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ABSTRACT

Motivation: Genomic sequencing studies, including RNA sequencing and bisulfite
sequencing studies, are becoming increasingly common and increasingly large. Large
genomic sequencing studies open doors for accurate molecular trait heritability
estimation and powerful differential analysis. Heritability estimation and differential
analysis in sequencing studies requires the development of statistical methods that can
properly account for the count nature of the sequencing data and that are
computationally efficient for large data sets.

Results: Here, we develop such a method, PQLseq (Penalized Quasi-Likelihood for
sequencing count data), to enable effective and efficient heritability estimation and
differential analysis using the generalized linear mixed model framework. With extensive
simulations and comparisons to previous methods, we show that PQLseq is the only
method currently available that can produce unbiased heritability estimates for
sequencing count data. In addition, we show that PQLseq is well suited for differential
analysis in large sequencing studies, providing calibrated type | error control and more
power compared to the standard linear mixed model methods. Finally, we apply PQLseq
to perform gene expression heritability estimation and differential expression analysis in
a large RNA sequencing study in the Hutterites.

Availability and implementation: PQLseq is implemented as an R package with
source code freely available at www.xzlab.org/software.html and https://cran.r-
project.org/web/packages/PQLseq/index.html.

Contact: XZ (xzhousph@umich.edu)

Supplementary information: Supplementary data are available online.
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INTRODUCTION

Generalized linear mixed model (GLMM) has recently emerged as a powerful statistical
tool for the analysis of high throughput genomics sequencing studies (Lea, et al., 2015;
Sun, et al., 2017; Weissbrod, et al., 2017; Zhang, et al., 2017). The main application of
GLMM in these genomic sequencing studies is so far restricted to differential analysis,
which aims to identify genomic units (e.g. genes or CpG sites) that are associated with a
predictor of interest (e.g. disease status, treatment, environmental covariates, or
genotypes). Common analysis examples include differential expression analysis in RNA
sequencing (RNAseq) studies (Conesa, et al., 2016; Pickrell, et al., 2010) and differential
methylation analysis in bisulfite sequencing (BSseq) studies (Irizarry, et al., 2009; Oakes,
et al., 2016). Effective differential analysis with sequencing data often requires statistical
methods to both account for the count nature of sequencing data and effectively control
for sample non-independence — a common phenomenon in sequencing studies caused
by individual relatedness, population structure, or hidden confounding factors (Dubin, et
al., 2015; Scott, et al., 2016; Tung, et al.,, 2015). GLMM accomplishes both tasks by
relying on exponential family distributions to directly model sequencing count data and
by introducing random effects terms to account for sample non-independence. In effect,
GLMM generalizes both the linear mixed model (LMM) that has been widely used to
control for sample non-independence in association studies (Kang, et al., 2010; Lippert,
et al., 2011; Zhou and Stephens, 2012), and over-dispersed count models (e.qg.
negative-binomial, beta-binomial) that have been widely used for differential analysis in
sequencing studies (Love, et al., 2014; Robinson, et al.,, 2010; Sun, et al., 2014). By
combining the benefits of the two commonly used methods, GLMM properly controls
type | error and improves power for differential analysis (Lea, et al., 2015; Sun, et al.,
2017).

While the existing applications of GLMM in genomic sequencing studies have been
primarily restricted to differential analysis, the similarity between GLMM and LMM begs
the question on whether GLMM can also be applied to estimate heritability for
sequencing count data. Heritability measures the proportion of phenotypic variance
explained by genetics and is an important quantity that facilitates the understanding the
genetic basis of phenotypic variation. The standard tool for estimating heritability is LMM,
which has long been applied for heritability estimation (Abecasis, et al., 2000; Almasy
and Blangero, 1998; Amos, 1994; Diao and Lin, 2006; Visscher, et al., 2008; Zhou, 2017)
or SNP heritability estimation (de los Campos, et al., 2015; Wray, et al., 2013; Yang, et
al., 2010; Zhou, 2017; Zhou, et al., 2013) for various quantitative traits in the setting of
genome-wide association studies (GWASS). In the setting of genomics studies, LMM
has also been recently applied to estimate gene expression heritability (Emilsson, et al.,
2008; Monks, et al., 2004; Price, et al., 2011; Tung, et al., 2015; Wright, et al., 2014),
methylation level heritability (Banovich, et al., 2014; Bell, et al., 2012; McRae, et al.,
2014), as well as various other molecular traits heritability (Cheng, et al., 2017).
However, LMM is specifically designed for analyzing quantitative traits. In genomic
sequencing studies, the application of LMM requires a priori transformation of the count
data to continuous data before heritability estimation (Tung, et al., 2015; Wheeler, et al.,
2016). Transforming sequencing count data may fail to properly account for the sampling
noise from the underlying count generating process, and may inappropriately attribute
such noise to independent environmental variation -- thus running the risk of
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overestimating environmental variance and subsequently underestimating heritability. In
contrast, GLMM directly models count data, and as will be shown in the present study,
has the potential to become a more accurate alternative than LMM for heritability
estimation in genomic sequencing studies.

Both the above two applications of GLMM for differential analysis and heritability
estimation require accurate and scalable inference algorithms to accommodate the
increasingly large genomic sequencing studies that are being collected today. Indeed,
several genomic projects have already collected sequencing data on hundreds of
individuals (Ardlie, et al., 2015; Battle, et al., 2014; Consortium, 2015), and the recent
TOPMed omics sequencing project further aims to sequence a few thousands of
individuals in the next couple of years. Compared with small sample studies, large
genomic sequencing studies are better powered and more reproducible, and are thus
becoming increasingly common in genomics. In addition, large-scale population
sequencing studies pave ways for accurate estimation of heritability for various
molecular traits. Unfortunately, existing algorithms for fitting GLMM in genomic
sequencing studies are not scalable. In addition, as will be shown in the present study,
existing GLMM algorithms do not always produce calibrated p-values for differential
analysis nor accurate heritability estimates.

In terms of scalability, existing algorithms to fit GLMM are generally computationally
expensive due to an intractable high-dimensional integral in the GLMM likelihood
(Breslow and Clayton, 1993; Chen, et al., 2016; Weissbrod, et al., 2017). For example,
the frequentist method Mixed model Association for Count data via data AUgmentation
algorithm (MACAU) relies on a Bayesian strategy of Markov chain Monte Carlo (MCMC)
sampling to numerically approximate the integration in GLMM. However, though
accurate, MCMC based strategy is computationally inefficient for large sample size: it
takes MACAU several days to analyze moderate-sized RNAseq or BSseq data with a
few hundred individuals. To overcome the computational bottleneck of MCMC-based
approaches, recent studies have started to explore alternative approximation strategies
to fit GLMM. For example, in bisulfite sequencing studies (Weissbrod, et al., 2017), the
Mixed model Association via a Laplace ApproXimation algorithm (MALAX) relies on a
Laplace approximation to improve computational speed. However, the computational
improvement of MALAX over MACAU is relatively marginal (approximately two-folds). In
non-genomics sequencing settings, a score test based approximate algorithm has also
been recently developed to apply GLMM to analyze large-scale GWASs (Chen, et al.,
2016). However, score test based strategy is not well-suited for genomic study setting
where the null model varies for every genomic unit tested (e.g. gene or CpG site).
Therefore, scaling up GLMM to thousands of individuals remains a challenging task.

In terms of accuracy, existing algorithms to fit GLMM rely on different approximations
and these different approximations may work well in different settings. For example, in
the field of biostatistics, it has been shown that while some GLMM algorithms may
produce accurate p-values for differential analysis tasks in small studies, other GLMM
algorithms rely on asymptotic properties of the likelihood and can only produce accurate
p-values when sample size is relatively large (Breslow and Lin, 1995; Browne and
Draper, 2006; Fong, et al., 2010; Jang and Lim, 2009; Lin and Breslow, 1996; Rodriguez
and Goldman, 2001). Therefore, exploring the behavior of different GLMM algorithms in
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different settings will be informative for practitioners. In addition, as we will show below,
existing GLMM algorithms in genomic sequencing studies cannot yet provide accurate
heritability estimates.

Here, we develop a new method and a software tool to enable scalable and accurate
inference with GLMM for large-scale RNAseq and BSseq studies. We also perform
extensive simulations to comprehensively evaluate our method together with several
other existing methods in various simulation settings to give out recommendations on
GLMM based differential analysis and heritability estimation for practitioners. Our newly
developed method is based on the penalized quasi-likelihood (PQL) approximation
algorithm (Breslow and Clayton, 1993), applies to GLMM with two or more variance
components, and with an efficient implementation, is capable of utilizing the parallel
computing environment readily available in modern desktop computers. With the
multiple-thread computing capability, our method can improve computation time for
GLMM analysis of large-scale genomic sequencing data by at least an order of
magnitude, making GLMM based differential analysis and heritability estimation
applicable to hundreds or thousands of individuals. Importantly, as we will show below,
our method is currently the only available method that can produce unbiased heritability
estimates for sequencing count data. We refer to our method as the Penalized Quasi-
Likelihood for sequencing count data (PQLseq). With extensive simulations and
comparison with LMM or other existing GLMM methods, we illustrate both the advantage
and limitation of our method. Finally, we apply our method to analyze a large-scale
RNAseq study in the Hutterites.
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Materials and Methods
PQLseq: Models and Algorithm

PQLseq fits two forms of GLMM that include the Poisson mixed model (PMM) for
modeling RNAseq data and the binomial mixed model (BMM) for modeling BSseq data.
These two different types of sequencing data have different data structures. Specifically,
RNAseq studies collect one read count for each gene as a measurement of its
expression level. In contrast, BSseq studies collect two read counts for each CpG site —
one methylated count and one total count — as a measurement of the methylation level
at the CpG site. The ratio between these two counts in the BSseq data represents
approximately the methylation proportion of the given CpG site. Therefore, we use two
different types of GLMM to model RNAseq and BSseq data. For both data types, we
examine one genomic unit (i.e. gene or CpG site) at a time.

For a given gene in an RNAseq study, we consider the following PMM

yi~Poi(N; 1), i = 1,2, ,n.
where n is the number of individuals; y; is the number of reads mapped to the particular
gene for the i'th individual; N; is the total read counts for the individual (a.k.a read depth
or coverage); and 4; is an unknown Poisson rate parameter that represents the
underlying gene expression level for the individual.

For a given CpG site in a BSseq study, we instead consider the following BMM

yi~Bin(r;, m;), i = 1,2, , n.
where 1; is the total read count for i'th individual; y; is the methylated read count for that
individual, constrained to be an integer value less than or equal to r;; and m; is an
unknown parameter that represents the underlying proportion of methylated reads for
the individual at the site.

For either model, we transform the unknown parameters into a latent variable z;:
z; =log (4;) in PMM and z; = logit (1;) in BMM. We then model the latent variable z; as
a linear combination of several parameters,

zi=wia+xf+gi+e,i=12-n,
g = (gl' g2, 'gn)TNMVN(O' O-ZhZK);
e= (el! €, en)T"‘MVN(O’ 0-2(1 - hz)l)

where w; is a c-vector of covariates including the intercept; ¢ is a c-vector of
corresponding coefficients; x; represents the predictor variable of interest (e.g.
experimental perturbation, sex, disease status, or genotype); 8 is its coefficient; g is an
n-vector of genetic effects; e is an n-vector of environmental effects; Kis an n by n
relatedness matrix that models the covariance among individuals due to either individual
relatedness or population structure; 1 is an n by n identity matrix that models
independent environmental variation; o2h? is the genetic variance component; o2(1 —
h?) is the environmental variance component; and MVN denotes the multivariate normal
distribution. When K is standardized to have tr(K)/n =1, h? € [0,1] has the usual
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interpretation of heritability (Zhou, et al., 2013; Zhou and Stephens, 2012), where the
tr(+) denotes the trace of a matrix.

In the above BMM and PMM, we are interested in testing the null hypothesis Hy: f = 0
and/or estimating the heritability parameter h?. Both tasks require the development of
computational algorithms to fit GLMM. Unfortunately, fitting GLMM is notoriously difficult,
as the GLMM likelihood consists of an n-dimensional integral that cannot be solved
analytically. To overcome the high dimensional integral and enable scalable estimation
and inference with GLMM, we develop an approximate fitting method based on the
penalized quasi-likelihood (PQL) approach (Breslow and Clayton, 1993) that is also
recently applied to GWAS settings (Chen, et al., 2016). The detailed algorithm is
provided in the Supplementary Text. Briefly, our method employs an iterative numerical
optimization procedure. In each iteration, we introduce a set of pseudo-data ¥ to replace
the originally observed data y. The pseudo-data ¥ is obtained based on a second order
Taylor expansion using the conditional distribution P(y|g, e) using the first and second
order moments E(y|g,e) and V(y|g, e), both evaluated at the current estimates of the
fixed coefficients & and 8 as well as the random effects g and e. With the pseudo-data,
the complex GLMM likelihood function for the original data y is replaced by a much
simpler LMM likelihood function for the pseudo-data ¥y, thereby alleviating much of the
computational burden associated with GLMM. With the pseudo-data ¥, we can perform
inference and update parameters using the standard average information (Al) algorithm
for LMMs (Chen, et al., 2016; Gilmour, et al., 1995; Yang, et al., 2011). By iterating
between the approximation step of obtaining the pseudo-data ¥ and the inference step
of updating the parameter estimates via the Al algorithm, the PQL approach allows us to
perform inference in a computationally efficient fashion. To improve computational speed
further, we also take advantage of the parallel computing environment readily available
in modern desktop computers nowadays and implement our method with multiple-thread
computing capability using Rcpp. We refer to our method as the Penalized Quasi-
Likelihood for sequencing count data (PQLseq), which is freely available as an R
package at www.xzlab.org/software.html and https://cran.r-
project.org/web/packages/PQLseq/index .html.

Simulations

We performed simulations to compare different methods. To make simulations as
realistic as possible, we simulated either RNAseq data or BSseq data based on
parameters inferred from two published data sets that include a RNAseq data set (Tung,
et al., 2015) and a BSseq data set (Lea, et al., 2015). In the simulations, we varied the
sample size (n) (n = 50, 100, 200, 300, or 500). To construct a relatedness matrix K in
each of these sample simulations, we first obtained a real relatedness matrix from the
published data (Lea, et al., 2015). We then constructed the relatedness matrix K by
filling in its off-diagonal elements with randomly drawn off-diagonal elements from the
real relatedness matrix following (Lea, et al., 2015). In cases where the resulting K was
not positive definite, we used the nearPD function in R to find the closest positive definite
matrix as the final K. Besides n and K, we also simulated a continuous predictor variable
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x from a standard normal distribution, and normalized the predictor x to have a zero
mean and unit variance.

For RNAseq based simulations, in each simulation replicate, we simulated the total read
count N; for each individual from a discrete uniform distribution with a minimum
(=1,770,083) and a maximum (=9,675,989) total read count (i.e., summation of read
counts across all genes) equal to the minimum and maximum total read counts in the
published RNAseq data (Tung, et al.,, 2015). We simulated 10,000 gene expression
values and considered two general simulation settings. In the null settings, we simulated
10,000 non-differentially expressed (non-DE) genes to examine the gene expression
heritability estimation accuracy and type | error control. In the alternative settings we
simulated 1,000 DE genes and 9,000 non-DE genes to examine power. These non-DE
or DE genes are simulated using the following procedure. Specifically, for each gene in
turn, we simulated the genetic random effects g from a multivariate normal distribution
with covariance K. We simulated the environmental random effects e based on
independent normal distributions. We then scaled the two sets of random effects to
v(g)
V(g)+v(e)
over-dispersion variance (o2 = V(g) +V(e) = 0.1, 0.25 or 0.5) where the function V()
denotes the sample variance. A heritability value of 0.1 and 0.3 correspond
approximately to the median and upper 15% percentile of gene expression heritability
estimates from the RNAseq data (Tung, et al., 2015). An over-dispersion variance value
of 0.1, 0.25 and 0.5 correspond to approximately the lower quartile, median, and upper
guartile of the over-dispersion variance inferred from the RNAseq data (Tung, et al.,
2015). Afterwards, for non-DE genes, the genetic effects g, environmental effects e, and
an intercept (i) were then summed together to yield the latent variable log(4) = u+ g +

e. Here, the intercept u = log (%) ensures an average gene count of ¢ = 10, 50, or 100,

ensure a fixed value of heritability (h? = = 0.0 or 0.1 or 0.3) and a fixed value of

where N is the average total read count across individuals. For DE genes, we used

log(4) = u+xpB + g + e to yield the latent variable, where g ~ N(0,0) and of is set to

2
ensure a fixed proportional of variance explained (PVE). That is, o/ = %, where

PVE values were fixed to be 15%, 25%, or 35% to represent different effect sizes.
Finally, we simulated the read counts based on a Poisson distribution with the Poisson
rate being a product of the total read counts N; and the latent variable 4;; that is,
y;~Poi(N;A;) for the i'th individual. With the above procedure, we first simulated data
under n = 100, h? = 0.1 and ¢ = 0.25 (and PVE = 0.25 for DE genes). We then varied
one parameter at a time to generate different simulation scenarios. In each scenario,
conditional on the sample size, total read counts etc., we performed 10 simulation
replicates, each consisting of 10,000 genes.

For BSseq based simulations, in each simulation replicate, we simulated methylation
values for 10,000 sites and considered two general simulation settings. In the null
settings, we simulated 10,000 non-differentially methylated (non-DM) sites to examine
the methylation level heritability estimation accuracy and type | error control. In the
alternative settings we simulated 1,000 DM sites and 9,000 non-DM sites to examine
power. These non-DM or DM sites are simulated using the following procedure.
Specifically, for each site in turn, we simulated total read counts r; for each individual i
from a negative binomial distribution r; ~ NB(u, 8) with u = 18.80 and median 6 = 2.49;
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the two parameter values correspond to the median estimates from the published BSseq
data (Lea, et al.,, 2015). We then simulated the genetic random effects g and the
environmental random effects e given a fixed heritability A% (0.1 or 0.3) and a fixed value
of over-dispersion variance (62 = 0.5, 1.2, or 2). Again, the over-dispersion variance
values correspond to the lower quartile, median, and upper quartile of the over-
dispersion variance inferred from the BSseq data (Lea, et al., 2015). For non-DM sites,
the genetic effects g, environmental effects e, and an intercept (1) were then summed

together to yield the latent variable logit(m) = p+ g + e. Here, u = logit(g) ensures an

average number of methylated read counts being approximately ¢ =5, 10 or 19, where r
is the average total read count for the given site across individuals. For DM sites, we use
logit(m) = u + xB + g + e to yield the latent variable, where g ~ N(0,07) and of is set to
PVE g2
1-PVE)W(x) '
25%, or 35% to represent different effect sizes. Finally, we simulated the methylated
read counts based on a binomial distribution with a rate parameter determined by the
total read counts r; and the methylation proportion r;; that is, y;~Bin(r;, m;) for the i'th
individual. With the above procedure, we first simulated data under n = 100, h? = 0.1
and 62 = 1.2 (and PVE = 0.15 or PVE = 0.25 for DM sites). We then varied one
parameter at a time to generate different scenarios. In each scenario, conditional on the
sample size, total read counts etc., we performed 10 simulation replicates, each
consisting of 10,000 sites.

ensure a fixed PVE. That is, 67 = where PVE values were set to be 15%,

We compared four different methods (PQLseq, MACAU, GEMMA, and MALAX) in the
BSseq based simulations, and compared three different methods (PQLseq, MACAU and
GEMMA) in the RNAseq based simulations as MALAX is only applicable for BSseq data.
For GEMMA, we normalized data following previous recommendations (Lea, et al., 2015;
Sun, et al., 2017). Specifically, for RNAseq data, for each gene in turn, we divided the
number of read counts mapped to the gene by the total read depth, and quantile
transformed the normalized data to a standard normal distribution. For BSseq data, we
used “M” value transformation following (Du, et al., 2010) by dividing the number of
methylated reads by the number of unmethylated reads followed by a log2-

thylated ds+
methylarer reats a), where a = 0.01 to

transformation. The normalized data is logz(
unmethylated reads+a

avoid log transforming zero values.

Real Data Application

The published RNAseq data was collected from lymphoblastoid cell lines (LCLs) of 431
individuals from the Hutterites population in South Dakota, which is an isolated founder
population (Cusanovich, et al., 2016). Libraries were created using the TruSeq Library
Kit and samples were sequenced an lllumina HiSeq 2000 (50bp single end reads) in
indexed pools of 12. Reads were trimmed for adaptors using Cutadapt (reads less than
5 bp discarded) then remapped to hgl9 using bowtie indexed with gencode version 19
gene annotations (Langmead, et al., 2009; Martin, 2011). To remove mapping bias,
autosomal reads were processed through WASP (van de Geijn, et al.,, 2015). Gene
counts were quantified using HTSeqg-count (Anders, et al., 2015) and verifyBamID was
used to identify sample swaps (Jun, et al., 2012). Following these mapping and quality
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control steps, we obtained expression count measurements for 23,367 genes. We kept
genes that have read counts greater than five in at least two individuals to focus on a
final set of 17,312 genes. We also used the Hutterites pedigree information to compute
the kinship coefficients between pairs of individuals and used them as the K matrix in the
model. We then fitted a PMM for each gene in turn without any covariates to estimate
gene expression heritability. For DE analysis, we used sex as the predictor variable (i.e.
male vs female) to identify sex-associated genes. To compare performance among
different methods for DE analysis, we permuted phenotype sex 20 times to obtain a null
distribution. We used the null distribution to estimate the false discovery rate (FDR).
Finally, to explore the influence of batch effects for heritability estimates in PQLseq, we
extracted the top principal components (PCs) from the gene expression matrix and
treated them as covariates in the model. We considered including a different number of
top gene expression PCs that range from 2 to 200.
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Results

We provide a brief overview of the PQLseq method in the Materials and Methods section,
with algorithmic details available in the Supplementary Text. Briefly, PQLseq fits a
Poisson mixed model (PMM) for modeling RNAseq data and a binomial mixed model
(BMM) for modeling BSseq data. In both data types, PQLseq examines one genomic
unit (i.e. a gene or a CpG site) at a time, produces an estimated heritability 42, and in the
case of differential analysis, also computes a p-value for testing the genomic unit
association with a predictor variable of interest, where the predictor variable can be
either continuous or discrete.

We performed a series of simulations to compare the performance of PQLseq with three
other commonly used methods: (1) a linear mixed model implemented in GEMMA (Zhou,
et al., 2013; Zhou and Stephens, 2012); (2) a GLMM model fitted using an MCMC based
p-value computation algorithm implemented in MACAU (Lea, et al., 2015; Sun, et al.,
2017); and in the case of BSseq based simulations, we also compared with (3) a
binomial mixed model fitted using a Laplace approximation algorithm implemented in
MALAX that is specifically designed for analyzing BSseq data. We did not compare with
other commonly used DM or DE methods because (1) our main focus here is on
examining the performance of different GLMM algorithms and LMM methods, (2)
extensive simulations comparing other DM or DE methods with GLMM have been
carried out elsewhere (Lea, et al., 2015; Sun, et al., 2017). Here, we simulated RNAseq
data or BSseq data based on parameters inferred from published data sets (Lea, et al.,
2015; Tung, et al., 2015) (simulation details in the Materials and Methods). In particular,
in each setting, we simulated methylation levels for 10,000 sites or gene expression
levels for 10,000 genes. In all these cases, the simulated gene expression levels or
methylation levels are influenced by both independent environmental effects and
correlated genetic effects, where the genetic effects are simulated based on a kinship
matrix with either zero (h? = 0.0), moderate (h%? = 0.1), or high (h? = 0.3) heritability
values. A heritability value of 0.1 corresponds approximately to the median heritability
estimate in our real data analysis (see below), while a heritability value of 0.3
corresponds approximately to the 85th percentile of the expression heritability estimated
in the real data (Lea, et al., 2015; Tung, et al., 2015).

PQLseq produces approximately unbiased heritability estimates for sequencing
count data

Our first set of simulations was performed to evaluate the effectiveness of PQLseq in
terms of heritability estimation. To do so, we simulated BSseq data or RNAseq data with
a fixed heritability value that equals to either 0.1 or 0.3. We considered sample sizes
ranging from n = 50 to n = 500. We varied mean observed read count values (1) and
over-dispersion variance values (o2) from low, moderate, to high, in order to examine
how these parameters impact heritability estimation accuracy. Heritability estimates from
different methods for different sample sizes in the BSseq based simulations are shown
in Figures 1A and 1B. Heritability estimates for RNAseq based simulations are shown in
Figures 1C and 1D. Heritability estimates from different methods for increasing u are
shown in Figure S1 and estimates for increasing o2 are shown in Figure S2.
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Across all simulation settings, PQLseq is the only method that produces approximately
unbiased heritability estimates. In contrast, LMM implemented in GEMMA consistently
produces downward biased estimates across different sample sizes, and more so for
high heritability values (i.e., 0.3) than for low heritability values (i.e., 0.1). The downward
bias of LMM presumably stems from the fact that LMM fails to model the count data
generating process and inappropriately attributes the count generating noise to
environmental errors. Increasing sample size (Figure 1) or over-dispersion variance
(Figure S2) does not alleviate the downward bias of GEMMA. However, increasing the
mean observed read counts alleviates the LMM estimation bias in RNAseq data (Figure
S1), presumably because the normal approximation in LMM becomes appropriate with
high read counts. On the other hand, MACAU produces consistently upward biased
estimates across sample sizes, and more so for low heritability values (i.e. 0.1) than for
high heritability values (i.e. 0.3). Increasing the observed read counts (Figure S1) or
over-dispersion variance (Figure S2) does not alleviate the upward bias of MACAU. The
upward bias in MACAU presumably stems from its inaccurate latent variable
approximation algorithm in small samples. Indeed, with increasing sample size (e.g.
n > 200), the heritability estimates from MACAU become approximately unbiased. For
BSseq based simulations, MALAX also produces biased heritability estimates. The
heritability estimates from MALAX is highly dependent on sample size: they are
downward biased in small samples and becomes upward biased in large samples
(Figure 1). Increasing the observed read counts (Figure S1) or over-dispersion variance
(Figure S2) does not alleviate the heritability estimation bias of MALAX. Certainly, due to
well-known drawbacks of PQL (Lin, 2007; Lin and Breslow, 1996), the variance
component estimates in terms of o2 can display downward bias in extreme small sample
sizes (e.g. n = 10, 20; Figure S3), which further affects the estimation of heritability h2.
However, estimation of h? is impractical in these extreme small samples anyway due to
the large standard errors there. Overall, our results suggest that PQLseq is the only
method currently available that can produce approximately unbiased heritability
estimates for sequencing count data with reasonable sample size.

Next, in addition to heritability estimation, we also examined the use of PQLseq for SNP
heritability estimation. In particular, we examined how different genetic architectures of
gene expression might influence SNP heritability estimation results. To do so, we
obtained genotype data from n = 465 individuals with European ancestry from the
GEUVADIS study (Lappalainen, et al., 2013) as processed in (Zeng and Zhou, 2017).
We extracted 810 SNPs within +/-10kb of a median-sized gene (LIN9) from the data and
used these real genotypes to simulate gene expression phenotypes. In the simulations,
we varied the proportion of causal SNPs from 2%, 10% to 100% to capture a wide range
of sparse to polygenic genetic architectures. In each setting, we simulated causal SNP
effects each from a normal distribution and summed their effects to form the genetic
random effects term. We also simulated the residual errors from a normal distribution to
form the environmental random effects term. We scaled both terms so that the causal
SNPs in total account for a heritability of h? = 0.1 or h? = 0.3. Afterwards, we simulated
count data based on the same parameter settings and procedure explained in the
RNAseq based simulations above. In addition to the above GLMM approaches, we also
applied the Bayesian sparse linear mixed model (BSLMM) (Zhou, et al., 2013), which is
commonly used for SNP heritability estimation in various genetic architectures and which
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models normalized data. The results are shown in Figure S4 and are largely consistent
with the comparative results on heritability estimation described in the above paragraph.
In particular, GEMMA produces slightly downward biased estimates; BSLMM also
requires normalized data and occasionally produces downward biased estimates (when
the causal SNP proportion is 10% and h? = 0.3); MACAU produces slightly upward
biased estimates; while PQLseq performs reasonably well and yields approximately
unbiased estimates in various polygenic settings.

PQLseq provides effective control of type | error for differential analysis in large
samples

Our second set of simulations was performed to evaluate the effectiveness of PQLseq in
controlling for type | error for differential analysis under sample non-independence.
Sample non-independence is a common phenomenon in sequencing studies and can be
caused by individual relatedness, population structure, or hidden confounding factors
(Dubin, et al., 2015; Scott, et al., 2016; Tung, et al., 2015). Failing to properly control for
sample non-independence can lead to inflated type | errors (Lea, et al., 2015; Sun, et al.,
2017). To examine type | error control of different methods, we performed null
simulations and simulated outcome variables in terms of methylation levels or gene
expression levels that are independent of the predictor variable of interest x. However,
these outcome values are correlated among individuals/samples, with correlation
determined by a heritability value of either 0.1 or 0.3. We considered sample sizes
ranging from n = 50 ton = 500. We also varied mean observed read count values (u)
and over-dispersion variance values (o?) from low, moderate, to high, in order to
examine how these parameters impact type | error control. In these simulations, we
examined one genomic unit (i.e. site or gene) at a time and computed p-values using
different methods.

We first calculated the genomic control factors based on the p-values for each method at
a time and display them across different sample sizes in Figure 2A (for BSseq based
simulations) and Figure 2D (for RNAseq based simulations). Corresponding genomic
control factors for increasing u are shown in Figures S5A and S5D while the results for
increasing o2 are shown in Figures S6A and S6D. Overall, the genomic control factors
from PQLseq and GEMMA are closer to the expected value of one compared with the
other two methods (MACAU and MALAX) across the different sample sizes. In contrast,
the p-values from MACAU are slightly conservative in small samples with genomic
control factors lying below one. The conservativeness of MACAU are consistent with
previous studies (Lea, et al., 2015; Sun, et al., 2017) and presumably stems from
inaccurate asymptotic approximation in small sample sizes. Indeed, the genomic control
factor from MACAU quickly approaches one with increasingly large sample sizes. On the
other hand, in BSseq based simulations, MALAX produces slightly anti-conservative p-
values with genomic control factors close to 1.1 in small to moderate samples (n = 50 ~
200; Figure 2), or in cases where the observed read counts (Figure S5) or the over-
dispersion variance (Figure S6) is low. The genomic control factor from MALAX
approaches one when n = 300 and is below one when n = 500.

In addition to genomic control factors, we also display QQ-plots of -log10 p-values from
these methods in small samples (n = 50) in Figures 2B (for BSseq based simulations)
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and 2E (for RNAseq based simulations), and display QQ-plots of -log10 p-values from
these methods in large samples (n = 200) in Figures 2C and 2F. The QQ-plots for small
and large u are shown in Figures S6B/S6E and S7C/S7F, respectively. The QQ-plots for
small and large o2 are shown in Figures S7B/S7TE and S7C/S7F, respectively. Overall,
GEMMA produces calibrated type | error control across most settings, which is
consistent with previous studies (Lea, et al., 2015; Sun, et al., 2017). However, the p-
values from GEMMA are slightly more significant than expected under the null in the
RNAseq based simulations when the sample size is small (n = 50). While the genomic
control factors from PQLseq is close to one across a range of sample sizes, we did
notice in QQ-plots that the type | error rates of PQLseq are slightly anti-conservative in
small samples with small deviation from the diagonal line for small p-values. For
example, when n = 50, the type | error from PQLseq is 1.9x10° and 2.6x10™ at a size of
1x10° and 1x10™, respectively. The small inflation of p-value from PQLseq in small
samples is presumably due to PQL’s inability to account for estimation uncertainty in the
variance component parameters there, which is a known drawback of PQL (Breslow and
Lin, 1995; Browne and Draper, 2006; Fong, et al., 2010; Goldstein and Rasbash, 1996;
Jang and Lim, 2009; Lin and Breslow, 1996; Rodriguez and Goldman, 2001). However,
the p-value inflation from PQLseq is no longer observed in large samples (n = 100),
regardless of the observed read counts (Figure S5) or over-dispersion variance (Figure
S7). Consistent with the genomic factor inflation, MALAX also produces anti-
conservative p-values in small samples, more so than PQLseq. For example, when n =
50, the type | error from MALAX is 2.3x10° and 3.9x10™ at a size of 1x10° and 1x10*,
respectively. In contrast, MACAU produces conservative p-values which lines below the
diagonal line in small samples. The p-values from MACAU become calibrated when
sample size is large (n = 100), regardless of the observed read counts (Figure S5) or
over-dispersion variance (Figure S6). In addition, we also notice that the p-values
computed from MALAX have a strong enrichment near 1, more so with increasing
sample sizes (n = 200; Figure S7). Finally, we found that the p-values from PQLseq are
highly correlated with that from MACAU across a range of sample sizes (* varies from
0.96 to 0.99; Figure S8), with increasingly large correlation for increasingly large sample
size.

Overall, our null simulation results show that different GLMM methods can be either
conservative (MACAU) or anti-conservative (PQLseq and MALAX) in small samples.
However, all methods can produce calibrate type | error control in reasonably sized
samples (PQLseq and MALAX for n = 100; MALAX for n = 300). The effectiveness of
PQLseq in controlling for type | error in moderate to large samples suggest that PQLseq
is particularly well suited for differential analysis in large sequencing data.

PQLseq exhibits similar power for differential analysis as MACAU

Our final set of simulations were performed to compare the power of different methods in
differential analysis. To do so, we simulated 10,000 sites or genes among which 1,000 of
them are DM sites or DE genes. For DM sites or DE genes, we varied the effect sizes of
predictor values so that the predictor variable explains a certain proportion of phenotypic
variance (PVE = 15%, 25% or 35%). We examined the power of different methods to
detect DM sites or DE genes based on a fixed false discovery rate (FDR). The power
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with respect to different sample sizes at an FDR of 10% for different heritability values
are shown in Figure 3 (A-C for BSseq based simulations; D-F for RNAseq based
simulations). The corresponding results for an FDR of 5% are shown in Figure S9. The
power with respect to different PVE values are shown in Figure S10, with respect to
different observed read counts are shown in Figure S11, with respect to different over-
dispersion variance values are shown in Figure S12.

In both BSseq and RNAseq based simulations, we found that all three GLMM methods
(PQLseq, MACAU and MALAX) are more powerful than LMM method (GEMMA) across
a range of simulation settings. The higher power of GLMM methods comes from their
proper modeling of sequencing count data as demonstrated in previous studies (Lea, et
al.,, 2015; Sun, et al., 2017). Among the different GLMM methods, we found that the
performance of PQLseq, MACAU and MALAX are almost identical to each other when
sample size is small (n < 300), regardless of heritability values (Figure S9), PVE (Figure
S10), read counts (Figure S11) and over-dispersion variance (Figure S12). The similarity
in power between MACAU and MALAX in BSseq based simulations are consistent with
the previous study (Weissbrod, et al., 2017). However, MACAU/PQLseq can be slightly
more powerful than MALAX when sample size is large (n = 200; Figures 3A-C and S9).
For example, when n = 200,h? = 0, PVE = 0.15, at an FDR of 10%, we identified 230
DM sites with PQLseq, 226 with MACAU, but only 219 with MALAX. The power of
MALAX decreases, however, with higher heritability. For example, when n = 200, h? =
0.3, PVE = 0.15, at an FDR of 10%, we identified 183 DM sites (whole significant sites)
with PQLseq, 175 with MACAU, and 156 with MALAX. The reduced performance of
MALAX in large samples as compared with other GLMM methods presumably is due to
the unusual enrichment of MALAX p-values near one in large samples (Figure S7). The
power comparison results also suggest that, despite the difference in type | error control,
both PQLseq and MACAU rank genes or sites similarly well in terms of their differential
expression or differential methylation evidence, thus producing similar power at a fixed
FDR for differential analysis.

PQLseq is computationally efficient

Finally, we emphasize that PQLseq is computationally efficient. For example, on a single
CPU thread, PQLseq is 1.7 to 3 times faster than MACAU in both RNAseq and BSseq
based simulations. In BSseq data, PQLseq is also comparable to MALAX. However,
because PQLseq can take advantage of the multi-thread computing environment
commonly available in modern computers, it can be an order of magnitude faster than
MALAX and two orders or more of magnitude faster than MACAU (Figure 4). For
example, it takes PQLseq, MACAU and MALAX 69.9, 182.2 and 46.6 hours, respectively,
to analyze a data with 10,000 sites and n = 1,000 samples. However, with 10 threads,
PQLseq can analyze the same sized data within 7.2 hours.

Analyzing the Hutterites RNA sequencing data

We applied PQLseq to analyze a published RNAseq data on 431 individuals from the
Hutterites population in South Dakota, which is an isolated founder population
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(Cusanovich, et al., 2016). The Hutterites RNAseq data consists of gene expression
measurements of 17,312 genes in lymphoblastoid cell lines (LCLs) from 431 individuals.
These individuals are related. Specifically, 7,638 pairs of individuals in the data have a
kinship coefficient exceeding 1/8 while 49,746 pairs have a kinship coefficient exceeding
1/16. To account for individual relatedness in the data, we applied LMM and GLMM
based methods GEMMA, MACAU and PQLseq. We first used these methods to
estimate expression heritability for all genes. Our heritability estimates are shown in
Figure 5A. Specifically, the median heritability estimate across all genes is estimated to
be 0.055 (mean estimate = 0.082) by GEMMA, 0.131 (mean = 0.162) by MACAU, and
0.071 (mean = 0.107) by PQLseq (Figure 5A). The order of these median estimates from
different methods are consistent with the simulation results, with PQLseq estimate being
higher than GEMMA and lower than MACAU. In addition, plotting individual expression
heritability estimates from PQLseq against that from GEMMA or that from MACAU
shows a similar pattern (Figure S13).

To explore the influence of batch effects on heritability estimates from PQLseq, we
follow the original study (Cusanovich, et al., 2016) and extract the top principal
components (PCs) from the gene expression matrix and treated them as covariates in
the GLMM. Intuitively, removing batch effects would likely reduce measurement noise
and subsequently improve heritability estimates. Indeed, we found that the h? estimates
from PQLseq gradually increase with the addition of increasingly large number of PCs
initially (Figure S15). The medium h? estimate reach a plateau of 0.187 (mean = 0.249)
near 160 PCs, which, however, is quite close to the medium h? estimate of 0.165 (mean
= 0.219) in the presence of 62 PCs — a number that maximizes number of expression
guantitative trait (eQTL) discoveries in the original study (Cusanovich, et al., 2016). The
h? estimates from PQLseq gradually decrease after the plateau with the addition of more
gene expression PCs, presumably because the later PCs do not necessary capture
batch effects and may sometimes represent true biological/genetic effects.

Besides heritability estimation, we also performed DE analysis to detect genes whose
expression level varies between genders (i.e. male vs female). The p-values for DE
analysis are all well behaved (Figure S14). In order to compare methods based on a
fixed FDR threshold, we also permuted the gender variable and performed DE analysis
on the permuted data to construct an empirical null distribution for the p-values. In the
permuted null data, all three methods produce calibrated p-values (Figure 5B),
consistent with simulations. We then used the permuted null distribution of p-values to
further estimate the empirical FDR at any p-value threshold and compared power of
detecting sex-associated genes at a fixed FDR. The power comparison results are
consistent with simulations and show that PQLseq and MACAU are more powerful than
GEMMA. For example, at an empirical FDR of 10%, we identified 751 sex-associated
genes with PQLseq, 706 sex-associated genes with MACAU, and 543 sex-associated
genes with GEMMA (Figure 5C). For the two GLMM methods, the p-values from
PQLseq are highly correlated with that from MACAU as expected (r* = 0.91; Figure S16).
We also verified that the top sex-associated genes identified by all three methods are
enriched on sex chromosomes (Figure 5D), with PQLseq and MACAU showing slightly
more enrichment than LMM, suggesting the detection of true associations (Lemos, et al.,
2014; Vawter, et al., 2004; Zhou, et al., 2011). Finally, in terms of computation time,
PQLseq finished the analysis in 1.2 hour with ten CPU threads while MACAU took 32


https://doi.org/10.1101/359265
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/359265; this version posted June 29, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

hours, suggesting that PQLseq is more computationally efficient than the previous
GLMM method.

Discussion

We have illustrated the benefits of using PQLseq to perform GLMM analysis on RNA
sequencing and bisulfite sequencing data. We have shown that PQLseq is the only
method currently available that can produce unbiased heritability estimates for
sequencing count data. In addition, PQLseq is well suited for differential analysis in large
sequencing studies, providing calibrated type | error control and more power than
standard LMM methods. PQLseq is implemented as an R software package with parallel
computing capacity, can accommodate both binary and continuous predictor variables,
and can incorporate various biological or technical covariates as fixed effects. With
simulations and real data applications, we have shown that PQLseq is a useful and
efficient tool for analyzing genomic sequencing data sets that are becoming increasingly
common and increasingly large.

In the paper, we have primarily focused on illustrating PQLseq for simple GLMMs with
two-variance components: one component models sample non-independence due to the
covariance matrix K, while the other component models independent over-dispersion.
However, PQLseq can easily accommodate multiple variance components. Indeed, we
have implemented PQLseq so that it can fit GLMMs with multiple variance components.
GLMMs with multiple variance components can be particularly useful when there are
multiple sources of variance that need to be accounted for (Weissbrod, et al., 2017). For
example, one can use multiple variance components to account for population
stratification, family relatedness as well as independent environmental variation.
Alternatively, one can use multiple variance components to account for sample non-
independence due to cell composition heterogeneity across samples, batch effects as
well as independent noise. Exploring the use of GLMM with multiple variance
components in various genomic sequencing studies is an interesting future direction.

In the present study, we have focused on analyzing large scale sequencing data with
GLMM. Compared with small sample studies, sequencing studies with large sample
sizes are better powered, more reproducible, and are thus becoming increasingly
common in genomics (Ardlie, et al., 2015; Battle, et al., 2014; Consortium, 2015). For
example, a recent comparative study makes explicit calls for moderate to large sample

studies performed with at least 12 replicates per condition (i.e. n 2 24) (Schurch, et al.,

2016). However, we recognize that many genomic sequencing studies are still carried
out with a small number of samples (e.g. 3 replicates per condition). Estimating
methylation or expression heritability in small samples is particularly challenging due to
the high estimation uncertainty resulting from small samples. Indeed, even in our
simulations with n = 50 samples, the heritability estimates are highly variable across
simulation replicates (Figure 1). Therefore, we expect at least a couple hundred
individuals are needed to yield reasonably accurate heritability estimates. For differential
analysis, it is also well known that the power of all analysis methods can dramatically
reduce with decreasing sample size, conditional on fixed values of other factors that
influence power (e.g., effect size) (Lea, et al., 2015; Sun, et al., 2017). As a
consequence, the advantage of GLMM over LMM may no longer be apparent in data


https://doi.org/10.1101/359265
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/359265; this version posted June 29, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

with only three replicates per condition when the DE effect size is also kept small.
Moreover, fitting GLMM in small data remains a challenging task: as we have shown in
the present study, different GLMM algorithms can produce either conservative or anti-
conservative p-values under the null in small samples. Therefore, exploring the use of
other GLMM algorithms may help identify algorithms that are particularly well suited for
small data. Studies have shown that the recently developed integrated nested Laplace
approximation (INLA) algorithm can provide accurate parameter estimates in non-
genomic settings (Holand, et al., 2013). While INLA is a Bayesian method, we can pair
the INLA algorithm with the main idea of MACAU to rely on the difference of the
posterior and the prior to enable frequentist estimation. By extracting the likelihood as
the difference between the posterior and the prior, inference will no longer depend on
the prior specification. Therefore, exploring the use of INLA or other GLMM algorithms
may facilitate the application of GLMM to small data sets in the future.

Finally, as we have shown in the main text, while PQLseq is more computationally
efficient than the other GLMM methods, its main computational gain over the other
methods relies on multiple threads computation. It is certainly possible to implement the
other algorithms to use parallel computation. In fact, because different GLMM algorithms
can have different type | error control or sometimes different power for differential
analysis in different settings, enabling parallel computation for other GLMM algorithms
can provide more analytic options for practitioners. In the present study, we have only
examined the computational scalability of PQLseq at a sample size up to n = 1,000,
which is close to the largest genomic sequencing study performed thus far (n = 922)
(Battle, et al., 2014). However, future studies will likely collect data with even larger
samples. In addition, other genomic analysis such as molecular quantitative trait locus
(QTL) mapping studies requires examining pairs of genes or sites with single nucleic
polymorphisms (SNPs). Examining pairs of genes or sites with SNPs, even restricted to
SNPs at the cis-regions of these genes or sites, will require a much larger number of
tests than is required by heritability estimation or differential analysis. Applying GLMM to
millions of tests for expression QTL (eQTL) or methylation QTL (meQTL) mapping, even
with PQLseq and a relatively large computing cluster, is not a trivial task. Therefore,
future algorithmic innovations are needed to scale up PQL or other algorithms to enable
GLMM analysis both in larger data sets and for molecular QTL mapping studies.
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Figure 1. PQLseq produces unbiased heritability estimates across a range of
sample sizes in BSseq and RNAseq based simulations. Violin plots display
heritability estimates obtained from PQLseq (orange), MACAU (blue), MALAX (purple),
and GEMMA (red). The first two panels show heritability estimates  from PQLseq,
MACAU, MALAX, and GEMMA in BSseq based simulation with parameters =12, =

19, and with = 0.1 (A) or = 0.3 (B). The second two panels show heritability
estimates  from PQLseq, MACAU, and GEMMA in RNAseq based simulation with
parameters =0.25, ,andwith  =0.1(C)or =0.3 (D). The horizontal orange
dashed line represents the true heritability.
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Figure 2. PQLseq produces calibrated p-values in BSseq and RNAseq based null
simulations when sample size is large. Genomic control factors from PQLseq
(orange), MACAU (blue), MALAX (purple) and GEMMA (red) across a range of sample
sizes under the null are shown for BSseq based simulations (A) or RNAseq based
simulations (D). Parameters used include = 1.2 and = 19 for BSseq based
simulations and =0.25and = 10 for RNAseq simulations. QQ-plots further compare
the expected and observed p-value distributions generated from different methods under
the null aggregated from 10 simulation replicates for = 50 (B) and = 200 (C) in
BSseq based simulations, and for = 50 (E) and = 200 (F) in RNAseq based

simulations. is the genomic control factor.
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Figure 3. PQLseq exhibits similar power as MACAU in BSseq and RNAseq based
power simulations across a range of sample sizes and heritability values. The
power results are obtained for PQLseq (orange), MACAU (blue), MALAX (purple) and
GEMMA (red) based on 10% FDR in both BSseq based simulations (A, B, C) and
RNAseq based simulations (D, E, F). Results are shown under different heritability
values: =0(Aand D), =0.1(B andE), or =0.3(C and F). The other parameter
settings in the simulations are =19, PVE = 0.15 and = 1.2 for BSseq simulations;
=10, PVE =0.25 and = 0.25 for RNAseq simulations.
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Figure 4. Computational time of different methods for analyzing data with
different sample sizes. Plots show computational time, in minutes (logl10-scaled), by
MACAU (blue), MALAX (purple), PQLseq (orange, dashed line), or PQLseq with 10
threads (orange, solid line) across a range of sample sizes for analyzing 10,000 sites in
BSseq based simulations (A) or 10,000 genes in RNAseq based simulations (B).
Computation are carried out using Intel Xeon E5-2683 2.00 GHz processors.
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Figure 5. Gene expression heritability estimation and differential expression
analysis in the Hutterites RNAseq data. Results are shown for PQLseq (orange),
MACAU (blue) and GEMMA (red). (A) Violin plot shows gene expression heritability
estimates from different methods. The median heritability estimate across genes is 0.071
for PQLseq, 0.131 for MACAU, and 0.055 for GEMMA. (B) QQ-plot comparing expected
and observed p-values distributions under the permuted null for different methods.
Results are aggregated across 20 permutations. 4,4, is genomic control factor. (C) The
number of genes that are associated with sex (y-axis) are plotted against false discovery
rate (FDR) estimated based on permuted null (x-axis). (D) The number of genes that are
on the sex chromosomes (y-axis) out of the genes have the strongest sex association (x-

axis).
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