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26  Summary

27 To understand how the brain processes sensory information to guide behavior, we
28  must know how stimulus representations are transformed throughout the visual cortex.
29  Here we report an open, large-scale physiological survey of neural activity in the awake
30  mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly
31 available dataset includes cortical activity from nearly 60,000 neurons collected from 6
32  visual areas, 4 layers, and 12 transgenic mouse lines from 221 adult mice, in response to
33  a systematic set of visual stimuli. Using this dataset, we reveal functional differences

34  across these dimensions and show that visual cortical responses are sparse but

35  correlated. Surprisingly, responses to different stimuli are largely independent, e.g.

36  whether a neuron responds to natural scenes provides no information about whether it
37  responds to natural movies or to gratings. We show that these phenomena cannot be
38 explained by standard local filter-based models, but are consistent with multi-layer

39 hierarchical computation, as found in deeper layers of standard convolutional neural

40 networks.
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Introduction

Traditional understanding, based on several decades of research, suggests that
neurons early in the visual pathway are broadly responsive and become more selective
and specialized through a series of hierarchical processing stages'™. However, the
computations and mechanisms required for such transformations remain unclear. A key
challenge results from the fact that our understanding of the mammalian visual system is
the result of many small studies, recording responses from different stages in the circuit,
using different stimuli and different analyses.® The inherent experimental selection biases
and lack of standardization of this approach introduce additional obstacles to creating a
cohesive understanding of cortical function. To address these differences, we conducted a
survey of visual responses across multiple layers and areas in the mouse visual cortex,
using a diverse set of visual stimuli. This survey was executed in pipeline fashion, with
standardized equipment and protocols and with strict quality control measures not
dependent upon stimulus-driven activity (see Methods, Supplemental Figures 1-8).

Previous work in mouse has revealed functional differences among cortical areas in
layer 2/3 in terms of the spatial and temporal frequency tuning of the neurons in each
area.®’ However, it is not clear how these differences extend across layers and across
diverse neuron populations. Here we extend such functional studies to include 12 Cre-
defined neuron populations, including excitatory populations across 4 cortical layers (from
layer 2/3 to layer 6), and two inhibitory populations (Vip and Sst). Further, it is known that
stimulus statistics affect visual responses, such that responses to natural scenes cannot
be well predicted by responses to noise or grating stimuli®'*.To examine the extent of this
discrepancy in the mouse visual cortex, and whether it varied across areas and layers, we
designed a stimulus set that included both artificial (gratings and noise) and natural
(scenes and movies) stimuli. While artificial stimuli can be easily parameterized and
interpreted, natural stimuli are likely to be closer to what is ethologically relevant to the
mouse. Finally, as recording modalities have enabled recordings of larger and larger
populations of neurons, it has become clear that populations might code visual and
behavioral activity in a way that is not apparent by considering single neurons alone."
Here we imaged populations of neurons (mean 118 + 82, st. dev, for excitatory
populations) to explore both single neuron and population coding properties.

We find that 74% of neurons in the mouse visual cortex respond to at least one of
these visual stimuli, many showing classical tuning properties, such as orientation and
direction selective responses to gratings. These tuning properties reveal functional
differences across cortical areas and Cre lines. The responses to all stimuli are highly
sparse, both in terms of lifetime and population sparseness. We demonstrate that for all
cells the visual responses are better fit by a quadratic “complex cell” model than by a
linear-nonlinear “simple cell” model. Importantly, we find that the responsiveness to
different stimuli is largely independent, i.e. cells that respond to natural movies do not
necessarily respond to natural scenes. These properties are not consistent with a
traditional Gabor-style spatio-temporal wavelet basis, but rather are to be expected in
deeper layers of a multi-layer hierarchical network.


https://doi.org/10.1101/359513
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/359513; this version posted June 29, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

84

85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126

aCC-BY-NC-ND 4.0 International license.

Results

Using adult C57BL/6 mice (mean age 108 + 17 days st. dev) that expressed a
genetically encoded Ca2+ sensor (GCaMP6f) under the control of specific Cre-line drivers
(10 excitatory lines, 2 inhibitory lines, Supplemental Figure 7), we imaged the activity of
neurons in response to a battery of diverse visual stimuli. Data was collected from 6
different cortical visual areas (V1, LM, AL, PM, AM, and RL) and 4 different cortical layers.
Visual responses of neurons at the retinotopic center of gaze were recorded in response
to drifting gratings, flashed static gratings, locally sparse noise, natural scenes and natural
movies (Figure 1f), while the mouse was awake and free to run on a rotating disc. In total,
59,526 neurons were imaged from 410 experiments, each consisting of three one-hour
imaging sessions (Table 1).

In order to systematically collect physiological data on this scale, we built data
collection and processing pipelines (Figure 1, Supplemental Figures 1-5). The data
collection workflow progressed from surgical headpost implantation and craniotomy to
retinotopic mapping of cortical areas using intrinsic signal imaging, in vivo two-photon
calcium imaging of neuronal activity, brain fixation, and histology using serial two-photon
tomography (Figure 1a,b,c). To maximize data standardization across experiments, we
developed multiple hardware and software tools to regulate systematic data collection
(Figure 1d). One of the key components was the development of a registered coordinate
system that allowed an animal to move from one data collection step to the next, on
different experimental platforms, and maintain the same experimental and brain coordinate
geometry (see Methods, Supplemental Figure 1). In addition to such hardware
instrumentation, formalized standard operating procedures and quality control metrics
were crucial for the collection of these data (Figure 1e).

Following data collection, movies of fluorescence associated with calcium influx
were motion corrected, normalized, and regions of interest (ROIs) were segmented using
automated algorithms (see Methods, Supplemental Figure 9). Signals from overlapping
ROIs were demixed, and contamination from surrounding neuropil was subtracted
(Supplemental Figure 10). Segmented ROIs were matched across imaging sessions and
ROIls were filtered to remove apical dendrites and other processes, with the aim of only
including somatic ROls. For each ROI, events were detected from AF/F using an LO
regularized deconvolution algorithm (see Methods, Supplemental Figure 11), which
deconvolves pointwise events assuming a linear calcium response for each event and
penalizes the total number of events included in the trace.

For each neuron, we computed the mean response to each stimulus condition
using the detected events, and parameterized its tuning properties. Many neurons showed
robust responses, exhibiting orientation-selective responses to gratings, localized spatial
receptive fields, and reliable responses to natural scenes and movies (Figure 2a-f,
Supplemental Figure 13). For each neuron and each categorical stimulus (i.e. drifting
gratings, static gratings, and natural scenes), the preferred stimulus condition was
identified as the condition that evoked the largest mean response for that stimulus (e.g.
the orientation and temporal frequency with the largest mean response for drifting
gratings). For each trial of the stimulus, the neural activity of the neuron was compared to
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127  adistribution of activity for that neuron taken during the epoch of spontaneous activity, and
128  a p-value was computed. If at least 25% of the trials of the neuron’s preferred condition
129  had a significant difference from the distribution of spontaneous activities (p<0.05), the
130  neuron was deemed to be responsive to that stimulus (see Methods for responsiveness
131 criteria for locally sparse noise and natural movies).

132 In total, 74% of neurons were responsive to at least one of the visual stimuli

133  presented (Figure 2g). The percent of responsive neurons depended on area and

134  stimulus, such that V1 and LM showed the highest number of visually responsive neurons.
135  This dropped in other higher visual areas and was lowest in RL where only 31% of

136  neurons responded to any of the visual stimuli. Natural movies elicited responses from the
137  most neurons, while static gratings elicited responses from the fewest (Figure 2h). In

138 addition to varying by area, the percent of responsive neurons was also specific to Cre
139 lines and layers, suggesting functional differences across these dimensions

140 (Supplemental Figures 14-18). Note that the retinotopic location of the center of gaze is
141 close the border of RL and somatosensory cortex, which could result in the imaging of
142  non-visual neurons and cause the low rate of responsiveness in this area.

143 For responsive neurons, visual responses were parameterized by computing several
144  metrics, including preferred spatial frequency, preferred temporal frequency, direction

145  selectivity, and receptive field size (see Methods). Comparing these metrics across these
146  areas, layers, and Cre lines, we find evidence of functional differences across these

147  dimensions (Figure 3, Supplemental Figures 19, 20).

148 We included several Cre lines that label specific sub-populations of neurons. For
149 instance, Rorb, Scnn1a-Tg3, and Nr5a1 label distinct layer 4 populations, and exhibit

150 distinct tuning properties. For all the computed parameters, Rorb and Scnn1a-Tg3 show
151  significant differences (KS test, Supplemental Figure 20) suggesting distinct channels of
152  feedforward information. In layer 5, on the other hand, TIx3 and Fezf2, which label cortico-
153  cortico and cortico-thalamic projecting neurons respectively, do not show significant

154  differences, implying more homogenous feedback signals. These data also provide the
155 first broad survey of visually evoked responses of both Vip and Sst inhibitory neurons.

156  Responses to drifting gratings support the model of mutual inhibition between these

157 inhibitory populations'*, wherein nearly all Sst cells respond reliably to the grating

158  stimulus while the Vip cells are nearly all unresponsive, and possibly even suppressed
159  (Supplemental Figure 14). Interestingly, receptive fields mapped using locally sparse
160  noise reveal that Vip neurons have remarkably large receptive field areas, larger than both
161 Sst and excitatory neurons in V1 (Figure 3f). The visual responses of these two

162  populations add important details to the inhibitory cortical circuit.

163 Comparisons across areas and layers reveal that direction selectivity is highest in
164 layer 4 of V1 (Figure 3b). In superficial layers, the differences across areas indicate that
165 V1, LM, and AL show significantly higher direction selectivity than PM, AM, and RL

166  (Supplemental Figure 19). This pattern in single neuron selectivity was reflected in our
167  ability to decode the visual stimulus from single-trial population vector responses, using all
168 cells, responsive and unresponsive. We used a K-nearest-neighbors classifier to predict
169 the grating direction. Matching the tuning properties, areas V1, AL, and LM showed higher
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170  decoding performance than AM, PM, and RL, and these differences were more

171 pronounced in superficial layers than in deeper layer (Figure 3c). However, there are
172  cases where this relationship between population decoding and direction selectivity is
173 broken. For example, Nrba1 neurons in V1 show the highest median direction selectivity,
174  but the lowest population decoding performance of excitatory neurons. Even matching
175  population size, Nr5a1 continues to show lower decoding performance than other Cre
176 lines (Supplemental Figure 21). Destroying trial-to-trial correlations by shuffling trials, we
177  found a slight increase in decoding performance, indicating that noise correlations do not
178  improve the discriminability of population responses to different stimuli (Supplemental
179  Figure 21). This result is in contrast to the impact of noise correlations on population

180  coding in the mammalian retina'>'®, suggesting a transformation of population coding
181  strategies across the visual pathway.

182 Across all areas, layers, and stimuli, visual responses in mouse cortex were highly
183  sparse. Among responses to natural scenes, we found that most neurons responded to a
184  very small number of scenes. The sparseness of individual neurons was measured using
185 lifetime sparseness, which captures the selectivity of a neuron’s mean response to

186 different stimulus conditions'”'® (see Methods). A neuron that responds strongly to only a
187  few scenes will have a lifetime sparseness close to 1, whereas a neuron that responds
188  broadly to many scenes will have a lower lifetime sparseness (Figure 4a). Excitatory

189  neurons had a median lifetime sparseness of 0.71 in response to natural scenes. While
190  Sst neurons were comparable to excitatory neurons (median 0.78), Vip neurons exhibited
191 low selectivity (median 0.35). Lifetime sparseness did not increase outside of V1;

192  Responses did not become more selective in the higher visual areas. (Figure 4b,

193  Supplemental Figures 22,23). Lifetime sparseness is high for all stimuli (data not shown).
194 A complement to the sparseness of an individual neuron is the population sparseness - a
195 measurement of how many neurons respond to each stimulus condition. Like lifetime

196  sparseness, population sparseness is also high in these data for excitatory and Sst

197  neurons (Figure 4c¢), across all areas.

198 Such sparse activity could underlie a form of sparse coding to reduce redundancy
199 and increase efficiency, such that neurons with similar tuning preferences do not respond
200 at the same time."®? This makes a specific prediction: Similarly tuned neurons should
201 have negatively correlated trial-by-trial activity. Contrary to this prediction of “explaining
202 away,” we found that similarly tuned neurons exhibited positively correlated trial-by-trial
203 fluctuations in almost all experiments in this dataset (Figure 4e,f, Supplemental Figure
204  24). This result is consistent with reports in other sensory systems and recording

205 methods,?’ suggesting that sparse single-neuron responses underlying dense population
206  codes are a common feature of cortical representations at the level of rates.

207 In addition to sparsity in responses across stimulus conditions, the visually evoked
208 responses throughout the mouse cortex showed a large amount of trial-to-trial variability.
209 Indeed, the percent of responsive trials for most neurons at their preferred conditions was
210 low — the median is less than 50% (Figure 5a, Supplemental Figure 25). This means
211 that the majority of neurons in the mouse visual cortex are usually unresponsive, even
212  when presented with the stimulus condition that elicits their largest average response. We
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213  also calculated a more complete measurement of response reliability, defined as the

214 square of the expected correlation between the trial averaged response to the true,

215 unmeasured, mean response? (see Methods). A neuron that responds precisely the

216  same way on each trial to a set of stimuli will have a reliability of 1, while a completely

217  random neuron will have a reliability of 0. We find that neurons had higher reliability for
218  natural stimuli than for the artificial stimuli across all areas and layers (Figure 5b,c,

219  Supplemental Figure 25). Altogether, responsive neurons had a mean reliability of 0.62 +
220 0.2 (st. dev) for natural scenes and 0.46 + 0.2 (st. dev) for drifting gratings.

221 One possible source of trial-to-trial variability could be the locomotor activity of the
222  mouse. Previous studies have shown that visual responses in the mouse cortex are

223  modulated by the animal’s running activity.”*" The mice in our experiments were free to
224 run on a disc during the experiment and animals showed a range of running behaviors
225  (Supplemental Figure 26). For experiments in which the animals spent enough time

226  running such that there were sufficient stimulus trials when the mouse was both stationary
227  and running (at least 10% of trials for each), we compared the responses in these two
228  states. Consistent with previous reports, many neurons show modulated response (Figure
229  5d,e). While most neurons show enhanced responses when running, for many neurons
230 the difference between stationary and running is not significant (only 13% and 37% of

231 neurons show significant modulation of their responses to drifting gratings and natural
232  scenes respectively, using a KS test).

233 To examine whether the locomotor activity could be a source of trial-to-trial

234  variability, we compared the reliability of neurons’ visual responses to the fraction of time
235 the animal spent running. We found that reliability is higher when the mouse runs

236  consistently, but this increase is modest from a baseline of reliability when the mouse is
237  either completely stationary or shows mixed running behavior (Figure 5f). This effect on
238  stimulus response reliability is consistent across different stimuli, both natural and artificial.
239  Thus locomotor activity does contribute to the variability of visual responses, but is unlikely
240  to fully explain the amount of variability found in these data.

241 We asked whether a standard modeling approach could capture the observed

242  stimulus responses and variability. We used a generalized linear model (GLM) to predict
243  extracted events, smoothed with a Gaussian window, from time series input of the stimuli
244  along with the binary running state of the mouse (Figure 6a, see Methods). Only neurons
245  that were matched in all three imaging sessions were used for modeling (~19,000

246  neurons), and all neurons were modeled regardless of whether they met our

247  responsiveness criteria. The basis functions for the GLM are two spatiotemporal wavelet
248 pyramids: one a standard linear basis and another that squares the basis functions before
249  summation, approximating a “complex” neuron receptive field. While the model captures
250 the activity of some neurons very well (Figure 6b), the median prediction, r, for natural
251  stimuliis ~0.2-0.3 across areas (Figure 6c¢,d), suggesting a large amount of variation

252  unaccounted for by the stimulus with this model. We computed a complexity ratio by

253  comparing the total weight of the quadratic basis functions to the total weights for each
254  model, and found that almost all neurons are mostly complex, with complexity ratios near
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255 1 (Figure 6e). This means that no neuron is better described by a "simple" linear-nonlinear
256  model than the "complex" quadratic model.

257 For each neuron, we trained the model separately using natural stimuli (natural

258  scenes and natural movies) and artificial stimuli (drifting gratings, static gratings and

259 locally sparse noise). Comparing the models’ performances, we found that the overall

260 distribution of performance for models trained and tested with natural stimuli was much
261 higher than the corresponding models for artificial stimuli (Figure 6¢). This was true even
262  for neurons that met our responsiveness criteria for gratings but not natural scenes.

263  Further, models trained on natural stimuli predicted responses to artificial stimuli better
264  than vice versa, although the cross-stimulus prediction was worse than the within-stimulus

265  prediction, consistent with previous reports®"".

266 Surprisingly, whether a neuron responded to one stimulus (e.g. natural scenes,

267  drifting gratings, etc.) was largely, though not completely, independent of whether it

268 responded to another stimulus. Unlike the examples shown in Figure 2, which were

269 chosen to highlight responses to all stimuli, most neurons were responsive to only a

270  subset of the stimuli presented (Figure 7a). The overlap of the set of neurons that

271 responds to each pairwise combination of stimuli was computed for each experiment and
272  compared to the maximum and minimum amount of overlap possible given the fraction of
273  responsive neurons to each stimulus (Figure 7b, Supplemental Figure 28). There is
274  above chance overlap for all presentations of natural movies — particularly for natural
275  movie one, whichis repeated in each imaging session (Figure 7¢). There is also above
276  chance overlap for responses to static gratings and natural scenes. However, natural
277  movies and all other stimuli showed overlap close to the level of chance. That is, whether
278 a neuron responded to natural scenes is independent of whether it responded to natural
279  movies. Notably, locally sparse noise showed the least amount of overlap with other

280  stimuli, and even below chance overlap with some, such as static gratings. These results
281 are consistent across all visual areas.

282 The independence of whether a neuron responded to two stimuli is also reflected
283 in the correlation between the reliability of neurons’ responses to those two stimuli (Figure
284  7d,e). For neurons that responded to two stimuli, we computed the Pearson correlation
285  between the reliability of responses to each stimulus. We found the same structure in

286  cross-stimulus comparisons such that the reliabilities of natural movie responses were
287  highly correlated, but most stimulus pairs had low correlations. Thus, whether a neuron
288  responds to two stimuli is largely independent, and even when it does respond to both, the
289 reliability of those responses remains largely independent.

290 Independence between responses to ostensibly similar stimuli is a striking feature of
291 the data and one not predicted by the classical model of the early visual system (namely
292  spatiotemporal Gabor-type wavelets). This observation, together with the fact that neural
293  activity is sparse in both a lifetime and population sense, and finally that the “simple”

294  linear-nonlinear wavelet based GLM accounted for so little of the explainable variance, all
295  point to the idea that much of the neural activity is driven by relatively higher order

296 features. We quantified this by comparing the population level neural responses to

297  standard deep convolutional networks (CNNs; Figure 8). This is an interesting comparison
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298  because the original inspiration for these model architectures was the important and early
299  set of results describing “simple” and “complex” neurons in Area 17 of anesthetized cat
300 visual cortex'.

301 Units in CNN models (such as VGG16°®) are optimally driven by progressively higher
302  order features in deeper layers of the model (Figure 8a). The first pooling layer contains
303 many units that appear as coarse edge detectors, while the second pooling layer contains
304  more complex features, with a small subset consisting of oriented gratings similar to

305 traditional V1 receptive fields. By the third pooling layer, there are no such simple looking
306 features, but even more complex shapes and textured patterns. As a natural consequence
307  of this increasing specificity, we see the lifetime and population sparsity in response to
308 natural scenes increase through the pooling layers (Figure 8b). This trend is consistent
309  across multiple CNNs; It is not specific to VGG 16 (not shown).

310 Units in VGG16 also display the independence of stimuli observed in the data

311 (Figure 8c). We compared the units that respond to each of the flashed stimuli (locally
312  sparse noise, static gratings and natural scenes) for each pooling layer of VGG16. For the
313  lower layers, as expected, there is a high degree of overlap in populations that respond to
314  different stimuli. Moving through deeper layers of the network, the degree of independence
315  increases. The last pooling layer shows nearly complete independence of stimuli.

316 We used similarity-of-similarity matrix (SSM) analysis®® to compare the neural

317  responses with responses at different pooling layers of VGG16 in order to quantify how
318  similar the two representations are (Figure 8d). A similarity matrix is constructed by

319  computing the correlation of the trials average population responses to pairs of scenes.
320  We then computed the correlation of similarity matrices between each pooling layer of
321 VGG16 and each cortical area, layer and Cre line in these data. Because the network has
322  a degree of similarity to itself, we only compare pooling layers as the model layers

323  between pooling layers are highly correlated (see Methods).

324 The highest correlations are for pooling layer 3 of VGG16 for most cortical areas and
325 layers (Figure 8d). Superficial layers in V1 map to the middle layers most strongly

326  whereas LM, PM, and AL in those layers tend to map to slightly higher layers, suggesting
327  apotential hierarchy, albeit a shallow one®. As a comparative baseline, we compute the
328  SSM metric for a linear Gabor wavelet basis (Figure 8d), which is highest in the input

329 layer and falls deeper into the network. These results support the view that throughout the
330 mouse visual cortex, neurons exhibit responses to more complex and sophisticated stimuli
331 than the classical model suggests.>*"

332 Discussion

333 Data standardization and experimental reproducibility is both a challenge and an

334  opportunity for the field of systems neuroscience. In vivo neuronal recordings are

335 notoriously difficult experiments that require an in-depth expertise in many scientific fields
336  and multiple years of training. As such, these experiments are difficult to scale up. Despite
337 these challenges, large cohesive datasets for systems neuroscience offer an opportunity
338 to address fundamental issues of standardization and reproducibility. Here we combined
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standardized operating procedures with integrated engineering tools to address these
long-standing difficulties. We demonstrated data collection in over an order of magnitude
more animals (221 mice) than is typically performed in the field and maintained tight
standardization across three years of continuous data collection.

We have reduced critical experimental biases by separating quality control of data
collection from response characterization. Historically, the field has been dominated by
single-neuron electrophysiological recordings in which electrodes were advanced until a
neuron was found that responded to a test stimulus. The stimulus was then optimized to
elicit the strongest reliable response from that neuron. The experiment proceeded using
manipulations around this stimulus condition that had been tuned to drive the strongest
response. Such studies have discovered many characteristic response properties, but may
fail to capture the variability of responses, the breadth of features that elicit a neural
response, and the breadth of features that do not elicit a response. Recently, calcium
imaging and denser electrophysiological recordings have enabled large populations of
neurons to be recorded simultaneously. By combining calcium imaging with strong quality
control and standardization, we have created an unprecedented survey of mouse visual
cortex using a standard and well-studied but diverse set of stimuli while limiting the
selection bias towards those stimuli.

Under the canonical model, V1 sits at the initial stages of a processing hierarchy
where neurons respond to low-level features, specifically with spatially localized receptive
fields with spatial and temporal frequency preferences."™ Neural responses become
increasing specialized in the higher areas moving away from V1, reaching extremes in
which cells show very selective responses to specific objects and even faces.**

The field has a growing body of evidence showing that the canonical model needs to
be enhanced to support more sophisticated visual computation.>*' For instance, neurons
in mouse V1 show complex visual responses previously associated with higher cortical
areas, including pattern selectivity for plaid stimuli*® Furthermore, the emergence of the
rodent as a prominent model of the visual system in recent years has revealed evidence of
non-visual computation, including behavioral responses such as reward timing and
sequence learning®, as well as modulation by multimodal sensory stimuli**® and motor
Signals.23’24’37'39

We expected this survey to provide strong evidence for low-level responses that
become progressively higher order throughout the higher visual areas of mouse cortex.
Instead, neurons throughout the mouse cortex show highly variable, sparse responses,
best fit by “complex” models. Further, responsiveness to different stimuli is largely
independent. Rather than support the canonical model, these results provide evidence of
higher order coding wherein neurons exhibit specialized responses to a set of sparse and
higher level features of the visual field.

Neurons tuned to low-level features will not, as a whole, show the property of
independence that we observe in these data. Such neurons should be, by and large,
equally mappable using noise stimuli, grating stimuli, and natural stimuli — with some
stimulus specific modifications in the resulting receptive field.2*"" While we observe
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381 individual examples of neurons that behave exactly this way, this is not a general feature
382  of the population of responses (Figure 7, Supplemental Figure 28). Computationally, we
383  can consider how a system that responds to low-order features will behave by examining
384  either the early layers of a CNN (Figure 8c,d) or a wavelet basis (not shown), where we
385  see strong dependence and correlation of responses across stimuli, contrary to what is
386  observed in the dataset. Strikingly, the fact that none of the neurons in the dataset are

387  better fit by the “simple” model in our GLM wavelet basis model (Figure 6) further supports
388  our finding that neurons are not tuned to low-level features.

389 Neurons that respond to higher-order features, on the other hand, result in

390 responses that are sparse in both a population and lifetime sense, as we observe here. In
391 a CNN, the network develops features during training that allow it to correctly classify

392 images. Whereas the early units of these networks tend to be more general and low-order,
393 as described above, the intermediate units become increasingly specialized for features
394  that are necessary for the trained task. As a result, the CNN shows a greater degree of
395  stimulus independence with depth (Figure 8c). Our data, throughout the mouse visual

396  cortex, shows a degree of independence that is similar to that observed in the third pooling
397 layer of VGG16 (Figure 8c). This is consistent with a comparison of sparsity, both lifetime
398 and population, between the dataset and VGG16, as well as the representation mapping
399 using SSM-analysis that shows most layers and areas are more similar to the middle

400 pooling layers, while a wavelet basis is most similar to the input and early layers (Figure
401  8b,d). These results are also consistent with an alternative methodology, SVCCA* (not
402 shown). Taken together, these results reveal that neurons throughout the mouse visual
403  cortex exhibit higher order coding, revealing that they are specialized for high-level

404  features.

405 This is not to say that there are not plenty of cells in the early visual cortical areas
406 that show Gabor-type receptive fields. VGG16, at the second pooling layer, for example,
407  has units with optimal stimuli that closely resemble Gabors, but they are the minority.

408  Additionally, probing such networks with stimuli such as linear gratings or noise stimuli, or
409  with approaches such as spike triggered averaging, will result in responses that can be
410 characterized with Gabor-type receptive fields even though this is not the optimal stimulus
411 condition that drives such units. We posit that the same phenomenon is almost certainly
412  at play in the mouse visual cortex. Specialized, higher-order visual neurons have been
413  known to exist, either high in the visual hierarchy or as particular exceptions (e.g. loom
414  detectors, motion pattern cells). By including a broad range of stimuli and reducing

415  stimulus bias in our data collection and analysis, we have revealed that such higher order
416  cells are closer to the rule than the exception in the mouse visual cortex. Given that much
417  of the existing literature describes the visual system of cat and primate, it is interesting to
418  speculate as to whether these results might generalize to other species.

419 Identifying the exact response characteristics of the population of cells remains an
420  open problem. The optimal stimuli of units in a CNN are the result of optimization for an
421  object recognition task on natural stimuli. Such a “task” appropriate to define the response
422  characteristics of the mouse visual system remains unclear. Understanding the
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423  computation of the mouse visual circuit will require identifying the features and stimuli that
424  are ethologically relevant to the mouse.

425 The Allen Brain Observatory Visual Coding dataset is an openly available dataset,
426 accessible via a dedicated web portal (http://observatory.brain-map.org/visualcoding), with
427  a custom Python-based Application Programming Interface, the AllenSDK

428 (http://alleninstitute.github.io/AllenSDK/). We believe these data will be a valuable

429 resource to the systems neuroscience community as a testbed for theories of cortical

430 computation and a benchmark for experimental results. Already, these data have been
431  used by other researchers to develop image processing methods,*'*? to examine stimulus
432  encoding and decoding,***’ and to test models of cortical computations.*® Ultimately, we
433  expect these data will seed as many questions as they answer, fueling others to pursue
434  both new analyses and further experiments to unravel how cortical circuits represent and
435 transform sensory information.

436
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575 Figure 1: A standardized systems neuroscience data pipeline to map
576  visual responses

577  (a) Schematic describing the experimental workflow followed by each mouse going

578 through a large scale data pipeline. (b) Example intrinsic imaging map labelling individual
579  visual brain areas. Scale bar = 1mm. (¢) Example averaged two photon imaging field of
580  view (400 um x 400 um) showcasing neurons labeled with Gcamp6f. Scale bar = 100 pm.
581  (d) Custom design apparatus to standardize the handling of mice in two photon imaging.
582  We engineered all steps of the pipeline to co-register data and tools, enabling reproducible
583  data collection and a standardized experimental process (see Supplementary Figure 1-4).
584  (e) Number of mice passing Quality Control (QC) criteria established by Standardized
585  Operating Procedures (SOPs) at each step of the data collection pipeline with their

586  recorded failure reason. The data collection pipeline is closely monitored to maintain

587  consistently high data quality. (f) Standardized experimental design of sensory visual

588  stimuli to map responses properties of neurons across the visual cortex. 6 blocks of

589 different stimuli were presented to mice (left) and were distributed into 3 separate imaging
590 session called session A, session B and session C (right).
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Table 1

B 7 S S T R S

Emx1-IRES-Cre; Camk2a-tTA; Ai93 2/3,4,5 3096 (9) 2098 (8) 1787 (7) 835 (4) 457 (3) 3011 (9)
Slc17a7-IRES2-Cre; Camk2a-tTA; Ai93  2/3,4,5 E 1864 (13) 1864 (10) 374 (2) 1202 (10) 235 (2) 322 (3)
Cux2-CreERT2; Camk2-tTA; Ai93 2/3,4 E 5168 (15) 3845 (13) 3037 (12) 2987 (14) 1611 (10) 1370 (9)
Rorb-IRES2-Cre; Camk2a-tTA; Ai93 4 E 2218 (8) 1191 (6) 1242 (6) 593 (6) 735 (8) 1757 (6)
Scnnla-Tg3-Cre; Camk2a-tTA; Ai93 4 E 1873 (9)

Nr5a1-Cre; Camk2a-tTA; Ai93 4 E 702 (8) 416 (6) 172 (4) 331 (7) 171 (6) 1318 (5)
Rbp4-Cre_KL100; Camk2a-tTA; Ai93 5 E 531 (8) 640 (8) 490 (7) 590 (7) 355 (8) 136 (5)
Fezf2-CreER;Ai148 5 E 490 (5) 981 (5)

TIx3-Cre_PL56;Ai148 5 E 1181 (6) 946 (3)

Ntsr1-Cre_GN220;Ai148 6 E 331 (4) 210 (2) 330 (3)

Sst-IRES-Cre;Ail148 4,5 | 449 (18) 413 (16) 200 (2) 608 (17) 46 (2)

Vip-IRES-Cre;Ai148 2/3, 4 I 247 (16) 280 (15) 320 (15)
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Table 1: Visual coding dataset.

The number of cells (and experiments) imaged for each Cre line in each cortical visual

area. In total, 59,526 cells imaged in 410 experiments in 221 mice are included in this
dataset.
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Figure 2: Visual responses to diverse visual stimuli.

(a) Activity for four example neurons, two excitatory neurons (Rorb, layer 4, Rbp4, layer 5)
and two inhibitory neurons (Sst layer 4, and Vip layer 2/3). AF/F (top, blue) and extracted
events (bottom, black) for each cell. (b) Star plot summarizing orientation and temporal
frequency tuning for responses to the drifting gratings stimulus (For details on response
visualizations see Supplemental Figure 13). (c) Fan plot summarizing orientation and
spatial frequency tuning for responses to static gratings. (d) Corona plot summarizing
responses to natural scenes. (e) Track plot summarizing responses to natural movies. (f)
Receptive field subunits mapped using locally sparse noise. (g) Percent of neurons that
responded to at least one stimulus across cortical areas. (h) Percent of neurons that
responded to each stimulus across cortical areas. Colors correspond to the labels at the
top of the figure.
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Figure 3: Tuning properties reveal functional differences across areas
and Cre lines.

(a) Pawpilot visualization summarizes median value of a tuning metric across visual areas.
Top, each visual area is represented as a circle, with V1 in the center and the higher visual
areas surrounding it according to their location on the surface of the cortex. Center, each
paw-pad (visual area) has two concentric circles. The area of the larger circle represents
the number of cells imaged at that layer and area. The area of the inner, colored, circle
represents the number of responsive cells for that layer and area. The color of the inner
circle reflects the median value of the metric for the responsive cells, indicated by the
colorscale at the bottom of the plot. Bottom, scale of circle area for single cell metrics and
for population metrics. In contrast to single-cell metrics, for population metrics (e.g. Fig 3c)
each paw-pad (visual area) has only one circle, and the area represents the number of
datasets. For a metric’'s summary plot, four pawplots are shown, one for each layer. Only
data from one Cre line is shown for each layer. For each panel, a pawplot is paired with a
box plot or a strip plot (for single cell and population metrics respectively) showing the full
distribution for each Cre line and layer in V1. Data is assigned to cortical layers based on
both the Cre line and the imaging depth. Data collected above 275um from the surface is
considered to be in layer 2/3. Data collected between 275um and 375um is considered to
be in layer 4. Data collected between 375um and 500um is considered to be in layer 5.
Data collected at 550um in considered to be in layer 6. The box shows the quartiles of the
data, and the whiskers extend to 1.5 times the interquartile range. Points outside this
range are shown as outliers. For other cortical areas, see Supplemental Figure 19. (b)
Pawplot and box plot summarizing direction selectivity. (c) Pawplot and strip plot
summarizing decoding performance for drifting grating direction using K-nearest
neighbors. Each dot represents the mean five-fold cross-validated decoding performance
of a single experiment, with the median performance for a Cre-line/layer represented by
bar. (d) Pawplot and box plot summarizing preferred temporal frequencies. (e) Pawplot
and box plot summarizing preferred spatial frequencies. (f) Pawplot and box plot
summarizing receptive field area.
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636 Figure 4: Visual responses are sparse, but coding is dense.

637  (a) Distribution of evoked responses for two example cells showing either high lifetime
638  sparseness (top) and low lifetime sparseness (bottom). The corona plot for each cell is
639 insetin the plot. (b) Pawplot and box plots summarizing lifetime sparseness of the

640 responses to natural scenes. (c) Pawplot and strip plot summarizing the population

641  sparseness of responses to natural scenes. (d) Pawplot and strip plot summarizing the
642 mean noise correlation of responses to natural scenes. (e) Correlation (spearman’s rho)
643  between noise correlations and signal correlations for one experiment (Slc17a7, layer 2/3
644  of V1). (f) Pawplot and strip plot summarizing the correlation of signal correlations and
645 noise correlations.
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646  Figure 5: Neural variability is only weakly explained by locomotor
647  activity.

648 (a) Paw plot and box plot summarizing the percent of responsive trials for drifting gratings,
649 the percent of trials that have a significant response for each neurons preferred grating
650 condition. The responsiveness criteria is that a neuron responded to 25% of the trials,

651 hence the low end is capped at 25%. (b) Paw plot and box plot summarizing the reliability
652  of responses for drifting gratings. (c) Paw plot and box plot summarizing the reliability of
653  responses for natural scenes. (d) Evoked response to a neuron’s preferred drifting grating
654  condition when the mouse is running (running speed > 1 cm/s) compared to when it is
655  stationary, shown as a density plot. (e) Evoked response to a neuron’s preferred natural
656  scene when the mouse is running (running speed > 1 cm/s) compared to when it is

657  stationary, shown as a density plot. (f) Reliability as a function of running fraction, data
658  binned into equally sized bins, for drifting gratings and natural scenes.
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659 Figure 6: All cells show a high degree of complexity and are better fit
660  with natural stimuli

661  (a) Schematic for the GLM. The models are trained on either natural or artificial stimuli,
662  converted into a 30Hz time series and spatially downsampled. The time series input is
663 filtered with spatio-temporal Gabor wavelet pyramids, one of which is linearly combined,
664  the other of which is squared before components are combined. These weighted sums are
665  passed through a soft-rectification to predict the detected calcium events, which have

666 been smoothed with a Gaussian filter. (b) (left) Example filters for two cells from the

667  dataset, showing the linear filter as well as two (of many) quadratic components. (right)
668 Predicted response compared with smoothed calcium events for those example cells. (c)
669  Density plot comparing the mean r values for models trained on natural vs. artificial stimuli
670 for all modeled cells (top). Density plot showing cross stimulus performance of models
671  trained on one stimulus type and tested on the other (bottom). (d) Pawplot and box plot
672 summarizing the r values for the dataset. (e) Pawplot and box plot summarizing the

673 complexity across the dataset.
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Figure 7: Responses to different stimuli are largely independent.

(a) Responses of 50 neurons during one imaging session (Cux2, V1, layer 2/3) with
stimulus epochs shaded using stimulus colors from Figure 1. (b) Schematic of overlap
analysis. If 50% of cells in an experiment respond to stimulus A and 70% of the cells
response to stimulus B, chance overlap would be 35%. Maximum overlap would be 50%,
and minimum overlap would be 20%. The overlap between each pair of stimuli was
computed, and z-scored. (¢) Median overlap z-score for each pair of stimuli for all
experiments. (d) The correlation of response reliability for cells responses to each pair of
stimuli. White dots indicate the combinations that are shown in panel d (e) Comparison of
the reliability of responses for natural scenes with locally sparse noise, static gratings,
drifting gratings and natural movie three (left to right).
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685 Figure 8: Mouse visual cortex maps to mid-to-high levels of a
686 Convolutional Neural Network.

687  (a) Schematic of VGG16 showing convolutional (black) and pooling (red) layers. Above,
688  example optimal stimuli for sample units found at the first three pooling layers. (b) Median
689 lifetime and population sparseness for each pooling layer of VGG16 in response to the
690 natural scenes stimulus used for this dataset. Dashed lines indicate the limits of median
691 lifetime sparseness for natural scenes found in V1 (see Figure 4b). (c) Stimulus overlap
692  (for the flashed stimuli from the data set) for the pooling layers of VGG16. (d) Similarity of
693  similarity matrix correlation between neural data from each Cre line, area, layer and each
694  pooling layer of VGG16 (see Methods). Shaded region is the null distribution for

695  significance at one standard deviation. Dashed line indicates the SSM correlation with a
696  spatial wavelet pyramid.
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