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ABSTRACT

The comprehensive analysis of tumor tissue heterogeneity is crucial for determining
specific disease states and establishing suitable treatment regimes. Here, we analyze tumor
tissue sections from ten patients diagnosed with HER2+ breast cancer. We obtain and
analyze multidimensional, genome-wide transcriptomics data to resolve spatial immune
cell distribution and identity within the tissue sections. Furthermore, we determine the
extent of immune cell infiltration in different regions of the tumor tissue, including invasive
cancer regions. We combine cross-sectioning and computational alignment to build three-
dimensional images of the transcriptional landscape of the tumor and its
microenvironment. The three-dimensional data clearly demonstrates the heterogeneous

nature of tumor-immune interactions and reveal interpatient differences in immune cell
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infiltration patterns. Our study shows the potential for an improved stratification and
description of the tumor-immune interplay, which is likely to be essential in treatment

decisions.

INTRODUCTION

The recent rise in global life expectancy is accompanied by increasing prevalence of age-
related diseases such as cancer!?. Our current understanding of cancer as well as the
efficacy of therapeutic interventions is largely driven by information gained from cancer
tissue. A particularly important aspect is related to the identities and distribution of immune
cells within tumor tissue*~. Current standard analyses mainly rely on morphology-based
examination of individual tissue sections by pathologists combined with additional insight
from immunohistochemistry using antibodies towards known marker proteins®. However,
a discrepancy between clinical IHC-based and transcriptomics-based analyses has been
noted in the classification of HER2+ breast cancers’. A number of models for immune
response in cancer have been proposed and it is currently under debate whether a high level
of lymphocyte infiltration in Basal-like and HER2+ breast cancers is connected to better
prognosis in early stage cancers® !, Two important types of lymphocytes associated with
breast cancer are cytotoxic T-cells (CD8+) and helper T-cells (CD4+). Both of these cell-
types are present at low amounts in non-malignant breast tissue but show large variation in
malignant breast cancer tissue'!. The infiltrating lymphocytes can be present in the stroma
adjacent to the tumor area or directly infiltrate the tumor area and interact with the cancer
cells, i.e. tumor infiltrating T-cells. The presence of tumor infiltrating CD8+ T-cells
facilitates anti-tumor immunity and is thus correlated with better overall patient survival'?-
14 In contrast, the presence of intra-tumor CD4+ T-cells is negatively related to patient
outcome'’. The dense concentration of tumor-associated macrophages has also been found
to correlate with negative overall survival and the occurrence of metastases'®~!8. Several
additional types of immune cells have been detected in breast cancer tissue, but their exact
functions in cancer development remain unknown'?. The composition and function of
tumor infiltrating immune cells can directly influence the efficacy of certain therapeutic

approaches. Recently, cancer immunotherapy, in which immune cells are stimulated to
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target the tumor, has begun to show promising results?*2!. In such cases, comprehensive
cancer-immune cell interaction analyses prior to specific activation might prove pivotal to

therapeutic success.

The standard methods for describing the immune cell composition of tumor tissue depend
on predetermined histological and molecular immune markers and are limited regarding
multiplexing applications. They also heavily rely on microscopic assessments by trained
pathologists, but traditionally lack three-dimensional resolution. To overcome these
obstacles, we designed a workflow that leverages computational analysis of Spatial
Transcriptomics data for the functional and immune cell type analysis of HER2+ breast
cancer tissue samples. The computational approaches used in previous reports?*23, which
are solely based on gene expression values, are more suitable for tissue samples with
clearly defined molecular structures. However, tumor samples are usually highly complex
in terms of cell mixture and distribution; therefore, other approaches are needed to reliably
describe the molecular properties of such samples. In the presented study, we use an
approach called Latent Dirchlet Allocation (LDA)?*. The method was originally developed
to describe the distribution of topics within a text. Any given sample has a specific
proportion of each topic, allowing each sample to contain several topics simultaneously.
Recently, this method has been successfully applied to biological experiments, for
example, in the analysis of RNA-seq data?>°. Since each spatial spot contains a mixture
of several different cell-types, this method is well suited for Spatial Transcriptomics®? data
and can be exploited to identify underlying gene expression structures. Spatial spots with
similar proportions of the topics (herein called gene expression topics) are considered to
contain similar cell mixtures and are pooled to gain more depth in the data. Here, we show
that this approach can be used to classify tissue regions based on function rather than
morphology. By combining Spatial Transcriptomics with robust computational tools, we
can now present immune cell distribution with richer spatial information. The further
integration of cross-sectioning with computational alignment enables us to generate 3D-
images of global expression patterns and immune score distributions throughout the

samples.
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RESULTS

Three tissue sections were collected from each of the ten patients (A-J) diagnosed with
HER2+ breast cancer included in this study (Supplementary Table 1). The collected

sections were then subjected to Spatial Transcriptomics?®%23:27-28

using circular spatial spots
with a diameter of 100um. Each tumor was carefully examined by a trained pathologist,
who annotated the different morphological regions in each tissue section. These
annotations either served as a reference for subsequent unsupervised analysis or were used
directly to pick spatial spots from regions of interest. During unsupervised analysis, we
established biological functions and determined immune cell composition at the
transcriptional level by using LDA to identify underlying structures of gene expression
patterns. The proportions of gene expression topics were further used for hierarchical
clustering, the object of which was to organize spatial spots with similar gene expression
patterns into distinct clusters. Expression data from spatial spots within each cluster were
further collapsed to increase gene detection. Next, pathway analysis®® was carried out
between clusters in order to detect spatial correlation between different regions across the
tissue. We then applied xCell*°, a method for describing immune cell composition, to gain
spatial information about the complex tumor-immune cell landscape by determining the
abundance of sixteen different immune cell-types. The method overview is presented in

Fig. la.

The morphological examination of tumor sections revealed inter- and intra-patient tissue
heterogeneity. Tumors from all ten patients had invasive components, but only tumors from
four patients (A, G, H and J) contained regions annotated as ductal carcinoma in situ
(DCIS). Tumors from six of the patients (E, F, G, H, I and J) contained regions with a high
abundance of immune cells. Other major tissue types identified included fat tissue, fibrous
tissue and normal glands (Fig. 1b, Supplementary Fig. 1a). To study gene expression
differences and similarities between tumors, we generated triplicate transcriptomics data

sets (in silico bulk) for each patient. Dimensionality reduction by Principal Component
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Analysis (PCA) revealed several separate groups of patients, indicating large interpatient

variation (Supplementary Fig. 1b).

To further analyze the Spatial Transcriptomics data, we applied LDA to each patient
sample. A number of gene expression topics, each described by a certain set of genes, was
used in the analysis (Supplementary Table 2). The gene expression sampling was based on
the circular spatial spots. We visualized the data in a way that is easy for the human eye to
interpret by generating interpolated images of the spatial spot positions, values of gene
expression topic proportions and binary images of tissue morphology (Supplementary Fig.
2). We projected the interpolated values across the tissue sections to display the spatial
distribution of gene expression topics. A comparison with the pathologists’ annotations
(Fig. 1b, Supplementary Fig. la) revealed that certain gene expression topics clearly
overlapped with regions described to be stromal, cancer, immune and gland-enriched (Fig.
Ic, Supplementary Fig. 3). This finding demonstrates that applying LDA to Spatial

Transcriptomics data can provide valuable information about the tumor microenvironment.

Next, we clustered spatial spots based on the proportions of gene expression topics (Fig.
2a, Supplementary Fig. 4). To validate the clustering, we also visualized the proportions of
gene expression topics in t-SNE space (Fig. 2b, Supplementary Fig. 5) and overlaid them
with the tissue morphology (Fig. 2c, Supplementary Fig. 6a). The separation of spatial
spots in t-SNE space corresponded well to the gene expression topic clusters, while the
spatial cluster distribution over the tumor section closely resembled the manual annotation.
Taken together, these results demonstrate that clustering spatial spots based on gene
expression topic proportions is a reliable approach for characterizing the tumor
microenvironment in samples. To analyze variation across the triplicate data sets of each
patient, we calculated the proportions of spatial spots assigned to each cluster in each
triplicate. Most clusters showed similar distributions across the three data sets with the
small variations between sections most likely representing molecular variation in different
parts of the tumor (Supplementary Fig. 6b). Interestingly, the clustering revealed more
details about the tissue than the manual annotation. As an example, a large region annotated

as ductal carcinoma in situ (DCIS) in patient H also contained spatial spots that were
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assigned to cluster H2, which corresponds to a region dense in invasive tumor cells,
suggesting that this region has morphological properties of DCIS but molecular properties
of invasive cancer (Fig. 2d). To further validate our clustering approach, we carried out
differential gene expression analysis between each hierarchical cluster (Fig. 2a-c,
Supplementary Fig. 4-6) and the rest of the tissue. A pathway analysis?® was then
performed on the differentially expressed genes (Supplementary Table 3) to identify
biological functions for various regions of the tumor sample (Supplementary Table 4). In
most of the patients, we detected clusters in which the predominant pathways were clearly
related to immune response. These clusters mainly overlapped with regions annotated as

immune cells, tumor stroma/fibrous tissue and invasive cancer (Fig. 2e).

To further explore the data, we calculated spatial immune scores and determined the
immune cell composition within each sample. The previously derived clusters served as
the input for immune cell analysis with xCell*°, which requires decent read depth regarding
gene detection and counts to work properly. To obtain additional coverage and to overcome
the exclusion of genes with low expression, we collapsed spatial spots within each cluster.
This approach enabled us to detect almost six times more unique genes per sample
(Supplementary Fig. 6¢). The immune cell analysis revealed a high total immune score (the
sum of several cell-types) for the annotated immune cell areas in a majority of the samples
(Fig. 3a, Supplementary Fig. 7). Additionally, in several samples the total immune score
overlapped well with the pathway analysis results (Fig. 2¢). This approach also provided
the immune cell composition for each of the clusters (Fig. 3b, Supplementary Fig. 8). For
most samples, the highest values were detected in the regions annotated as immune cell
dense. However, the scores for certain immune cell-types were relatively high even in other
regions. For example, in patient H, Th2 (T helper cell 2), class-switched memory B-cells
and memory B-cells were detected in the DCIS, tumor stroma, and all stroma regions,
respectively (Fig. 3¢). The predominant immune cell type identified in DCIS clusters from
four patients (patient A: A13, patient G: G11, patient H: H8, patient J: J1 and J8) was Th2,
a finding that suggests a homogeneous immune cell pattern within DCIS tissue (Fig. 3b,

Supplementary Fig. 8).
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Subsequent analysis focused on the immune cell composition of tumor regions annotated
as invasive cancer across all ten patients. We selected spatial spots from the invasive
regions of all tumor sections. A dimensionality reduction by PCA revealed four major
groups, with patients A and F clearly separated from each other as well as the other patients.
Patients E and H formed their own group (Fig. 4a), a finding that was also noted in the
“bulk” analysis (Supplementary Fig. 1b). Furthermore, we used invasive spatial spots as
the input for the immune cell analysis. The patient samples could be categorized into four
groups (i-iv) based on immune cell composition (Fig. 4b). As was observed in the PCA,
patients E and H also clustered together in this analysis, which indicates that the tumors of
these two patients share a tumor infiltrating immune cell composition. The invasive cancer
regions in samples from these two patients showed substantial immune cell diversity,
containing mostly Natural killer cells (NKT), CD8+ Tem (effector memory T-cells), Thl
cells (T helper cell 1) and CD4+ naive T-cells with some presence of Memory B-cells and
CD4+ Tcm (central memory T-cells). Thl cells are derived from activated CD4+ naive T-
cells, and can further activate CD8+ T-cells®'. The presence of these types of tumor
infiltrating CD8+ T-cells is correlated with better overall survival'>~!4. Moreover, NKTs
have been shown to be highly cytotoxic to cancer cells and likely contributed to previously
observed reductions in tumor cells*>*. The tumor sample from Patient J almost exclusively
contained Th2 cells. As these cells are mainly responsible for recruiting and activating
other immune cells, it is surprising that only this type of immune cell was detected. This
finding might reflect failure to activate or attract other immune cell-types, which could
negatively influence the overall survival in patients with similar immune cell composition.
Tumor samples from three patients, B, F and I, showed mainly CD8+ Tcm (central memory
T-cells) with some presence of Thl cells. The immune cell pattern in these patients is
similar to what was noted for patients E and H, but with less immune cell-type diversity.
Tumor regions annotated as invasive cancer from the remaining four patients, C, G, A and
D, showed a general absence of lymphoid cell signatures, indicating lack of immune cell
infiltration. Patients with this type of pattern usually have poor overall survival®® and we
observe that patients C and D are the only two deceased among the investigated patients

(Supplementary Table 1).
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Our analyses revealed high two-dimensional spatial variation in both gene expression and
immune cell composition, which prompted a three-dimensional investigation of the patient
samples. We selected samples from four of the patients and used cross-sectioning to collect
six sections from each sample. The tissue image alignment provided a transformation
matrix that we applied to the spatial spots and generated interpolated expression images
into three-dimensional space (Supplementary Fig. 9). The output is a projection of the
tissue in which any gene expression value, gene expression topic proportion or immune
cell composition can be visualized. We applied the immune scores to the 3D reconstructed
data and visualized the output in stacked images of each section (Fig. 5a) or by volume-
based images (Fig. 5b). Patient A showed virtually no immune score whilst Patient B had
the highest immune score among the four patients, but the high immune score was
restricted to a few specific continuous nodes in space. Three of the patients showed
variation across the additional dimension provided by this analysis, which demonstrates
the importance of expanding the analysis from 2D to 3D. To further explore the 3D-data,
we developed a R-shiny app (https:/spatialtranscriptomics3d.shinyapps.io/ST3D-

Viewer/) where all immune-cells and detected genes can be interactively visualized.

DISCUSSION

Here we investigate tumor heterogeneity in samples from ten patients diagnosed with
HER2+ breast cancer in two and three dimensions using spatially resolved transcriptomics.
We used novel methods to cluster the transcriptome wide data according to underlying
structures in the form of LDA-based gene expression topics rather than pure gene
expression values or morphological characteristics. By collapsing spatial spots within the
clustering approach, we detected almost six times more genes than when using single
spatial spots as the input for cell type analysis, improving the overall sensitivity of the
downstream analysis. In most samples, our analysis revealed a clear overlap between the

identified LDA clusters and manually annotated regions.

A key property of Spatial Transcriptomics technology is the possibility to identify and

characterize the distribution of immune cells within tumor tissue sections in an unbiased
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way. Here, we applied spatial cell scoring to reveal areas with a presence of immune cells
with the aim to study the immune composition within areas of invasive cancer of particular
interest for survival outcome and immune therapy. We observe an array of distinct
infiltrating immune cell patterns across the different patients. Although more extensive
studies will be required to fully grasp the immune landscape, we observe groups of patients
sharing similar immune repertoires in situ as well as patients lacking measurable immune
cell infiltration. In the extension of this work it is likely that HER2+ tumors can be
described not only by the gene expression profile per se but also by scoring the infiltrating

immune cell profiles.

More extensive patient sampling is likely to establish a relationship between the extent of
immune cell infiltration and node positivity. An interesting observation is that the two
deceased patients belonged to the immune score group that showed a lack of immune cell
infiltration in the invasive cancer region. Furthermore, tumors from two of the patients also
showed the presence of CD4+ naive T-cells, which are usually not present in tumor tissue*
but have earlier been reported in breast cancer samples®>. Importantly, here we demonstrate
that the described methodological approach can be used to dissect many different aspects
of the immune-tumor interplay and substantiate whether the lack of immune cell infiltration
or type of immune cells in tumor tissue is related to worse prognosis and/or lower overall

survival.

This is the first attempt, to our knowledge, to present genome-wide RNA-seq data from
human tissue in three dimensions. This is achieved by combining cross-sectioning with
computational image alignment and data transformation. Our model demonstrated that it is
possible to detect and follow immune score changes across all three dimensions, and that
the analysis of a single, two-dimensional section would leave out important information

regarding immune cell distribution within heterogeneous samples.

The resulting comprehensive view of gene expression in a tissue volume can thus facilitate
new understanding of tumors and the surrounding microenvironment and has the potential

to challenge current diagnostic practices. By nature, cancers are heterogeneous, and the
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presented results increase the notion of complexity to a higher degree. Yet, the analysis
demonstrates that using a three-dimensional description of the tumor tissue landscape can
advance diagnostic procedures and help design personalized treatments from the time of

diagnosis.
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METHODS

Array production. The array production was described previously?>3¢. Briefly, the
microarrays were generated as a 33x35 matrix with a 200 um center-to-center distance
between 100 pum spatial spots. A total of 1007, unique and spatially barcoded DNA

oligonucleotides, were used.

Tissue handling, staining and imaging. These steps were described previously??. Shortly,
fresh frozen material was sectioned at 16 um. After placing the tissue on top of the barcoded
microarray, the glass slide was warmed at 37 °C for 1 min for tissue attachment and fixated
in ~ 4% NBF (neutral buffered formalin) for 10 min at room temperature (RT). The slide
was then washed briefly with 1x PBS (phosphate buffered saline). The tissue was dried
with isopropanol before staining. The tissue was stained with Mayer’s hematoxylin for 4
min, washed in Milli-Q water, incubated in bluing buffer for 2 min, washed in Milli-Q
water, and further incubated for 1 min in 1:20 eosin solution in Tris-buffer (pH 6). The
tissue sections were dried for 5 min at 37 °C and then mounted with 85% glycerol and a
coverslip. Imaging was performed using the Metafer VSlide system at 20x resolution. The
images were processed with the VSlide software (v1.0.0). After the imaging was complete,
the cover slip and remaining glycerol were removed by dipping the whole slide in Milli-Q

water followed by a brief wash in 80% ethanol and warming for 1 min at 37 °C.

Permeabilization and cDNA synthesis. Permeabilization and cDNA synthesis were
carried out as previously described?? but with substituting the Exonuclease 1 buffer pre-
permeabilization treatment with a 20 min incubation at 37 °C in 14 U of collagenase type
I (Life Technologies, Paisley, UK) diluted in 1x HBSS buffer (Thermo Fisher Scientific,
Life Technologies, Paisley, UK) supplemented with 14 ng BSA followed by an incubation
in 0.1% pepsin-HCI (pH 1) for 10 min at 37 °C. A cDNA-mix containing Superscript III,


https://doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/358937; this version posted June 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

RNaseOUT, DTT, dNTPs, BSA and Actinomycin D was added and the slide incubated at
42 °C overnight (~18 h). The tissue was washed with 0.1x SSC between each incubation

step.

Tissue removal and cDNA release from surface. Tissue removal, as well as the release
of ¢cDNAs from surface was described previously??. In brief, beta-Mercaptoethanol was
diluted in RNeasy lysis buffer and samples were incubated for 1 h at 56 °C. The wells were
washed with 0.1x SSC followed by incubation with proteinase K, diluted in proteinase K
digestion buffer, for 1 h at 56 °C. The slides were then washed in 2x SSC + 0.1% SDS,
0.2x SSC followed by 0.1x SSC and dried. The release mix consisted of second strand
buffer, AINTPs, BSA and USER enzyme and was carried out for 2 h at 37 °C. After probe
release, the 1007 spatial spots containing non-released DNA oligonucleotide fragments

were detected by hybridization and imaging, in order to obtain Cy3-images for alignment.

Library preparation and sequencing. The protocol followed the same preparation
procedures as described earlier??, but were carried out using an automated pipetting system
(MBS Magnatrix Workstation), also previously reported’’. In general, second strand
synthesis and blunting were carried out by adding DNA polymerase I, RNase H and T4
DNA polymerase. The libraries were purified and amplified RNA (aRNA) was generated
by a 14 h in vitro transcription (IVT) reaction using T7 RNA polymerase, supplemented
with NTPs and SUPERaseIN. The material was purified and an adapter ligated to the 3’-
end using a truncated RNA ligase 2. Generation of cDNA was carried out at 50 °C for 1 h
by Superscript 111, supplemented with a primer, RNaseOUT, DTT and dNTPs. Double
stranded cDNA was purified, and full Illumina sequencing adapters and indexes were
added by PCR using 2xKAPA HotStart ready-mix. The number of amplification cycles
needed for each section was determined by qPCR with the addition of EVA Green. Final
libraries were purified and validated using an Agilent Bioanalyzer and Qubit before
sequencing on the NextSeq500 (v2) at a depth of ~100 million paired-end reads per tissue

section. The forward read contained 31 nucleotides and the reverse read 46 nucleotides.
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Mapping, gene counting and demultiplexing. These steps were carried out in a similar
fashion to what has previously been described??. The forward read contained the spatial
barcode and a semi-randomized UMI sequence (WSNNWSNNYV) while the reverse read
contained the transcript information and was used for mapping to the reference GRCh38
human genome. Before mapping the reads with STARY’, the reverse reads were first quality
trimmed based on the Burrows-Wheeler aligner and long homopolymer stretches removed.
HTSeq-count®® with the setting -intersection-nonempty, was used to count only protein-
coding and long non-coding transcripts for each gene, using an Ensembl reference file
(v.79). The remaining reads were taken into TagGD demultiplexing®® using the 18
nucleotides spatial barcode. The demultiplexed reads were then filtered for amplification
duplicates using the UMI with a minimal hamming distance of 2. The UMI-filtered counts
were used in the analysis. The analysis pipeline (v0.8.5) is available at

https://github.com/Spatial TranscriptomicsResearch/st_pipeline.

Analysis of bulk data. The data from all spatial spots, for each tumor or section, were

added up separately. The data were either used of PCA or AIMS* to determine subtypes.

LDA and clustering. Replicate datasets from each tissue were merged and a Latent
Dirichlet Allocation (LDA) model for each merged dataset using the R package cellTree?.
The numbers of topics for each dataset were chosen based the Bayes factor over the Null
model*! using the “maptpx” method with a maximum number of allowed topics set to 15.
The resulting topic matrices were used as a basis for hierarchical clustering of spatial spots.

Clusters were chosen using the adaptive method Dynamic Tree Cut*?

. Clustered spatial
spots were color coded and visualized on a heatmap of topic/spatial spot pairs and overlaid
on the tissue images. t-SNE based on topic proportions was computed for each sample with

each point colored by its respective cluster identity.

Cell-type enrichment analysis. Each cluster was collapsed into vectors by adding the gene
expression values for each spatial spot within that cluster. Cell-type enrichment was

performed for each cluster using the gene signature based method xCell*° or each tissue
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sample. xCell scores for cluster/cell-type pairs were visualized as heatmaps. Cluster/cell-
type pair scores were then extrapolated to the spatial spots within each respective cluster

to generate matrices with xCell scores for spatial spot/cell-type pairs.

Visualization of cell distribution and interpolation. Tissue images in jpeg format were
converted to grey scale and point scatters of x, y coordinates were generated by defining
points at pixel coordinates with intensity below a threshold of 0.5. The 2D point scatters
were transformed from pixel coordinates to array coordinates, thus defined in the same
coordinate system as the array spatial spots. Next, a raster was generated across each tissue
image and points in the 2D scatter were associated with a grid cell by calculating the
minimum Euclidean distance. Spatial spot topic proportions and xCell scores were
interpolated®® across the raster and assigned to each point of the 2D scatter. The 2D scatters
were overlaid onto the tissue images and colored by either topic proportions or xCell
scores. A subset of xCell scores was selected to include only immune cells and was scaled
across all immune cell-types and replicates to range between 0 and 1. The immune cell-
type group included; CD4+ memory T-cells, CD4+ naive T-cells, CD4+ Tcm, CD4+ Tem,
CD8+ naive T-cells, CD8+ Tcm, CD8+ Tem, Tregs, Thl cells, Th2 cells, Tgd cells, NK
cells, NKT, naive B-cells, Memory B-cells, Class-switched memory B-cells, pro B-cells
and Plasma cells. For generation of 3D data, all respective sections for each sample were
processed with Fiji using the “Transform Virtual Stack Slices” plugin**. This created a
transformation matrix for each registered image and enabled image alignment. The
transformation matrix was used to transform® the registered binary dots and spatial spot
coordinates. The transformed dots and spatial spots were scaled, centered, manually
inspected and re-adjusted if necessary. Each tissue section was multiplied three times and
stacked by separating each section with an even distance along the z-axis. xCell scores
were generated for clusters spanning the whole 3D volume and the values were interpolated
onto the 2D scatters separately. All the stacks from each section and sample were combined
and visualized as interactive 3D scatter heatmaps (HTMLwidgets) using the R package

plotly*S. xCell scores were scaled to range between 0 and 1 on the color scale.
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DE and pathway analysis of clusters. Filtered gene expression data was normalized as
counts per ten thousand by dividing each spatial spot column by its sum of counts and
multiplying by 10,000. Spatial spots grouped by LDA based clusters were normalized
using scran*’. First, each cluster was filtered from spatial spots with 0 value size factors
and clusters with less than 40 spatial spots were discarded. The remaining clusters were
normalized with the computed size factors. DE analysis was performed using an edgeR
workflow*®. For each cluster, a design matrix was constructed grouping clustered spatial
spots and all remaining spatial spots separately. Estimates of common and trended
dispersions were computed using the “estimateDisp” function and negative binomial
generalized log-linear models were fitted to each design matrix using the “glmFit”
function. Likelihood ratio tests were calculated using the “glmLRT” function to obtain
differentially expressed genes with a log2-fold change greater than 1 at a significance

threshold of p = 0.01.

Analysis of annotated regions. Spatial spots within regions annotated as “mainly invasive
cancer”, “carcinoma in situ” and “inflammatory cells” were selected using the Spatial
Transcriptomics Research Viewer and exported as expression matrices in tsv-format.
Annotated groups were pooled and subjected to cell-type enrichment with xCell and the
results were visualized as heatmaps of xCell scores for cluster/cell-type pairs. The Spatial
Transcriptomics Research Viewer is available at

https://github.com/Spatial TranscriptomicsResearch/st_viewer.



https://doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/358937; this version posted June 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

REFERENCES

1. Lopez-otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Europe
PMC Funders Group The Hallmarks of Aging. Cell 153, 1194—1217 (2013).

2. Magalhaes, J. P. De. How ageing processes influence cancer. 13, (2013).

3. Carstens, J. L. et al. Spatial computation of intratumoral T cells correlates with
survival of patients with pancreatic cancer. Nat. Commun. 8, 1-13 (2017).

4, Lyons, Y. A., Wu, S. Y., Overwijk, W. W., Baggerly, K. A. & Sood, A. K.
Immune cell profiling in cancer: molecular approaches to cell-specific
identification. npj Precis. Oncol. 1,26 (2017).

5. Gajewski, T. F., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune cells in the
tumor microenvironment. Nat. Immunol. 14, 1014 (2013).

6. Zaha, D. C. Significance of immunohistochemistry in breast cancer. World J. Clin.
Oncol. 5,382 (2014).

7. Prat, A. et al. Molecular features and survival outcomes of the intrinsic subtypes
within HER2-positive breast cancer. J. Natl. Cancer Inst. 106, 1-8 (2014).

8. Stanton, S. E. & Disis, M. L. Clinical significance of tumor-infiltrating
lymphocytes in breast cancer. J. Immunother. Cancer 4, 59 (2016).

9. Garcia-Teijido, P., Cabal, M. L., Fernandez, I. P. & Pérez, Y. F. Tumor-infiltrating
lymphocytes in triple negative breast cancer: The future of immune targeting. Clin.
Med. Insights Oncol. 10, 31-39 (2016).

10. Khan, A. M. & Yuan, Y. Biopsy variability of lymphocytic infiltration in breast
cancer subtypes and the ImmunoSkew score. Sci. Rep. 6, 2—11 (2016).

11.  Degnim, A. C. et al. Immune cell quantitation in normal breast tissue lobules with
and without lobulitis. Breast Cancer Res. Treat. 144, 539-549 (2014).

12.  Alj, H. R. et al. Association between CD8+ T-cell infiltration and breast cancer


https://doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/358937; this version posted June 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

survival in 12 439 patients. Ann. Oncol. 25, 15361543 (2014).

13.  Mahmoud, S. M. A. ef al. Tumor-Infiltrating CD8+ Lymphocytes Predict Clinical
Outcome in Breast Cancer. J. Clin. Oncol. 29, 1949-1955 (2011).

14.  Miyashita, M. et al. Prognostic significance of tumor-infiltrating CD8+ and
FOXP3+ lymphocytes in residual tumors and alterations in these parameters after
neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective
multicenter study. Breast Cancer Res. 17, 124 (2015).

15.  Huang, Y. et al. CD4+ and CD8+ T cells have opposing roles in breast cancer
progression and outcome. Oncotarget 6, 17462—78 (2015).

16.  Yang, J., Li, X, Liu, X. P. & Liu, Y. The role of tumor-associated macrophages in
breast carcinoma invasion and metastasis. Int. J. Clin. Exp. Pathol. 8, 6656—6664
(2015).

17.  Obeid, E., Nanda, R., Fu, Y. X. & Olopade, O. I. The role of tumor-associated
macrophages in breast cancer progression (review). Int. J. Oncol. 43, 5-12 (2013).

18.  Williams, C. B., Yeh, E. S. & Soloff, A. C. Tumor-associated macrophages:
unwitting accomplices in breast cancer malignancy. npj Breast Cancer 2, 15025
(2016).

19.  Savas, P. et al. Clinical relevance of host immunity in breast cancer: from TILs to
the clinic. Nat. Rev. Clin. Oncol. 13,228 (2015).

20.  Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy.
Science (80-. ). 348, 69 LP-74 (2015).

21.  Farkona, S., Diamandis, E. P. & Blasutig, I. M. Cancer immunotherapy: The
beginning of the end of cancer? BMC Med. 14, 1-18 (2016).

22.  Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections
by spatial transcriptomics. Science (80-. ). 353, 78 LP-82 (2016).

23.  Giacomello, S. ef al. Spatially resolved transcriptome profiling in model plant
species. Nat. Plants 3, 17061 (2017).

24.  Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet Allocation. 3, 993—-1022
(2003).

25.  duVerle, D. A., Yotsukura, S., Nomura, S., Aburatani, H. & Tsuda, K. CellTree:

An R/bioconductor package to infer the hierarchical structure of cell populations


https://doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/358937; this version posted June 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

from single-cell RNA-seq data. BMC Bioinformatics 17, 1-17 (2016).

26. Dey, K. K., Hsiao, C. J. & Stephens, M. Visualizing the structure of RNA-seq
expression data using grade of membership models. PLOS Genet. 13, €1006599
(2017).

27.  Jemt, A. et al. An automated approach to prepare tissue-derived spatially barcoded
RNA-sequencing libraries. Sci. Rep. 6, 37137 (2016).

28.  Asp, M. et al. Spatial detection of fetal marker genes expressed at low level in
adult human heart tissue. Sci. Rep. 7, 12941 (2017).

29.  Yu, G. & He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome
pathway analysis and visualization. Mol. Biosyst. 12, 477-479 (2016).

30. Aran, D., Hu, Z. & Butte, A. J. xCell: Digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. 18, (2017).

31.  Ekkens, M. J. et al. Th1 and Th2 cells help CD8 T-cell responses. Infect. Immun.
75, 2291-2296 (2007).

32. Ames, E., Hallett, W. H. D. & Murphy, W. J. Sensitization of human breast cancer
cells to natural killer cell-mediated cytotoxicity by proteasome inhibition. Clin.
Exp. Immunol. 155, 504-513 (2009).

33. Tallerico, R. et al. NK cells control breast cancer and related cancer stem cell
hematological spread. Oncoimmunology 6, 1284718 (2017).

34. Luckheeram, R. V., Zhou, R., Verma, A. D. & Xia, B. CD4+T cells:
Differentiation and functions. Clin. Dev. Immunol. 2012, (2012).

35.  Su, S. et al. Blocking the recruitment of naive CD4+ T cells reverses
immunosuppression in breast cancer. Cell Res. 27, 461-482 (2017).

36.  Vickovic, S. et al. Massive and parallel expression profiling using microarrayed
single-cell sequencing - Accepted. Nat. Commun. 1-9 (2016).
doi:10.1038/ncomms13182

37. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15-21 (2013).

38.  Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with
high-throughput sequencing data. Bioinformatics 31, 166—169 (2015).

39. Costea, P. 1., Lundeberg, J. & Akan, P. TagGD: Fast and Accurate Software for


https://doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/358937; this version posted June 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

DNA Tag Generation and Demultiplexing. PLoS One 8, ¢57521 (2013).

40. Paquet, E. R. & Hallett, M. T. Absolute assignment of breast cancer intrinsic
molecular subtype. J. Natl. Cancer Inst. 107, 1-9 (2015).

41. Taddy, M. a. On Estimation and Selection for Topic Models. Proc. Fifteenth Int.
Conf. Artif. Intell. Stat. (AISTATS 2012) 1184—1193 (2012).

42.  Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical
cluster tree: The Dynamic Tree Cut package for R. Bioinformatics 24, 719-720
(2008).

43.  Akima, H. A Method of Bivariate Interpolation and Smooth Surface Fitting for
Irregularly Distributed Data Points. ACM Trans. Math. Softw. 4, 148—159 (1978).

44.  Schindelin, J. et al. Fiji - an Open Source platform for biological image analysis.
Nat. Methods 9, 10.1038/nmeth.2019 (2012).

45.  Carrillo, G. vec2dtransf: 2D Cartesian Coordinate Transformation. (2015).

46. Sievert, C. et al. plotly: Create Interactive Web Graphics via “plotly.js’. (2016).

47. L. Lun, A. T., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-
cell RNA sequencing data with many zero counts. Genome Biol. 17,75 (2016).

48. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor
package for differential expression analysis of digital gene expression data.

Bioinformatics 26, 139-140 (2009).


https://doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/

Figure 1

bioRxiv preprint doi: https://doi.org/10.1101/358937; this version posted June 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

a
i) Spatial transcriptomics i) Clustering of data iii) Functional analysis iv) Visualization
A
/. CcoseTem , :
/ CD4+ Tem
* CD8+ Tem

Proportion of gene expression topics
Patient H - morphological annotation -
0.00 050 1.00

—DCIS ——Normal glands
——Invasive cancer —— Fat tissue Stroma enriched Cancer enriched
Immune cells ——Fibrous tissue (Gene expression topic tH1) (Gene expression topic tH2)
——Necrosis i NS o ¥

Immune enriched Gland enriched
(Gene expression topic tH5) (Gene expression topic tH6)
. g

Figure 1 Overview of the presented approach. (a) i) The Spatial Transcriptomics method was applied to sections
from ten patients (three sections from each biopsy); ii) spatial spots covering various regions of the tissue were
selected and clustered; iii) spatial spots within each cluster were collapsed prior to pathway analysis and immune
cell-type determination (Tem, effector memory T-cells; Tcm, central memory T-cells); iv) the data were
visualized by superimposing tissue types on their spatial positions in the tissue. (b) Morphological regions were
characterized by a pathologist and annotated into seven distinct categories: DCIS (orange); invasive cancer (red);
immune cells (yellow); normal glands (green); fat tissue (cyan); fibrous tissue (blue); and necrosis (black). The
black bar in the bottom left corner represents 500um. (¢) Interpolated tissue images that illustrate how four of the
gene expression topics have clear morphological patterns. The color scale shows the proportion of each gene
expression topic in specific tissue regions. Gene expression topic tH1 was prevalent in the stroma (both fibrous
tissue and tumor stroma), tH2 was prevalent in cancer tissue (both DCIS and invasive), tHS was associated with
immune cells while tH6 was associated with normal glands. The black bar in the bottom left corner of each tissue
section represents S00pum.
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Figure 2 Clustering and pathway analysis. (a) The clustering was performed based on proportions of gene
expression topics in patient H using Euclidean distance and Ward’s method. Colored bars under the dendrogram
indicate cluster identity as determined by the unsupervised clustering method. Interesting clusters that clearly
overlap with the manual annotations are marked. (b) Visualization of the clusters in t-SNE space. Data points
represent spatial spots from patient H. Colors represents the cluster membership of each spatial spot. (c)
Interpolated view across the tissue image for patient H. The different clusters show specific spatial patterns that
closely follow the morphology. Black and gray lines bound areas determined to be DCIS and invasive cancer
regions by the pathologist. The black bar in the bottom left corner represents 500um. Colors represents the cluster
membership of each spatial spot. (d) Magnified view of a DCIS area. The interpolated visualization is overlaid
onto the actual spatial spots. The annotated DCIS region clearly contains spatial spots that are grouped into
different clusters; for example, cluster H2, which dominates the invasive region. The black bar in the bottom left
corner represents 100um. (e) Pathway analysis of ten clusters across tumors from six of the patients. The
pathway analysis is based on genes in the specific clusters that are upregulated relative to the rest of the tissue
and show a high proportion of immune-related pathways (GO terms). Most immune-related GO terms were
detected in immune cell, tumor stroma/fibrous tissue and invasive cancer regions.
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Figure 3 Spatial immune cell analysis. (a) A spatial view of the total immune score as calculated by xCell. The
highest score was detected in a region annotated as immune cell dense (black lines). However, other regions
also indicate high presence of immune cells, especially the tumor stroma (proximal to the tumor areas). The
maximum score in the image is based on the patient max (0.39) after the score across all ten patients was
scaled (0-1). The black bar in the bottom left corner represents 500um. (b) Heat map of xCell scores for
different immune cell-types across the ten clusters detected in patient H. Interesting clusters that clearly
overlap with the manual annotation are marked. Immune cell cluster (H4) shows the highest score and immune
cell diversity. However, several immune cell-types are present in other parts of the tissue. (c) A spatial view of
the detected immune cell-types. Th2 cells are mostly present in the tumor regions but were also detected in the
immune cell dense and stromal regions. Both Class-switched memory B-cells and memory B-cells are
prevalent in the immune cell dense regions, but also appear in different parts of the stroma. The immune cell
dense regions are marked with black lines in the images. The black bar in the bottom left corner of each tissue
section represents S00pum.
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Figure 4 Lymphoid cell-types detected in the invasive regions across ten patients. (a) A PCA of spatial spots that were

manually selected from the annotated invasive regions shows the formation of four major groups, with patients A and
F separated from each other as well as from the other patients. Patients E and H formed their own group. The variance
of each component is shown on the axes. (b) The xCell score was used to cluster the samples, and four clear clusters
were detected (i-iv). Samples from patients E and H contained mostly NKT, CD8+ Tem, Th1 cells and CD4+ naive T-
cells, with some presence of Memory B-cells and CD4+ Tcm. Samples from patient J contained almost exclusively
Th2 cells. Samples from patients B, F and I contained mostly CD8+ Tcm with the presence of some Th1 cells.
Samples from patients C, G, A and D contained very few lymphoid cells, indicating lack of immune cell infiltration.
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Figure 5 Three-dimensional Spatial Transcriptomics. Total immune score visualized in two different ways across six tissue
sections from three patients. (a) Stacked view in which the sections are clearly separated for easy interpretation of expression
patterns. (b) volume visualization, which is a more accurate view of the tissue volume. Clear differences in the spatial locations
of regions with high immune scores can be noticed across all three dimensions. Patient B shows the highest immune score.
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Supplementary Fig. 1 Overview of patient samples. (a) Morphological regions were characterized by a pathologist
and annotated into six distinct categories: DCIS (orange); invasive cancer (red); immune cells (yellow); normal
glands (green); fat tissue (cyan); and fibrous tissue (blue). The black bar in the bottom left corner of each tissue
section represents 500um. (b) PCA of bulk data from the ten patients shows that the patients can be categorized into
separate groups, indicating large interpatient differences. However, patients B, D, G and I and patient E and H group
together, indicating transcriptional similarities. The variance of each component is shown on the axes.
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or proportions of gene expression topics, were overlaid with the HE-stained tissue image. HE-stained tissue images
were first converted into gray-scale and then into binary format based on a light intensity threshold. Tissue images were
then rasterized to generate a grid of cells into which the binary dots were binned according to the minimum Euclidean
distance from each binary dot to the grid cell centers. Spatial spots values were interpolated across the grid and assigned
to each grid-cell. The binary dot patterns were colored based on the interpolated values and overlaid on top of the gray-

scale tissue images.
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specific, meaning that the same proportion in another sample does not necessarily represent a similar region. The
black bar in the bottom left corner of each tissue section represents S00pum.
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expression topics in patient tissue samplesagnd i grﬁi%(ﬁnﬁegfﬁ%@&ﬁc(fé?ﬁ distance and Ward’s method. Reference
bars under the dendrograms indicate cluster identity determined by the unsupervised clustering method. Interesting
clusters that clearly overlap with the manual annotations are named. Clusters are sample specific, meaning that the
same color does not represent a specific region across different samples.
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Supplementary Fig. 5 Non-linear dimensionality reduction using t-SNE. Data points represents spatial spots and are

colored based on cluster identity. The plot was used to verify the clustering. Clusters are sample specific, meaning that
the same color does not represent a specific region across different samples
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Supplementary Fig. 6 Spatial visualization of clusters. (a) Clusters were classified by color and interpolated

across tissue images. Clusters are sample specific, meaning that the same color does not represent a specific
region across different samples. The black bar in the bottom left corner of each tissue section represents 500pum.
(b) Stacked bar chart of cluster proportions across all three sections (replicates) of each of the ten patient samples.
Similar bar patterns indicate similar cluster proportions across replicates. (¢) Violin plot of the number of unique
genes that are detected per spatial spot in relation to how many are detected per cluster when spatial spots are
collapsed.
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Supplementary Fig. 7 Spatial visualization of total xCell immune scores. Interpolated tissue images demonstrate
how the immune score is distributed across the tumor tissue. The color scale (top left) shows the extent of immune
cell density while the black lines display manually annotated immune cell dense regions. Maximum scores in the

images are based on the patient max after the score across all ten patients were scaled (0-1). The black bar in the
bottom left corner of each tissue section represents 500pm.
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calculated for each cluster (columns) and patient sample (heatmaps) separately. Each grid-cell represents the xCell
score for a certain lymphoid cell-type in a specific cluster. The values have been scaled across all samples to a
range between 0 and 1. Interesting clusters that clearly overlap with the manual annotations are marked.
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Supplementary Fig. 9
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Supplementary Fig. 9 Three-dimensional Spatial Transcriptomics. Schematic representation of the approach. Six
sections were collected from each of the four samples and processed using the Spatial Transcriptomics methods. Tissue
images were computationally aligned and stacked. The transformation matrix from the alignment were applied to the
spatial data so that the images and data existed in the same space. The data were then interpolated as previously described.
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