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Anomalous diffusion in inverted variable-lengthscale fluorescence
correlation spectroscopy
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Abstract

Using fluorescence correlation spectroscopy (FCS) to distinguish between different types of diffusion processes is often a per-
ilous undertaking, as the analysis of the resulting autocorrelation data is model-dependant. Two recently introduced strategies,
however, can help move towards a model-independent interpretation of FCS experiments: 1) the obtention of correlation data
at different length-scales and 2) its inversion to retrieve the mean-squared displacement associated with the process under
study. We use computer simulations to examine the signature of several biologically relevant diffusion processes (simple
diffusion, continuous-time random walk, caged diffusion, obstructed diffusion, two-state diffusion and diffusing diffusivity)
in variable-lengthscale FCS. We show that, when used in concert, lengthscale variation and data inversion permit to identify
non-Gaussian processes and, regardless of Gaussianity, to retrieve their mean-squared displacement over several orders of
magnitude in time. This makes unbiased discrimination between different classes of diffusion models possible.
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1 Introduction

Quantifying the motions of macromolecules in cells, while
an important task, is complicated. The cellular environment
is crowded and heterogenous, and many biomolecules tran-
siently interact with others. Because of this, macromolecular
diffusion in cells can take many forms and is seldom sim-
ply Brownian. It may exhibit a mean-squared displacement
(MSD) that is not linear in time, a distribution of displace-
ments that is not Gaussian, or both (1). Langowski’s study of
the diffusion of the green fluorescent protein in cells, using
fluorescence correlation spectroscopy (FCS), was one of the
first to put this anomalous behaviour in the spotlight (2).

FCS, a technique based on the statistical analysis of the
fluorescence signal recorded from a well-defined observa-
tion volume (radius w) is perfectly suited to the range of
concentrations (1 to 100 nM) and diffusion coefficients (1
to 100 µm2/s) typically encountered for soluble proteins in
cells (3, 4). Further, the systematic variation of w has made
this technique especially useful for the study of anomalous
diffusion processes, which are often lengthscale-dependent.
This scheme, known as spot variation FCS or more generally
variable-lengthscale FCS (VLS-FCS), allows the construc-
tion of the so-called ”diffusion law”, that is the relationship
between projected area of the observation volume, w2, and

characteristic decay time of the FCS autocorrelation func-
tion (ACF), τ1/2 (5). The diffusion law provides a proxy
for the particles MSD. Initially, VLS-FCS was achieved by
enlarging the usually diffraction-limited point-spread func-
tion (PSF) that sets the value of w (5–7). Since then, several
methods have been proposed to extend the range of avail-
able w below the diffraction limit (8–10). Another interest-
ing development has been the generation of VLS-FCS data
from imaging modalities (total internal reflection, single-
plane illumination), in which case the observation volume
size can be varied by binning pixels (11, 12).

The ultimate limit on FCS spatial resolution, however,
is not set by the size of the observation volume, but by the
temporal resolution of the signal from which the ACF is
computed (13–15). The displacements of fluorophores over
distance smaller thanw still result in changes in fluorescence
intensity - with low contrast -, and they are therefore cap-
tured in the short-time regime of the ACF. Thus even with
a fixed-size observation volume, FCS can resolve motions
over a range of lengthscales on either sides of the diffrac-
tion limit. This capacity was demonstrated in a cluster of
studies exploring DNA segments dynamics, where the ACF
was inverted to directly recover the MSD of the segments
(16–18). The same ACF inversion procedure was later used
to study the effect of crowding in membranes and polymer
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2 2 THEORY

solutions (19, 20). A similar idea was later implemented for
image correlation spectroscopy, using a different mathemat-
ical scheme to extract the MSD from spatiotemporal ACFs,
and used to characterize the anomalous behaviour of GFP
diffusion in cells (15, 21). Of note, both these MSD recov-
ery schemes work under the assumption of a process with a
Gaussian propagator.

Following analytical work by Höfling & Franosch (1,
22), we recently showed that variation of the FCS obser-
vation volume size can be combined with ACF inversion
to obtain the MSD of tracer particles for over 5 orders of
magnitude in time (20). The two model systems we studied
(crowded dextran solutions and agarose gels) behaved very
differently in regard to the superimposition of the apparent
MSDs extracted from ACFs obtained at different length-
scales (20). This dissimilarity reflects a qualitative differ-
ence in the nature of the propagator (a.k.a. distribution of
displacements) of the underlying process. Since only pro-
cesses with Gaussian propagators are expected to lead to a
perfect superimposition of the apparent MSDs, the combi-
nation of VLS-FCS with ACF inversion provides a test of
the Gaussianity of the diffusive process (20, 23).

Here we study the signature of different biologically rel-
evant diffusive processes (continuous time random walk,
two-component diffusion, diffusing diffusivity, obstructed
diffusion, caged diffusion). Since analytical solutions are
available only in a small number of limiting cases, we per-
formed 3D single agent simulations for all these processes,
and obtained apparent MSDs from the inversion of ACFs
simulated for a range of w. By highlighting the different
signatures of each diffusion process, our work provides a
benchmark for model-independent interpretation of inverted
VLS-FCS experiments. It also refines our understanding of
the relationship between apparent MSD and real MSD. We
show in particular that the inversion procedure yields the cor-
rect MSD at short lag times regardless of the nature of the
propagator, suggesting possible refinements for VLS-FCS
experiments.

2 Theory

2.1 General form of the ACF

The fluorescence signal I(t) obtained in an FCS experiment
is correlated in time to give the ACF, G(τ) = 〈δI(t)δI(t +
τ)〉/〈I〉2, where δI(t) = I(t) − 〈I〉. For a transport pro-
cess with propagator p(~r, τ), and a 3D Gaussian observation
volume (radius w, aspect ratio S) with normalized profile
O(~r) = e−2x

2/w2

e−2y
2/w2

e−2z
2/(Sw)2 , the ACF becomes:

G(τ, w) =
23

〈c〉π3S2w6

∫
d~re−

2x2

w2 e−
2y2

w2 e
− 2z2

(Sw)2∫
d~ρ p(~ρ, τ)e−

2(x+ρx)2

w2 e−
2(y+ρy)2

w2 e
− 2(z+ρz)

2

(Sw)2 ,

(1)

where 〈c〉 is the average fluorophore concentration.

2.2 ACF for an isotropic Gaussian diffusive process

If the propagator is both Gaussian and isotropic, it can be
expressed as a function of the MSD, 〈r2〉(τ) :

p(r, τ) =

(
2π

3
〈r2〉(τ)

)−3/2
e
− 3r2

2〈r2〉(τ) , (2)

which leads to:

G(τ, w)

G(0, w)
=

[
1 +

(
〈r2〉(τ)

3w2/2

)]−1 [
1 +

(
〈r2〉(τ)

3(Sw)2/2

)]− 1
2

.

(3)
The above equation is valid for any lag time τ at which
the propagator is Gaussian. It is the basis for the inver-
sion procedure used in this work, and illustrated in Fig. 1,
where ˜〈r2〉(τ) is obtained from G(τ, w)/G(0, w) by invert-
ing Eq. 3 (the tilde is used as a reminder that the apparent
MSD extracted from the ACF might differ from the actual
MSD when the propagator is not Gaussian).

2.3 Relationship between ACF and MSD at short lag times

We show in this section that for short τ there is a simple lin-
ear relationship between G(τ, w)/G(0, w)− 1 and 〈r2〉(τ),
whether the propagator is Gaussian or not. The only neces-
sary assumption is that the propagator is isotropic, in which
case it can be written p(r, τ). At lag times much smaller
than the ACF characteristic decay time (τ � τ1/2), particles
have not yet diffused over distances comparable to the obser-
vation volume radius, in other words 〈r2〉(τ) � w2. This
means that p(r, τ) ' 0 for r > w, in which case O(~r + ~ρ)
can be replaced in Eq. 1 by the first two even terms of its
Taylor series expansion in ρ/w (the odd terms are left out
as they disappear when integrating over ~ρ). Performing the
integration over ~r in Eq. 1 then yields:

G(τ, w)

G(0, w)
'
∫∫∫

d~ρ p(ρ, τ)(1− ρ2x
w2

)(1−
ρ2y
w2

)(1− ρ2z
S2w2

).

(4)
Again ignoring higher order terms in (ρ/w)2, and using the
equality 〈r2x〉 = 〈r2y〉 = 〈r2z〉 = 1

3 〈r
2〉 valid for an isotropic

propagator, we get (for τ � τ1/2, or 〈r2〉 � w2):

G(τ, w)

G(0, w)
' 1− (2 + 1/S2)

3

〈r2〉(τ)

w2
. (5)

For a Gaussian process, this linear relationship between ACF
and MSD can be recovered directly from Eq. 3, by per-
forming a first-order Taylor expansion in 〈r2〉/w2. A more
general form of this equation has been derived in Ref. (24).

2.4 Normalization of the ACF

When inverting an experimentally obtained ACF to obtain
the apparent MSD, the first step is to normalize its ampli-
tude to obtain G(τ, w)/G(0, w). When the actual value of
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2.5 ACF for a truncated detection volume 3

Figure 1: (a) Simple diffusion ACFs (analytical form), normal-
ized by amplitude at shortest lag time (black line: τmin = 0, orange
symbols: τmin = τD/500, purple symbols: τmin = τD/50, green
symbols: τmin = τD/5). (b) Apparent MSDs obtained by inversion
of the ACFs shown in (a), showing a departure from the real MSD
at lag times close to τmin. Schematic representations of the detection
volume illustrate particle displacements shorter and larger than the
diffraction limit, for lag times below and above τD , respectively. (c)
Apparent and actual MSDs after normalization by 6Dτ .

G(0, w) is unknown, the most straightforward solution is to
perform the inversion on G(τ, w)/G(τmin, w), where τmin is
the shortest lag time at which a reliable value of the ACF
can be obtained (Fig. 1). Obviously, for the inversion to work
properly, one needs τmin � τ1/2. If this condition is fulfilled,
then at short τ (when Eq. 5 is valid) the apparent MSD is:

˜〈r2〉(τ) = 〈r2〉(τ)×
(

1− 〈r
2〉(τmin)

〈r2〉(τ)

)
. (6)

This highlights an additional necessary condition for the
inversion procedure to work properly, which is that τ needs

to be large enough for 〈r2〉(τ) � 〈r2〉(τmin). This is illus-
trated in Fig. 1 for a simple diffusive process: ˜〈r2〉 deviates
from the actual 〈r2〉 by less than 5% as long as τ > 20τmin.

2.5 ACF for a truncated detection volume

In the simulations presented below, the observation volume
profile was truncated in all three space directions to reduce
computational times. Truncated observation volumes have
been considered before, for either reflective or absorbing
boundary conditions (25, 26). Here we consider the case
that corresponds to our simulations, where particles become
invisible when leaving the rectangular volume with dimen-
sions 2bw×2bw×2bSw centred on the observation volume,
but allowed to diffuse in and out. For a Gaussian propagator
and Gaussian detection profile, the ACF is then given by:

GT (τ, w, b)

GT (0, w, b)
= gTx (τ, w, b)gTy (τ, w, b)gTz (τ, Sw, Sb), (7)

where:

gTu (τ, w, b) =
1

π1/2w

a−1(τ, w)(
erf
[√

2b
])2 ∫ +bw

−bw
du e−

2u2

w2 (1+a−2(τ,w))

×

erf

 bwa2(τ, w)− u

a(τ, w)
√

2
3 〈r2〉(τ)

+ erf

 bwa2(τ, w) + u

a(τ, w)
√

2
3 〈r2〉(τ)


(8)

and:

a(τ, w) =

(
1 +

4〈r2〉(τ)

3w2

)1/2

. (9)

Although there is no simple analytical expression for
GT (τ, w, b), Eq. 8 can be integrated numerically. The trun-
cated ACF (Eq. 7) becomes indistinguishable from the ACF
obtained in the absence of truncation (Eq. 1) for b ≥ 1
(Fig. 2). Since in our simulations b = 7.5, we consider in
the following that GT (τ, w, b) ' G(τ, w).

2.6 ACF for a regular array of detection volumes

To make our VLS-FCS simulations more efficient, we calcu-
lated the signal from an array of observation volumes spaced
by 2bw in the focal plane and 2bSw along the optical axis
(Fig. 2). In this case the ACF takes the form:

GA(τ, w, b) =

1

〈c〉

∫
d~r
∫

d~ρ
∑
i,j,k

Oijk(~r)p(~ρ, τ)
∑
l,m,n

Olmn(~r + ~ρ)

(∫
d~r O(~r)

)2 .

(10)

whereOijk(~r) is the intensity profile of the detection volume
centred at {2bwi, 2bwj, 2bSwk}. Eq. 10 can be simplified by
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4 3 METHODS

Figure 2: (a) Respective sizes of the 7 different 3D-Gaussian ellip-
soidal observation volumes used in our simulations. (b) Array of
observation volumes. (c) ACFs expected for simple diffusion in a
single observation volume (black line, Eq. 3) or for a regular array
of detection volumes (green symbols: b = 2.5, purple symbols:
b = 5, orange symbols: b = 7.5, Eq. 11). The lower panel shows
the corresponding MSD (〈r2〉/(6Dτ) as obtained by inversion of
the ACFs shown in the upper panel).

recognizing that only adjacent detection volumes are likely
to record correlated events. Thus for a n× n× n array:

GA(τ, w, b) ' n3 × (G000(τ, w, b)

+ 4G100(τ, w, b) + 4G110(τ, w, b) + 2G001(τ, w, b)

+ 8G101(τ, w, b) + 8G111(τ, w, b)),

(11)

where Gopq denotes the correlation between two detection
volumes spaced by ∆~R = {2bwo, 2bwp, 2bSwq}:

Gopq(τ, w, b) = G(τ, w)e
− 4[(ob)2+(pb)2]

a2(τ,w) e
− 4(qSb)2

a2(τ,Sw) , (12)

where a2(τ, w) is given by Eq. 9. This expression can be
derived in the same way as the ACF for two-focus FCS
experiments (27). For an elongated observation volume (S =
5), the first three terms in Eq. 11 dominate, where the max-
ima forG100(τ, w, b) andG110(τ, w, b) are much higher and
occur at shorter lag times than for the other terms. As can be
expected, GA(τ, w, b) ' G(τ, w, b) for τ < (bw)2/(4D)
(Fig. 2c). Thus in practice simulations done for an array
of detection volumes can be used for ACF inversion up to
τ = b2τ1/2 (in our case, ' 50τ1/2).

3 Methods

3.1 Generation of particle trajectories

We used a generic 3D single-agent continuum simulation
procedure, written in C++, to generate particle trajectories
and simulate VLS-FCS experiments with observation vol-
ume varying in size between w = 0.3 and 30 µm. Particles
(usually 32) were placed at random positions within a 3D
rectangular simulation box with periodic boundary condi-
tions. The box dimensions, a × a × 5a with a = 450 µm,
were chosen to be 15 times larger than those of the largest
observation volume considered. A time step ∆t = 100 ns
was selected to ensure particle trajectories with sufficient
resolution, even in the smallest observation volume consid-
ered. Simulations were typically run for 1011 time steps. For
simple diffusion, displacements at each step and in each spa-
tial direction were drawn from a normal distribution with
variance

√
2D∆t (diffusion coefficient D = 500 µm2/s).

3.2 Anomalous and obstructed trajectories

The algorithm used to simulate simple Brownian diffusion
was modified to simulate 5 different diffusive processes,
illustrated in Fig. 3. i) Simulations of continuous random
walks (CTRW) were carried out following Refs. (28–30).
Step lengths were drawn from the same Gaussian distribu-
tion as for simple diffusion, but after each step a wait time
τw was added, with duration drawn from a Pareto distribu-
tion, p(τw) = αταmin/τ

1+α
w (τmin = 10−9s, α = 0.8). To

allow for a range of wait times, the time step was changed
for this diffusion process to 10−9s and simulations run for
1013 steps. ii) Two-component diffusion was simulated by
allowing tracer particles to switch between a fast (D =
500µm2/s) and a slow diffusive state (D′ = 50µm2/s).
Transitions between states were assumed to be Poisson pro-
cesses with constant rates, kon = koff = 0 or kon = koff =
500 s−1. iii) Diffusing diffusivity was simulated following
Chubynsky & Slater (31). The diffusion coefficient of each
particle was allowed to undergo a 1D random walk between
Dmin = 0µm2/s and Dmax = 500µm2/s (with a random
initial value within that range), with a ”diffusion coefficient”
d = 5.5 × 10−17 m4/s3, chosen such that the full range
of possible diffusion coefficients was explored by a given
particle over a time comparable to its characteristic diffusion
time through one of the smaller observation volumes. iv) The
obstructed diffusion of particles hindered by the presence
of fixed obstacles was simulated as previously done in 2D
by Saxton (28). Fixed reflective cubic obstacles with dimen-
sions 0.75 µm were placed randomly on a cubic lattice, at a
volume fraction φ = 0.310 just below the percolation limit
(φ∗ = 0.3116). v) Caged diffusion in cubic 1µm corrals sep-
arated by semi-permeable barriers was simulated as done in
2D in Refs. (5, 32). Particles could cross barriers only with
probability p = 0.005 and were reflected otherwise. For the
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3.3 MSD and non-Gaussian parameter 5

Figure 3: Illustration of the different models considered, showing short two-dimensional trajectories. Successive positions are marked by
black dots, while pink dots signal a wait time before taking the next step. The halos around each position represent the Gaussian distribution
from which the next step is drawn. The colour of the halos represent either the value of the diffusion coefficient (a-e) or in which cage the
particle is at that time (f).

obstructed and caged diffusion models, the value of b was
changed very slightly for the smallest observation volumes,
to avoid always placing their center in the same position
within the cubic cells used to generate the obstacles.

3.3 MSD and non-Gaussian parameter

Both the second moment (〈r2〉, mean-squared displacement)
and fourth moment (〈r4〉) of the particle displacement were
calculated from particle trajectories using two separate sam-
pling times. For the first 107 steps, particle positions were
saved at each step (every 100 ns), and from these 〈r2〉(τ)
and 〈r4〉(τ) calculated up to τ = 1s. After 107 steps,
positions were saved only every 1 ms, and 〈r2〉(τ) and
〈r4〉(τ) were calculated from this parsed data for τ >
1 ms. The moments calculated with different sampling times
were stitched together to give data sets spanning the full
explored time range, τ = 100 ns to 104 s. The non-Gaussian
parameter, β, was then calculated according to its definition:

β(τ) =
d

d+ 2

〈r4〉(τ)

[〈r2〉(τ)]
2 − 1, (13)

where d = 3 is the number of spatial dimensions (1).

3.4 Computation of the ACFs

A set of 7 ACFs was calculated from the same particle tra-
jectories, for 3D Gaussian detection volumes with 1/e2 radii,
wi (i = 1 to 7), ranging from 300 nm to 30 µm and equally
spaced on a log scale. The aspect ratio was kept the same for
all detection volumes, S = 5. In order to increase the number
of particle trajectories passing through the smaller detection
volumes, the simulation box was split into smaller boxes of
size 2bwi × 2bwi × 2bSwi, with b = 7.5, and a detection
volume placed at the centre of each of these smaller boxes
(Fig. 2b). For each wi, the fluorescence intensity collected
for a particle at (x,y,z) was thus calculated as:

fi(x, y, z) = e
−2Mod(x,bwi)

2

w2
i e

−2Mod(y,bwi)
2

w2
i e

−2Mod(z,bSwi)
2

S2w2
i ,

(14)
where Mod(x, bwi) is the remainder of the division of x
by bwi. At each simulation step, s, and for each detection
volume size, wi, the fluorescence intensity emitted by each

particle was calculated using Eq. 14, and individual particle
intensities were summed to give the total intensity, Fi(s∆τ).
Up to 107 steps (1 s), the simulated intensity was saved at
each step, after which only binned data (1 ms bins) was
saved. At the end of the simulation, both the original and
binned data were correlated using a discrete fast Fourier
transform, to obtain the ACF between 10−7 and 1 s, and
1 ms and 103 s, respectively. A symmetric normalization
procedure was used to correct for the discrete nature of the
correlation, imposing that the numerator and denominator of
the ACF are calculated from the same number of points (33).

3.5 ACF inversion

An apparent MSD, ˜〈r2〉(τ), was calculated from each ACF
using an inversion procedure justified in the case of Gaussian
diffusion (16, 19). The amplitude of the ACFs was first nor-
malized to 1 using G(∆τ, w), after which Eq. 3 was solved
for 〈r2〉 at each lag time, τ , to obtain ˜〈r2〉(τ).

ACFs were also fitted to the general expression derived
for a Gaussian anomalous process with 〈r2〉 ∝ τα (1, 34):

G(τ) =
1

N

[
1 +

(
τ

τD

)α]−1 [
1 +

1

S2

(
τ

τD

)α]−1/2
.

(15)

4 Results

We performed 3D single-agent simulations for different dif-
fusive processes and characterized the obtained particle tra-
jectories in two different ways. First, we calculated the
mean-squared displacement of the particles, 〈r2〉(τ), the
non-Gaussian parameter, β(τ), and the distribution of dis-
placements, P (x, τ), directly from the trajectories (repre-
sented by black lines or symbols in Figs. 4-12). Second,
we simulated the result of VLS-FCS experiments, gener-
ating ACFs for observation volumes ranging in size from
w = 0.3 to 30 µm (ACFs and derived parameters are rep-
resented by colored symbols in Figs. 4-12). Each ACF was
inverted according to the procedure suggested by Shuster-
man et al. (16, 17), to yield an apparent MSD, ˜〈r2〉(τ), to be
compared to the actual MSD. ACFs were also fitted to the
general expression often used to assess anomalous diffusion
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6 4 RESULTS

Figure 4: Simple diffusion (D = 500 µm/s2). (a) ACFs obtained
for different detection volume sizes (coloured symbols: simula-
tions; black lines: fit of Eq. 15 to the simulated data). The same
ACF, with lag time normalized by τ1/2, are shown in the right
panel. (b) Apparent diffusion coefficient, 〈r̃2〉/(6τ), calculated
from the inversion of the ACF (solid coloured symbols) and com-
pared with the actual diffusion coefficient, 〈r2〉/(6τ), obtained
directly from the particle trajectories (black line). Empty symbols
show the diffusion law (i.e. the value of w2/(4τ1/2) as a function
of τ1/2 for each ACF). One of the inverted curves is also shown
on its own and shifted upwards. (c) Apparent anomalous exponent
obtained from the fit of the ACFs in (a). The dashed line is a guide
for the eye showing the expected α = 1 value for simple diffu-
sion. (d) Non-gaussian parameter calculated from the trajectories
(black line) and expected β = 0 value for simple diffusion (dashed
line). (e) Distributions of displacements for τ = 10−6s (left) and
τ = 10−2s (right). Lines are fit to a Gaussian distribution.

processes, Eq. 15, in order to construct the diffusion law and
recover an apparent anomalous exponent, α.

4.1 Simple Brownian diffusion

We first considered simple Brownian diffusion, to check
how faithfully our simulations could reproduce analytical
results (Fig. 4). As calculated from particle trajectories, the
expected 〈r2〉 = 6Dτ and β = 0 (black lines in Fig. 4b
and d) are obtained with good precision up to τ = 10 s.
The ACFs obtained from the simulated VLS-FCS data have
the expected self-similar form, with a normal diffusion law
(w2 ∝ τ1/2, Fig. 4b) and α ' 1 (Fig. 4c). Performing
the ACF inversion in this simple Gaussian case, where we
should have ˜〈r2〉 = 〈r2〉 at all τ , shows that three separate
factors affect the quality of ˜〈r2〉. i) Due to the finite simula-
tion time, for τ > 1 s the ACFs (and therefore ˜〈r2〉) become
noisy. ii) Because simulations were done for regular arrays

of detection volumes spaced by 15w, a small positive corre-
lation (∼ 0.1% of the ACF amplitude), resulting in a dip
in ˜〈r2〉(τ)/6τ , is observed around (15w)2/4D = 225τD
(see section 2.6 and Fig. 2). iii) The apparent MSD ˜〈r2〉
differs from 〈r2〉 at short lag times (τ < 50∆τ ) because
of the imperfect normalization of the ACFs, which were
just divided by their value at ∆τ = 10−7 s (see section
2.4 and Fig. 1). Despite these limitations, considering only
the inverted ACFs between 50∆τ and 10τD for each ACF,
results in a apparent MSD which is equal to the actual MSD
for 5 decades in time, from below 10−5 s to beyond 10−1 s.

4.2 Continuous time random walk

We next simulated an anomalous diffusion model, a CTRW,
where a wait time τw drawn from a power law distribu-
tion ∝ 1/τ1+αw (α = 0.8) was introduced between each
step. CTRW processes are non-ergodic (29, 35). As a con-
sequence, the MSD obtained by performing both a time and
ensemble average is linear in time (Fig. 5). However, when
performing only an ensemble average, the MSD is anoma-
lous, 〈r2〉 ∝ τα (Fig. 6). Our simulation shows that the
non-Gaussian parameter also depends on how averages are
performed: it is high (because of a large number of immobi-
lized particles) and decays as a power law when performing
a time average (Fig. 5d), but has a low and almost constant
value when performing only an ensemble average (Fig. 6d).
To check whether ergodicity can also be detected from FCS
experiments, we calculated ACFs in two ways: first in the
usual way (performing a time average on the signal, which
already represents an ensemble average over the different
particles present in the observation volume, Fig. 5), and sec-
ond by averaging over many different repeats of the experi-
ment instead of over time (ensemble average, Fig. 6, as also
done in Ref. (35)). Whereas ACFs calculated in these two
different ways are similar for ergodic processes, we see a
clear difference for the CTRW process. The time-averaged
ACFs never stabilize (their shape depends on the length of
the measurement), a reflection of the ageing of the sample
(36). Their shape also depends on the size of the observation
volume (with α increasing from 0.5 to 1 asw increases). The
apparent MSD extracted by inversion of these ACFs differs
from the actual linear MSD and from one another (consis-
tent with the fact that the process is strongly non-Gaussian),
with ˜〈r2〉 ∝ t0.4 over a large range of lag times. Of note,
however, apparent and actual MSD coincide when τ � τ1/2
(a regime that can be observed only for the larger detection
volumes), as expected from the calculations presented in sec-
tion 2.3. In contrast, the ensemble-average ACFs (Fig. 6) are
well-behaved and self-similar, with an apparent anomalous
exponent α ' 0.7 close to the actual α = 0.8. Accordingly,
the inversion of the ensemble-averaged ACFs gives apparent
MSD that largely capture the power-law dependence of the
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4.3 Two-component diffusion 7

Figure 5: CTRW, where the ACFs (a), MSD (b), non-Gaussian
parameter (d) and distribution of displacements (e) have been cal-
culated in the same way as for all the other models, that is taking
both a time and an ensemble average over time and particles. Panels
are as in Fig. 4.

actual MSD (except for those curves with very short τ1/2 for
which the normalization does not work well).

Our simulations confirm the result from previous 2D
simulations, which had shown that for a CTRW, the anoma-
lous exponent recovered from FCS experiments using Eq. 15
can be significantly different than the real anomalous expo-
nent (29, 37). In addition, our simulations emphasize that the
apparent α depends strongly on the size of the observation
volume (Fig. 5c), a phenomenon directly linked to the scale-
dependence of the non-Gaussian parameter (Fig. 5d). Calcu-
lating the ACF as an ensemble-average only (as first done in
Ref. (35)), although not necessarily easy to achieve exper-
imentally, leads to much better behaved results, with sta-
ble self-similar ACFs, and an apparent anomalous exponent
approaching the actual one.

4.3 Two-component diffusion

We next examined three cases in which tracer particles could
switch (with constant rates kon and koff) between two modes
with diffusion coefficients D and D′.

The simplest case is that of two separate populations of
tracers (fractions f and f ′ = 1 − f ) that are not allowed to
interchange (kon = koff = 0). Although a simple analytical
solution exists in this case, we still performed a simulation,
whose results are shown in Fig. 7. For such a process the
MSD is linear in time, 〈r2〉 = 4Davgτ at all lag times with
Davg = fD + (1 − f)D′. Yet the propagator associated

Figure 6: CTRW, where the ACFs (a), MSD (b), non-Gaussian
parameter (d) and distribution of displacements (e) have been cal-
culated using only an ensemble average over particles. Panels are
as in Fig. 4.

with the process is non-Gaussian (it is the sum of two Gaus-
sians). The non-Gaussian parameter has a constant value,
β = f(1− f)(D −D′)2/D2

avg. The ACFs (a weighted sum
of the ACFs that would be obtained from either population
of tracers) are self-similar, with an apparent α ' 0.8 in the
conditions of our simulation. Because of the non-Gaussian
nature of the process, ˜〈r2〉(τ) coincides with 〈r2〉(τ) only
for τ � τ1/2. For τ � τ1/2, all the ˜〈r2〉(τ) instead
approach a simple diffusion MSD with diffusion coefficient
D∞ = DD′/((1 − f)D3/2 + fD′3/2)2/3. The diffusion
law is linear in time, with an apparent diffusion coefficient
comprised between Davg and D∞.

We then considered the general case, where particles can
switch back and forth between two simple diffusion modes
with Poisson statistics (kon = koff = 500 s−1). In this
scenario (one of the few considered before in the context
of VLS-FCS (38, 39)), we expect a cross-over around the
relaxation time, τc = 1/(kon + koff). In the ”fast diffusion”
regime (τ � τc) tracers remains in the same state while
crossing the observation volume and behave as two sepa-
rate populations. In the ”fast reaction” regime (τ � τc)
tracers switch state many times while crossing the observa-
tion volume, and appear to be undergoing simple diffusion
with diffusion coefficient Davg. Meanwhile, β passes from
f(1−f)(D−D′)2/D2

avg to 0 around τc, and α becomes sub-
diffusive below wc =

√
4Davgτc (Fig. 8). As in the previous

case, the actual MSD is linear in time at all lag times. How-
ever, this time the propagator is Gaussian for τ > τc, thus

˜〈r2〉 coincides with 〈r2〉 both below τ1/2 and above τc, and
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8 4 RESULTS

Figure 7: Two-component diffusion for separate populations of
tracers (kon = koff = 0, D = 500 µm2/s, D′ = 50 µm2/s,
f = 0.5). In this case, one expects Davg = 275 µm2/s, D∞ =
78 µm2/s and β = 0.67.

Figure 8: Two-component diffusion with D = 500µm2/s,
D′ = 50µm2/s, and kon = koff = 500 s−1. In these condi-
tions, a crossover between non-Gaussian and Gaussian diffusion
is expected around τc = 1 ms and wc ' 1 µm.

tends towards D∞ in between. Notably, for large w > wc
(i.e. τ1/2 > τc), ˜〈r2〉 = 〈r2〉 at all lag times.

Finally, we considered the limiting case in which tracers
transiently experience immobilization (D′ = 0). The signa-
ture of this ”stick-and-diffuse” model has been considered
in the case of single-scale FCS experiments (40). It dif-
fers significantly from a CTRW because the distribution of

Figure 9: Two-component diffusion with D = 500 µm2/s and
D′ = 0 µm2/s (stick-and-diffuse). The transition rates were kon =
koff = 500 s−1, thus f = 0.5. Then Davg = 250 µm2/s,
D∞ = 0 µm2/s, and β = 1 at small τ . The characteristic time
is τc = 1 ms, corresponding to wc ' 1 µm.

immobilization times is exponential. Its VLS-FCS signature
is no different from that of the general case, with a crossover
from anomalous and non-Gaussian to Gaussian around the
crossover time τc = 1 ms (Fig. 9), but with higher non-
Gaussianity (β = (1 − f)/f at small τ ), lower Davg = fD
and D∞ = 0.

4.4 Diffusing diffusivity

As another example of a diffusive process with linear MSD
but non-Gaussian propagator, we considered the diffusive
diffusivity model (31). Particles were given a diffusion coef-
ficient which varied in time according to a 1D random
walk (with diffusion coefficient d = 5.5 × 107 µm4/s3)
between Dmax = 500 µm2/s and Dmin = 0 µm2/s. We then
expect - and observe - a crossover around τc = (Dmax −
Dmin)2/(2d) = 2 ms. The MSD is linear at all lag time, with
apparent diffusion coefficient Dapp = (Dmax−Dmin)/2, and
a switch from non-Gaussian (β ' 0.35) to Gaussian (β = 0)
behaviour around τc (Fig. 10). Below τc, the distribution
of displacements approaches an exponential distribution, as
previously noted by Chubynsky & Slater (31). Accordingly,
the ACFs display an anomalous shape for w < wc ' 1 µm,
with α approaching 0.9 at the smallest detection volumes.
As for the two-component models, ˜〈r2〉 coincide with 〈r2〉
both for τ � τ1/2 and τ � τc. Overall, the signature of dif-
fusing diffusivity resembles that of a two-component model,
but with less marked anomalous features.
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4.5 Obstructed diffusion 9

Figure 10: Diffusing diffusivity, with a diffusion coefficient dif-
fusing between Dmin = 0 µm2/s and Dmax = 500 µm2/s with a
diffusion coefficient d = 5.5× 107 µm4/s3.

4.5 Obstructed diffusion

Another model often invoked to account for anomalous dif-
fusion in complex media is obstructed diffusion, where the
motion of the tracers is restricted by the presence of immo-
bile obstacles. If the obstacle concentration is below the
percolation limit, anomalous diffusion occurs as a transient
regime between unhindered short-scale diffusion and large-
scale effective diffusion. We simulated obstructed diffusion
using randomly placed cubic obstacles of size L at a volume
fraction φ slightly below the percolation limit (φ∗ = 0.3116
in this geometry). As seen before in 2D simulations (22, 41),
the apparent diffusion coefficient of the tracers switches
from their actual diffusion coefficient (D = 500 µm2/s)
to an effective value (D∞ = 360 µm2/s in our condi-
tions) around τc = L2/(6Dφ2/3) ' 0.4 ms (Fig. 11). This
transient anomalous regime is visible in the ACFs around
wc = L/φ1/3 ' 1 µm, where α has a minimum. Just above
τc, a small peak is observed for the non-Gaussianity fac-
tor (a similarly weak non-Gaussianity was shown for 2D
simulation of obstructed diffusion at large lag time (42)).
Accordingly, ˜〈r2〉 deviates very slightly from 〈r2〉 in that
region, for curves for which τ1/2 is around or below τc.

4.6 Caged diffusion

The last considered model was caged diffusion, where tracer
particles diffuse through an array of semi-permeable cages.
As for obstructed diffusion, a transitory anomalous regime
visible in the ACFs is expected (43–45). We simulated caged
diffusion for regularly arranged cubic cages of size L =

Figure 11: Obstructed diffusion, with D = 500 µm2/s, and cubic
obstacles of size L = 0.75 µm at a volume fraction φ = 0.31.

1 µm, and a probability p = 0.005 to cross the barri-
ers between cages when encountering them (Fig. 12). We
observe the expected crossover between short-term and long-
term diffusion coefficient, with a MSD that more or less
follows the approximate 2D analytical expression derived by
Destainville et al. (i.e. a switch from microscopic to effec-
tive diffusion coefficient around the relaxation time of the
particles in the cages) (32, 44, 46). Interestingly, the non-
Gaussian parameter displays two small amplitude peaks. The
first, found below τc = (L)2/6D = 0.3 ms, corresponds
to the particles equilibrating in a cage. The second corre-
sponds to the particles leaving the cage. Yet as β remains
small, ˜〈r2〉 ' 〈r2〉 at all lag times (the strongest deviation is
observed just above τc). ACFs with w ' L reflect the imper-
fect confinement of the particles in the cage by displaying
two separate timescales, and therefore α < 1.

An interesting particular case is that of impermeable
cages (p = 0). In practice, FCS experiments would be dif-
ficult to perform for such a system, as confined particles
photobleach rapidly, yet it is interesting to think about the
signature of such processes. In this case, the apparent diffu-
sion coefficient falls all the way to 0 above τc, and instead of
a second peak, β goes to negative values (data not shown).
The distribution of displacements has a hard limit at x = L,
eventually assuming a triangular shape at large τ . As w
increases, the ACFs rapidly assume a shape reflecting con-
finement, with α > 1 and with a characteristic decay time
τ1/2 that no longer depends on w.

5 Discussion

Each of the models considered in this work is representa-
tive of a class of diffusion processes relevant to the cellular
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10 5 DISCUSSION

Figure 12: Caged diffusion (small escape probability), with D =
500 µm2/s, L = 1 µm and p = 0.005.

environment. CTRW and two-component diffusion are mod-
els of diffusing molecules interacting with slow or immobile
binding partners, while diffusing diffusivity, obstructed dif-
fusion and caged diffusion reflect different crowding scenar-
ios. In cells, crowding and molecular interactions both play
a part in protein mobility. Our goal was thus to determine
how well the influence of these different scenarios could be
distinguished in VLS-FCS experiments.

Until recently, the information contained in VLS-FCS
experiments has been exploited via the dependence of τ1/2
on w2 (diffusion law), initially introduced to distinguish
simple diffusive processes (τ1/2 ∝ w2) from photophys-
ical processes (τ1/2 independent of w) (47). This model-
independent approach has also proved useful to help distin-
guishing between different types of diffusion (5, 7, 13, 48).
For example, in 2D, caged diffusion and dynamic partition-
ing into domains result in negative and positive τ = 0 inter-
cepts of the diffusion law, respectively (13, 43). However,
our 3D VLS-FCS simulations illustrate an important limita-
tion of the diffusion law, which is that it coincides with the
MSD only for Gaussian or near-Gaussian processes. In more
complex cases (CTRW, two-component diffusion), the diffu-
sion law relates to the MSD in a non-trivial and ill-defined
way, thus one must make assumptions about the underlying
diffusion process to extract information from it (a problem
already pointed out in the context of imaging FCS (49)).

Ultimately, the issue with the diffusion law is that it col-
lapses the rich information contained in the shape of the ACF
into a single value, τ1/2. In contrast, analysis of the detailed
shape of the ACFs obtained at different w can give a lot
of information about the underlying process (as shown for
obstructed diffusion (22), two-component diffusion (38, 39)
or diffusion in phase separated membranes (50)). However,
it is model-dependent. This is why the inversion procedure

introduced by Krichevsky et al. to obtain the MSD from the
ACF (see section 3.5) (16, 17), and its combination with
lengthscale variation as first considered by Höfling and Fra-
nosch (22), and later experimentally demonstrated by us
(20), is so powerful. It uses the full range of information
contained in the ACFs to allow a precise characterization
of the diffusion process, over many decade in times, in a
model-independent manner.

By using the same simulation framework to study differ-
ent classes of diffusion models and by simulating VLS-FCS
experiments, we provide here a library of inverted ACFs,
and thus an unbiased way to interpret the results of such
experiments. Although comparison of different anomalous
diffusion models using simulations are available (notably
a comparison of fractional Brownian motion and CTRW
(29)), none has ever been examined from the point of view
of inverted VLS-FCS. All the considered models (except
for simple diffusion) resulted in ACFs with ”anomalous”
behaviour, i.e. with α < 1 for at least some of the
observation volume sizes considered. However, they var-
ied greatly with respect to several essential features that
can be accessed through a VLS-FCS experiment, namely:
1) self-similarity vs. presence of a characteristic timescale
(visible as a crossover in the inverted ACFs), 2) linearity
of the MSD, 3) Gaussianity of the distribution of displace-
ment. All these models are non-Gaussian, an important char-
acteristic observed in many biological systems (51), e.g.
RNA-protein particle diffusion in cells (52). Of particular
interest, the models involving interchange between differ-
ent diffusion modes with Poisson statistics (two-component
models) or via a continuous diffusive process (diffusing dif-
fusivity) exhibit an ”anomalous, yet Brownian” behaviour
(non-Gaussian propagators associated with a ”normal” lin-
ear MSD), a feature observed in many biologically relevant
contexts, for example diffusion in crowded polymer solu-
tions (20) or actin networks (53). This linear behaviour of
the MSD can be observed in inverted VLS-FCS, whereas the
diffusion law has an apparent power-law dependence on time
(Figs. 8-10).

It has been pointed out that a limitation of the inversion
procedure (the fact that it faithfully returns the MSD only
for Gaussian processes), could be turned to an advantage in
the case of VLS-FCS, as it can be used as a test for Gaus-
sianity (20, 23). Indeed, for all the models considered here,
at those lag times for which the process is not Gaussian (i.e.
where β(τ) 6= 0), we observe a spread in the value of the
inverted ACFs obtained for different w (i.e. ˜〈r2〉 depends on
w). Moreover, the further β(τ) is from 0, the further the fam-
ily of inverted ACFs deviate from one another. More than a
simple test for Gaussianity, an inverted VLS-FCS can thus
inform on the range of lag times over which the process is
non-Gaussian, and on how far from Gaussian the process is.

Maybe the most interesting result from our study is that,
regardless of Gaussianity, the inversion procedure based on
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Eq. 3 returns the actual MSD if τ � τ1/2. This can be proven
by performing a Taylor expansion of the ACF in 〈r2〉/w2 (as
shown in section 2.3), and can be seen in for all the models
simulated here. The linear relationship existing between the
ACF and the MSD at short lag time has been noted before
(24). However, we show here that this linear regime can be
greatly extended by increasing w. Performing a single-point
FCS experiment for a large detection volume, will allow
recovering the actual MSD from ≈ 20∆τ (where ∆τ is the
experiment’s time resolution) up to ' τ1/2/10, whether the
underlying process is Gaussian or not. Of course, this will
hold true only if good statistics can be achieved (i.e. the stud-
ied system is stable enough to allow long measurements) and
if the photophysics of the dye used to tag the tracer is not
an issue at short τ . The MSD can then be retrieved for all
kinds of diffusive processes, over several orders of magni-
tude in time (something which we have previously observed
for fluorescent beads diffusing in gels (20)). Remarkably,
the MSD can then extend below the diffraction limit (a point
which has been made before eloquently (14, 54)). Thus, in
FCS experiments, the best strategy to retrieve information
on processes at short time scale may not be to physically
achieve subdiffraction-limited detection volume, but instead
to work on achieving high quality PSF for larger detection
volumes with a shape as close as possible to a 3D Gaussian
profile (ensuring the inversion procedure faithfully returns
the MSD at short lag time).
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