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Abstract

Motivation: Relief is a family of machine learning algorithms that uses nearest-neighbors to select
features whose association with an outcome may be due to epistasis or statistical interactions with
other features in high-dimensional data. Relief-based estimators are non-parametric in the statistical
sense that they do not have a parameterized model with an underlying probability distribution for the
estimator, making it difficult to determine the statistical significance of Relief-based attribute estimates.
Thus, a statistical inferential formalism is needed to avoid imposing arbitrary thresholds to select the most
important features.
Methods: We reconceptualize the Relief-based feature selection algorithm to create a new family
of STatistical Inference Relief (STIR) estimators that retains the ability to identify interactions while
incorporating sample variance of the nearest neighbor distances into the attribute importance estimation.
This variance permits the calculation of statistical significance of features and adjustment for multiple
testing of Relief-based scores. Specifically, we develop a pseudo t-test version of Relief-based algorithms
for case-control data.
Results: We demonstrate the statistical power and control of type I error of the STIR family of feature
selection methods on a panel of simulated data that exhibits properties reflected in real gene expression
data, including main effects and network interaction effects. We compare the performance of STIR when
the adaptive radius method is used as the nearest neighbor constructor with STIR when the fixed-k nearest
neighbor constructor is used. We apply STIR to real RNA-Seq data from a study of major depressive
disorder and discuss STIR’s straightforward extension to genome-wide association studies.
Availability: Code and data available at http://insilico.utulsa.edu/software/STIR.
Contact: brett.mckinney@gmail.com

1 Introduction
Epistasis is a well known concept in genetics that can be statistically
modeled as a deviation from the additive effect of DNA variants on a
phenotype or trait. A similar effect can be observed at the gene expression
level, where the phenotypic effect of one gene is modified depending on
the expression of another gene (Park and Lehner (2013)). A manifestation
of this “expression-epistasis” effect is differential co-expression (Lareau
et al. (2015)). The embedding of these interactions in a regulatory network
may lead to, not only pairwise interactions, but also higher-order epistasis
network effects. Thus, feature selection methods are needed for high-
dimensional data – such as genome-wide association and gene expression

studies – that are able to identify relevant features when their effect on a
phenotype may be obscured by a complex interaction architecture.

Relief-based feature selection methods are known for their ability
to identify interactions with computational efficiency based on nearest
neighbor calculations in the high-dimensional feature space (Urbanowicz
et al. (2018b); Kononenko et al. (1997); McKinney et al. (2009); Kira
and Rendell (1992)). The early Relief-based algorithms used arbitrary
parameter choices for the number of nearest neighbors and heuristic Relief-
score thresholds for selecting the most important features. Recent work has
been done to address the selection of the number of nearest neighbors, such
as the constant neighborhood radius in spatially uniform ReliefF (SURF)
(Greene et al. (2009)), adaptive radii in multiSURF (Urbanowicz et al.
(2018a)) and feature-specific optimal k in ReliefSeq (McKinney et al.
(2013)). However, until the current study, the threshold for selecting the

© 1

.CC-BY 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted August 14, 2018. ; https://doi.org/10.1101/359224doi: bioRxiv preprint 

https://doi.org/10.1101/359224
http://creativecommons.org/licenses/by/4.0/


i
i

“STIR” — 2018/8/14 — 9:45 — page 2 — #2 i
i

i
i

i
i

2 Le et al.

top predictors has remained arbitrary because Relief scores have not had
a null distribution.

Methods like ANOVA and the generalized linear model have
parametric probability distribution assumptions that easily and efficiently
permit the calculation of p-values. However, these methods are not able
to detect interactions unless each interaction term is explicitly included
in the model. Explicit interaction modeling becomes computationally
intractable for high-dimensional data and/or higher-order interactions due
to the combinatorial explosion of hypothesis tests. Meanwhile, Relief
ranks the importance of each attribute separately, like a univariate method,
but its ranking accounts for dependencies between all other attributes,
making it “omnivariate.” Next we discuss the mechanism that Relief-based
methods use to incorporate interaction effects in importance scores while
circumventing the combinatorial explosion.

When updating a target attribute’s importance score for an instance in
the data, Relief accounts for variation between all other attributes by using
nearest neighbors of the instance, as computed in the space of all attributes.
For the target attribute, a hyper-dimensional decision boundary (i.e., in the
space of all attributes) is computed for each instance, and the attribute’s
score is updated from the neighbors near this boundary. In effect, Relief
creates a high-dimensional nonlinear decision boundary localized at each
instance to discriminate between its nearest hits (same class) and misses
(different class). Pairwise attribute interactions are not explicitly calculated
in Relief, but pairs of attributes that interact conditionally on the outcome
variable will both have similarly high Relief importance scores. Relief also
has the ability to identify higher order interactions, again without explicit
calculation of n-way interactions.

Relief-based methods are, thus, an excellent tool for detecting
interactions, but, as noted, there remains the challenge of determining
statistical thresholds or statistical significance. With the aim of addressing
this challenge, we recently developed a mixture model and a permutation
approach to estimate statistical thresholds for ReliefF and network
centrality scores (Lareau et al. (2015)). However, permutation testing
can be computationally prohibitive. To address this issue, in the current
study we introduce a new family of Relief-based algorithms that allows
for statistical inference and false discovery rate adjustment.

The new STatistical Inference Relief (STIR) formalism represents a
new type of Relief-based score that follows a pseudo t-distribution. In a
precursor of STIR, we recently demonstrated that scores from the standard
Relief algorithm are equivalent to a difference of mean attribute value
differences between nearest hit and miss groups (McKinney et al. (2013)).
This equivalence suggests a reformulation of Relief scores that accounts
for the variance within and between groups. STIR in the current study
is able to detect attributes whose association with the phenotype may be
due to higher-order interactions while simultaneously assigning statistical
significance to the attribute scores. The STIR formalism applies to the
broad family of Relief-based algorithms, including Relief with fixed k
and multiSURF.

The paper is organized as follows. In the Methods section, we develop
the new formalism of STIR that enables the calculation of the STIR
pseudo t-statistics (STIR scores) and statistical significance of these scores.
We discuss our simulation strategy involving main effects and realistic
network interaction effects of varying strengths, sample sizes, and number
of attributes. In the Results section, we apply the STIR method to the
panel of simulated data to assess power and false discovery rates. We use
STIR to obtain FDR-adjusted statistical significance levels and compare
with permutation testing. We compare STIR using k neighbors (constant
for each instance) with multiSURF (variable for each instance) as the
Relief-based nearest-neighbor algorithms. We apply STIR to a real RNA-
Seq dataset from a study of major depressive disorder, and we note that
STIR also applies to GWAS data. In the Conclusion section, we discuss

challenges and opportunities for further development of the new STIR
family of feature selection algorithms.

2 Materials and Methods
In this section, we develop the mathematical formalism for computing
the statistical significance of Relief-based scores for feature selection for
binary-class (case-control) data. We generalize the STIR formalism to
all current nearest-neighbor methods, discuss the relationship between
multiSURF and fixed-k methods, and demonstrate how the reformulation
of Relief-based algorithms can be used to improve the computational
performance of the algorithms.

2.1 Reformulation of Relief-based estimators

2.1.1 Diff function and nearest neighbors
Before importance scores can be computed for each attribute, Relief-based
algorithms identify the nearest neighbors in the space all attributes. The
distance between instances Ri and Rj is calculated in the space of all
attributes a ∈ A, typically using a Manhattan (q = 1) metric but may also
use a Euclidean (q = 2) metric:

Dij =

∑
a∈A
|diff(a, (Ri, Rj))|q

1/q

, (1)

where the standard “diff” function between two instances Ri and Rj for
a real-valued attribute a is:

diff(a, (Ri, Rj)) =
|value(a,Ri)− value(a,Rj)|

max(a)−min(a)
. (2)

This diff is appropriate for gene expression and other real-valued
predictors. For genome-wide association study (GWAS) data, where
attributes are categorical, one simply modifies the diff, but the algorithm is
otherwise unchanged. The diff function is part of the metric used by Relief
methods to compute the distance matrix for finding nearest hit and miss
neighbors, but the diff is also essential for computing the Relief importance
scores, as will be seen in Sec. 2.1.3.

2.1.2 Hit and miss nearest-neighbor ordered pairs
For a given instance Ri (i ∈ 1, . . . ,m), a hit is defined as a neighbor
instance that has the same class label as that ofRi, and a miss is a neighbor
instance with a different class label from Ri. In general Relief-based
algorithms, one may represent the set of ordered pairs (Ri,Mji (Ri)),
or simply (Ri,Mji ), of m instances Ri with their nearest kMi

misses,
Mji , as nested sets:

M = {{(Ri,Mji )}
kMi
ji=1}

m
i=1, (3)

where the index ji for the inner set ranges from 1 to kMi
, which is the

number of nearest miss neighbors for subjectRi. The outer set ranges over
allm instances. Similarly for hits, the set of ordered pairs (Ri, Hji (Ri))

of m instances Ri (i = 1, . . . ,m) with their kHi
nearest hits, Hji , may

be written as
H = {{(Ri, Hji )}

kHi
ji=1}

m
i=1. (4)

Note that in both miss and hit sets, the inner index ji depends on the
outer index i. This is important for multiSURF, where each instance Ri

will, in general, have a different number of misses and hits (kMi
and kHi

)
and these values may differ between instances. Thus, for multiSURF, the
setsM andH can be thought of as irregular or ragged matrices of ordered
pairs. For ReliefF algorithms, where the number of neighbors is constant
across subjects, the hit and miss matrices are proper (non-ragged) matrices
of ordered pairs.
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2.1.3 Reformulation of Relief-based estimators as difference of hit and
miss means

Once the hit and miss groups,H (Eq. 4) andM (Eq. 3), are determined by
the distance matrix Dij (Eq. 1) coupled with a neighborhood definition
(e.g., ReliefF fixed number of neighbors k or multiSURF instance-
dependent radius), we can compute average hit and miss diff means and
attribute importance weights. We showed in Ref. (McKinney et al. (2013))
that the ReliefF importance weight for an attribute, a, can be expressed as
a difference of mean diffs between hit and miss groups. Here we extend
this difference to any Relief-based neighborhood scheme.

The mean diff for attribute a averaged over of all pairs of nearest-
neighbor misses M (Eq. 3) can be expressed as

Ma =
1

m

m∑
i=1

1

kMi

kMi∑
ji=1

diff(a, (Ri,Mji )), (5)

where Mji is the jth nearest neighbor from different classes of the
ith instance, Ri, and kMi

is the number of nearest miss neighbors
of instance Ri. This scaling by 1/kMi

inside the sum makes the
neighborhood average weighting consistent with multiSURF and with
uniform neighborhood methods like SURF and ReliefF. For nearest
neighbor hits, the mean is

Ha =
1

m

m∑
i=1

1

kHi

kHi∑
ji=1

diff(a, (Ri, Hji )), (6)

where, similarly, kHi
is the number of nearest hit neighbors of instance

Ri. The Relief-based importance score can then be expressed simply as

WR[a,M,H] =Ma −Ha. (7)

The formulation as a difference applies to any Relief-based algorithm.
We will use Eq. (7) as the basis for computing permutation p-values for
comparison purposes. However, as noted, permutation can have prohibitive
computational times. Thus, in Sec. 2.2, we extend Eq. (7) to develop a
Relief-based pseudo t-test and a more computationally efficient means of
computing statistical significance of attributes.

2.1.4 Performance optimization with the reformulation and ReliefF
limits of general formalism

In our implementation of STIR on R ver. 3.4.4, we reshape all |M | and
|H| ordered miss and hit pairs,M (Eq. 3) andH (Eq. 4), into |M |×2 and
|H|×2matrices to take advantage of R’s fast vectorization capability (Fig.
1). The reformulated algorithm may be optimized by pre-computing the
neighborhood matricesH andM (Algorithm 2, line 7) and vectorizing the
diff function so that we can simply perform vector subtraction (Algorithm
2, lines 11-13) and bypass the two nested for loops in the original
algorithm (Algorithm 1, lines 8-11) in the calculation of the weight for
each attribute. The description of the reformulated algorithm is simplified
and allows for vectorization, which has a performance advantage over for
loops in R.

In the case of Relief-based methods with constant k (ReliefF), we have
kMi

= kHi
= k ∀i, and Eqs. (5) and (6) become

Ma =
1

mk

m∑
i=1

k∑
ji=1

diff(a, (Ri,Mji )), (8)

and

Ha =
1

mk

m∑
i=1

k∑
ji=1

diff(a, (Ri, Hji )). (9)

The ReliefF version of the reformualted score WR (Eq. 7) then follows
directly.

2.2 Beyond Relief-based estimators: STatistical Inference
for Relief (STIR)

We now introduce a new type of Relief-based score that incorporates the
pooled standard deviations about the mean hit and miss diffs to transform
the Relief-based score (WR) into a pseudo t-statistic,WSTIR. For attribute
a, we construct the following STIR weight (or STIR score) from the Relief
difference of means (WR in Eq. 7) in the numerator and the standard error
in the denominator:

WSTIR[a,M,H] =
Ma −Ha

Sp[M,H]
√

1/|M |+ 1/|H|
, (10)

where |M | =
∑m

i=1 kMi
and |H| =

∑m
i=1 kHi

are the total number of
miss and hit neighbors across all instances. The pooled standard deviation
is

Sp[M,H] =

√√√√ (|M | − 1)S2
Ma

+ (|H| − 1)S2
Ha

|M |+ |H| − 2
, (11)

and the group variances are

S2
Ma

=
1

m

m∑
i=1

1

kMi

kMi∑
ji=1

(
diff(a, (Ri,Mji ))−Ma

)2
, (12)

and

S2
Ha

=
1

m

m∑
i=1

1

kHi

kHi∑
ji=1

(
diff(a, (Ri, Hji ))−Ha

)2
. (13)

The pooled standard deviation above allows for unequal variances in the hit
and miss nearest neighbor diffs and allows for a different number of diffs
in the hit and miss groups, which is common for multiSURF. For Relief
with fixed neighbors k, the above equations can be simplified by letting
kMi

= kHi
= k and |M | = |H| = mk. The WSTIR score (Eq. 10)

approximately follows a t-distribution from which we compute p-values.
We use df = |M | + |H| − 2 as the degrees of freedom for calculating
the p-value.

We highlight that STIR applies to any Relief-based algorithm. In this
work, we focus on two different approaches for the neighbor finding
algorithm (ReliefF and multiSURF) for use in STIR. ReliefF requires the
user to specify a fixed k while multiSURF uses a neighborhood radius
that varies for each instance (Urbanowicz et al. (2018a)). In multiSURF,
the radius for each instance is the average of all distances of the instance
to all other instances subtracted by half of their standard deviation. The
multiSURF method counts another instance as a neighbor if it is within this
radius. We show empirically for balanced datasets that a good constant-k
approximation to the expected number of neighbors within the multiSURF
radii is k = m/6. We show that the performance of STIRk=m/6 closely
follows that of STIR-multiSURF.

2.3 Datasets and performance metrics

2.3.1 Simulation methods
To address power and false positive performance of STIR, we use the
simulation tool from our private Evaporative Cooling (pEC) software (Le
et al. (2017)). This tool was designed to simulate realistic main effects,
correlations, and interactions that one would expect in gene expression or
resting-state fMRI data. In the current study, we first simulate main effect
data with m = 100 subjects (50 cases and 50 controls) and p = 1000

real-valued attributes with 10% functional (true positive association with
outcome). We chose a sample size consistent with real gene expression
data but on the smaller end to demonstrate a more challenging scenario.
Similarly, an effect size bias of b = 0.8 was selected to be sufficiently
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Algorithm 1: Original ReliefF algorithm

1 m← number of training instances
2 p← number of attributes
3 k ← number of nearest hits or misses
4 pre-process dataset X
5 pre-compute distance matrix D (Eq. 1)
6 initialize all feature weights W [a] := 0
7

8 for i := 1 to m do
9 for j := 1 to m do

10 identify k nearest hits and k nearest misses
11 end
12

13 for all hits and misses do
14 # attribute weight update
15 for a := 1 to p do

16 W [a] := W [a]− diff(a,Ri,H)
m·k + diff(a,Ri,M)

m·k
17 end

18 end

19 end
20

21 return vector W of feature scores

Algorithm 2: Reformulated ReliefF algorithm

1 m← number of training instances
2 p← number of attributes
3 k ← number of nearest hits or misses
4 pre-process dataset X
5 pre-compute distance matrix D (Eq. 1)
6 initialize all feature weights W [a] := 0
7 pre-compute miss matrix M and hit matrix H (Sec. 2.1)
8

9 for a := 1 to p do
10 # compute diff vectors then sum:
11 Ma = diff(a, (X[M [, 1], a], X[M [, 2], a]))
12 Ha = diff(a, (X[H[, 1], a], X[H[, 2], a]))

13 W [a] := 1
m·k (

∑
Ma −

∑
Ha)

14 end
15

16 return vector W of feature scores

1

Fig. 1. Comparison of the pseudo-code of the original ReliefF algorithm as implemented in ReBATE (Urbanowicz et al. (2018a)) (Algorithm 1, left) versus the reformulated version of
ReliefF (Algorithm 2, right, based on Eq. 7 – line 13). The reformulated version allows for algorithm optimization by precomputing miss and hit matrices (Algorithm 2, line 7 – Sec. 2.1.4)
and using a vectorized diff function (Algorithm 2, lines 11 and 12). The sums in line 13 are over all elements of Ha and Ma (all pairs of neighbors for all instances). The pseudo-code for
STIR (Eq. 10) works similarly.

challenging with power approximately 40% (Le et al. (2017)). More
details on the theoretical relationship between power and the simulation
parameters is provided in Ref. (Le et al. (2017)).

One of the main advantages of Relief-based methods is the ability to
detect statistical interactions. Thus, our second type of simulation uses
the differential co-expression network-based simulation tool in pEC to
simulate interactions. Full details of the simulation approach can be found
in Refs. (Le et al. (2017); Lareau et al. (2015)). Briefly, we simulatem =

100 samples and p = 1000 attributes with 10% targeted for interaction.
Starting with a dataset of random normal expression levels, we induce a co-
expression network with Erdős-Rényi connectivity by making connected
genes (e.g., gi and gj ) have a linear dependence (gj = gi + sint) with
average correlation noise sint. A lower value of sint yields higher average
co-expression and thus higher average interaction effect size.

The interaction is enforced by randomly targeting 10% of the attributes
and permuting their values within the group of instances designated as
cases. By permuting the values of the gene in cases, no main effect is
created but the co-expression between the gene’s connections is destroyed
in the case group, creating differential co-expression or interaction effects
with that gene’s connections. We chose the 10% of targets randomly, which
means that a few attributes may not have correlation with other attributes
and hence may not actually be functional. On the other hand, other target
attributes may be highly interconnected and, hence, may be involved in
high-order interactions. This complexity of interactions and correlations
makes assessing true/false positives/negatives challenging; however, our
goal is to simulate realistic data and the 10% of targets is a reasonable
surrogate for true associations. We use a relatively challenging interaction
effect size sint = 0.4. See Ref. (Le et al. (2017)) for further discussion of
main effect and interaction effect sizes.

2.3.2 Performance metrics
We compare the performance of STIR across Relief-based methods, with
Relief permutation test, and with univariate t-test for both main and
interaction effect simulations. We choose a univariate t-test as a comparison

method for main effect simulations because it gauges the effect size and the
t-test is an effective standard approach for detecting differential expression
without multiple conditions or covariates. Specifically, a simulated
main effect attribute is considered functional if its mean expression is
significantly different between the two outcome groups. Moreover, the
STIR p-values are analogous to a t-test. STIR p-values are computed from
a t-test distribution from each attribute’s STIR score (Eq. 10). Relief-based
permutation p-values are computed based on the reformulated Relief-based
score (Eq. 7). For permutation, we first compute the observed score for
each attribute. We then permute the class label 10,000 times, recomputing
attribute scores for each permuted dataset. The fraction of permutations
for which the observed score exceeds the permuted score is the attribute’s
p-value.

All resulting p-values (STIR, permutation, and univariate t-test) are
adjusted for multiple testing using the Benjamini-Hochberg procedure
(Benjamini et al. (2001)). Attributes with adjusted p-values less than 0.05
are counted as a positive test (null hypothesis rejected), else the test is
negative. We assess the performance of each method by averaging the
following performance metrics across 100 replicates of each simulation
scenario: True Negative Rate (TNR), Precision, and Recall of the statistical
tests. We remind the reader of the following definitions applied for the
detected attributes

TNR =
# true negatives

# true negatives + false positives
, (14)

Precision =
# true positives

# true positives + false positives
, (15)

Recall =
# true positives

# true positives + false negatives
. (16)

2.3.3 Real-world dataset
To assess the performance of STIR on real data, we analyzed 78 major
depressive disorder (MDD) subjects and 79 healthy controls (HC) from
the RNA-Seq gene network module analysis in Ref. (Le et al. (ress)). This
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Fig. 2. STIR versus permutation-test multiSURF and univariate t-test. Comparison of
the performance (True Negative Rate, Precision, and Recall) of STIR (with multiSURF
neighborhood, mauve), permutation test of multiSURF (blue), and univariate t-test (green)
to detect functional attributes. Each method determines positives by 0.05 FDR adjusted
p-value threshold. Each simulation is replicated 100 times with m = 100 samples and
p = 1000 attributes with 100 functional (A) main effects (bias=0.8) and (B) interaction
network effects (sint = 0.4).

dataset consists of whole blood RNA-Seq measurements of 5,912 genes
for each subject. Sequencing yielded an average of 30 million reads per
individual, and gene expression levels were quantified from reads of 19,968
annotated protein-coding genes, followed by low read-count and outlier
removal as well as technical and batch effect adjustment. Coefficient of
variation filtering resulted in the final set of 5,912 genes that we use in the
current study to test for association with MDD status (Le et al. (ress)).

3 Results

3.1 Comparison of the performance of STIR with
Relief-based permutation

Our first aim is to determine whether the more computationally efficient
pseudo t-test approach of STIR is a reliable alternative to a model-free
permutation test. We use multiSURF as the neighborhood algorithm in
STIR, but constant k algorithms are expected to perform similarly (see
following subsection). We also use the multiSURF neighborhood for
permutation-Relief. Using an FDR adjusted p-value threshold α = 0.05,
we observe that STIR (mauve) and permutation-Relief (blue) indeed
perform nearly the same in both main effect and interaction effect
simulations in terms of True Negatives, Precision, and Recall (Fig. 2).
For completeness and to provide an indicator of power, we also compare
STIR with the performance of a univariate t-test (green). For main effect
simulations (Fig. 2A), all methods have a similarly low Recall because the
simulated main effect size and sample size were chosen to be relatively
low and challenging.

Fig. 3. The effect of k on the performance of STIR to detect functional attributes with
main effects (A) and interaction effects (B). Comparison of the performance (True Negative
Rate, Precision, and Recall) of STIR-ReliefF for multiple values of nearest neighbors k

(k = 5, 16, 33, 49, gray scale) and STIR-multiSURF (adaptive radius, mauve). All
methods determine positives using a 0.05 FDR adjusted p-value threshold.Each simulation
is replicated 100 times with m = 100 samples and p = 1000 attributes with 100

functional.

As we discuss more in Sec. 3.2 (Fig. 3), for main effects, it is
possible to further increase the Recall of STIR beyond a univariate t-
test if one uses STIR with ReliefF and a larger k (up to the maximum
kmax = b(m − 1)/2c); however, this k would cause a decrease in
performance for interactions relative to STIR with lower values of k. The
multiSURF neighborhood constitutes a compromise between main effect
and interaction effect performance, as we explore more below.

For interaction simulations (Fig. 2B), the t-test still has a similarly
high True Negative Rate to STIR. However, this high rate is because no
t-tests are true positive: there are no main effects and the t-test has zero
Precision and Recall. STIR on the other hand still has high Precision and
Recall (Fig. 2B) because Relief-based methods are sensitive to interactions
among attributes (provided the number of neighbors is not too large).

For a dataset of the size simulated in our study (m = 100 samples and
p = 1, 000 attributes) STIR has a 2.1-second runtime on a desktop with an
Intel Xeon W-2104 CPU and 32GB of RAM. As expected, a permutation
test with 10,000 replicates takes approximately 10,000 times longer: over 5
hours on the same desktop. Thus, STIR provides a significant time savings
over permutation for computing p-values.

Our next aim is to gain insight into the performance of STIR with a
ReliefF neighborhood (fixed k neighbors) and how its performance relates
to STIR with a multiSURF neighborhood (adaptive radius). In the main
effect simulations (Fig. 3A), as k increases, STIR gains more power to
detect the functional attributes (increasing Recall) and with an expected
increase in false positive attributes (decreasing Precision). The increasing
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Recall with k is expected for main effects because ReliefF becomes more
myopic (more like a univariate t-test) as k increases (Robnik-Šikonja and
Kononenko (2003); McKinney et al. (2013)). The increase in Recall is
limited in part by the maximum number of neighbors being kmax =

b(m− 1)/2c = 49.

3.2 The effect of k in detecting functional attributes

In contrast, for interaction simulations (Fig. 3B), the relationship between
k and Recall is no longer monotonic. Rather, the Recall reaches a maximum
at approximately k = m/6 and this performance is similar to using
the adaptive radius in multiSURF. As k increases beyond k = m/6

to the maximum kmax , ReliefF becomes more myopic and has nearly
zero Precision and Recall. This result corroborates the findings in Ref.
Urbanowicz et al. (2018a) that multiSURF is sensitive to two or three-
way interactions. However, we also note that the STIR-ReliefF with
k = bm/6c = 16 results are similar to STIR-multiSURF for main effect
and interaction effect simulations (because the average k in multiSURF
is close to m/6). These versions of STIR will yield similar results for
balanced data that are optimal for detecting interactions while being
reasonably powerful for main effects. STIRk=m/6 has a computational
speed advantage over STIR-multiSURF, but STIR-multiSURF may have
an advantage when there is class imbalance (Urbanowicz et al. (2018a)). If
one wanted to optimize the sensitivity of STIR for main effects and neglect
interactions, one would use STIRk=kmax . Furthermore, in all simulation
scenarios, the correlation between STIR scores (pseudo t-statistic) and the
original Relief-based scores (diff function) are above 0.98 (see Supplement
Fig. 1 for more detail).

3.3 Real-world data

We apply STIR to the RNA-Seq study of 78 major depressive disorder
(MDD) subjects and 79 healthy controls described in Ref. (Le et al. (ress)).
The dataset contains 5,912 genes after preprocessing and filtering (see
Methods for more detail). Using an FDR threshold of 0.05, STIR with the
multiSURF neighbor-finding method detects 32 statistically significant
associations (mauve and gray genes above the dashed horizontal line in
Fig. 4). These 32 significant STIR genes include all eight of the genes
that passed the 0.05 FDR threshold from the standard t-test method (gray
genes to the right of the vertical dashed line in Fig. 4). Thus, in addition to
its documented ability to identify interactions, STIR also has high power
to detect main effects among its FDR-adjusted significant genes.

The STIR-multiSURF genes that are outside of the intersection with
the t-test (mauve) such as TCF7L1, a component of the Wnt signaling
pathway, may be good candidates for interaction effects. An extended Venn
diagram of the gene-significance overlap of these two methods is provided
in Supplementary Fig. S2. Although beyond the scope of the current study,
characterization of interactions could be performed to create an expression-
epistasis network from the STIR MDD genes (McKinney et al. (2009);
Lareau et al. (2015)) and help identify underlying mechanisms of MDD
susceptibility.

Using STIR with fixed k = m/6, we identified 41 FDR-adjusted
significant genes (not plotted). These 41 STIR k = m/6 genes
include 31 of the 32 STIR-multiSURF genes. Thus, as we found in
the simulation studies, these two versions of STIR perform similarly,
with multiSURF being more conservative. Future studies will address the
replication of the statistically significant STIR effects, the characterization
of STIR interactions and the mathematical connection between neighbor-
finding methods in STIR. The STIR runtime for the RNA-Seq data was
approximately 19 seconds on a desktop with an Intel Xeon W-2104 CPU
and 32GB of RAM.

0

2

4

6

0 1 2 3 4

t−test ( − log10 padj )

S
T

IR
−

m
u
lt
iS

U
R

F
 (

−
lo

g
1
0

p
a
d
j
)

Fig. 4. Major depressive disorder gene scatter plot of − log10 adjusted significance
for STIR-multiSURF and standard t-test for RNA-Seq differential expression. STIR-
multiSURF finds 32 genes that are significant at the FDR-adjusted 0.05 level (above
horizontal dashed line). Standard t-test finds eight genes that are significant at the FDR-
adjusted 0.05 level (to right of vertical dashed line). STIR identifies all eight significant
main effects from the t-test (gray) and additional candidate genes (mauve) that may involve
interactions. Due to overlap of plot points, not all significant genes are labeled. See
Supplementary Fig. S2 for detailed labels.

4 Discussion
To our knowledge, STIR is the first method to use a theoretical distribution
to calculate the statistical significance of Relief attribute scores without the
computational expense of permutation. Previously, it was difficult to assess
the false discovery rate of Relief-based attribute lists because arbitrary
thresholds were used. STIR is able to report statistical significance of
Relief-based scores by a pseudo t-test that accounts for variance in the
mean difference of miss and hit nearest neighbor diffs. We assessed STIR’s
power and ability to control false positives using realistic simulations with
main effects and network interactions. We applied STIR to real data to
demonstrate the identification of biologically relevant genes.

We showed that the statistical performance using STIR p-values is the
same as using permutation p-values. This validates the STIR pseudo t-test
and means one can use it instead of costly permutation testing. We chose
the number of permutation to be 10,000 to minimize the computational
expense while obtaining accurate permutation p-values. Specifically, if
only 1,000 permutations were performed, the p-values would be bounded
below by 0.001, which would lead to an inflation of insignificant tests after
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FDR correction (padj > 0.05) in simulated datasets with 1,000 attributes.
Nevertheless, 10,000 permutations requires considerable computation
time, especially in large datasets such as the analyzed gene expression data.
Hence, by showing very similar performance to permutation, STIR shows
an efficient implementation to compute the p-value for each attribute while
producing scores that are highly correlated with the standard Relief-based
scores.

We showed the STIR formalism generalizes to all Relief-based
neighbor finding algorithms, including MultiSURF. We showed that
STIR-MultiSURF and STIRk=m/6 perform similarly for main effect and
interaction simulations. This suggests that one may prefer to use constant-k
STIRk=m/6 for the computational speed advantage; however, we have not
tested the statistical performance for imbalanced data. Our results suggest
that power for detecting interactions is maximized near k = m/6 (higher
or lowerk decreases the power). Power for detecting main effects is highest
with the myopic maximum k = kmax = b(m− 1)/2c. Real biological
data will likely contain a mixture of main effects and epistasis network
effects (McKinney and Pajewski (2012)). The value k = m/6 is a good
compromise because it maximizes the radius for detecting interactions
while still giving reasonable power for detecting main effects. However,
the STIR formalism may help tune the elements of an attribute-specific
k vector, where each attribute, a, is allowed to use a different ka to
preferentially detect a main effect or interaction effect as informed by
the data (McKinney et al. (2013)). For those using a constant-k (ReliefF)
approach, our results suggest that using k = m/6 may offer a better
default than the pervasive use of k = 10, which was an arbitrary choice
in the early literature.

Our simulation study focused on obtaining a quality assessment of
statistically significant STIR associations between an attribute and the
outcome while taking into account the complex underlying architecture
of interactions among attributes. Therefore, the simulation is designed
to generate realistic and challenging datasets leading to relatively low
Recall. In datasets with larger sample size (m = 200), we observe
higher Recall values but otherwise similar findings as presented in the
Results section (results for m = 200 not shown). Furthermore, from
a machine learning point of view, if the researcher wishes to include
more attributes in their subsequent analysis, they may increase the FDR
threshold to allow for more false positives and improve the Recall value.
A future study that analyzes this Recall/Precision trade-off would prove
valuable in understanding statistical characteristics of selected features
from Relief-based methods.

The STIR score improves the standard Relief-based scores because,
rather than simply being a difference of means, STIR incorporates
within and between group variances. Moreover, this pseudo t-test score
can be transformed into a p-value. The advancement of STIR over
Relief-based scores is similar to going from a fold change to describe
differential expression to a t-test. The assumptions of a t-test – independent
observations and normality of the population distributions – are not
satisfied for the STIR test in general, which is why we refer to it as a
pseudo t-test. When the average number of neighbors k is sufficiently
large, duplicate pairs will occur in the estimate of the average hit and
miss diffs. The dependence induced by duplicate neighbors may increase
the false positive rate because the variance estimates are narrowed, the
STIR statistics inflated, and the p-values deflated. One could simply
remove duplicates; however, the duplicates are beneficial with respect
to power because they add weight to pairs of instances that are very
similar to each other. The effect of duplicates has a similar effect as
a distance-based weighting scheme such as the exponential decaying
influence of neighboring instances used in some Relief-based algorithms
(Robnik-Šikonja and Kononenko (2003)).

A related approach to reduce the dependence-induced false positive
rate is to perform sub-sampling of the neighbor pairs, which reduces

duplicates but maintains some distance-based weighting. An alternative
approach would be to incorporate variance regularization into the STIR
statistic to inflate the variance to a level consistent with independent
neighbors. Despite the dependence of neighbors, our empirical results
show that, even when unmodified, the STIR pseudo t-test shows
comparable performance with permutation test in both simulation
scenarios with main and interaction effects.

Transformations such as the square root help increase the normality
of the distribution of distances. However, to stay close to the original
Relief score formula, we did not transform the distance values in the
results shown here, but the transformation is provided as an option via the
transform parameter of the STIR function in our software. Preliminary
analysis indicates little difference when transformation is applied (results
not shown).

It has been shown that Relief-based algorithms benefit from the
iterative removal of the worst attributes and then repeating the estimation
of the remaining attributes. Thus, another future direction is to develop
a strategy for STIR that incorporates iterative attribute removal in a way
that minimizes the false positives due to iteration-induced multiple testing.
STIR feature selection could be embedded in the backwards elimination of
pEC for feature selection and classification (Le et al. (2017)) or embedded
in a nested cross-validation approach. Effective strategies also must be
developed for testing for replication of significant STIR effects because
typical replications do not have dependence among other features, whereas
Relief scores depend on the context of other variables in the data.

Extensions of STIR will involve multi-class data, quantitative trait
data (regression) and correction for covariates. Just as an ANOVA extends
the t-test to multiple conditions, we anticipate the extension of STIR
to multi-state will involve an ANOVA formalism and F-test. Similarly,
we envision regression-STIR to follow a linear model formalism. The
current implementation of STIR does not deal with missing data. In a
future implementation, to handle missing data we will modify the diff to
estimate the probability that two instances (one or both possibly missing)
have different values conditioned on their class. Application to GWAS data
requires no additional modifications other than specification of a different
diff function for categorical variables. Future studies will apply STIR
to GWAS as well as eQTL and other high dimensional data to identify
interaction effects.
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