 1970 India [5, 24],
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114  we therefore termed this fungus P. penniseti [19]. In this study, we performed
115 genome sequencing of this strain, aiming for a proper classification of this
116  fungus in the Pyricularia population and identification of genes that may be
117  involved in the adaptation of this fungus to JUJUNCAO.

118

119  Results

120 Genome sequencing and assembly

121 We sequenced the P1609 genome with the long-read PacBio technology. In
122  total, 312,061 reads with 8.6 Kb average lengths were obtained, representing
123  about 60-fold coverage of the genome (Fig. 1A). The genome sequence was
124  assembled with the HAGP pipeline, resulting in the total assembly space of
125  41.82 Mb (Table 1), similar to assemblies of isolates sequenced by PacBio [10].
126  The assembly contains 53 contigs, with the N50 of 3.4 Mb and the largest
127  contig of 7.56 Mb (Fig. 1B). Contigs > 1Mb cover 89.7% and contigs > 100 Kb
128  cover 98.5% of the genome (Fig. 1B; Table 1), indicating long-continuity of the
129 assembly. The GC content of the assembly is 50.3%, similar to genomes of
130  Pyricularia isolates from different host plants, which range from 48.6% to 51%
131  [18]. Genome annotation identified 13,102 genes with average gene size of
132 1,758 bp, fairly evenly dispersed on contigs (Table 2, Fig. 1C, track b).

133 De novo repeat sequence analysis identified 7.67% of repeat
134  sequences, among which 4.27% were Gypsy and Copia, the two long terminal

135 repeats (LTR)-type retrotransposons. This finding is consistent with former
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136  studies, suggesting that LTR-type retrotransposons are the most expanded
137  transposable elements (TEs) in P1609 genome [25]. The TEs are not evenly
138  distributed along the contigs. While some contigs are enriched with TEs, other
139  contigs have less TE rich regions, suggesting that the P1609 genome also
140  underwent transposon expansion as observed in other plant pathogens [26].
141  Comparative and phylogenetic analysis

142 To understand the genetic relationship of P1609 with other fungal
143  phytopathogens, we generated a phylogenetic tree of P1609 with Botrytis
144  cinerea (Bc), Colletotrichum gloeosporioides (Cg), Fusarium graminearum
145  (Fg), Neurospora crassa (Nc), Pyricularia oryzae (Po), Sclerotinia sclerotiorum
146  (Ss), Trichoderma reesei (Tr) and Ustilago maydis (Um). Since P1609 showed
147 a close morphological relationship with P. oryzae isolates, we included
148  Pyricularia isolates collected from different host plants, including Oryza sativa
149  (PoOs), Triticum aestivum (PoTa), Digitaria sanguinalis (PoDs), Setaria viridis
150  (PoSv), and Eleusine indica (MoEi). In total, 2,051 single-copy genes shared
151 by all the examined genomes were selected to infer phylogeny [27]. The
152  resulting phylogenetic tree indicated that P1609 is more divergent with PoOs,
153 PoTa, PoSv, and PoEi (P. oryzae) in contrast to PoDs (P. grisea) (Fig. 2A). We
154  then estimated divergence time of P1609 and Pyricularia isolates by assuming
155  a constant molecular clock calibrated in a previous study, which estimated the
156  divergence of Neurospora and Pyricularia at about 200 million years ago

157 (MYA). The estimation indicated that P1609 and Pyricularia isolates diverged
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158  at about 31 MYA, earlier than the divergent time of rice- and S. viridis-infecting
159 isolates (about 10,000 years ago) [28, 29]. The phylogenetic tree also
160 indicated that P1609 is a member of Magnaporthales, but is distantly related to
161  the Pyriculaira isolates collected from PoOs, PoTa, PoDs, PoSy, and PoEi. To
162  further determine exactly where P1609 localized in Magnaporthales, we also
163  generated a phylogenomic tree of P1609 with 28 Magnaporthales species and
164 5 non-Magnaporthales species using amino acid sequences of 226 conserved
165  orthologous genes as described [30]. The result showed that P1609 was
166  localized in the Pyricularia subclade, and was closer to P. oryzae than
167  Xenopyricularia zizaniicola (Fig. 2B), indicated that P1609 is a Pyricularia
168  species.

169 We next conducted a comparative genomic study of P1609 with 70-15
170  (the reference isolate of P. oryzae), N. crassa, F. graminearum and C.
171 gloeosporioides. Venn diagram showed that 5 organisms share 5,454 of gene
172 families with each other, which covers 50.2% of the gene set of P1609 (Fig.
173  2C). Notably, the number of unique genes (no homologs in the selected
174  organisms) in P1609 was 2,210, which is about twice more than the number of
175  unique genes recorded for 70-15. Although most of these unique genes had no
176  functional annotations, Pfam annotation indicated that some of the unique
177 genes encode carbohydrate-active enzymes involved in polysaccharides
178 metabolism pathways. The high representation of carbohydrate-active

179  enzymes may be related to the adaptation to the host P. giganteum (Fig. S1).

9
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180  We therefore scanned natural selection of 5,991 pairs of orthologs of P. oryzae
181 and P1609, identifying 6 genes with Ka/Ks > 1 (Table 3). These genes are
182  involves in different secondary metabolic pathways.

183

184  Gene Categories Involved in Pathogenicity

185 Plant pathogenic fungi employed diverse gene repertoires to invade host
186 plants and subvert host immune systems, which include effectors,
187  carbohydrate-active enzymes (CAZymes), other secreted enzymes and fungal
188 secondary metabolisms [31, 32]. P1609 and P. oryzae isolates are divergent
189  and no cross-infectivity exists between them. To understand their secretomic
190 difference, we first compared predicted secretomes between P1609 and the P.
191  oryzae isolates. Among 1,409 putative secreted proteins of P1609, 236 were
192  unique in P1609 (Table S1). By contrast, 165 putative effectors in the 70-15
193 genome were absent in the P1609 genome (Table S2). Notably, all known
194  avirulence genes (AVRs) from the rice-infecting isolate genomes were absent
195 in P1609 genome.

196 We next compared CAZymes of P1609, groups of enzymes enable
197  plant pathogens to break down the plant cell wall [33]. Our BLASTp search
198 results showed that P1609 contains more predicted CAZyme-coding genes
199 than 70-15 (Fig. S2). Detailed analysis showed that the P1609 genome
200 encodes 5 unique CAZyme-coding genes, namely CBM61, GH117, GH35,

201 GH65 and PL24. While it has 6 copies of GH28 pectinases (3 copies in

10
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202 Pyricularia species; Fig. S2). We then further analyzed the distribution of
203 annotated PHI genes in P1609. In total, we identified 1,692 potential PHI
204 genes belonging to 1,154 gene families (Table S3). Interestingly, we found that
205 several PHI genes exhibited great expansion in P1609 genome. For instance,
206 MGG_12656, a gene involved in virulence in P. oryzae, has 107 homologs in
207 P1609, and ChLael contributing to toxin production and virulence in a maize
208 pathogen Cochliobolus heterostrophus has 17 homologs in P1609 [34, 35].
209 Compared with 70-15, 35 PHI genes were unique in P1609 (Table 4), most of
210  which had highly similar homologs in Fusarium (Gibberella).

211 Chromosome rearrangements

212 To explore genome collinearity and rearrangement between P1609 and 70-15,
213  since 70-15 was assembled into chromosome level and showed a closer
214  phylogenetic relationship with the P1609. The identified collinear gene blocks
215  that linked with different chromosomes in 70-15 (Fig. 3A) were visualized in the
216  contigs (ctgs) of P1609 (Fig. 3B). Generally, P1609 and 70-15 displayed high
217  genome collinearity. Ctg2, ctg3, ctg5 and ctg7 in P1609 correspond to chr.2,
218 chr.6, chr.3 and chr.1 of 70-15, respectively. We found that the second largest
219  contigin the P1609, ctg2, is a recombinant of chr.4 and chr.7 of 70-15 (Fig. 3B).
220 The joining region was spanned by multiple single PacBio long reads (Fig. 4),
221 excluding the possibility that the rearrangement was an artifact due to
222  assembly errors. Meanwhile, notably, contig end region of P1609 showed a

223  higher level of chromosome deletion and rearrangement (Fig. 3c). For instance,
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224  ctg4 and ctg8 were merged by blocks from chr.1 and chr.3 at the end of the
225  contig, while ctg9 was merged by blocks from chr.3 and chr.5 at the end of the

226  contig (Fig. 3B).
227

228 Discussion

229  Although the genome size of Pyricularia species is small, it is well-known for its
230 complicated genomic plasticity. Here we sequence the genome of P. penniseti
231  using the PacBio SMRT technology. Comparative genomic analysis revealed
232 several chromosome rearrangement events and difference in
233  pathogenicity-related gene repertoires between the P. penniseti strain P1609
234 and the P. oryzae strain 70-15.

235 Chromosome fission and fusion

236  Long-read sequencing greatly improved genome assembly and thus provided
237 more valuable details on genome structures at a chromosome level. By
238 comparing the chromosome structure between P1609 and 70-15, we found
239 several chromosome splitting and rearrangement events. Chromosomal
240  rearrangements have been reported to be associated with virulence evolution
241 in several pathogens by losing the AVR gene(s) [26, 36, 37]. Our results
242  indicated frequent chromosome rearrangement and splitting in the blast fungi,
243  and the telomere regions are very unstable in its haploid genome during the
244  adaptation to different host species. Further study is required to investigate the
245  role of the chromosome recombination during the adaptation to JUJUNCADO.

12
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246  Unique genes and positively selected genes

247 In this study, we found 2,210 unique genes that were absent in the 70-15
248 genome. The P1609 genome encodes more CAZymes than 70-15 genome.
249  For example, P1609 contains twice the number of genes encoding glycosyl
250 hydrolase family 28 (GH28) pectinases in 70-15. Generally, necrotrophic plant
251 pathogens possess more GH28 enzymes than biotrophic and non-pathogens
252  fungi [38]. These results suggested that P1609 might heavily rely on CAZymes
253 in the interaction with JUJUNCAO.

254 To identify the positively selected genes, we detected with Ka>Ks from
255 5,991 orthologous pairs between P. oryzae and P1609 and identified 6 genes
256  with Ka>Ks in P1609. Functional annotation showed that most of these genes
257 involved in secondary metabolic pathways. For example, P1609 5032
258 encodes an isoamyl alcohol oxidase that turns isoamyl alcohol into
259 isovaleraldehyde [39]. In Saccharomyces cerevisiae, isoamyl alcohol could
260 induce filament formation [40]. P1609 5032 might play a role in fungal
261 development through controlling the level of isoamyl alcohol. P1609 791
262 encodes a folylpolyglutamate synthase involved in biosynthesis of folate,
263 required for protein synthesis of bacterial, mitochondrial, and chloroplast,
264 including purines, dTMP, methionine, and formyl-methionyl-tRNA [41].
265 P1609 3360 encodes a glycerol uptake protein, which is an important
266 intracellular osmolyte participating in osmotic stress response [42] and critical

267 for the function of appressorium in P. oryzae [43]. P1609_7869 encodes a

13
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268  spore surface glycoprotein. Its homologs have been proved to be involved in
269 spore adhesion to hydrophobic surface in several Colletotrichum species
270  [44-46] rather than spore tip mucilage as in P. oryzae [47]. P1609 1006
271 encodes a BclIB glycoprotein (collagen-like protein). Its homologs in Bacillus
272 anthracis were important components of the infection-associated structure
273  exosporium [48-50], although its role in filamentous pathogens remains
274 unknown. The positive selection on these genes suggested that they might

275 play roles in the interaction between P1609 and JUJUNCADO.
276  Putative secreted proteins

277  There are two layers of plant immunity: the pathogen-associated molecular
278  patterns (PAMPs)-triggered immunity (PTI), and the effetor-triggered immunity
279  (ETI). It was previously proposed by Schulze-Lefert and Panstruga that ETI is
280 the major force driving the host specificity of pathogens [51]. Our previously
281  study focusing on AVR gene evolution of the Pyricularia species also revealed
282 that directional selection exerted by host plants is the direct force driving host
283  specificity in Pyricularia species [18]. Recent studies on the P. oryzae
284  populations revealed that divergent host immunity systems (both PTI and ETI)
285 in japonica (Oryza sativa subsp. xian) and indica (Oryza sativa subsp. geng),
286 determining the deposition of effector repertoires and specialization to the two
287  subspecies [15-17]. Our comparative genomic analysis showed that P1609
288 contains a large number of unique effector candidates by comparing with
289  70-15, but lost many putative effectors in the 70-15 genome, including all

14
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290  known AVR effectors. One possible explanation is that the JUJUNCAO harbors
291  ahigh level of basal immunity, as well as an arsenal of resistance genes, which
292 driven P1609 to gain a lot of effectors to overcome the robust basal immunity
293  posed by JUJUNCAO, and at the meanwhile, abandoned the AVR genes that
294  could be recognized by the R genes from JUJUNCAO.

295 Conclusion

296  Pyricularia species are pathogens of either food- or forage grasses. The model
297 fungus P. oryzae had been well studied. However, there are only a few
298 whole-genome sequences available of other species, such as those from
299 Pennisetum grasses. Here, we generated long-read PacBio reads and
300 produced a assemblage with long-continuity contig sequences. Phylogenomic
301 and comparative genomic analysis showed that P1609 is a Pyricularia species
302 genetically distant with P. oryzae, and the two genomes vary substantially in
303 their pathogenicity-related gene repertoires. In summary, the P1609 assembly
304 and genome annotation represents the few available Pyricularia genome
305 resources for studying the pathogenic mechanism of this fungus towards
306 Pennisetum grasses.

307

308 MATERIALS AND METHODS

309 Isolation of the fungal strain

310 The Pennisetum-infecting strain P1609 was isolated from the leaf spot lesion

311 of JUJUNCAO (Pennisetum giganteum z. x. Lin), in the nursery of National

15
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312  Engineering Research Center of JUNCAO Technology, Fujian Agriculture and
313  Forestry University located at No. 63 Xiyuangong Road, Minhou County,
314  Fuzhou, Fujian Province, China.

315 DNA extraction, amplification and sequencing

316  To prepare the genomic DNA for sequencing, the P1609 isolate was cultured in
317  the liquid complete medium (CM) in a 110-rpm shaker at 25 °C for 3 to 4 days.
318  The mycelia were then collected for the preparation of genomic DNA using a
319 CTAB method as previously described [18]. Sequencing libraries were
320 prepared using the SMRTbellTM Template Prep Kit 1.0 (PACBIO) and
321 sequenced using PacBio Sequel platform (NovoGene, China).

322 Assembly and annotation

323 De novo sequence assembly was conducted by SMRTLink v. 5.0.1.10424,
324 HGAP 4 pipeline provided by Pacific Bioscience Company. In HGAP 4 pipeline,
325 the expected genome size was set as 45 Mb based on the reported size of
326  Pyricularia genomes, and default settings were used for other parameters.
327 Gene prediction was conducted using Fgenesh from SoftBerry (MolQuest Il
328 v2.4.5.1135, http://linuxl.softberry.com/berry.phtml) with Pyricularia additional
329 variants as training organism. Gene functional domain annotation was
330 conducted by InterproScan (version 4.8, http://www.ebi.ac.uk/ interpro/), and
331 PfamScan [52]. Pathogen-Host Interaction (PHI) genes were predicted by
332 performing a whole genome blastp analysis against the PHI database (E<10™°)

333 [53, 54]. Putative carbohydrate-active enzymes (CAZymes) were identified
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334 using the HMMER 3.1bl by searching annotated HMM profiles of CAZymes
335 downloaded from the dbCAN database in protein sequences of P1609 [55].
336 Repeat analysis

337  De novo repeat sequence identification was analyzed by using RepeatModeler
338 (version 1.0.8) with default settings. Repeat sequences obtained from
339 RepeatModeler have been used to search for repeat sequences in the P1609
340 genome by RepeatMasker (version 3.3.0) (http://www.repeatmasker.org/) [56].
341  Phylogenetic analysis and comparative genomic analysis

342  Phylogenomic tree of P1609 and B. cinerea [57], C. gloeosporioides [58], F.
343 graminearum [59], N. crassa [60], P. oryzae [8], S. sclerotiorum [57],T. reesei
344 [61] and U. maydis [62] was built based on single copy orthologs from
345  clustering result of OrthoFinder (v0.6.1) [27]. 2,051 single copy genes have
346  been selected out from 13 organisms in total (see Fig. 1A) and aligned with
347  MAFFT (mafft-linsi-anysymbol) [63]. The phylogenetic tree was constructed
348 using FastTree based on the alignments of single-copy orthologs with
349  approximately-maximum-likelihood model and bootstrap 100 [64]. For
350 divergence time estimation, the phylogenetic analysis was conducted using
351 r8s (version 1.81), and the divergence time of Pyricularia and Neurospora (200
352 MYA) was used as a reference [29, 65]. Clustering result of 13 genomes was
353 also used for unique gene identification and comparative genomic analysis.
354 We used MCScanX to identified syntenic blocks between P1609 and 70-15. To

355 detect the conserved synteny blocks, the reciprocal best-match paralogs of
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356 P1609 and 70-15 were conducted by all-against-all BLASTP comparison, with
357 E-value <10™°[66].

358

359 List of abbreviations

360 Bc: Botrytis cinerea (B. cinerea); Cg: Colletotrichum gloeosporioides (C.
361 gloeosporioides); Fg: Fusarium graminearum (F. graminearum); Nc:
362 Neurospora crassa (N. crassa); P. grisea: Pyricularia grisea; Po: Pyricularia
363 oryzae (P. oryzae); Ss: Sclerotinia sclerotiorum (S. sclerotiorum); Tr:
364 Trichoderma reesei (T. reesei); Um: Ustilago maydis (U. maydis); PoDs:
365 Pyricularia strain isolated from Digitaria sanguinalis; PoSv: Pyricularia strain
366 isolated from Setaria viridis; MoEi: Pyricularia strain isolated from Eleusine
367 indica; PoOs: Pyricularia strain isolated from Oryza sativa; PoTa: Pyricularia
368 strain isolated from Triticum aestivum; P. penniseti: Pyrucularia penniseti; P.
369 giganteum: Pennisetum giganteum; P. penniseticola: Pyricularia
370 penniseticola; P. setariae: Pyricularia setariae; P. typhoides: Pennisetum
371 typhoides; AVR gene: avirulence gene; CAZymes: carbohydrate-active
372  enzymes; CBM: Carbohydrate-Binding Module Family; chr: chromosome; CM:
373 complete medium; CTAB: Cetyltrimethyl Ammonium Bromide; ctg: contig; ETI:
374  effetor-triggered immunity; GH: glycosyl hydrolase family pectinases; LTR:
375 long terminal repeats; MYA: million years ago; PHI: Pathogen-Host Interaction;
376  PL: Polysaccharide Lyase Family; PTI: pathogen-associated molecular pattern

377  (PAMPs)-triggered immunity; R genes: resistance gene; SMRT:
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378  Single-Molecule Real-Time; TE: transposable elements.
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Table 4 Unique Pathogen Host Interaction (PHI) genes in P1609.

Fig. 1 PacBio sequencing and genome assembly of P1609.

(A) Reads length distribution.

(B) Contig length of assembled contig > 100 Kb.

(C) Overview of P1609 genome. (Track a) Contigl to contigl6 of P1609, (track
b) gene density, (track c) Transposon elements density, (track d) secreted
proteins density, (track e) unique gene (compared with P. oryzae, N. crassa, F.

graminearum and C. gloeosporioides) density of P1609 per 50 Kb.

Fig. 2 Phylogenetic and comparative genomic study of P1609.

(A) Phylogenomic tree of P1609 with Botrytis cinereal (Bc), Colletotrichum
gloeosporioides (Cg), Fusarium graminearum (Fg), Neurospora crassa (Nc),
Sclerotinia sclerotiorum (Ss), Trichoderma reesei (Tr) and Ustilago maydis
(Um) as well as Pyricularia isolates collected from O. sativa (PoOs), T.
aestivum (PoTa), D. sanguinalis (PoDs), S. viridis (PoSv), and E. indica (PoEi)
based on 2,051 single copy genes. The values of all of the branches are 100.
(B) Maximum likelihood tree of P1609 and 28 Magnaporthales species, as well
as 5 Sordariomycetes used as outgroup species based on 82,715 amino acid
positions derived from 226 genes.

(C) Venn diagram showed an overlap of gene families among P1609,

Pyricularia rice isolates (PoOs), C. gloeosporioides (Cg), F. graminearum (Fg)
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686 and N. crassa (Nc).

687

688 Fig. 3 Chromosome rearrangement and splitting between P1609 and 70-15.
689  (A) Bar plot showing the chromosomes in 70-15.

690 (B) Bar plot showing the assembled contigs of P1609. Colinear chromosomes
691 of 70-15 and contigs of P1609 are indicated by the same color.

692 (C) Dual synteny plot showing splitting of Ctg2 of P1609 into chr. 4 and chr. 7 in
693  70-15.

694

695 Fig. 4 PacBio long-read coverage from 2.02 to 2.94 Mb of Ctg 2. Color of reads
696 indicate different read lengths.

697
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Table 1 Details of sequencing reads and genome assembly of P1609

Feature Value
Number of Subreads 312,061
Total Length of Subreads (bp) 2,688,966,115

Mean Coverage 59
Polished Contigs 53
Maximum Contig Length (bp) 7,555,856
N50 Contig Length (bp) 3,411,241
Sum of Contig Lengths (Mb) 41.82
GC level 50.30%
length > 1 Mb 89.70%

length > 100 Kb 98.50%
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Table 2 Details of genome annotation of P1609

Category Value
Total TE 7.67%
LINEs 1.50%
LTR elements 4.27%
DNA elements 0.63%
Unclassified 1.27%
Gene Number 13102
Average Gene Length (bp) 1758

Secreted Protein Number 1409
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Table 3 Positively selected genes in P1609

Protein ID Ka Ks Ka/Ks P-Value (Fisher) Description
P1609_7184 0.707979  0.440748 1.60631 0.00697146 Unknown
P1609 5032 0.550905 0.343609 1.60329 1.98443E-06 Isoamyl alcohol oxidase
P1609_3360 0.183224  0.118517 1.54597 0.00293936 Glycerol uptake protein 1
P1609 791 0.302231  0.199786 1.51277 9.75093E-06 Folylpolyglutamate synthase
P1609_7869 0.491873  0.328109 1.49911 0.0296442 Thioredoxin reductase

P1609 1006 0.40206 0.275456 1.45962 0.0288585 Spore surface glycoprotein BclB
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Table 4 Unique Pathogen Host Interaction (PHI) genes in P1609

Protein ID PHIID Reference Organism Phenotypes
P1609 2497 494aa PHI:115 Cochliobolus carbonum Unaffected pathogenicity
P1609_ 11506 262aa,
P1609_12781_266aa,
- N PHI:698 Vibrio cholerae Reduced virulence
P1609_4501_233aa,
P1609 683_218aa
P1609_ 11592 161aa, ) . L
- - PHI:1284 | Fusarium graminearum Unaffected pathogenicity
P1609_4614 892aa
P1609_11335_610aa PHI:1803 | Fusarium graminearum Unaffected pathogenicity
P1609_9374_326aa PHI:2394 | Fusarium graminearum Increased virulence
P1609_1007_600aa PHI:225 Fusarium solani Reduced virulence
P1609_13007_833aa PHI:1714 | Fusarium graminearum Lethal
P1609_3609_435aa3,
P1609_5044 426aa, . . -
- - PHI:1455 | Fusarium graminearum Unaffected pathogenicity
P1609 8181 460aa,
P1609_960_144aa
P1609_11548_383aa, ) . .
PHI:1823 | Fusarium graminearum Unaffected pathogenicity
P1609_5843_397aa
P1609 2665 64aa PHI:1421 | Fusarium graminearum Lethal
P1609 2607_206aa, Staphylococcus .
i Mixed outcome
P1609_2608_820aa PHI:3418 | saprophyticus
P1609_11380_688aa PHI:1809 | Fusarium graminearum Lethal
P1609_7767_257aa PHI:317 Aspergillus fumigatus Reduced virulence
P1609_6736_447aa PHI:323 Verticillium fungicola Reduced virulence
Fusarium o
P1609_ 13 169aa PHI:1147 . Unaffected pathogenicity
pseudograminearum
P1609_2376_825aa PHI:1871 | Fusarium graminearum Lethal
P1609_10320_326aa PHI:1522 | Fusarium graminearum Lethal
P1609_ 11485 355aa, . .
- - Pseudomonas syringae Mixed outcome
P1609 2130 433aa PHI:3116
P1609_10203_738aa PHI:1815 | Fusarium graminearum Unaffected pathogenicity
P1609_11600_2486aa PHI:2628 | Salmonella enterica Reduced virulence, 663
P1609_11388_1000aa Candida parapsilosis Mixed outcome
PHI:3076
P1609_11869_369aa PHI:2375 | Alternaria brassicicola Mixed outcome
P1609_5035_383aa PHI:233 Cochliobolus carbonum Reduced virulence
P1609_5702_488aa PHI:1271 | Fusarium graminearum Unaffected pathogenicity
P1609_11864_596aa PHI:2380 | Alternaria brassicicola Mixed outcome
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